kern_lock.c revision 1.103 1 /* $NetBSD: kern_lock.c,v 1.103 2006/12/09 15:59:25 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.103 2006/12/09 15:59:25 chs Exp $");
80
81 #include "opt_multiprocessor.h"
82 #include "opt_lockdebug.h"
83 #include "opt_ddb.h"
84
85 #include <sys/param.h>
86 #include <sys/proc.h>
87 #include <sys/lock.h>
88 #include <sys/systm.h>
89 #include <machine/cpu.h>
90
91 #include <dev/lockstat.h>
92
93 #if defined(LOCKDEBUG)
94 #include <sys/syslog.h>
95 /*
96 * note that stdarg.h and the ansi style va_start macro is used for both
97 * ansi and traditional c compiles.
98 * XXX: this requires that stdarg.h define: va_alist and va_dcl
99 */
100 #include <machine/stdarg.h>
101
102 void lock_printf(const char *fmt, ...)
103 __attribute__((__format__(__printf__,1,2)));
104
105 static int acquire(volatile struct lock **, int *, int, int, int, uintptr_t ra);
106
107 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
108
109 #ifdef DDB
110 #include <ddb/ddbvar.h>
111 #include <machine/db_machdep.h>
112 #include <ddb/db_command.h>
113 #include <ddb/db_interface.h>
114 #endif
115 #endif /* defined(LOCKDEBUG) */
116
117 #if defined(MULTIPROCESSOR)
118 struct simplelock kernel_lock;
119 #endif
120
121 /*
122 * Locking primitives implementation.
123 * Locks provide shared/exclusive synchronization.
124 */
125
126 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
127 #if defined(MULTIPROCESSOR) /* { */
128 #define COUNT_CPU(cpu_id, x) \
129 curcpu()->ci_spin_locks += (x)
130 #else
131 u_long spin_locks;
132 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
133 #endif /* MULTIPROCESSOR */ /* } */
134
135 #define COUNT(lkp, l, cpu_id, x) \
136 do { \
137 if ((lkp)->lk_flags & LK_SPIN) \
138 COUNT_CPU((cpu_id), (x)); \
139 else \
140 (l)->l_locks += (x); \
141 } while (/*CONSTCOND*/0)
142 #else
143 #define COUNT(lkp, p, cpu_id, x)
144 #define COUNT_CPU(cpu_id, x)
145 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
146
147 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
148 do { \
149 if ((flags) & LK_SPIN) \
150 s = spllock(); \
151 simple_lock(&(lkp)->lk_interlock); \
152 } while (/*CONSTCOND*/ 0)
153
154 #define INTERLOCK_RELEASE(lkp, flags, s) \
155 do { \
156 simple_unlock(&(lkp)->lk_interlock); \
157 if ((flags) & LK_SPIN) \
158 splx(s); \
159 } while (/*CONSTCOND*/ 0)
160
161 #ifdef DDB /* { */
162 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
163 int simple_lock_debugger = 1; /* more serious on MP */
164 #else
165 int simple_lock_debugger = 0;
166 #endif
167 #define SLOCK_DEBUGGER() if (simple_lock_debugger && db_onpanic) Debugger()
168 #define SLOCK_TRACE() \
169 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
170 TRUE, 65535, "", lock_printf);
171 #else
172 #define SLOCK_DEBUGGER() /* nothing */
173 #define SLOCK_TRACE() /* nothing */
174 #endif /* } */
175
176 #if defined(LOCKDEBUG)
177 #if defined(DDB)
178 #define SPINLOCK_SPINCHECK_DEBUGGER if (db_onpanic) Debugger()
179 #else
180 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
181 #endif
182
183 #define SPINLOCK_SPINCHECK_DECL \
184 /* 32-bits of count -- wrap constitutes a "spinout" */ \
185 uint32_t __spinc = 0
186
187 #define SPINLOCK_SPINCHECK \
188 do { \
189 if (++__spinc == 0) { \
190 lock_printf("LK_SPIN spinout, excl %d, share %d\n", \
191 lkp->lk_exclusivecount, lkp->lk_sharecount); \
192 if (lkp->lk_exclusivecount) \
193 lock_printf("held by CPU %lu\n", \
194 (u_long) lkp->lk_cpu); \
195 if (lkp->lk_lock_file) \
196 lock_printf("last locked at %s:%d\n", \
197 lkp->lk_lock_file, lkp->lk_lock_line); \
198 if (lkp->lk_unlock_file) \
199 lock_printf("last unlocked at %s:%d\n", \
200 lkp->lk_unlock_file, lkp->lk_unlock_line); \
201 SLOCK_TRACE(); \
202 SPINLOCK_SPINCHECK_DEBUGGER; \
203 } \
204 } while (/*CONSTCOND*/ 0)
205 #else
206 #define SPINLOCK_SPINCHECK_DECL /* nothing */
207 #define SPINLOCK_SPINCHECK /* nothing */
208 #endif /* LOCKDEBUG && DDB */
209
210 #define RETURN_ADDRESS ((uintptr_t)__builtin_return_address(0))
211
212 /*
213 * Acquire a resource.
214 */
215 static int
216 acquire(volatile struct lock **lkpp, int *s, int extflags,
217 int drain, int wanted, uintptr_t ra)
218 {
219 int error;
220 volatile struct lock *lkp = *lkpp;
221 LOCKSTAT_TIMER(slptime);
222
223 KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
224
225 if (extflags & LK_SPIN) {
226 int interlocked;
227
228 SPINLOCK_SPINCHECK_DECL;
229
230 if (!drain) {
231 lkp->lk_waitcount++;
232 lkp->lk_flags |= LK_WAIT_NONZERO;
233 }
234 for (interlocked = 1;;) {
235 SPINLOCK_SPINCHECK;
236 if ((lkp->lk_flags & wanted) != 0) {
237 if (interlocked) {
238 INTERLOCK_RELEASE(lkp, LK_SPIN, *s);
239 interlocked = 0;
240 }
241 SPINLOCK_SPIN_HOOK;
242 } else if (interlocked) {
243 break;
244 } else {
245 INTERLOCK_ACQUIRE(lkp, LK_SPIN, *s);
246 interlocked = 1;
247 }
248 }
249 if (!drain) {
250 lkp->lk_waitcount--;
251 if (lkp->lk_waitcount == 0)
252 lkp->lk_flags &= ~LK_WAIT_NONZERO;
253 }
254 KASSERT((lkp->lk_flags & wanted) == 0);
255 error = 0; /* sanity */
256 } else {
257 for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
258 if (drain)
259 lkp->lk_flags |= LK_WAITDRAIN;
260 else {
261 lkp->lk_waitcount++;
262 lkp->lk_flags |= LK_WAIT_NONZERO;
263 }
264 /* XXX Cast away volatile. */
265 LOCKSTAT_START_TIMER(slptime);
266 error = ltsleep(drain ?
267 (volatile const void *)&lkp->lk_flags :
268 (volatile const void *)lkp, lkp->lk_prio,
269 lkp->lk_wmesg, lkp->lk_timo, &lkp->lk_interlock);
270 LOCKSTAT_STOP_TIMER(slptime);
271 LOCKSTAT_EVENT_RA((void *)(uintptr_t)lkp,
272 LB_LOCKMGR | LB_SLEEP, 1, slptime, ra);
273 if (!drain) {
274 lkp->lk_waitcount--;
275 if (lkp->lk_waitcount == 0)
276 lkp->lk_flags &= ~LK_WAIT_NONZERO;
277 }
278 if (error)
279 break;
280 if (extflags & LK_SLEEPFAIL) {
281 error = ENOLCK;
282 break;
283 }
284 if (lkp->lk_newlock != NULL) {
285 simple_lock(&lkp->lk_newlock->lk_interlock);
286 simple_unlock(&lkp->lk_interlock);
287 if (lkp->lk_waitcount == 0)
288 wakeup(&lkp->lk_newlock);
289 *lkpp = lkp = lkp->lk_newlock;
290 }
291 }
292 }
293
294 return error;
295 }
296
297 #define SETHOLDER(lkp, pid, lid, cpu_id) \
298 do { \
299 if ((lkp)->lk_flags & LK_SPIN) \
300 (lkp)->lk_cpu = cpu_id; \
301 else { \
302 (lkp)->lk_lockholder = pid; \
303 (lkp)->lk_locklwp = lid; \
304 } \
305 } while (/*CONSTCOND*/0)
306
307 #define WEHOLDIT(lkp, pid, lid, cpu_id) \
308 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
309 ((lkp)->lk_cpu == (cpu_id)) : \
310 ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
311
312 #define WAKEUP_WAITER(lkp) \
313 do { \
314 if (((lkp)->lk_flags & (LK_SPIN | LK_WAIT_NONZERO)) == \
315 LK_WAIT_NONZERO) { \
316 wakeup((lkp)); \
317 } \
318 } while (/*CONSTCOND*/0)
319
320 #if defined(LOCKDEBUG) /* { */
321 #if defined(MULTIPROCESSOR) /* { */
322 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
323
324 #define SPINLOCK_LIST_LOCK() \
325 __cpu_simple_lock(&spinlock_list_slock.lock_data)
326
327 #define SPINLOCK_LIST_UNLOCK() \
328 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
329 #else
330 #define SPINLOCK_LIST_LOCK() /* nothing */
331
332 #define SPINLOCK_LIST_UNLOCK() /* nothing */
333 #endif /* MULTIPROCESSOR */ /* } */
334
335 _TAILQ_HEAD(, struct lock, volatile) spinlock_list =
336 TAILQ_HEAD_INITIALIZER(spinlock_list);
337
338 #define HAVEIT(lkp) \
339 do { \
340 if ((lkp)->lk_flags & LK_SPIN) { \
341 int sp = spllock(); \
342 SPINLOCK_LIST_LOCK(); \
343 TAILQ_INSERT_TAIL(&spinlock_list, (lkp), lk_list); \
344 SPINLOCK_LIST_UNLOCK(); \
345 splx(sp); \
346 } \
347 } while (/*CONSTCOND*/0)
348
349 #define DONTHAVEIT(lkp) \
350 do { \
351 if ((lkp)->lk_flags & LK_SPIN) { \
352 int sp = spllock(); \
353 SPINLOCK_LIST_LOCK(); \
354 TAILQ_REMOVE(&spinlock_list, (lkp), lk_list); \
355 SPINLOCK_LIST_UNLOCK(); \
356 splx(sp); \
357 } \
358 } while (/*CONSTCOND*/0)
359 #else
360 #define HAVEIT(lkp) /* nothing */
361
362 #define DONTHAVEIT(lkp) /* nothing */
363 #endif /* LOCKDEBUG */ /* } */
364
365 #if defined(LOCKDEBUG)
366 /*
367 * Lock debug printing routine; can be configured to print to console
368 * or log to syslog.
369 */
370 void
371 lock_printf(const char *fmt, ...)
372 {
373 char b[150];
374 va_list ap;
375
376 va_start(ap, fmt);
377 if (lock_debug_syslog)
378 vlog(LOG_DEBUG, fmt, ap);
379 else {
380 vsnprintf(b, sizeof(b), fmt, ap);
381 printf_nolog("%s", b);
382 }
383 va_end(ap);
384 }
385 #endif /* LOCKDEBUG */
386
387 /*
388 * Transfer any waiting processes from one lock to another.
389 */
390 void
391 transferlockers(struct lock *from, struct lock *to)
392 {
393
394 KASSERT(from != to);
395 KASSERT((from->lk_flags & LK_WAITDRAIN) == 0);
396 if (from->lk_waitcount == 0)
397 return;
398 from->lk_newlock = to;
399 wakeup((void *)from);
400 tsleep((void *)&from->lk_newlock, from->lk_prio, "lkxfer", 0);
401 from->lk_newlock = NULL;
402 from->lk_flags &= ~(LK_WANT_EXCL | LK_WANT_UPGRADE);
403 KASSERT(from->lk_waitcount == 0);
404 }
405
406
407 /*
408 * Initialize a lock; required before use.
409 */
410 void
411 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
412 {
413
414 memset(lkp, 0, sizeof(struct lock));
415 simple_lock_init(&lkp->lk_interlock);
416 lkp->lk_flags = flags & LK_EXTFLG_MASK;
417 if (flags & LK_SPIN)
418 lkp->lk_cpu = LK_NOCPU;
419 else {
420 lkp->lk_lockholder = LK_NOPROC;
421 lkp->lk_newlock = NULL;
422 lkp->lk_prio = prio;
423 lkp->lk_timo = timo;
424 }
425 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
426 #if defined(LOCKDEBUG)
427 lkp->lk_lock_file = NULL;
428 lkp->lk_unlock_file = NULL;
429 #endif
430 }
431
432 /*
433 * Determine the status of a lock.
434 */
435 int
436 lockstatus(struct lock *lkp)
437 {
438 int s = 0; /* XXX: gcc */
439 int lock_type = 0;
440 struct lwp *l = curlwp; /* XXX */
441 pid_t pid;
442 lwpid_t lid;
443 cpuid_t cpu_num;
444
445 if ((lkp->lk_flags & LK_SPIN) || l == NULL) {
446 cpu_num = cpu_number();
447 pid = LK_KERNPROC;
448 lid = 0;
449 } else {
450 cpu_num = LK_NOCPU;
451 pid = l->l_proc->p_pid;
452 lid = l->l_lid;
453 }
454
455 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
456 if (lkp->lk_exclusivecount != 0) {
457 if (WEHOLDIT(lkp, pid, lid, cpu_num))
458 lock_type = LK_EXCLUSIVE;
459 else
460 lock_type = LK_EXCLOTHER;
461 } else if (lkp->lk_sharecount != 0)
462 lock_type = LK_SHARED;
463 else if (lkp->lk_flags & (LK_WANT_EXCL | LK_WANT_UPGRADE))
464 lock_type = LK_EXCLOTHER;
465 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
466 return (lock_type);
467 }
468
469 #if defined(LOCKDEBUG)
470 /*
471 * Make sure no spin locks are held by a CPU that is about
472 * to context switch.
473 */
474 void
475 spinlock_switchcheck(void)
476 {
477 u_long cnt;
478 int s;
479
480 s = spllock();
481 #if defined(MULTIPROCESSOR)
482 cnt = curcpu()->ci_spin_locks;
483 #else
484 cnt = spin_locks;
485 #endif
486 splx(s);
487
488 if (cnt != 0)
489 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
490 (u_long) cpu_number(), cnt);
491 }
492 #endif /* LOCKDEBUG */
493
494 /*
495 * Locks and IPLs (interrupt priority levels):
496 *
497 * Locks which may be taken from interrupt context must be handled
498 * very carefully; you must spl to the highest IPL where the lock
499 * is needed before acquiring the lock.
500 *
501 * It is also important to avoid deadlock, since certain (very high
502 * priority) interrupts are often needed to keep the system as a whole
503 * from deadlocking, and must not be blocked while you are spinning
504 * waiting for a lower-priority lock.
505 *
506 * In addition, the lock-debugging hooks themselves need to use locks!
507 *
508 * A raw __cpu_simple_lock may be used from interrupts are long as it
509 * is acquired and held at a single IPL.
510 *
511 * A simple_lock (which is a __cpu_simple_lock wrapped with some
512 * debugging hooks) may be used at or below spllock(), which is
513 * typically at or just below splhigh() (i.e. blocks everything
514 * but certain machine-dependent extremely high priority interrupts).
515 *
516 * spinlockmgr spinlocks should be used at or below splsched().
517 *
518 * Some platforms may have interrupts of higher priority than splsched(),
519 * including hard serial interrupts, inter-processor interrupts, and
520 * kernel debugger traps.
521 */
522
523 /*
524 * XXX XXX kludge around another kludge..
525 *
526 * vfs_shutdown() may be called from interrupt context, either as a result
527 * of a panic, or from the debugger. It proceeds to call
528 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
529 *
530 * We would like to make an attempt to sync the filesystems in this case, so
531 * if this happens, we treat attempts to acquire locks specially.
532 * All locks are acquired on behalf of proc0.
533 *
534 * If we've already paniced, we don't block waiting for locks, but
535 * just barge right ahead since we're already going down in flames.
536 */
537
538 /*
539 * Set, change, or release a lock.
540 *
541 * Shared requests increment the shared count. Exclusive requests set the
542 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
543 * accepted shared locks and shared-to-exclusive upgrades to go away.
544 */
545 int
546 #if defined(LOCKDEBUG)
547 _lockmgr(volatile struct lock *lkp, u_int flags,
548 struct simplelock *interlkp, const char *file, int line)
549 #else
550 lockmgr(volatile struct lock *lkp, u_int flags,
551 struct simplelock *interlkp)
552 #endif
553 {
554 int error;
555 pid_t pid;
556 lwpid_t lid;
557 int extflags;
558 cpuid_t cpu_num;
559 struct lwp *l = curlwp;
560 int lock_shutdown_noblock = 0;
561 int s = 0;
562
563 error = 0;
564
565 /* LK_RETRY is for vn_lock, not for lockmgr. */
566 KASSERT((flags & LK_RETRY) == 0);
567
568 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
569 if (flags & LK_INTERLOCK)
570 simple_unlock(interlkp);
571 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
572
573 #ifdef DIAGNOSTIC /* { */
574 /*
575 * Don't allow spins on sleep locks and don't allow sleeps
576 * on spin locks.
577 */
578 if ((flags ^ lkp->lk_flags) & LK_SPIN)
579 panic("lockmgr: sleep/spin mismatch");
580 #endif /* } */
581
582 if (extflags & LK_SPIN) {
583 pid = LK_KERNPROC;
584 lid = 0;
585 } else {
586 if (l == NULL) {
587 if (!doing_shutdown) {
588 panic("lockmgr: no context");
589 } else {
590 l = &lwp0;
591 if (panicstr && (!(flags & LK_NOWAIT))) {
592 flags |= LK_NOWAIT;
593 lock_shutdown_noblock = 1;
594 }
595 }
596 }
597 lid = l->l_lid;
598 pid = l->l_proc->p_pid;
599 }
600 cpu_num = cpu_number();
601
602 /*
603 * Once a lock has drained, the LK_DRAINING flag is set and an
604 * exclusive lock is returned. The only valid operation thereafter
605 * is a single release of that exclusive lock. This final release
606 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
607 * further requests of any sort will result in a panic. The bits
608 * selected for these two flags are chosen so that they will be set
609 * in memory that is freed (freed memory is filled with 0xdeadbeef).
610 * The final release is permitted to give a new lease on life to
611 * the lock by specifying LK_REENABLE.
612 */
613 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
614 #ifdef DIAGNOSTIC /* { */
615 if (lkp->lk_flags & LK_DRAINED)
616 panic("lockmgr: using decommissioned lock");
617 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
618 WEHOLDIT(lkp, pid, lid, cpu_num) == 0)
619 panic("lockmgr: non-release on draining lock: %d",
620 flags & LK_TYPE_MASK);
621 #endif /* DIAGNOSTIC */ /* } */
622 lkp->lk_flags &= ~LK_DRAINING;
623 if ((flags & LK_REENABLE) == 0)
624 lkp->lk_flags |= LK_DRAINED;
625 }
626
627 switch (flags & LK_TYPE_MASK) {
628
629 case LK_SHARED:
630 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
631 /*
632 * If just polling, check to see if we will block.
633 */
634 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
635 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
636 error = EBUSY;
637 break;
638 }
639 /*
640 * Wait for exclusive locks and upgrades to clear.
641 */
642 error = acquire(&lkp, &s, extflags, 0,
643 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE,
644 RETURN_ADDRESS);
645 if (error)
646 break;
647 lkp->lk_sharecount++;
648 lkp->lk_flags |= LK_SHARE_NONZERO;
649 COUNT(lkp, l, cpu_num, 1);
650 break;
651 }
652 /*
653 * We hold an exclusive lock, so downgrade it to shared.
654 * An alternative would be to fail with EDEADLK.
655 */
656 lkp->lk_sharecount++;
657 lkp->lk_flags |= LK_SHARE_NONZERO;
658 COUNT(lkp, l, cpu_num, 1);
659 /* fall into downgrade */
660
661 case LK_DOWNGRADE:
662 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0 ||
663 lkp->lk_exclusivecount == 0)
664 panic("lockmgr: not holding exclusive lock");
665 lkp->lk_sharecount += lkp->lk_exclusivecount;
666 lkp->lk_flags |= LK_SHARE_NONZERO;
667 lkp->lk_exclusivecount = 0;
668 lkp->lk_recurselevel = 0;
669 lkp->lk_flags &= ~LK_HAVE_EXCL;
670 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
671 #if defined(LOCKDEBUG)
672 lkp->lk_unlock_file = file;
673 lkp->lk_unlock_line = line;
674 #endif
675 DONTHAVEIT(lkp);
676 WAKEUP_WAITER(lkp);
677 break;
678
679 case LK_EXCLUPGRADE:
680 /*
681 * If another process is ahead of us to get an upgrade,
682 * then we want to fail rather than have an intervening
683 * exclusive access.
684 */
685 if (lkp->lk_flags & LK_WANT_UPGRADE) {
686 lkp->lk_sharecount--;
687 if (lkp->lk_sharecount == 0)
688 lkp->lk_flags &= ~LK_SHARE_NONZERO;
689 COUNT(lkp, l, cpu_num, -1);
690 error = EBUSY;
691 break;
692 }
693 /* fall into normal upgrade */
694
695 case LK_UPGRADE:
696 /*
697 * Upgrade a shared lock to an exclusive one. If another
698 * shared lock has already requested an upgrade to an
699 * exclusive lock, our shared lock is released and an
700 * exclusive lock is requested (which will be granted
701 * after the upgrade). If we return an error, the file
702 * will always be unlocked.
703 */
704 if (WEHOLDIT(lkp, pid, lid, cpu_num) || lkp->lk_sharecount <= 0)
705 panic("lockmgr: upgrade exclusive lock");
706 lkp->lk_sharecount--;
707 if (lkp->lk_sharecount == 0)
708 lkp->lk_flags &= ~LK_SHARE_NONZERO;
709 COUNT(lkp, l, cpu_num, -1);
710 /*
711 * If we are just polling, check to see if we will block.
712 */
713 if ((extflags & LK_NOWAIT) &&
714 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
715 lkp->lk_sharecount > 1)) {
716 error = EBUSY;
717 break;
718 }
719 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
720 /*
721 * We are first shared lock to request an upgrade, so
722 * request upgrade and wait for the shared count to
723 * drop to zero, then take exclusive lock.
724 */
725 lkp->lk_flags |= LK_WANT_UPGRADE;
726 error = acquire(&lkp, &s, extflags, 0, LK_SHARE_NONZERO,
727 RETURN_ADDRESS);
728 lkp->lk_flags &= ~LK_WANT_UPGRADE;
729 if (error) {
730 WAKEUP_WAITER(lkp);
731 break;
732 }
733 lkp->lk_flags |= LK_HAVE_EXCL;
734 SETHOLDER(lkp, pid, lid, cpu_num);
735 #if defined(LOCKDEBUG)
736 lkp->lk_lock_file = file;
737 lkp->lk_lock_line = line;
738 #endif
739 HAVEIT(lkp);
740 if (lkp->lk_exclusivecount != 0)
741 panic("lockmgr: non-zero exclusive count");
742 lkp->lk_exclusivecount = 1;
743 if (extflags & LK_SETRECURSE)
744 lkp->lk_recurselevel = 1;
745 COUNT(lkp, l, cpu_num, 1);
746 break;
747 }
748 /*
749 * Someone else has requested upgrade. Release our shared
750 * lock, awaken upgrade requestor if we are the last shared
751 * lock, then request an exclusive lock.
752 */
753 if (lkp->lk_sharecount == 0)
754 WAKEUP_WAITER(lkp);
755 /* fall into exclusive request */
756
757 case LK_EXCLUSIVE:
758 if (WEHOLDIT(lkp, pid, lid, cpu_num)) {
759 /*
760 * Recursive lock.
761 */
762 if ((extflags & LK_CANRECURSE) == 0 &&
763 lkp->lk_recurselevel == 0) {
764 if (extflags & LK_RECURSEFAIL) {
765 error = EDEADLK;
766 break;
767 } else
768 panic("lockmgr: locking against myself");
769 }
770 lkp->lk_exclusivecount++;
771 if (extflags & LK_SETRECURSE &&
772 lkp->lk_recurselevel == 0)
773 lkp->lk_recurselevel = lkp->lk_exclusivecount;
774 COUNT(lkp, l, cpu_num, 1);
775 break;
776 }
777 /*
778 * If we are just polling, check to see if we will sleep.
779 */
780 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
781 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
782 LK_SHARE_NONZERO))) {
783 error = EBUSY;
784 break;
785 }
786 /*
787 * Try to acquire the want_exclusive flag.
788 */
789 error = acquire(&lkp, &s, extflags, 0,
790 LK_HAVE_EXCL | LK_WANT_EXCL, RETURN_ADDRESS);
791 if (error)
792 break;
793 lkp->lk_flags |= LK_WANT_EXCL;
794 /*
795 * Wait for shared locks and upgrades to finish.
796 */
797 error = acquire(&lkp, &s, extflags, 0,
798 LK_HAVE_EXCL | LK_WANT_UPGRADE | LK_SHARE_NONZERO,
799 RETURN_ADDRESS);
800 lkp->lk_flags &= ~LK_WANT_EXCL;
801 if (error) {
802 WAKEUP_WAITER(lkp);
803 break;
804 }
805 lkp->lk_flags |= LK_HAVE_EXCL;
806 SETHOLDER(lkp, pid, lid, cpu_num);
807 #if defined(LOCKDEBUG)
808 lkp->lk_lock_file = file;
809 lkp->lk_lock_line = line;
810 #endif
811 HAVEIT(lkp);
812 if (lkp->lk_exclusivecount != 0)
813 panic("lockmgr: non-zero exclusive count");
814 lkp->lk_exclusivecount = 1;
815 if (extflags & LK_SETRECURSE)
816 lkp->lk_recurselevel = 1;
817 COUNT(lkp, l, cpu_num, 1);
818 break;
819
820 case LK_RELEASE:
821 if (lkp->lk_exclusivecount != 0) {
822 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
823 if (lkp->lk_flags & LK_SPIN) {
824 panic("lockmgr: processor %lu, not "
825 "exclusive lock holder %lu "
826 "unlocking", cpu_num, lkp->lk_cpu);
827 } else {
828 panic("lockmgr: pid %d, not "
829 "exclusive lock holder %d "
830 "unlocking", pid,
831 lkp->lk_lockholder);
832 }
833 }
834 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
835 lkp->lk_recurselevel = 0;
836 lkp->lk_exclusivecount--;
837 COUNT(lkp, l, cpu_num, -1);
838 if (lkp->lk_exclusivecount == 0) {
839 lkp->lk_flags &= ~LK_HAVE_EXCL;
840 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
841 #if defined(LOCKDEBUG)
842 lkp->lk_unlock_file = file;
843 lkp->lk_unlock_line = line;
844 #endif
845 DONTHAVEIT(lkp);
846 }
847 } else if (lkp->lk_sharecount != 0) {
848 lkp->lk_sharecount--;
849 if (lkp->lk_sharecount == 0)
850 lkp->lk_flags &= ~LK_SHARE_NONZERO;
851 COUNT(lkp, l, cpu_num, -1);
852 }
853 #ifdef DIAGNOSTIC
854 else
855 panic("lockmgr: release of unlocked lock!");
856 #endif
857 WAKEUP_WAITER(lkp);
858 break;
859
860 case LK_DRAIN:
861 /*
862 * Check that we do not already hold the lock, as it can
863 * never drain if we do. Unfortunately, we have no way to
864 * check for holding a shared lock, but at least we can
865 * check for an exclusive one.
866 */
867 if (WEHOLDIT(lkp, pid, lid, cpu_num))
868 panic("lockmgr: draining against myself");
869 /*
870 * If we are just polling, check to see if we will sleep.
871 */
872 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
873 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
874 LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
875 error = EBUSY;
876 break;
877 }
878 error = acquire(&lkp, &s, extflags, 1,
879 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
880 LK_SHARE_NONZERO | LK_WAIT_NONZERO,
881 RETURN_ADDRESS);
882 if (error)
883 break;
884 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
885 SETHOLDER(lkp, pid, lid, cpu_num);
886 #if defined(LOCKDEBUG)
887 lkp->lk_lock_file = file;
888 lkp->lk_lock_line = line;
889 #endif
890 HAVEIT(lkp);
891 lkp->lk_exclusivecount = 1;
892 /* XXX unlikely that we'd want this */
893 if (extflags & LK_SETRECURSE)
894 lkp->lk_recurselevel = 1;
895 COUNT(lkp, l, cpu_num, 1);
896 break;
897
898 default:
899 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
900 panic("lockmgr: unknown locktype request %d",
901 flags & LK_TYPE_MASK);
902 /* NOTREACHED */
903 }
904 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
905 ((lkp->lk_flags &
906 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
907 LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
908 lkp->lk_flags &= ~LK_WAITDRAIN;
909 wakeup(&lkp->lk_flags);
910 }
911 /*
912 * Note that this panic will be a recursive panic, since
913 * we only set lock_shutdown_noblock above if panicstr != NULL.
914 */
915 if (error && lock_shutdown_noblock)
916 panic("lockmgr: deadlock (see previous panic)");
917
918 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
919 return (error);
920 }
921
922 /*
923 * For a recursive spinlock held one or more times by the current CPU,
924 * release all N locks, and return N.
925 * Intended for use in mi_switch() shortly before context switching.
926 */
927
928 int
929 #if defined(LOCKDEBUG)
930 _spinlock_release_all(volatile struct lock *lkp, const char *file, int line)
931 #else
932 spinlock_release_all(volatile struct lock *lkp)
933 #endif
934 {
935 int s, count;
936 cpuid_t cpu_num;
937
938 KASSERT(lkp->lk_flags & LK_SPIN);
939
940 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
941
942 cpu_num = cpu_number();
943 count = lkp->lk_exclusivecount;
944
945 if (count != 0) {
946 #ifdef DIAGNOSTIC
947 if (WEHOLDIT(lkp, 0, 0, cpu_num) == 0) {
948 panic("spinlock_release_all: processor %lu, not "
949 "exclusive lock holder %lu "
950 "unlocking", (long)cpu_num, lkp->lk_cpu);
951 }
952 #endif
953 lkp->lk_recurselevel = 0;
954 lkp->lk_exclusivecount = 0;
955 COUNT_CPU(cpu_num, -count);
956 lkp->lk_flags &= ~LK_HAVE_EXCL;
957 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
958 #if defined(LOCKDEBUG)
959 lkp->lk_unlock_file = file;
960 lkp->lk_unlock_line = line;
961 #endif
962 DONTHAVEIT(lkp);
963 }
964 #ifdef DIAGNOSTIC
965 else if (lkp->lk_sharecount != 0)
966 panic("spinlock_release_all: release of shared lock!");
967 else
968 panic("spinlock_release_all: release of unlocked lock!");
969 #endif
970 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
971
972 return (count);
973 }
974
975 /*
976 * For a recursive spinlock held one or more times by the current CPU,
977 * release all N locks, and return N.
978 * Intended for use in mi_switch() right after resuming execution.
979 */
980
981 void
982 #if defined(LOCKDEBUG)
983 _spinlock_acquire_count(volatile struct lock *lkp, int count,
984 const char *file, int line)
985 #else
986 spinlock_acquire_count(volatile struct lock *lkp, int count)
987 #endif
988 {
989 int s, error;
990 cpuid_t cpu_num;
991
992 KASSERT(lkp->lk_flags & LK_SPIN);
993
994 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
995
996 cpu_num = cpu_number();
997
998 #ifdef DIAGNOSTIC
999 if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_num))
1000 panic("spinlock_acquire_count: processor %lu already holds lock", (long)cpu_num);
1001 #endif
1002 /*
1003 * Try to acquire the want_exclusive flag.
1004 */
1005 error = acquire(&lkp, &s, LK_SPIN, 0, LK_HAVE_EXCL | LK_WANT_EXCL,
1006 RETURN_ADDRESS);
1007 lkp->lk_flags |= LK_WANT_EXCL;
1008 /*
1009 * Wait for shared locks and upgrades to finish.
1010 */
1011 error = acquire(&lkp, &s, LK_SPIN, 0,
1012 LK_HAVE_EXCL | LK_SHARE_NONZERO | LK_WANT_UPGRADE,
1013 RETURN_ADDRESS);
1014 lkp->lk_flags &= ~LK_WANT_EXCL;
1015 lkp->lk_flags |= LK_HAVE_EXCL;
1016 SETHOLDER(lkp, LK_NOPROC, 0, cpu_num);
1017 #if defined(LOCKDEBUG)
1018 lkp->lk_lock_file = file;
1019 lkp->lk_lock_line = line;
1020 #endif
1021 HAVEIT(lkp);
1022 if (lkp->lk_exclusivecount != 0)
1023 panic("lockmgr: non-zero exclusive count");
1024 lkp->lk_exclusivecount = count;
1025 lkp->lk_recurselevel = 1;
1026 COUNT_CPU(cpu_num, count);
1027
1028 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
1029 }
1030
1031
1032
1033 /*
1034 * Print out information about state of a lock. Used by VOP_PRINT
1035 * routines to display ststus about contained locks.
1036 */
1037 void
1038 lockmgr_printinfo(volatile struct lock *lkp)
1039 {
1040
1041 if (lkp->lk_sharecount)
1042 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
1043 lkp->lk_sharecount);
1044 else if (lkp->lk_flags & LK_HAVE_EXCL) {
1045 printf(" lock type %s: EXCL (count %d) by ",
1046 lkp->lk_wmesg, lkp->lk_exclusivecount);
1047 if (lkp->lk_flags & LK_SPIN)
1048 printf("processor %lu", lkp->lk_cpu);
1049 else
1050 printf("pid %d.%d", lkp->lk_lockholder,
1051 lkp->lk_locklwp);
1052 } else
1053 printf(" not locked");
1054 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
1055 printf(" with %d pending", lkp->lk_waitcount);
1056 }
1057
1058 #if defined(LOCKDEBUG) /* { */
1059 _TAILQ_HEAD(, struct simplelock, volatile) simplelock_list =
1060 TAILQ_HEAD_INITIALIZER(simplelock_list);
1061
1062 #if defined(MULTIPROCESSOR) /* { */
1063 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
1064
1065 #define SLOCK_LIST_LOCK() \
1066 __cpu_simple_lock(&simplelock_list_slock.lock_data)
1067
1068 #define SLOCK_LIST_UNLOCK() \
1069 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
1070
1071 #define SLOCK_COUNT(x) \
1072 curcpu()->ci_simple_locks += (x)
1073 #else
1074 u_long simple_locks;
1075
1076 #define SLOCK_LIST_LOCK() /* nothing */
1077
1078 #define SLOCK_LIST_UNLOCK() /* nothing */
1079
1080 #define SLOCK_COUNT(x) simple_locks += (x)
1081 #endif /* MULTIPROCESSOR */ /* } */
1082
1083 #ifdef MULTIPROCESSOR
1084 #define SLOCK_MP() lock_printf("on CPU %ld\n", \
1085 (u_long) cpu_number())
1086 #else
1087 #define SLOCK_MP() /* nothing */
1088 #endif
1089
1090 #define SLOCK_WHERE(str, alp, id, l) \
1091 do { \
1092 lock_printf("\n"); \
1093 lock_printf(str); \
1094 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
1095 SLOCK_MP(); \
1096 if ((alp)->lock_file != NULL) \
1097 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
1098 (alp)->lock_line); \
1099 if ((alp)->unlock_file != NULL) \
1100 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1101 (alp)->unlock_line); \
1102 SLOCK_TRACE() \
1103 SLOCK_DEBUGGER(); \
1104 } while (/*CONSTCOND*/0)
1105
1106 /*
1107 * Simple lock functions so that the debugger can see from whence
1108 * they are being called.
1109 */
1110 void
1111 simple_lock_init(volatile struct simplelock *alp)
1112 {
1113
1114 #if defined(MULTIPROCESSOR) /* { */
1115 __cpu_simple_lock_init(&alp->lock_data);
1116 #else
1117 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1118 #endif /* } */
1119 alp->lock_file = NULL;
1120 alp->lock_line = 0;
1121 alp->unlock_file = NULL;
1122 alp->unlock_line = 0;
1123 alp->lock_holder = LK_NOCPU;
1124 }
1125
1126 void
1127 _simple_lock(volatile struct simplelock *alp, const char *id, int l)
1128 {
1129 cpuid_t cpu_num = cpu_number();
1130 int s;
1131
1132 s = spllock();
1133
1134 /*
1135 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1136 * don't take any action, and just fall into the normal spin case.
1137 */
1138 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1139 #if defined(MULTIPROCESSOR) /* { */
1140 if (alp->lock_holder == cpu_num) {
1141 SLOCK_WHERE("simple_lock: locking against myself\n",
1142 alp, id, l);
1143 goto out;
1144 }
1145 #else
1146 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1147 goto out;
1148 #endif /* MULTIPROCESSOR */ /* } */
1149 }
1150
1151 #if defined(MULTIPROCESSOR) /* { */
1152 /* Acquire the lock before modifying any fields. */
1153 splx(s);
1154 __cpu_simple_lock(&alp->lock_data);
1155 s = spllock();
1156 #else
1157 alp->lock_data = __SIMPLELOCK_LOCKED;
1158 #endif /* } */
1159
1160 if (alp->lock_holder != LK_NOCPU) {
1161 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1162 alp, id, l);
1163 }
1164 alp->lock_file = id;
1165 alp->lock_line = l;
1166 alp->lock_holder = cpu_num;
1167
1168 SLOCK_LIST_LOCK();
1169 TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
1170 SLOCK_LIST_UNLOCK();
1171
1172 SLOCK_COUNT(1);
1173
1174 out:
1175 splx(s);
1176 }
1177
1178 int
1179 _simple_lock_held(volatile struct simplelock *alp)
1180 {
1181 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1182 cpuid_t cpu_num = cpu_number();
1183 #endif
1184 int s, locked = 0;
1185
1186 s = spllock();
1187
1188 #if defined(MULTIPROCESSOR)
1189 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1190 locked = (alp->lock_holder == cpu_num);
1191 else
1192 __cpu_simple_unlock(&alp->lock_data);
1193 #else
1194 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1195 locked = 1;
1196 KASSERT(alp->lock_holder == cpu_num);
1197 }
1198 #endif
1199
1200 splx(s);
1201
1202 return (locked);
1203 }
1204
1205 int
1206 _simple_lock_try(volatile struct simplelock *alp, const char *id, int l)
1207 {
1208 cpuid_t cpu_num = cpu_number();
1209 int s, rv = 0;
1210
1211 s = spllock();
1212
1213 /*
1214 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1215 * don't take any action.
1216 */
1217 #if defined(MULTIPROCESSOR) /* { */
1218 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1219 if (alp->lock_holder == cpu_num)
1220 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1221 alp, id, l);
1222 goto out;
1223 }
1224 #else
1225 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1226 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1227 goto out;
1228 }
1229 alp->lock_data = __SIMPLELOCK_LOCKED;
1230 #endif /* MULTIPROCESSOR */ /* } */
1231
1232 /*
1233 * At this point, we have acquired the lock.
1234 */
1235
1236 rv = 1;
1237
1238 alp->lock_file = id;
1239 alp->lock_line = l;
1240 alp->lock_holder = cpu_num;
1241
1242 SLOCK_LIST_LOCK();
1243 TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
1244 SLOCK_LIST_UNLOCK();
1245
1246 SLOCK_COUNT(1);
1247
1248 out:
1249 splx(s);
1250 return (rv);
1251 }
1252
1253 void
1254 _simple_unlock(volatile struct simplelock *alp, const char *id, int l)
1255 {
1256 int s;
1257
1258 s = spllock();
1259
1260 /*
1261 * MULTIPROCESSOR case: This is `safe' because we think we hold
1262 * the lock, and if we don't, we don't take any action.
1263 */
1264 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1265 SLOCK_WHERE("simple_unlock: lock not held\n",
1266 alp, id, l);
1267 goto out;
1268 }
1269
1270 SLOCK_LIST_LOCK();
1271 TAILQ_REMOVE(&simplelock_list, alp, list);
1272 SLOCK_LIST_UNLOCK();
1273
1274 SLOCK_COUNT(-1);
1275
1276 alp->list.tqe_next = NULL; /* sanity */
1277 alp->list.tqe_prev = NULL; /* sanity */
1278
1279 alp->unlock_file = id;
1280 alp->unlock_line = l;
1281
1282 #if defined(MULTIPROCESSOR) /* { */
1283 alp->lock_holder = LK_NOCPU;
1284 /* Now that we've modified all fields, release the lock. */
1285 __cpu_simple_unlock(&alp->lock_data);
1286 #else
1287 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1288 KASSERT(alp->lock_holder == cpu_number());
1289 alp->lock_holder = LK_NOCPU;
1290 #endif /* } */
1291
1292 out:
1293 splx(s);
1294 }
1295
1296 void
1297 simple_lock_dump(void)
1298 {
1299 volatile struct simplelock *alp;
1300 int s;
1301
1302 s = spllock();
1303 SLOCK_LIST_LOCK();
1304 lock_printf("all simple locks:\n");
1305 TAILQ_FOREACH(alp, &simplelock_list, list) {
1306 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1307 alp->lock_file, alp->lock_line);
1308 }
1309 SLOCK_LIST_UNLOCK();
1310 splx(s);
1311 }
1312
1313 void
1314 simple_lock_freecheck(void *start, void *end)
1315 {
1316 volatile struct simplelock *alp;
1317 int s;
1318
1319 s = spllock();
1320 SLOCK_LIST_LOCK();
1321 TAILQ_FOREACH(alp, &simplelock_list, list) {
1322 if ((volatile void *)alp >= start &&
1323 (volatile void *)alp < end) {
1324 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1325 alp, alp->lock_holder, alp->lock_file,
1326 alp->lock_line);
1327 SLOCK_DEBUGGER();
1328 }
1329 }
1330 SLOCK_LIST_UNLOCK();
1331 splx(s);
1332 }
1333
1334 /*
1335 * We must be holding exactly one lock: the sched_lock.
1336 */
1337
1338 void
1339 simple_lock_switchcheck(void)
1340 {
1341
1342 simple_lock_only_held(&sched_lock, "switching");
1343 }
1344
1345 /*
1346 * Drop into the debugger if lp isn't the only lock held.
1347 * lp may be NULL.
1348 */
1349 void
1350 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1351 {
1352 volatile struct simplelock *alp;
1353 cpuid_t cpu_num = cpu_number();
1354 int s;
1355
1356 if (lp) {
1357 LOCK_ASSERT(simple_lock_held(lp));
1358 }
1359 s = spllock();
1360 SLOCK_LIST_LOCK();
1361 TAILQ_FOREACH(alp, &simplelock_list, list) {
1362 if (alp == lp)
1363 continue;
1364 #if defined(MULTIPROCESSOR)
1365 if (alp == &kernel_lock)
1366 continue;
1367 #endif /* defined(MULTIPROCESSOR) */
1368 if (alp->lock_holder == cpu_num)
1369 break;
1370 }
1371 SLOCK_LIST_UNLOCK();
1372 splx(s);
1373
1374 if (alp != NULL) {
1375 lock_printf("\n%s with held simple_lock %p "
1376 "CPU %lu %s:%d\n",
1377 where, alp, alp->lock_holder, alp->lock_file,
1378 alp->lock_line);
1379 SLOCK_TRACE();
1380 SLOCK_DEBUGGER();
1381 }
1382 }
1383
1384 /*
1385 * Set to 1 by simple_lock_assert_*().
1386 * Can be cleared from ddb to avoid a panic.
1387 */
1388 int slock_assert_will_panic;
1389
1390 /*
1391 * If the lock isn't held, print a traceback, optionally drop into the
1392 * debugger, then panic.
1393 * The panic can be avoided by clearing slock_assert_with_panic from the
1394 * debugger.
1395 */
1396 void
1397 _simple_lock_assert_locked(volatile struct simplelock *alp,
1398 const char *lockname, const char *id, int l)
1399 {
1400 if (simple_lock_held(alp) == 0) {
1401 slock_assert_will_panic = 1;
1402 lock_printf("%s lock not held\n", lockname);
1403 SLOCK_WHERE("lock not held", alp, id, l);
1404 if (slock_assert_will_panic)
1405 panic("%s: not locked", lockname);
1406 }
1407 }
1408
1409 void
1410 _simple_lock_assert_unlocked(volatile struct simplelock *alp,
1411 const char *lockname, const char *id, int l)
1412 {
1413 if (simple_lock_held(alp)) {
1414 slock_assert_will_panic = 1;
1415 lock_printf("%s lock held\n", lockname);
1416 SLOCK_WHERE("lock held", alp, id, l);
1417 if (slock_assert_will_panic)
1418 panic("%s: locked", lockname);
1419 }
1420 }
1421
1422 void
1423 assert_sleepable(struct simplelock *interlock, const char *msg)
1424 {
1425
1426 if (curlwp == NULL) {
1427 panic("assert_sleepable: NULL curlwp");
1428 }
1429 spinlock_switchcheck();
1430 simple_lock_only_held(interlock, msg);
1431 }
1432
1433 #endif /* LOCKDEBUG */ /* } */
1434
1435 #if defined(MULTIPROCESSOR)
1436 /*
1437 * Functions for manipulating the kernel_lock. We put them here
1438 * so that they show up in profiles.
1439 */
1440
1441 /*
1442 * splbiglock: block IPLs which need to grab kernel_lock.
1443 * XXX splvm or splaudio should be enough.
1444 */
1445 #if !defined(__HAVE_SPLBIGLOCK)
1446 #define splbiglock() splclock()
1447 #endif
1448
1449 void
1450 _kernel_lock_init(void)
1451 {
1452
1453 simple_lock_init(&kernel_lock);
1454 }
1455
1456 /*
1457 * Acquire/release the kernel lock. Intended for use in the scheduler
1458 * and the lower half of the kernel.
1459 */
1460 void
1461 _kernel_lock(int flag)
1462 {
1463 struct cpu_info *ci = curcpu();
1464
1465 SCHED_ASSERT_UNLOCKED();
1466
1467 if (ci->ci_data.cpu_biglock_count > 0) {
1468 LOCK_ASSERT(simple_lock_held(&kernel_lock));
1469 ci->ci_data.cpu_biglock_count++;
1470 } else {
1471 int s;
1472
1473 s = splbiglock();
1474 while (!simple_lock_try(&kernel_lock)) {
1475 splx(s);
1476 SPINLOCK_SPIN_HOOK;
1477 s = splbiglock();
1478 }
1479 ci->ci_data.cpu_biglock_count++;
1480 splx(s);
1481 }
1482 }
1483
1484 void
1485 _kernel_unlock(void)
1486 {
1487 struct cpu_info *ci = curcpu();
1488 int s;
1489
1490 KASSERT(ci->ci_data.cpu_biglock_count > 0);
1491
1492 s = splbiglock();
1493 if ((--ci->ci_data.cpu_biglock_count) == 0)
1494 simple_unlock(&kernel_lock);
1495 splx(s);
1496 }
1497
1498 /*
1499 * Acquire/release the kernel_lock on behalf of a process. Intended for
1500 * use in the top half of the kernel.
1501 */
1502 void
1503 _kernel_proc_lock(struct lwp *l)
1504 {
1505
1506 SCHED_ASSERT_UNLOCKED();
1507 _kernel_lock(0);
1508 }
1509
1510 void
1511 _kernel_proc_unlock(struct lwp *l)
1512 {
1513
1514 _kernel_unlock();
1515 }
1516
1517 int
1518 _kernel_lock_release_all()
1519 {
1520 struct cpu_info *ci = curcpu();
1521 int hold_count;
1522
1523 hold_count = ci->ci_data.cpu_biglock_count;
1524
1525 if (hold_count) {
1526 int s;
1527
1528 s = splbiglock();
1529 ci->ci_data.cpu_biglock_count = 0;
1530 simple_unlock(&kernel_lock);
1531 splx(s);
1532 }
1533
1534 return hold_count;
1535 }
1536
1537 void
1538 _kernel_lock_acquire_count(int hold_count)
1539 {
1540
1541 KASSERT(curcpu()->ci_data.cpu_biglock_count == 0);
1542
1543 if (hold_count != 0) {
1544 struct cpu_info *ci = curcpu();
1545 int s;
1546
1547 s = splbiglock();
1548 while (!simple_lock_try(&kernel_lock)) {
1549 splx(s);
1550 SPINLOCK_SPIN_HOOK;
1551 s = splbiglock();
1552 }
1553 ci->ci_data.cpu_biglock_count = hold_count;
1554 splx(s);
1555 }
1556 }
1557 #if defined(DEBUG)
1558 void
1559 _kernel_lock_assert_locked()
1560 {
1561
1562 KDASSERT(curcpu()->ci_data.cpu_biglock_count > 0);
1563 simple_lock_assert_locked(&kernel_lock, "kernel_lock");
1564 }
1565
1566 void
1567 _kernel_lock_assert_unlocked()
1568 {
1569
1570 KDASSERT(curcpu()->ci_data.cpu_biglock_count == 0);
1571 simple_lock_assert_unlocked(&kernel_lock, "kernel_lock");
1572 }
1573 #endif
1574
1575 int
1576 lock_owner_onproc(uintptr_t owner)
1577 {
1578 CPU_INFO_ITERATOR cii;
1579 struct cpu_info *ci;
1580
1581 for (CPU_INFO_FOREACH(cii, ci))
1582 if (owner == (uintptr_t)ci || owner == (uintptr_t)ci->ci_curlwp)
1583 return (1);
1584
1585 return (0);
1586 }
1587
1588 #else /* MULTIPROCESSOR */
1589
1590 int
1591 lock_owner_onproc(uintptr_t owner)
1592 {
1593
1594 return 0;
1595 }
1596
1597 #endif /* MULTIPROCESSOR */
1598