Home | History | Annotate | Line # | Download | only in kern
kern_lock.c revision 1.155
      1 /*	$NetBSD: kern_lock.c,v 1.155 2013/09/14 20:24:22 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.155 2013/09/14 20:24:22 martin Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/proc.h>
     38 #include <sys/lock.h>
     39 #include <sys/systm.h>
     40 #include <sys/kernel.h>
     41 #include <sys/lockdebug.h>
     42 #include <sys/cpu.h>
     43 #include <sys/syslog.h>
     44 #include <sys/atomic.h>
     45 #include <sys/lwp.h>
     46 
     47 #include <machine/lock.h>
     48 
     49 #include <dev/lockstat.h>
     50 
     51 #define	RETURN_ADDRESS	(uintptr_t)__builtin_return_address(0)
     52 
     53 bool	kernel_lock_dodebug;
     54 
     55 __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
     56     __cacheline_aligned;
     57 
     58 void
     59 assert_sleepable(void)
     60 {
     61 	const char *reason;
     62 	uint64_t pctr;
     63 	bool idle;
     64 
     65 	if (panicstr != NULL) {
     66 		return;
     67 	}
     68 
     69 	LOCKDEBUG_BARRIER(kernel_lock, 1);
     70 
     71 	/*
     72 	 * Avoid disabling/re-enabling preemption here since this
     73 	 * routine may be called in delicate situations.
     74 	 */
     75 	do {
     76 		pctr = lwp_pctr();
     77 		idle = CURCPU_IDLE_P();
     78 	} while (pctr != lwp_pctr());
     79 
     80 	reason = NULL;
     81 	if (idle && !cold) {
     82 		reason = "idle";
     83 	}
     84 	if (cpu_intr_p()) {
     85 		reason = "interrupt";
     86 	}
     87 	if (cpu_softintr_p()) {
     88 		reason = "softint";
     89 	}
     90 
     91 	if (reason) {
     92 		panic("%s: %s caller=%p", __func__, reason,
     93 		    (void *)RETURN_ADDRESS);
     94 	}
     95 }
     96 
     97 /*
     98  * Functions for manipulating the kernel_lock.  We put them here
     99  * so that they show up in profiles.
    100  */
    101 
    102 #define	_KERNEL_LOCK_ABORT(msg)						\
    103     LOCKDEBUG_ABORT(kernel_lock, &_kernel_lock_ops, __func__, msg)
    104 
    105 #ifdef LOCKDEBUG
    106 #define	_KERNEL_LOCK_ASSERT(cond)					\
    107 do {									\
    108 	if (!(cond))							\
    109 		_KERNEL_LOCK_ABORT("assertion failed: " #cond);		\
    110 } while (/* CONSTCOND */ 0)
    111 #else
    112 #define	_KERNEL_LOCK_ASSERT(cond)	/* nothing */
    113 #endif
    114 
    115 void	_kernel_lock_dump(volatile void *);
    116 
    117 lockops_t _kernel_lock_ops = {
    118 	"Kernel lock",
    119 	LOCKOPS_SPIN,
    120 	_kernel_lock_dump
    121 };
    122 
    123 /*
    124  * Initialize the kernel lock.
    125  */
    126 void
    127 kernel_lock_init(void)
    128 {
    129 
    130 	__cpu_simple_lock_init(kernel_lock);
    131 	kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
    132 	    RETURN_ADDRESS);
    133 }
    134 CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
    135 
    136 /*
    137  * Print debugging information about the kernel lock.
    138  */
    139 void
    140 _kernel_lock_dump(volatile void *junk)
    141 {
    142 	struct cpu_info *ci = curcpu();
    143 
    144 	(void)junk;
    145 
    146 	printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
    147 	    ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
    148 }
    149 
    150 /*
    151  * Acquire 'nlocks' holds on the kernel lock.
    152  */
    153 void
    154 _kernel_lock(int nlocks)
    155 {
    156 	struct cpu_info *ci;
    157 	LOCKSTAT_TIMER(spintime);
    158 	LOCKSTAT_FLAG(lsflag);
    159 	struct lwp *owant;
    160 	u_int spins;
    161 	int s;
    162 	struct lwp *l = curlwp;
    163 
    164 	_KERNEL_LOCK_ASSERT(nlocks > 0);
    165 
    166 	s = splvm();
    167 	ci = curcpu();
    168 	if (ci->ci_biglock_count != 0) {
    169 		_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    170 		ci->ci_biglock_count += nlocks;
    171 		l->l_blcnt += nlocks;
    172 		splx(s);
    173 		return;
    174 	}
    175 
    176 	_KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
    177 	LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
    178 	    0);
    179 
    180 	if (__cpu_simple_lock_try(kernel_lock)) {
    181 		ci->ci_biglock_count = nlocks;
    182 		l->l_blcnt = nlocks;
    183 		LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    184 		    RETURN_ADDRESS, 0);
    185 		splx(s);
    186 		return;
    187 	}
    188 
    189 	/*
    190 	 * To remove the ordering constraint between adaptive mutexes
    191 	 * and kernel_lock we must make it appear as if this thread is
    192 	 * blocking.  For non-interlocked mutex release, a store fence
    193 	 * is required to ensure that the result of any mutex_exit()
    194 	 * by the current LWP becomes visible on the bus before the set
    195 	 * of ci->ci_biglock_wanted becomes visible.
    196 	 */
    197 	membar_producer();
    198 	owant = ci->ci_biglock_wanted;
    199 	ci->ci_biglock_wanted = l;
    200 
    201 	/*
    202 	 * Spin until we acquire the lock.  Once we have it, record the
    203 	 * time spent with lockstat.
    204 	 */
    205 	LOCKSTAT_ENTER(lsflag);
    206 	LOCKSTAT_START_TIMER(lsflag, spintime);
    207 
    208 	spins = 0;
    209 	do {
    210 		splx(s);
    211 		while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
    212 			if (SPINLOCK_SPINOUT(spins)) {
    213 				extern int start_init_exec;
    214 				if (!start_init_exec)
    215 					_KERNEL_LOCK_ABORT("spinout");
    216 			}
    217 			SPINLOCK_BACKOFF_HOOK;
    218 			SPINLOCK_SPIN_HOOK;
    219 		}
    220 		s = splvm();
    221 	} while (!__cpu_simple_lock_try(kernel_lock));
    222 
    223 	ci->ci_biglock_count = nlocks;
    224 	l->l_blcnt = nlocks;
    225 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    226 	LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    227 	    RETURN_ADDRESS, 0);
    228 	if (owant == NULL) {
    229 		LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
    230 		    LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
    231 	}
    232 	LOCKSTAT_EXIT(lsflag);
    233 	splx(s);
    234 
    235 	/*
    236 	 * Now that we have kernel_lock, reset ci_biglock_wanted.  This
    237 	 * store must be unbuffered (immediately visible on the bus) in
    238 	 * order for non-interlocked mutex release to work correctly.
    239 	 * It must be visible before a mutex_exit() can execute on this
    240 	 * processor.
    241 	 *
    242 	 * Note: only where CAS is available in hardware will this be
    243 	 * an unbuffered write, but non-interlocked release cannot be
    244 	 * done on CPUs without CAS in hardware.
    245 	 */
    246 	(void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
    247 
    248 	/*
    249 	 * Issue a memory barrier as we have acquired a lock.  This also
    250 	 * prevents stores from a following mutex_exit() being reordered
    251 	 * to occur before our store to ci_biglock_wanted above.
    252 	 */
    253 	membar_enter();
    254 }
    255 
    256 /*
    257  * Release 'nlocks' holds on the kernel lock.  If 'nlocks' is zero, release
    258  * all holds.
    259  */
    260 void
    261 _kernel_unlock(int nlocks, int *countp)
    262 {
    263 	struct cpu_info *ci;
    264 	u_int olocks;
    265 	int s;
    266 	struct lwp *l = curlwp;
    267 
    268 	_KERNEL_LOCK_ASSERT(nlocks < 2);
    269 
    270 	olocks = l->l_blcnt;
    271 
    272 	if (olocks == 0) {
    273 		_KERNEL_LOCK_ASSERT(nlocks <= 0);
    274 		if (countp != NULL)
    275 			*countp = 0;
    276 		return;
    277 	}
    278 
    279 	_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    280 
    281 	if (nlocks == 0)
    282 		nlocks = olocks;
    283 	else if (nlocks == -1) {
    284 		nlocks = 1;
    285 		_KERNEL_LOCK_ASSERT(olocks == 1);
    286 	}
    287 	s = splvm();
    288 	ci = curcpu();
    289 	_KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
    290 	if (ci->ci_biglock_count == nlocks) {
    291 		LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
    292 		    RETURN_ADDRESS, 0);
    293 		ci->ci_biglock_count = 0;
    294 		__cpu_simple_unlock(kernel_lock);
    295 		l->l_blcnt -= nlocks;
    296 		splx(s);
    297 		if (l->l_dopreempt)
    298 			kpreempt(0);
    299 	} else {
    300 		ci->ci_biglock_count -= nlocks;
    301 		l->l_blcnt -= nlocks;
    302 		splx(s);
    303 	}
    304 
    305 	if (countp != NULL)
    306 		*countp = olocks;
    307 }
    308 
    309 bool
    310 _kernel_locked_p(void)
    311 {
    312 	return __SIMPLELOCK_LOCKED_P(kernel_lock);
    313 }
    314