Home | History | Annotate | Line # | Download | only in kern
kern_lock.c revision 1.150
      1 /*	$NetBSD: kern_lock.c,v 1.150 2009/12/20 20:42:23 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.150 2009/12/20 20:42:23 mrg Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/proc.h>
     38 #include <sys/lock.h>
     39 #include <sys/systm.h>
     40 #include <sys/kernel.h>
     41 #include <sys/lockdebug.h>
     42 #include <sys/cpu.h>
     43 #include <sys/syslog.h>
     44 #include <sys/atomic.h>
     45 #include <sys/lwp.h>
     46 
     47 #include <machine/stdarg.h>
     48 #include <machine/lock.h>
     49 
     50 #include <dev/lockstat.h>
     51 
     52 #define	RETURN_ADDRESS	(uintptr_t)__builtin_return_address(0)
     53 
     54 bool	kernel_lock_dodebug;
     55 
     56 __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
     57     __aligned(CACHE_LINE_SIZE);
     58 
     59 void
     60 assert_sleepable(void)
     61 {
     62 	const char *reason;
     63 	uint64_t pctr;
     64 	bool idle;
     65 
     66 	if (panicstr != NULL) {
     67 		return;
     68 	}
     69 
     70 	LOCKDEBUG_BARRIER(kernel_lock, 1);
     71 
     72 	/*
     73 	 * Avoid disabling/re-enabling preemption here since this
     74 	 * routine may be called in delicate situations.
     75 	 */
     76 	do {
     77 		pctr = lwp_pctr();
     78 		idle = CURCPU_IDLE_P();
     79 	} while (pctr != lwp_pctr());
     80 
     81 	reason = NULL;
     82 	if (idle && !cold) {
     83 		reason = "idle";
     84 	}
     85 	if (cpu_intr_p()) {
     86 		reason = "interrupt";
     87 	}
     88 	if (cpu_softintr_p()) {
     89 		reason = "softint";
     90 	}
     91 
     92 	if (reason) {
     93 		panic("%s: %s caller=%p", __func__, reason,
     94 		    (void *)RETURN_ADDRESS);
     95 	}
     96 }
     97 
     98 /*
     99  * Functions for manipulating the kernel_lock.  We put them here
    100  * so that they show up in profiles.
    101  */
    102 
    103 #define	_KERNEL_LOCK_ABORT(msg)						\
    104     LOCKDEBUG_ABORT(kernel_lock, &_kernel_lock_ops, __func__, msg)
    105 
    106 #ifdef LOCKDEBUG
    107 #define	_KERNEL_LOCK_ASSERT(cond)					\
    108 do {									\
    109 	if (!(cond))							\
    110 		_KERNEL_LOCK_ABORT("assertion failed: " #cond);		\
    111 } while (/* CONSTCOND */ 0)
    112 #else
    113 #define	_KERNEL_LOCK_ASSERT(cond)	/* nothing */
    114 #endif
    115 
    116 void	_kernel_lock_dump(volatile void *);
    117 
    118 lockops_t _kernel_lock_ops = {
    119 	"Kernel lock",
    120 	LOCKOPS_SPIN,
    121 	_kernel_lock_dump
    122 };
    123 
    124 /*
    125  * Initialize the kernel lock.
    126  */
    127 void
    128 kernel_lock_init(void)
    129 {
    130 
    131 	CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
    132 	__cpu_simple_lock_init(kernel_lock);
    133 	kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
    134 	    RETURN_ADDRESS);
    135 }
    136 
    137 /*
    138  * Print debugging information about the kernel lock.
    139  */
    140 void
    141 _kernel_lock_dump(volatile void *junk)
    142 {
    143 	struct cpu_info *ci = curcpu();
    144 
    145 	(void)junk;
    146 
    147 	printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
    148 	    ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
    149 }
    150 
    151 /*
    152  * Acquire 'nlocks' holds on the kernel lock.
    153  */
    154 void
    155 _kernel_lock(int nlocks)
    156 {
    157 	struct cpu_info *ci;
    158 	LOCKSTAT_TIMER(spintime);
    159 	LOCKSTAT_FLAG(lsflag);
    160 	struct lwp *owant;
    161 	u_int spins;
    162 	int s;
    163 	struct lwp *l = curlwp;
    164 
    165 	_KERNEL_LOCK_ASSERT(nlocks > 0);
    166 
    167 	s = splvm();
    168 	ci = curcpu();
    169 	if (ci->ci_biglock_count != 0) {
    170 		_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    171 		ci->ci_biglock_count += nlocks;
    172 		l->l_blcnt += nlocks;
    173 		splx(s);
    174 		return;
    175 	}
    176 
    177 	_KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
    178 	LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
    179 	    false, false);
    180 
    181 	if (__cpu_simple_lock_try(kernel_lock)) {
    182 		ci->ci_biglock_count = nlocks;
    183 		l->l_blcnt = nlocks;
    184 		LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    185 		    RETURN_ADDRESS, 0);
    186 		splx(s);
    187 		return;
    188 	}
    189 
    190 	/*
    191 	 * To remove the ordering constraint between adaptive mutexes
    192 	 * and kernel_lock we must make it appear as if this thread is
    193 	 * blocking.  For non-interlocked mutex release, a store fence
    194 	 * is required to ensure that the result of any mutex_exit()
    195 	 * by the current LWP becomes visible on the bus before the set
    196 	 * of ci->ci_biglock_wanted becomes visible.
    197 	 */
    198 	membar_producer();
    199 	owant = ci->ci_biglock_wanted;
    200 	ci->ci_biglock_wanted = l;
    201 
    202 	/*
    203 	 * Spin until we acquire the lock.  Once we have it, record the
    204 	 * time spent with lockstat.
    205 	 */
    206 	LOCKSTAT_ENTER(lsflag);
    207 	LOCKSTAT_START_TIMER(lsflag, spintime);
    208 
    209 	spins = 0;
    210 	do {
    211 		splx(s);
    212 		while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
    213 			if (SPINLOCK_SPINOUT(spins)) {
    214 				extern int start_init_exec;
    215 				if (!start_init_exec)
    216 					_KERNEL_LOCK_ABORT("spinout");
    217 			}
    218 			SPINLOCK_BACKOFF_HOOK;
    219 			SPINLOCK_SPIN_HOOK;
    220 		}
    221 		s = splvm();
    222 	} while (!__cpu_simple_lock_try(kernel_lock));
    223 
    224 	ci->ci_biglock_count = nlocks;
    225 	l->l_blcnt = nlocks;
    226 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    227 	LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    228 	    RETURN_ADDRESS, 0);
    229 	if (owant == NULL) {
    230 		LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
    231 		    LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
    232 	}
    233 	LOCKSTAT_EXIT(lsflag);
    234 	splx(s);
    235 
    236 	/*
    237 	 * Now that we have kernel_lock, reset ci_biglock_wanted.  This
    238 	 * store must be unbuffered (immediately visible on the bus) in
    239 	 * order for non-interlocked mutex release to work correctly.
    240 	 * It must be visible before a mutex_exit() can execute on this
    241 	 * processor.
    242 	 *
    243 	 * Note: only where CAS is available in hardware will this be
    244 	 * an unbuffered write, but non-interlocked release cannot be
    245 	 * done on CPUs without CAS in hardware.
    246 	 */
    247 	(void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
    248 
    249 	/*
    250 	 * Issue a memory barrier as we have acquired a lock.  This also
    251 	 * prevents stores from a following mutex_exit() being reordered
    252 	 * to occur before our store to ci_biglock_wanted above.
    253 	 */
    254 	membar_enter();
    255 }
    256 
    257 /*
    258  * Release 'nlocks' holds on the kernel lock.  If 'nlocks' is zero, release
    259  * all holds.
    260  */
    261 void
    262 _kernel_unlock(int nlocks, int *countp)
    263 {
    264 	struct cpu_info *ci;
    265 	u_int olocks;
    266 	int s;
    267 	struct lwp *l = curlwp;
    268 
    269 	_KERNEL_LOCK_ASSERT(nlocks < 2);
    270 
    271 	olocks = l->l_blcnt;
    272 
    273 	if (olocks == 0) {
    274 		_KERNEL_LOCK_ASSERT(nlocks <= 0);
    275 		if (countp != NULL)
    276 			*countp = 0;
    277 		return;
    278 	}
    279 
    280 	_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    281 
    282 	if (nlocks == 0)
    283 		nlocks = olocks;
    284 	else if (nlocks == -1) {
    285 		nlocks = 1;
    286 		_KERNEL_LOCK_ASSERT(olocks == 1);
    287 	}
    288 	s = splvm();
    289 	ci = curcpu();
    290 	_KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
    291 	if (ci->ci_biglock_count == nlocks) {
    292 		LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
    293 		    RETURN_ADDRESS, 0);
    294 		ci->ci_biglock_count = 0;
    295 		__cpu_simple_unlock(kernel_lock);
    296 		l->l_blcnt -= nlocks;
    297 		splx(s);
    298 		if (l->l_dopreempt)
    299 			kpreempt(0);
    300 	} else {
    301 		ci->ci_biglock_count -= nlocks;
    302 		l->l_blcnt -= nlocks;
    303 		splx(s);
    304 	}
    305 
    306 	if (countp != NULL)
    307 		*countp = olocks;
    308 }
    309