Home | History | Annotate | Line # | Download | only in kern
kern_lock.c revision 1.161
      1 /*	$NetBSD: kern_lock.c,v 1.161 2017/12/25 09:13:40 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.161 2017/12/25 09:13:40 ozaki-r Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/proc.h>
     38 #include <sys/lock.h>
     39 #include <sys/systm.h>
     40 #include <sys/kernel.h>
     41 #include <sys/lockdebug.h>
     42 #include <sys/cpu.h>
     43 #include <sys/syslog.h>
     44 #include <sys/atomic.h>
     45 #include <sys/lwp.h>
     46 #include <sys/pserialize.h>
     47 
     48 #include <machine/lock.h>
     49 
     50 #include <dev/lockstat.h>
     51 
     52 #define	RETURN_ADDRESS	(uintptr_t)__builtin_return_address(0)
     53 
     54 bool	kernel_lock_dodebug;
     55 
     56 __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
     57     __cacheline_aligned;
     58 
     59 void
     60 assert_sleepable(void)
     61 {
     62 	const char *reason;
     63 	uint64_t pctr;
     64 	bool idle;
     65 
     66 	if (panicstr != NULL) {
     67 		return;
     68 	}
     69 
     70 	LOCKDEBUG_BARRIER(kernel_lock, 1);
     71 
     72 	/*
     73 	 * Avoid disabling/re-enabling preemption here since this
     74 	 * routine may be called in delicate situations.
     75 	 */
     76 	do {
     77 		pctr = lwp_pctr();
     78 		idle = CURCPU_IDLE_P();
     79 	} while (pctr != lwp_pctr());
     80 
     81 	reason = NULL;
     82 	if (idle && !cold &&
     83 	    kcpuset_isset(kcpuset_running, cpu_index(curcpu()))) {
     84 		reason = "idle";
     85 	}
     86 	if (cpu_intr_p()) {
     87 		reason = "interrupt";
     88 	}
     89 	if (cpu_softintr_p()) {
     90 		reason = "softint";
     91 	}
     92 	if (!pserialize_not_in_read_section()) {
     93 		reason = "pserialize";
     94 	}
     95 
     96 	if (reason) {
     97 		panic("%s: %s caller=%p", __func__, reason,
     98 		    (void *)RETURN_ADDRESS);
     99 	}
    100 }
    101 
    102 /*
    103  * Functions for manipulating the kernel_lock.  We put them here
    104  * so that they show up in profiles.
    105  */
    106 
    107 #define	_KERNEL_LOCK_ABORT(msg)						\
    108     LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
    109 
    110 #ifdef LOCKDEBUG
    111 #define	_KERNEL_LOCK_ASSERT(cond)					\
    112 do {									\
    113 	if (!(cond))							\
    114 		_KERNEL_LOCK_ABORT("assertion failed: " #cond);		\
    115 } while (/* CONSTCOND */ 0)
    116 #else
    117 #define	_KERNEL_LOCK_ASSERT(cond)	/* nothing */
    118 #endif
    119 
    120 void	_kernel_lock_dump(const volatile void *);
    121 
    122 lockops_t _kernel_lock_ops = {
    123 	.lo_name = "Kernel lock",
    124 	.lo_type = LOCKOPS_SPIN,
    125 	.lo_dump = _kernel_lock_dump,
    126 };
    127 
    128 /*
    129  * Initialize the kernel lock.
    130  */
    131 void
    132 kernel_lock_init(void)
    133 {
    134 
    135 	__cpu_simple_lock_init(kernel_lock);
    136 	kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
    137 	    RETURN_ADDRESS);
    138 }
    139 CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
    140 
    141 /*
    142  * Print debugging information about the kernel lock.
    143  */
    144 void
    145 _kernel_lock_dump(const volatile void *junk)
    146 {
    147 	struct cpu_info *ci = curcpu();
    148 
    149 	(void)junk;
    150 
    151 	printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
    152 	    ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
    153 }
    154 
    155 /*
    156  * Acquire 'nlocks' holds on the kernel lock.
    157  */
    158 void
    159 _kernel_lock(int nlocks)
    160 {
    161 	struct cpu_info *ci;
    162 	LOCKSTAT_TIMER(spintime);
    163 	LOCKSTAT_FLAG(lsflag);
    164 	struct lwp *owant;
    165 	u_int spins;
    166 	int s;
    167 	struct lwp *l = curlwp;
    168 
    169 	_KERNEL_LOCK_ASSERT(nlocks > 0);
    170 
    171 	s = splvm();
    172 	ci = curcpu();
    173 	if (ci->ci_biglock_count != 0) {
    174 		_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    175 		ci->ci_biglock_count += nlocks;
    176 		l->l_blcnt += nlocks;
    177 		splx(s);
    178 		return;
    179 	}
    180 
    181 	_KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
    182 	LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
    183 	    0);
    184 
    185 	if (__cpu_simple_lock_try(kernel_lock)) {
    186 		ci->ci_biglock_count = nlocks;
    187 		l->l_blcnt = nlocks;
    188 		LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    189 		    RETURN_ADDRESS, 0);
    190 		splx(s);
    191 		return;
    192 	}
    193 
    194 	/*
    195 	 * To remove the ordering constraint between adaptive mutexes
    196 	 * and kernel_lock we must make it appear as if this thread is
    197 	 * blocking.  For non-interlocked mutex release, a store fence
    198 	 * is required to ensure that the result of any mutex_exit()
    199 	 * by the current LWP becomes visible on the bus before the set
    200 	 * of ci->ci_biglock_wanted becomes visible.
    201 	 */
    202 	membar_producer();
    203 	owant = ci->ci_biglock_wanted;
    204 	ci->ci_biglock_wanted = l;
    205 
    206 	/*
    207 	 * Spin until we acquire the lock.  Once we have it, record the
    208 	 * time spent with lockstat.
    209 	 */
    210 	LOCKSTAT_ENTER(lsflag);
    211 	LOCKSTAT_START_TIMER(lsflag, spintime);
    212 
    213 	spins = 0;
    214 	do {
    215 		splx(s);
    216 		while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
    217 			if (SPINLOCK_SPINOUT(spins)) {
    218 				extern int start_init_exec;
    219 				if (!start_init_exec)
    220 					_KERNEL_LOCK_ABORT("spinout");
    221 			}
    222 			SPINLOCK_BACKOFF_HOOK;
    223 			SPINLOCK_SPIN_HOOK;
    224 		}
    225 		s = splvm();
    226 	} while (!__cpu_simple_lock_try(kernel_lock));
    227 
    228 	ci->ci_biglock_count = nlocks;
    229 	l->l_blcnt = nlocks;
    230 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    231 	LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    232 	    RETURN_ADDRESS, 0);
    233 	if (owant == NULL) {
    234 		LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
    235 		    LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
    236 	}
    237 	LOCKSTAT_EXIT(lsflag);
    238 	splx(s);
    239 
    240 	/*
    241 	 * Now that we have kernel_lock, reset ci_biglock_wanted.  This
    242 	 * store must be unbuffered (immediately visible on the bus) in
    243 	 * order for non-interlocked mutex release to work correctly.
    244 	 * It must be visible before a mutex_exit() can execute on this
    245 	 * processor.
    246 	 *
    247 	 * Note: only where CAS is available in hardware will this be
    248 	 * an unbuffered write, but non-interlocked release cannot be
    249 	 * done on CPUs without CAS in hardware.
    250 	 */
    251 	(void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
    252 
    253 	/*
    254 	 * Issue a memory barrier as we have acquired a lock.  This also
    255 	 * prevents stores from a following mutex_exit() being reordered
    256 	 * to occur before our store to ci_biglock_wanted above.
    257 	 */
    258 	membar_enter();
    259 }
    260 
    261 /*
    262  * Release 'nlocks' holds on the kernel lock.  If 'nlocks' is zero, release
    263  * all holds.
    264  */
    265 void
    266 _kernel_unlock(int nlocks, int *countp)
    267 {
    268 	struct cpu_info *ci;
    269 	u_int olocks;
    270 	int s;
    271 	struct lwp *l = curlwp;
    272 
    273 	_KERNEL_LOCK_ASSERT(nlocks < 2);
    274 
    275 	olocks = l->l_blcnt;
    276 
    277 	if (olocks == 0) {
    278 		_KERNEL_LOCK_ASSERT(nlocks <= 0);
    279 		if (countp != NULL)
    280 			*countp = 0;
    281 		return;
    282 	}
    283 
    284 	_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    285 
    286 	if (nlocks == 0)
    287 		nlocks = olocks;
    288 	else if (nlocks == -1) {
    289 		nlocks = 1;
    290 		_KERNEL_LOCK_ASSERT(olocks == 1);
    291 	}
    292 	s = splvm();
    293 	ci = curcpu();
    294 	_KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
    295 	if (ci->ci_biglock_count == nlocks) {
    296 		LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
    297 		    RETURN_ADDRESS, 0);
    298 		ci->ci_biglock_count = 0;
    299 		__cpu_simple_unlock(kernel_lock);
    300 		l->l_blcnt -= nlocks;
    301 		splx(s);
    302 		if (l->l_dopreempt)
    303 			kpreempt(0);
    304 	} else {
    305 		ci->ci_biglock_count -= nlocks;
    306 		l->l_blcnt -= nlocks;
    307 		splx(s);
    308 	}
    309 
    310 	if (countp != NULL)
    311 		*countp = olocks;
    312 }
    313 
    314 bool
    315 _kernel_locked_p(void)
    316 {
    317 	return __SIMPLELOCK_LOCKED_P(kernel_lock);
    318 }
    319