kern_lock.c revision 1.107 1 /* $NetBSD: kern_lock.c,v 1.107 2007/02/20 16:10:10 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.107 2007/02/20 16:10:10 ad Exp $");
80
81 #include "opt_multiprocessor.h"
82 #include "opt_ddb.h"
83
84 #define __MUTEX_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/lock.h>
89 #include <sys/systm.h>
90 #include <sys/lockdebug.h>
91
92 #include <machine/cpu.h>
93
94 #include <dev/lockstat.h>
95
96 #if defined(LOCKDEBUG)
97 #include <sys/syslog.h>
98 /*
99 * note that stdarg.h and the ansi style va_start macro is used for both
100 * ansi and traditional c compiles.
101 * XXX: this requires that stdarg.h define: va_alist and va_dcl
102 */
103 #include <machine/stdarg.h>
104
105 void lock_printf(const char *fmt, ...)
106 __attribute__((__format__(__printf__,1,2)));
107
108 static int acquire(volatile struct lock **, int *, int, int, int, uintptr_t);
109
110 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
111
112 #ifdef DDB
113 #include <ddb/ddbvar.h>
114 #include <machine/db_machdep.h>
115 #include <ddb/db_command.h>
116 #include <ddb/db_interface.h>
117 #endif
118 #endif /* defined(LOCKDEBUG) */
119
120 #if defined(MULTIPROCESSOR)
121 /*
122 * IPL_BIGLOCK: block IPLs which need to grab kernel_mutex.
123 * XXX IPL_VM or IPL_AUDIO should be enough.
124 */
125 #if !defined(__HAVE_SPLBIGLOCK)
126 #define splbiglock splclock
127 #endif
128 __cpu_simple_lock_t kernel_lock;
129 int kernel_lock_id;
130 #endif
131
132 /*
133 * Locking primitives implementation.
134 * Locks provide shared/exclusive synchronization.
135 */
136
137 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
138 #if defined(MULTIPROCESSOR) /* { */
139 #define COUNT_CPU(cpu_id, x) \
140 curcpu()->ci_spin_locks += (x)
141 #else
142 u_long spin_locks;
143 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
144 #endif /* MULTIPROCESSOR */ /* } */
145
146 #define COUNT(lkp, l, cpu_id, x) \
147 do { \
148 if ((lkp)->lk_flags & LK_SPIN) \
149 COUNT_CPU((cpu_id), (x)); \
150 else \
151 (l)->l_locks += (x); \
152 } while (/*CONSTCOND*/0)
153 #else
154 #define COUNT(lkp, p, cpu_id, x)
155 #define COUNT_CPU(cpu_id, x)
156 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
157
158 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
159 do { \
160 if ((flags) & LK_SPIN) \
161 s = spllock(); \
162 simple_lock(&(lkp)->lk_interlock); \
163 } while (/*CONSTCOND*/ 0)
164
165 #define INTERLOCK_RELEASE(lkp, flags, s) \
166 do { \
167 simple_unlock(&(lkp)->lk_interlock); \
168 if ((flags) & LK_SPIN) \
169 splx(s); \
170 } while (/*CONSTCOND*/ 0)
171
172 #ifdef DDB /* { */
173 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
174 int simple_lock_debugger = 1; /* more serious on MP */
175 #else
176 int simple_lock_debugger = 0;
177 #endif
178 #define SLOCK_DEBUGGER() if (simple_lock_debugger && db_onpanic) Debugger()
179 #define SLOCK_TRACE() \
180 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
181 TRUE, 65535, "", lock_printf);
182 #else
183 #define SLOCK_DEBUGGER() /* nothing */
184 #define SLOCK_TRACE() /* nothing */
185 #endif /* } */
186
187 #if defined(LOCKDEBUG)
188 #if defined(DDB)
189 #define SPINLOCK_SPINCHECK_DEBUGGER if (db_onpanic) Debugger()
190 #else
191 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
192 #endif
193
194 #define SPINLOCK_SPINCHECK_DECL \
195 /* 32-bits of count -- wrap constitutes a "spinout" */ \
196 uint32_t __spinc = 0
197
198 #define SPINLOCK_SPINCHECK \
199 do { \
200 if (++__spinc == 0) { \
201 lock_printf("LK_SPIN spinout, excl %d, share %d\n", \
202 lkp->lk_exclusivecount, lkp->lk_sharecount); \
203 if (lkp->lk_exclusivecount) \
204 lock_printf("held by CPU %lu\n", \
205 (u_long) lkp->lk_cpu); \
206 if (lkp->lk_lock_file) \
207 lock_printf("last locked at %s:%d\n", \
208 lkp->lk_lock_file, lkp->lk_lock_line); \
209 if (lkp->lk_unlock_file) \
210 lock_printf("last unlocked at %s:%d\n", \
211 lkp->lk_unlock_file, lkp->lk_unlock_line); \
212 SLOCK_TRACE(); \
213 SPINLOCK_SPINCHECK_DEBUGGER; \
214 } \
215 } while (/*CONSTCOND*/ 0)
216 #else
217 #define SPINLOCK_SPINCHECK_DECL /* nothing */
218 #define SPINLOCK_SPINCHECK /* nothing */
219 #endif /* LOCKDEBUG && DDB */
220
221 #define RETURN_ADDRESS ((uintptr_t)__builtin_return_address(0))
222
223 /*
224 * Acquire a resource.
225 */
226 static int
227 acquire(volatile struct lock **lkpp, int *s, int extflags,
228 int drain, int wanted, uintptr_t ra)
229 {
230 int error;
231 volatile struct lock *lkp = *lkpp;
232 LOCKSTAT_TIMER(slptime);
233 LOCKSTAT_FLAG(lsflag);
234
235 KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
236
237 if (extflags & LK_SPIN) {
238 int interlocked;
239
240 SPINLOCK_SPINCHECK_DECL;
241
242 if (!drain) {
243 lkp->lk_waitcount++;
244 lkp->lk_flags |= LK_WAIT_NONZERO;
245 }
246 for (interlocked = 1;;) {
247 SPINLOCK_SPINCHECK;
248 if ((lkp->lk_flags & wanted) != 0) {
249 if (interlocked) {
250 INTERLOCK_RELEASE(lkp, LK_SPIN, *s);
251 interlocked = 0;
252 }
253 SPINLOCK_SPIN_HOOK;
254 } else if (interlocked) {
255 break;
256 } else {
257 INTERLOCK_ACQUIRE(lkp, LK_SPIN, *s);
258 interlocked = 1;
259 }
260 }
261 if (!drain) {
262 lkp->lk_waitcount--;
263 if (lkp->lk_waitcount == 0)
264 lkp->lk_flags &= ~LK_WAIT_NONZERO;
265 }
266 KASSERT((lkp->lk_flags & wanted) == 0);
267 error = 0; /* sanity */
268 } else {
269 LOCKSTAT_ENTER(lsflag);
270
271 for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
272 if (drain)
273 lkp->lk_flags |= LK_WAITDRAIN;
274 else {
275 lkp->lk_waitcount++;
276 lkp->lk_flags |= LK_WAIT_NONZERO;
277 }
278 /* XXX Cast away volatile. */
279 LOCKSTAT_START_TIMER(lsflag, slptime);
280 error = ltsleep(drain ?
281 (volatile const void *)&lkp->lk_flags :
282 (volatile const void *)lkp, lkp->lk_prio,
283 lkp->lk_wmesg, lkp->lk_timo, &lkp->lk_interlock);
284 LOCKSTAT_STOP_TIMER(lsflag, slptime);
285 LOCKSTAT_EVENT_RA(lsflag, (void *)(uintptr_t)lkp,
286 LB_LOCKMGR | LB_SLEEP1, 1, slptime, ra);
287 if (!drain) {
288 lkp->lk_waitcount--;
289 if (lkp->lk_waitcount == 0)
290 lkp->lk_flags &= ~LK_WAIT_NONZERO;
291 }
292 if (error)
293 break;
294 if (extflags & LK_SLEEPFAIL) {
295 error = ENOLCK;
296 break;
297 }
298 if (lkp->lk_newlock != NULL) {
299 simple_lock(&lkp->lk_newlock->lk_interlock);
300 simple_unlock(&lkp->lk_interlock);
301 if (lkp->lk_waitcount == 0)
302 wakeup(&lkp->lk_newlock);
303 *lkpp = lkp = lkp->lk_newlock;
304 }
305 }
306
307 LOCKSTAT_EXIT(lsflag);
308 }
309
310 return error;
311 }
312
313 #define SETHOLDER(lkp, pid, lid, cpu_id) \
314 do { \
315 if ((lkp)->lk_flags & LK_SPIN) \
316 (lkp)->lk_cpu = cpu_id; \
317 else { \
318 (lkp)->lk_lockholder = pid; \
319 (lkp)->lk_locklwp = lid; \
320 } \
321 } while (/*CONSTCOND*/0)
322
323 #define WEHOLDIT(lkp, pid, lid, cpu_id) \
324 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
325 ((lkp)->lk_cpu == (cpu_id)) : \
326 ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
327
328 #define WAKEUP_WAITER(lkp) \
329 do { \
330 if (((lkp)->lk_flags & (LK_SPIN | LK_WAIT_NONZERO)) == \
331 LK_WAIT_NONZERO) { \
332 wakeup((lkp)); \
333 } \
334 } while (/*CONSTCOND*/0)
335
336 #if defined(LOCKDEBUG) /* { */
337 #if defined(MULTIPROCESSOR) /* { */
338 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
339
340 #define SPINLOCK_LIST_LOCK() \
341 __cpu_simple_lock(&spinlock_list_slock.lock_data)
342
343 #define SPINLOCK_LIST_UNLOCK() \
344 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
345 #else
346 #define SPINLOCK_LIST_LOCK() /* nothing */
347
348 #define SPINLOCK_LIST_UNLOCK() /* nothing */
349 #endif /* MULTIPROCESSOR */ /* } */
350
351 _TAILQ_HEAD(, struct lock, volatile) spinlock_list =
352 TAILQ_HEAD_INITIALIZER(spinlock_list);
353
354 #define HAVEIT(lkp) \
355 do { \
356 if ((lkp)->lk_flags & LK_SPIN) { \
357 int sp = spllock(); \
358 SPINLOCK_LIST_LOCK(); \
359 TAILQ_INSERT_TAIL(&spinlock_list, (lkp), lk_list); \
360 SPINLOCK_LIST_UNLOCK(); \
361 splx(sp); \
362 } \
363 } while (/*CONSTCOND*/0)
364
365 #define DONTHAVEIT(lkp) \
366 do { \
367 if ((lkp)->lk_flags & LK_SPIN) { \
368 int sp = spllock(); \
369 SPINLOCK_LIST_LOCK(); \
370 TAILQ_REMOVE(&spinlock_list, (lkp), lk_list); \
371 SPINLOCK_LIST_UNLOCK(); \
372 splx(sp); \
373 } \
374 } while (/*CONSTCOND*/0)
375 #else
376 #define HAVEIT(lkp) /* nothing */
377
378 #define DONTHAVEIT(lkp) /* nothing */
379 #endif /* LOCKDEBUG */ /* } */
380
381 #if defined(LOCKDEBUG)
382 /*
383 * Lock debug printing routine; can be configured to print to console
384 * or log to syslog.
385 */
386 void
387 lock_printf(const char *fmt, ...)
388 {
389 char b[150];
390 va_list ap;
391
392 va_start(ap, fmt);
393 if (lock_debug_syslog)
394 vlog(LOG_DEBUG, fmt, ap);
395 else {
396 vsnprintf(b, sizeof(b), fmt, ap);
397 printf_nolog("%s", b);
398 }
399 va_end(ap);
400 }
401 #endif /* LOCKDEBUG */
402
403 /*
404 * Transfer any waiting processes from one lock to another.
405 */
406 void
407 transferlockers(struct lock *from, struct lock *to)
408 {
409
410 KASSERT(from != to);
411 KASSERT((from->lk_flags & LK_WAITDRAIN) == 0);
412 if (from->lk_waitcount == 0)
413 return;
414 from->lk_newlock = to;
415 wakeup((void *)from);
416 tsleep((void *)&from->lk_newlock, from->lk_prio, "lkxfer", 0);
417 from->lk_newlock = NULL;
418 from->lk_flags &= ~(LK_WANT_EXCL | LK_WANT_UPGRADE);
419 KASSERT(from->lk_waitcount == 0);
420 }
421
422
423 /*
424 * Initialize a lock; required before use.
425 */
426 void
427 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
428 {
429
430 memset(lkp, 0, sizeof(struct lock));
431 simple_lock_init(&lkp->lk_interlock);
432 lkp->lk_flags = flags & LK_EXTFLG_MASK;
433 if (flags & LK_SPIN)
434 lkp->lk_cpu = LK_NOCPU;
435 else {
436 lkp->lk_lockholder = LK_NOPROC;
437 lkp->lk_newlock = NULL;
438 lkp->lk_prio = prio;
439 lkp->lk_timo = timo;
440 }
441 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
442 #if defined(LOCKDEBUG)
443 lkp->lk_lock_file = NULL;
444 lkp->lk_unlock_file = NULL;
445 #endif
446 }
447
448 /*
449 * Determine the status of a lock.
450 */
451 int
452 lockstatus(struct lock *lkp)
453 {
454 int s = 0; /* XXX: gcc */
455 int lock_type = 0;
456 struct lwp *l = curlwp; /* XXX */
457 pid_t pid;
458 lwpid_t lid;
459 cpuid_t cpu_num;
460
461 if ((lkp->lk_flags & LK_SPIN) || l == NULL) {
462 cpu_num = cpu_number();
463 pid = LK_KERNPROC;
464 lid = 0;
465 } else {
466 cpu_num = LK_NOCPU;
467 pid = l->l_proc->p_pid;
468 lid = l->l_lid;
469 }
470
471 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
472 if (lkp->lk_exclusivecount != 0) {
473 if (WEHOLDIT(lkp, pid, lid, cpu_num))
474 lock_type = LK_EXCLUSIVE;
475 else
476 lock_type = LK_EXCLOTHER;
477 } else if (lkp->lk_sharecount != 0)
478 lock_type = LK_SHARED;
479 else if (lkp->lk_flags & (LK_WANT_EXCL | LK_WANT_UPGRADE))
480 lock_type = LK_EXCLOTHER;
481 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
482 return (lock_type);
483 }
484
485 #if defined(LOCKDEBUG)
486 /*
487 * Make sure no spin locks are held by a CPU that is about
488 * to context switch.
489 */
490 void
491 spinlock_switchcheck(void)
492 {
493 u_long cnt;
494 int s;
495
496 s = spllock();
497 #if defined(MULTIPROCESSOR)
498 cnt = curcpu()->ci_spin_locks;
499 #else
500 cnt = spin_locks;
501 #endif
502 splx(s);
503
504 if (cnt != 0)
505 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
506 (u_long) cpu_number(), cnt);
507 }
508 #endif /* LOCKDEBUG */
509
510 /*
511 * Locks and IPLs (interrupt priority levels):
512 *
513 * Locks which may be taken from interrupt context must be handled
514 * very carefully; you must spl to the highest IPL where the lock
515 * is needed before acquiring the lock.
516 *
517 * It is also important to avoid deadlock, since certain (very high
518 * priority) interrupts are often needed to keep the system as a whole
519 * from deadlocking, and must not be blocked while you are spinning
520 * waiting for a lower-priority lock.
521 *
522 * In addition, the lock-debugging hooks themselves need to use locks!
523 *
524 * A raw __cpu_simple_lock may be used from interrupts are long as it
525 * is acquired and held at a single IPL.
526 *
527 * A simple_lock (which is a __cpu_simple_lock wrapped with some
528 * debugging hooks) may be used at or below spllock(), which is
529 * typically at or just below splhigh() (i.e. blocks everything
530 * but certain machine-dependent extremely high priority interrupts).
531 *
532 * spinlockmgr spinlocks should be used at or below splsched().
533 *
534 * Some platforms may have interrupts of higher priority than splsched(),
535 * including hard serial interrupts, inter-processor interrupts, and
536 * kernel debugger traps.
537 */
538
539 /*
540 * XXX XXX kludge around another kludge..
541 *
542 * vfs_shutdown() may be called from interrupt context, either as a result
543 * of a panic, or from the debugger. It proceeds to call
544 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
545 *
546 * We would like to make an attempt to sync the filesystems in this case, so
547 * if this happens, we treat attempts to acquire locks specially.
548 * All locks are acquired on behalf of proc0.
549 *
550 * If we've already paniced, we don't block waiting for locks, but
551 * just barge right ahead since we're already going down in flames.
552 */
553
554 /*
555 * Set, change, or release a lock.
556 *
557 * Shared requests increment the shared count. Exclusive requests set the
558 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
559 * accepted shared locks and shared-to-exclusive upgrades to go away.
560 */
561 int
562 #if defined(LOCKDEBUG)
563 _lockmgr(volatile struct lock *lkp, u_int flags,
564 struct simplelock *interlkp, const char *file, int line)
565 #else
566 lockmgr(volatile struct lock *lkp, u_int flags,
567 struct simplelock *interlkp)
568 #endif
569 {
570 int error;
571 pid_t pid;
572 lwpid_t lid;
573 int extflags;
574 cpuid_t cpu_num;
575 struct lwp *l = curlwp;
576 int lock_shutdown_noblock = 0;
577 int s = 0;
578
579 error = 0;
580
581 /* LK_RETRY is for vn_lock, not for lockmgr. */
582 KASSERT((flags & LK_RETRY) == 0);
583
584 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
585 if (flags & LK_INTERLOCK)
586 simple_unlock(interlkp);
587 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
588
589 #ifdef DIAGNOSTIC /* { */
590 /*
591 * Don't allow spins on sleep locks and don't allow sleeps
592 * on spin locks.
593 */
594 if ((flags ^ lkp->lk_flags) & LK_SPIN)
595 panic("lockmgr: sleep/spin mismatch");
596 #endif /* } */
597
598 if (extflags & LK_SPIN) {
599 pid = LK_KERNPROC;
600 lid = 0;
601 } else {
602 if (l == NULL) {
603 if (!doing_shutdown) {
604 panic("lockmgr: no context");
605 } else {
606 l = &lwp0;
607 if (panicstr && (!(flags & LK_NOWAIT))) {
608 flags |= LK_NOWAIT;
609 lock_shutdown_noblock = 1;
610 }
611 }
612 }
613 lid = l->l_lid;
614 pid = l->l_proc->p_pid;
615 }
616 cpu_num = cpu_number();
617
618 /*
619 * Once a lock has drained, the LK_DRAINING flag is set and an
620 * exclusive lock is returned. The only valid operation thereafter
621 * is a single release of that exclusive lock. This final release
622 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
623 * further requests of any sort will result in a panic. The bits
624 * selected for these two flags are chosen so that they will be set
625 * in memory that is freed (freed memory is filled with 0xdeadbeef).
626 * The final release is permitted to give a new lease on life to
627 * the lock by specifying LK_REENABLE.
628 */
629 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
630 #ifdef DIAGNOSTIC /* { */
631 if (lkp->lk_flags & LK_DRAINED)
632 panic("lockmgr: using decommissioned lock");
633 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
634 WEHOLDIT(lkp, pid, lid, cpu_num) == 0)
635 panic("lockmgr: non-release on draining lock: %d",
636 flags & LK_TYPE_MASK);
637 #endif /* DIAGNOSTIC */ /* } */
638 lkp->lk_flags &= ~LK_DRAINING;
639 if ((flags & LK_REENABLE) == 0)
640 lkp->lk_flags |= LK_DRAINED;
641 }
642
643 switch (flags & LK_TYPE_MASK) {
644
645 case LK_SHARED:
646 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
647 /*
648 * If just polling, check to see if we will block.
649 */
650 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
651 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
652 error = EBUSY;
653 break;
654 }
655 /*
656 * Wait for exclusive locks and upgrades to clear.
657 */
658 error = acquire(&lkp, &s, extflags, 0,
659 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE,
660 RETURN_ADDRESS);
661 if (error)
662 break;
663 lkp->lk_sharecount++;
664 lkp->lk_flags |= LK_SHARE_NONZERO;
665 COUNT(lkp, l, cpu_num, 1);
666 break;
667 }
668 /*
669 * We hold an exclusive lock, so downgrade it to shared.
670 * An alternative would be to fail with EDEADLK.
671 */
672 lkp->lk_sharecount++;
673 lkp->lk_flags |= LK_SHARE_NONZERO;
674 COUNT(lkp, l, cpu_num, 1);
675 /* fall into downgrade */
676
677 case LK_DOWNGRADE:
678 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0 ||
679 lkp->lk_exclusivecount == 0)
680 panic("lockmgr: not holding exclusive lock");
681 lkp->lk_sharecount += lkp->lk_exclusivecount;
682 lkp->lk_flags |= LK_SHARE_NONZERO;
683 lkp->lk_exclusivecount = 0;
684 lkp->lk_recurselevel = 0;
685 lkp->lk_flags &= ~LK_HAVE_EXCL;
686 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
687 #if defined(LOCKDEBUG)
688 lkp->lk_unlock_file = file;
689 lkp->lk_unlock_line = line;
690 #endif
691 DONTHAVEIT(lkp);
692 WAKEUP_WAITER(lkp);
693 break;
694
695 case LK_EXCLUPGRADE:
696 /*
697 * If another process is ahead of us to get an upgrade,
698 * then we want to fail rather than have an intervening
699 * exclusive access.
700 */
701 if (lkp->lk_flags & LK_WANT_UPGRADE) {
702 lkp->lk_sharecount--;
703 if (lkp->lk_sharecount == 0)
704 lkp->lk_flags &= ~LK_SHARE_NONZERO;
705 COUNT(lkp, l, cpu_num, -1);
706 error = EBUSY;
707 break;
708 }
709 /* fall into normal upgrade */
710
711 case LK_UPGRADE:
712 /*
713 * Upgrade a shared lock to an exclusive one. If another
714 * shared lock has already requested an upgrade to an
715 * exclusive lock, our shared lock is released and an
716 * exclusive lock is requested (which will be granted
717 * after the upgrade). If we return an error, the file
718 * will always be unlocked.
719 */
720 if (WEHOLDIT(lkp, pid, lid, cpu_num) || lkp->lk_sharecount <= 0)
721 panic("lockmgr: upgrade exclusive lock");
722 lkp->lk_sharecount--;
723 if (lkp->lk_sharecount == 0)
724 lkp->lk_flags &= ~LK_SHARE_NONZERO;
725 COUNT(lkp, l, cpu_num, -1);
726 /*
727 * If we are just polling, check to see if we will block.
728 */
729 if ((extflags & LK_NOWAIT) &&
730 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
731 lkp->lk_sharecount > 1)) {
732 error = EBUSY;
733 break;
734 }
735 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
736 /*
737 * We are first shared lock to request an upgrade, so
738 * request upgrade and wait for the shared count to
739 * drop to zero, then take exclusive lock.
740 */
741 lkp->lk_flags |= LK_WANT_UPGRADE;
742 error = acquire(&lkp, &s, extflags, 0, LK_SHARE_NONZERO,
743 RETURN_ADDRESS);
744 lkp->lk_flags &= ~LK_WANT_UPGRADE;
745 if (error) {
746 WAKEUP_WAITER(lkp);
747 break;
748 }
749 lkp->lk_flags |= LK_HAVE_EXCL;
750 SETHOLDER(lkp, pid, lid, cpu_num);
751 #if defined(LOCKDEBUG)
752 lkp->lk_lock_file = file;
753 lkp->lk_lock_line = line;
754 #endif
755 HAVEIT(lkp);
756 if (lkp->lk_exclusivecount != 0)
757 panic("lockmgr: non-zero exclusive count");
758 lkp->lk_exclusivecount = 1;
759 if (extflags & LK_SETRECURSE)
760 lkp->lk_recurselevel = 1;
761 COUNT(lkp, l, cpu_num, 1);
762 break;
763 }
764 /*
765 * Someone else has requested upgrade. Release our shared
766 * lock, awaken upgrade requestor if we are the last shared
767 * lock, then request an exclusive lock.
768 */
769 if (lkp->lk_sharecount == 0)
770 WAKEUP_WAITER(lkp);
771 /* fall into exclusive request */
772
773 case LK_EXCLUSIVE:
774 if (WEHOLDIT(lkp, pid, lid, cpu_num)) {
775 /*
776 * Recursive lock.
777 */
778 if ((extflags & LK_CANRECURSE) == 0 &&
779 lkp->lk_recurselevel == 0) {
780 if (extflags & LK_RECURSEFAIL) {
781 error = EDEADLK;
782 break;
783 } else
784 panic("lockmgr: locking against myself");
785 }
786 lkp->lk_exclusivecount++;
787 if (extflags & LK_SETRECURSE &&
788 lkp->lk_recurselevel == 0)
789 lkp->lk_recurselevel = lkp->lk_exclusivecount;
790 COUNT(lkp, l, cpu_num, 1);
791 break;
792 }
793 /*
794 * If we are just polling, check to see if we will sleep.
795 */
796 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
797 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
798 LK_SHARE_NONZERO))) {
799 error = EBUSY;
800 break;
801 }
802 /*
803 * Try to acquire the want_exclusive flag.
804 */
805 error = acquire(&lkp, &s, extflags, 0,
806 LK_HAVE_EXCL | LK_WANT_EXCL, RETURN_ADDRESS);
807 if (error)
808 break;
809 lkp->lk_flags |= LK_WANT_EXCL;
810 /*
811 * Wait for shared locks and upgrades to finish.
812 */
813 error = acquire(&lkp, &s, extflags, 0,
814 LK_HAVE_EXCL | LK_WANT_UPGRADE | LK_SHARE_NONZERO,
815 RETURN_ADDRESS);
816 lkp->lk_flags &= ~LK_WANT_EXCL;
817 if (error) {
818 WAKEUP_WAITER(lkp);
819 break;
820 }
821 lkp->lk_flags |= LK_HAVE_EXCL;
822 SETHOLDER(lkp, pid, lid, cpu_num);
823 #if defined(LOCKDEBUG)
824 lkp->lk_lock_file = file;
825 lkp->lk_lock_line = line;
826 #endif
827 HAVEIT(lkp);
828 if (lkp->lk_exclusivecount != 0)
829 panic("lockmgr: non-zero exclusive count");
830 lkp->lk_exclusivecount = 1;
831 if (extflags & LK_SETRECURSE)
832 lkp->lk_recurselevel = 1;
833 COUNT(lkp, l, cpu_num, 1);
834 break;
835
836 case LK_RELEASE:
837 if (lkp->lk_exclusivecount != 0) {
838 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
839 if (lkp->lk_flags & LK_SPIN) {
840 panic("lockmgr: processor %lu, not "
841 "exclusive lock holder %lu "
842 "unlocking", cpu_num, lkp->lk_cpu);
843 } else {
844 panic("lockmgr: pid %d, not "
845 "exclusive lock holder %d "
846 "unlocking", pid,
847 lkp->lk_lockholder);
848 }
849 }
850 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
851 lkp->lk_recurselevel = 0;
852 lkp->lk_exclusivecount--;
853 COUNT(lkp, l, cpu_num, -1);
854 if (lkp->lk_exclusivecount == 0) {
855 lkp->lk_flags &= ~LK_HAVE_EXCL;
856 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
857 #if defined(LOCKDEBUG)
858 lkp->lk_unlock_file = file;
859 lkp->lk_unlock_line = line;
860 #endif
861 DONTHAVEIT(lkp);
862 }
863 } else if (lkp->lk_sharecount != 0) {
864 lkp->lk_sharecount--;
865 if (lkp->lk_sharecount == 0)
866 lkp->lk_flags &= ~LK_SHARE_NONZERO;
867 COUNT(lkp, l, cpu_num, -1);
868 }
869 #ifdef DIAGNOSTIC
870 else
871 panic("lockmgr: release of unlocked lock!");
872 #endif
873 WAKEUP_WAITER(lkp);
874 break;
875
876 case LK_DRAIN:
877 /*
878 * Check that we do not already hold the lock, as it can
879 * never drain if we do. Unfortunately, we have no way to
880 * check for holding a shared lock, but at least we can
881 * check for an exclusive one.
882 */
883 if (WEHOLDIT(lkp, pid, lid, cpu_num))
884 panic("lockmgr: draining against myself");
885 /*
886 * If we are just polling, check to see if we will sleep.
887 */
888 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
889 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
890 LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
891 error = EBUSY;
892 break;
893 }
894 error = acquire(&lkp, &s, extflags, 1,
895 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
896 LK_SHARE_NONZERO | LK_WAIT_NONZERO,
897 RETURN_ADDRESS);
898 if (error)
899 break;
900 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
901 SETHOLDER(lkp, pid, lid, cpu_num);
902 #if defined(LOCKDEBUG)
903 lkp->lk_lock_file = file;
904 lkp->lk_lock_line = line;
905 #endif
906 HAVEIT(lkp);
907 lkp->lk_exclusivecount = 1;
908 /* XXX unlikely that we'd want this */
909 if (extflags & LK_SETRECURSE)
910 lkp->lk_recurselevel = 1;
911 COUNT(lkp, l, cpu_num, 1);
912 break;
913
914 default:
915 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
916 panic("lockmgr: unknown locktype request %d",
917 flags & LK_TYPE_MASK);
918 /* NOTREACHED */
919 }
920 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
921 ((lkp->lk_flags &
922 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
923 LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
924 lkp->lk_flags &= ~LK_WAITDRAIN;
925 wakeup(&lkp->lk_flags);
926 }
927 /*
928 * Note that this panic will be a recursive panic, since
929 * we only set lock_shutdown_noblock above if panicstr != NULL.
930 */
931 if (error && lock_shutdown_noblock)
932 panic("lockmgr: deadlock (see previous panic)");
933
934 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
935 return (error);
936 }
937
938 /*
939 * For a recursive spinlock held one or more times by the current CPU,
940 * release all N locks, and return N.
941 * Intended for use in mi_switch() shortly before context switching.
942 */
943
944 int
945 #if defined(LOCKDEBUG)
946 _spinlock_release_all(volatile struct lock *lkp, const char *file, int line)
947 #else
948 spinlock_release_all(volatile struct lock *lkp)
949 #endif
950 {
951 int s, count;
952 cpuid_t cpu_num;
953
954 KASSERT(lkp->lk_flags & LK_SPIN);
955
956 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
957
958 cpu_num = cpu_number();
959 count = lkp->lk_exclusivecount;
960
961 if (count != 0) {
962 #ifdef DIAGNOSTIC
963 if (WEHOLDIT(lkp, 0, 0, cpu_num) == 0) {
964 panic("spinlock_release_all: processor %lu, not "
965 "exclusive lock holder %lu "
966 "unlocking", (long)cpu_num, lkp->lk_cpu);
967 }
968 #endif
969 lkp->lk_recurselevel = 0;
970 lkp->lk_exclusivecount = 0;
971 COUNT_CPU(cpu_num, -count);
972 lkp->lk_flags &= ~LK_HAVE_EXCL;
973 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
974 #if defined(LOCKDEBUG)
975 lkp->lk_unlock_file = file;
976 lkp->lk_unlock_line = line;
977 #endif
978 DONTHAVEIT(lkp);
979 }
980 #ifdef DIAGNOSTIC
981 else if (lkp->lk_sharecount != 0)
982 panic("spinlock_release_all: release of shared lock!");
983 else
984 panic("spinlock_release_all: release of unlocked lock!");
985 #endif
986 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
987
988 return (count);
989 }
990
991 /*
992 * For a recursive spinlock held one or more times by the current CPU,
993 * release all N locks, and return N.
994 * Intended for use in mi_switch() right after resuming execution.
995 */
996
997 void
998 #if defined(LOCKDEBUG)
999 _spinlock_acquire_count(volatile struct lock *lkp, int count,
1000 const char *file, int line)
1001 #else
1002 spinlock_acquire_count(volatile struct lock *lkp, int count)
1003 #endif
1004 {
1005 int s, error;
1006 cpuid_t cpu_num;
1007
1008 KASSERT(lkp->lk_flags & LK_SPIN);
1009
1010 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
1011
1012 cpu_num = cpu_number();
1013
1014 #ifdef DIAGNOSTIC
1015 if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_num))
1016 panic("spinlock_acquire_count: processor %lu already holds lock", (long)cpu_num);
1017 #endif
1018 /*
1019 * Try to acquire the want_exclusive flag.
1020 */
1021 error = acquire(&lkp, &s, LK_SPIN, 0, LK_HAVE_EXCL | LK_WANT_EXCL,
1022 RETURN_ADDRESS);
1023 lkp->lk_flags |= LK_WANT_EXCL;
1024 /*
1025 * Wait for shared locks and upgrades to finish.
1026 */
1027 error = acquire(&lkp, &s, LK_SPIN, 0,
1028 LK_HAVE_EXCL | LK_SHARE_NONZERO | LK_WANT_UPGRADE,
1029 RETURN_ADDRESS);
1030 lkp->lk_flags &= ~LK_WANT_EXCL;
1031 lkp->lk_flags |= LK_HAVE_EXCL;
1032 SETHOLDER(lkp, LK_NOPROC, 0, cpu_num);
1033 #if defined(LOCKDEBUG)
1034 lkp->lk_lock_file = file;
1035 lkp->lk_lock_line = line;
1036 #endif
1037 HAVEIT(lkp);
1038 if (lkp->lk_exclusivecount != 0)
1039 panic("lockmgr: non-zero exclusive count");
1040 lkp->lk_exclusivecount = count;
1041 lkp->lk_recurselevel = 1;
1042 COUNT_CPU(cpu_num, count);
1043
1044 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
1045 }
1046
1047
1048
1049 /*
1050 * Print out information about state of a lock. Used by VOP_PRINT
1051 * routines to display ststus about contained locks.
1052 */
1053 void
1054 lockmgr_printinfo(volatile struct lock *lkp)
1055 {
1056
1057 if (lkp->lk_sharecount)
1058 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
1059 lkp->lk_sharecount);
1060 else if (lkp->lk_flags & LK_HAVE_EXCL) {
1061 printf(" lock type %s: EXCL (count %d) by ",
1062 lkp->lk_wmesg, lkp->lk_exclusivecount);
1063 if (lkp->lk_flags & LK_SPIN)
1064 printf("processor %lu", lkp->lk_cpu);
1065 else
1066 printf("pid %d.%d", lkp->lk_lockholder,
1067 lkp->lk_locklwp);
1068 } else
1069 printf(" not locked");
1070 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
1071 printf(" with %d pending", lkp->lk_waitcount);
1072 }
1073
1074 #if defined(LOCKDEBUG) /* { */
1075 _TAILQ_HEAD(, struct simplelock, volatile) simplelock_list =
1076 TAILQ_HEAD_INITIALIZER(simplelock_list);
1077
1078 #if defined(MULTIPROCESSOR) /* { */
1079 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
1080
1081 #define SLOCK_LIST_LOCK() \
1082 __cpu_simple_lock(&simplelock_list_slock.lock_data)
1083
1084 #define SLOCK_LIST_UNLOCK() \
1085 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
1086
1087 #define SLOCK_COUNT(x) \
1088 curcpu()->ci_simple_locks += (x)
1089 #else
1090 u_long simple_locks;
1091
1092 #define SLOCK_LIST_LOCK() /* nothing */
1093
1094 #define SLOCK_LIST_UNLOCK() /* nothing */
1095
1096 #define SLOCK_COUNT(x) simple_locks += (x)
1097 #endif /* MULTIPROCESSOR */ /* } */
1098
1099 #ifdef MULTIPROCESSOR
1100 #define SLOCK_MP() lock_printf("on CPU %ld\n", \
1101 (u_long) cpu_number())
1102 #else
1103 #define SLOCK_MP() /* nothing */
1104 #endif
1105
1106 #define SLOCK_WHERE(str, alp, id, l) \
1107 do { \
1108 lock_printf("\n"); \
1109 lock_printf(str); \
1110 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
1111 SLOCK_MP(); \
1112 if ((alp)->lock_file != NULL) \
1113 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
1114 (alp)->lock_line); \
1115 if ((alp)->unlock_file != NULL) \
1116 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1117 (alp)->unlock_line); \
1118 SLOCK_TRACE() \
1119 SLOCK_DEBUGGER(); \
1120 } while (/*CONSTCOND*/0)
1121
1122 /*
1123 * Simple lock functions so that the debugger can see from whence
1124 * they are being called.
1125 */
1126 void
1127 simple_lock_init(volatile struct simplelock *alp)
1128 {
1129
1130 #if defined(MULTIPROCESSOR) /* { */
1131 __cpu_simple_lock_init(&alp->lock_data);
1132 #else
1133 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1134 #endif /* } */
1135 alp->lock_file = NULL;
1136 alp->lock_line = 0;
1137 alp->unlock_file = NULL;
1138 alp->unlock_line = 0;
1139 alp->lock_holder = LK_NOCPU;
1140 }
1141
1142 void
1143 _simple_lock(volatile struct simplelock *alp, const char *id, int l)
1144 {
1145 cpuid_t cpu_num = cpu_number();
1146 int s;
1147
1148 s = spllock();
1149
1150 /*
1151 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1152 * don't take any action, and just fall into the normal spin case.
1153 */
1154 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1155 #if defined(MULTIPROCESSOR) /* { */
1156 if (alp->lock_holder == cpu_num) {
1157 SLOCK_WHERE("simple_lock: locking against myself\n",
1158 alp, id, l);
1159 goto out;
1160 }
1161 #else
1162 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1163 goto out;
1164 #endif /* MULTIPROCESSOR */ /* } */
1165 }
1166
1167 #if defined(MULTIPROCESSOR) /* { */
1168 /* Acquire the lock before modifying any fields. */
1169 splx(s);
1170 __cpu_simple_lock(&alp->lock_data);
1171 s = spllock();
1172 #else
1173 alp->lock_data = __SIMPLELOCK_LOCKED;
1174 #endif /* } */
1175
1176 if (alp->lock_holder != LK_NOCPU) {
1177 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1178 alp, id, l);
1179 }
1180 alp->lock_file = id;
1181 alp->lock_line = l;
1182 alp->lock_holder = cpu_num;
1183
1184 SLOCK_LIST_LOCK();
1185 TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
1186 SLOCK_LIST_UNLOCK();
1187
1188 SLOCK_COUNT(1);
1189
1190 out:
1191 splx(s);
1192 }
1193
1194 int
1195 _simple_lock_held(volatile struct simplelock *alp)
1196 {
1197 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1198 cpuid_t cpu_num = cpu_number();
1199 #endif
1200 int s, locked = 0;
1201
1202 s = spllock();
1203
1204 #if defined(MULTIPROCESSOR)
1205 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1206 locked = (alp->lock_holder == cpu_num);
1207 else
1208 __cpu_simple_unlock(&alp->lock_data);
1209 #else
1210 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1211 locked = 1;
1212 KASSERT(alp->lock_holder == cpu_num);
1213 }
1214 #endif
1215
1216 splx(s);
1217
1218 return (locked);
1219 }
1220
1221 int
1222 _simple_lock_try(volatile struct simplelock *alp, const char *id, int l)
1223 {
1224 cpuid_t cpu_num = cpu_number();
1225 int s, rv = 0;
1226
1227 s = spllock();
1228
1229 /*
1230 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1231 * don't take any action.
1232 */
1233 #if defined(MULTIPROCESSOR) /* { */
1234 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1235 if (alp->lock_holder == cpu_num)
1236 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1237 alp, id, l);
1238 goto out;
1239 }
1240 #else
1241 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1242 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1243 goto out;
1244 }
1245 alp->lock_data = __SIMPLELOCK_LOCKED;
1246 #endif /* MULTIPROCESSOR */ /* } */
1247
1248 /*
1249 * At this point, we have acquired the lock.
1250 */
1251
1252 rv = 1;
1253
1254 alp->lock_file = id;
1255 alp->lock_line = l;
1256 alp->lock_holder = cpu_num;
1257
1258 SLOCK_LIST_LOCK();
1259 TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
1260 SLOCK_LIST_UNLOCK();
1261
1262 SLOCK_COUNT(1);
1263
1264 out:
1265 splx(s);
1266 return (rv);
1267 }
1268
1269 void
1270 _simple_unlock(volatile struct simplelock *alp, const char *id, int l)
1271 {
1272 int s;
1273
1274 s = spllock();
1275
1276 /*
1277 * MULTIPROCESSOR case: This is `safe' because we think we hold
1278 * the lock, and if we don't, we don't take any action.
1279 */
1280 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1281 SLOCK_WHERE("simple_unlock: lock not held\n",
1282 alp, id, l);
1283 goto out;
1284 }
1285
1286 SLOCK_LIST_LOCK();
1287 TAILQ_REMOVE(&simplelock_list, alp, list);
1288 SLOCK_LIST_UNLOCK();
1289
1290 SLOCK_COUNT(-1);
1291
1292 alp->list.tqe_next = NULL; /* sanity */
1293 alp->list.tqe_prev = NULL; /* sanity */
1294
1295 alp->unlock_file = id;
1296 alp->unlock_line = l;
1297
1298 #if defined(MULTIPROCESSOR) /* { */
1299 alp->lock_holder = LK_NOCPU;
1300 /* Now that we've modified all fields, release the lock. */
1301 __cpu_simple_unlock(&alp->lock_data);
1302 #else
1303 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1304 KASSERT(alp->lock_holder == cpu_number());
1305 alp->lock_holder = LK_NOCPU;
1306 #endif /* } */
1307
1308 out:
1309 splx(s);
1310 }
1311
1312 void
1313 simple_lock_dump(void)
1314 {
1315 volatile struct simplelock *alp;
1316 int s;
1317
1318 s = spllock();
1319 SLOCK_LIST_LOCK();
1320 lock_printf("all simple locks:\n");
1321 TAILQ_FOREACH(alp, &simplelock_list, list) {
1322 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1323 alp->lock_file, alp->lock_line);
1324 }
1325 SLOCK_LIST_UNLOCK();
1326 splx(s);
1327 }
1328
1329 void
1330 simple_lock_freecheck(void *start, void *end)
1331 {
1332 volatile struct simplelock *alp;
1333 int s;
1334
1335 s = spllock();
1336 SLOCK_LIST_LOCK();
1337 TAILQ_FOREACH(alp, &simplelock_list, list) {
1338 if ((volatile void *)alp >= start &&
1339 (volatile void *)alp < end) {
1340 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1341 alp, alp->lock_holder, alp->lock_file,
1342 alp->lock_line);
1343 SLOCK_DEBUGGER();
1344 }
1345 }
1346 SLOCK_LIST_UNLOCK();
1347 splx(s);
1348 }
1349
1350 /*
1351 * We must be holding exactly one lock: the sched_lock.
1352 */
1353
1354 void
1355 simple_lock_switchcheck(void)
1356 {
1357
1358 simple_lock_only_held(NULL, "switching");
1359 }
1360
1361 /*
1362 * Drop into the debugger if lp isn't the only lock held.
1363 * lp may be NULL.
1364 */
1365 void
1366 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1367 {
1368 volatile struct simplelock *alp;
1369 cpuid_t cpu_num = cpu_number();
1370 int s;
1371
1372 if (lp) {
1373 LOCK_ASSERT(simple_lock_held(lp));
1374 }
1375 s = spllock();
1376 SLOCK_LIST_LOCK();
1377 TAILQ_FOREACH(alp, &simplelock_list, list) {
1378 if (alp == lp)
1379 continue;
1380 if (alp->lock_holder == cpu_num)
1381 break;
1382 }
1383 SLOCK_LIST_UNLOCK();
1384 splx(s);
1385
1386 if (alp != NULL) {
1387 lock_printf("\n%s with held simple_lock %p "
1388 "CPU %lu %s:%d\n",
1389 where, alp, alp->lock_holder, alp->lock_file,
1390 alp->lock_line);
1391 SLOCK_TRACE();
1392 SLOCK_DEBUGGER();
1393 }
1394 }
1395
1396 /*
1397 * Set to 1 by simple_lock_assert_*().
1398 * Can be cleared from ddb to avoid a panic.
1399 */
1400 int slock_assert_will_panic;
1401
1402 /*
1403 * If the lock isn't held, print a traceback, optionally drop into the
1404 * debugger, then panic.
1405 * The panic can be avoided by clearing slock_assert_with_panic from the
1406 * debugger.
1407 */
1408 void
1409 _simple_lock_assert_locked(volatile struct simplelock *alp,
1410 const char *lockname, const char *id, int l)
1411 {
1412 if (simple_lock_held(alp) == 0) {
1413 slock_assert_will_panic = 1;
1414 lock_printf("%s lock not held\n", lockname);
1415 SLOCK_WHERE("lock not held", alp, id, l);
1416 if (slock_assert_will_panic)
1417 panic("%s: not locked", lockname);
1418 }
1419 }
1420
1421 void
1422 _simple_lock_assert_unlocked(volatile struct simplelock *alp,
1423 const char *lockname, const char *id, int l)
1424 {
1425 if (simple_lock_held(alp)) {
1426 slock_assert_will_panic = 1;
1427 lock_printf("%s lock held\n", lockname);
1428 SLOCK_WHERE("lock held", alp, id, l);
1429 if (slock_assert_will_panic)
1430 panic("%s: locked", lockname);
1431 }
1432 }
1433
1434 void
1435 assert_sleepable(struct simplelock *interlock, const char *msg)
1436 {
1437
1438 if (curlwp == NULL) {
1439 panic("assert_sleepable: NULL curlwp");
1440 }
1441 simple_lock_only_held(interlock, msg);
1442 }
1443
1444 #endif /* LOCKDEBUG */ /* } */
1445
1446 #if defined(MULTIPROCESSOR)
1447
1448 /*
1449 * Functions for manipulating the kernel_lock. We put them here
1450 * so that they show up in profiles.
1451 */
1452
1453 #define _KERNEL_LOCK_ABORT(msg) \
1454 LOCKDEBUG_ABORT(kernel_lock_id, &kernel_lock, &_kernel_lock_ops, \
1455 __FUNCTION__, msg)
1456
1457 #ifdef LOCKDEBUG
1458 #define _KERNEL_LOCK_ASSERT(cond) \
1459 do { \
1460 if (!(cond)) \
1461 _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
1462 } while (/* CONSTCOND */ 0)
1463 #else
1464 #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
1465 #endif
1466
1467 void _kernel_lock_dump(volatile void *);
1468
1469 lockops_t _kernel_lock_ops = {
1470 "Kernel lock",
1471 0,
1472 _kernel_lock_dump
1473 };
1474
1475 /*
1476 * Initialize the kernel lock.
1477 */
1478 void
1479 _kernel_lock_init(void)
1480 {
1481
1482 __cpu_simple_lock_init(&kernel_lock);
1483 kernel_lock_id = LOCKDEBUG_ALLOC(&kernel_lock, &_kernel_lock_ops);
1484 }
1485
1486 /*
1487 * Print debugging information about the kernel lock.
1488 */
1489 void
1490 _kernel_lock_dump(volatile void *junk)
1491 {
1492 struct cpu_info *ci = curcpu();
1493
1494 (void)junk;
1495
1496 printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
1497 ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
1498 }
1499
1500 /*
1501 * Acquire 'nlocks' holds on the kernel lock. If 'l' is non-null, the
1502 * acquisition is from process context.
1503 */
1504 void
1505 _kernel_lock(int nlocks, struct lwp *l)
1506 {
1507 struct cpu_info *ci = curcpu();
1508 LOCKSTAT_TIMER(spintime);
1509 LOCKSTAT_FLAG(lsflag);
1510 struct lwp *owant;
1511 #ifdef LOCKDEBUG
1512 u_int spins;
1513 #endif
1514 int s;
1515
1516 (void)l;
1517
1518 if (nlocks == 0)
1519 return;
1520 _KERNEL_LOCK_ASSERT(nlocks > 0);
1521
1522 s = splbiglock();
1523
1524 if (ci->ci_biglock_count != 0) {
1525 _KERNEL_LOCK_ASSERT(kernel_lock == __SIMPLELOCK_LOCKED);
1526 ci->ci_biglock_count += nlocks;
1527 splx(s);
1528 return;
1529 }
1530
1531 LOCKDEBUG_WANTLOCK(kernel_lock_id,
1532 (uintptr_t)__builtin_return_address(0), 0);
1533
1534 if (__cpu_simple_lock_try(&kernel_lock)) {
1535 ci->ci_biglock_count = nlocks;
1536 LOCKDEBUG_LOCKED(kernel_lock_id,
1537 (uintptr_t)__builtin_return_address(0), 0);
1538 splx(s);
1539 return;
1540 }
1541
1542 LOCKSTAT_ENTER(lsflag);
1543 LOCKSTAT_START_TIMER(lsflag, spintime);
1544
1545 /*
1546 * Before setting ci_biglock_wanted we must post a store
1547 * fence (see kern_mutex.c). This is accomplished by the
1548 * __cpu_simple_lock_try() above.
1549 */
1550 owant = ci->ci_biglock_wanted;
1551 ci->ci_biglock_wanted = curlwp; /* XXXAD */
1552
1553 #ifdef LOCKDEBUG
1554 spins = 0;
1555 #endif
1556
1557 do {
1558 while (kernel_lock == __SIMPLELOCK_LOCKED) {
1559 #ifdef LOCKDEBUG
1560 if (SPINLOCK_SPINOUT(spins))
1561 _KERNEL_LOCK_ABORT("spinout");
1562 #endif
1563 splx(s);
1564 SPINLOCK_SPIN_HOOK;
1565 (void)splbiglock();
1566 }
1567 } while (!__cpu_simple_lock_try(&kernel_lock));
1568
1569 ci->ci_biglock_wanted = owant;
1570 ci->ci_biglock_count += nlocks;
1571 LOCKSTAT_STOP_TIMER(lsflag, spintime);
1572 LOCKDEBUG_LOCKED(kernel_lock_id,
1573 (uintptr_t)__builtin_return_address(0), 0);
1574 splx(s);
1575
1576 /*
1577 * Again, another store fence is required (see kern_mutex.c).
1578 */
1579 mb_write();
1580 if (owant == NULL) {
1581 LOCKSTAT_EVENT(lsflag, &kernel_lock, LB_KERNEL_LOCK | LB_SPIN,
1582 1, spintime);
1583 }
1584 LOCKSTAT_EXIT(lsflag);
1585 }
1586
1587 /*
1588 * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
1589 * all holds. If 'l' is non-null, the release is from process context.
1590 */
1591 void
1592 _kernel_unlock(int nlocks, struct lwp *l, int *countp)
1593 {
1594 struct cpu_info *ci = curcpu();
1595 u_int olocks;
1596 int s;
1597
1598 (void)l;
1599
1600 _KERNEL_LOCK_ASSERT(nlocks < 2);
1601
1602 olocks = ci->ci_biglock_count;
1603
1604 if (olocks == 0) {
1605 _KERNEL_LOCK_ASSERT(nlocks <= 0);
1606 if (countp != NULL)
1607 *countp = 0;
1608 return;
1609 }
1610
1611 _KERNEL_LOCK_ASSERT(kernel_lock == __SIMPLELOCK_LOCKED);
1612
1613 if (nlocks == 0)
1614 nlocks = olocks;
1615 else if (nlocks == -1) {
1616 nlocks = 1;
1617 _KERNEL_LOCK_ASSERT(olocks == 1);
1618 }
1619
1620 s = splbiglock();
1621 if ((ci->ci_biglock_count -= nlocks) == 0) {
1622 LOCKDEBUG_UNLOCKED(kernel_lock_id,
1623 (uintptr_t)__builtin_return_address(0), 0);
1624 __cpu_simple_unlock(&kernel_lock);
1625 }
1626 splx(s);
1627
1628 if (countp != NULL)
1629 *countp = olocks;
1630 }
1631
1632 #if defined(DEBUG)
1633 /*
1634 * Assert that the kernel lock is held.
1635 */
1636 void
1637 _kernel_lock_assert_locked(void)
1638 {
1639
1640 if (kernel_lock != __SIMPLELOCK_LOCKED ||
1641 curcpu()->ci_biglock_count == 0)
1642 _KERNEL_LOCK_ABORT("not locked");
1643 }
1644
1645 void
1646 _kernel_lock_assert_unlocked()
1647 {
1648
1649 if (curcpu()->ci_biglock_count != 0)
1650 _KERNEL_LOCK_ABORT("locked");
1651 }
1652 #endif
1653
1654 #endif /* MULTIPROCESSOR || LOCKDEBUG */
1655