kern_lock.c revision 1.161 1 /* $NetBSD: kern_lock.c,v 1.161 2017/12/25 09:13:40 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.161 2017/12/25 09:13:40 ozaki-r Exp $");
35
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/lock.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/lockdebug.h>
42 #include <sys/cpu.h>
43 #include <sys/syslog.h>
44 #include <sys/atomic.h>
45 #include <sys/lwp.h>
46 #include <sys/pserialize.h>
47
48 #include <machine/lock.h>
49
50 #include <dev/lockstat.h>
51
52 #define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
53
54 bool kernel_lock_dodebug;
55
56 __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
57 __cacheline_aligned;
58
59 void
60 assert_sleepable(void)
61 {
62 const char *reason;
63 uint64_t pctr;
64 bool idle;
65
66 if (panicstr != NULL) {
67 return;
68 }
69
70 LOCKDEBUG_BARRIER(kernel_lock, 1);
71
72 /*
73 * Avoid disabling/re-enabling preemption here since this
74 * routine may be called in delicate situations.
75 */
76 do {
77 pctr = lwp_pctr();
78 idle = CURCPU_IDLE_P();
79 } while (pctr != lwp_pctr());
80
81 reason = NULL;
82 if (idle && !cold &&
83 kcpuset_isset(kcpuset_running, cpu_index(curcpu()))) {
84 reason = "idle";
85 }
86 if (cpu_intr_p()) {
87 reason = "interrupt";
88 }
89 if (cpu_softintr_p()) {
90 reason = "softint";
91 }
92 if (!pserialize_not_in_read_section()) {
93 reason = "pserialize";
94 }
95
96 if (reason) {
97 panic("%s: %s caller=%p", __func__, reason,
98 (void *)RETURN_ADDRESS);
99 }
100 }
101
102 /*
103 * Functions for manipulating the kernel_lock. We put them here
104 * so that they show up in profiles.
105 */
106
107 #define _KERNEL_LOCK_ABORT(msg) \
108 LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
109
110 #ifdef LOCKDEBUG
111 #define _KERNEL_LOCK_ASSERT(cond) \
112 do { \
113 if (!(cond)) \
114 _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
115 } while (/* CONSTCOND */ 0)
116 #else
117 #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
118 #endif
119
120 void _kernel_lock_dump(const volatile void *);
121
122 lockops_t _kernel_lock_ops = {
123 .lo_name = "Kernel lock",
124 .lo_type = LOCKOPS_SPIN,
125 .lo_dump = _kernel_lock_dump,
126 };
127
128 /*
129 * Initialize the kernel lock.
130 */
131 void
132 kernel_lock_init(void)
133 {
134
135 __cpu_simple_lock_init(kernel_lock);
136 kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
137 RETURN_ADDRESS);
138 }
139 CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
140
141 /*
142 * Print debugging information about the kernel lock.
143 */
144 void
145 _kernel_lock_dump(const volatile void *junk)
146 {
147 struct cpu_info *ci = curcpu();
148
149 (void)junk;
150
151 printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
152 ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
153 }
154
155 /*
156 * Acquire 'nlocks' holds on the kernel lock.
157 */
158 void
159 _kernel_lock(int nlocks)
160 {
161 struct cpu_info *ci;
162 LOCKSTAT_TIMER(spintime);
163 LOCKSTAT_FLAG(lsflag);
164 struct lwp *owant;
165 u_int spins;
166 int s;
167 struct lwp *l = curlwp;
168
169 _KERNEL_LOCK_ASSERT(nlocks > 0);
170
171 s = splvm();
172 ci = curcpu();
173 if (ci->ci_biglock_count != 0) {
174 _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
175 ci->ci_biglock_count += nlocks;
176 l->l_blcnt += nlocks;
177 splx(s);
178 return;
179 }
180
181 _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
182 LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
183 0);
184
185 if (__cpu_simple_lock_try(kernel_lock)) {
186 ci->ci_biglock_count = nlocks;
187 l->l_blcnt = nlocks;
188 LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
189 RETURN_ADDRESS, 0);
190 splx(s);
191 return;
192 }
193
194 /*
195 * To remove the ordering constraint between adaptive mutexes
196 * and kernel_lock we must make it appear as if this thread is
197 * blocking. For non-interlocked mutex release, a store fence
198 * is required to ensure that the result of any mutex_exit()
199 * by the current LWP becomes visible on the bus before the set
200 * of ci->ci_biglock_wanted becomes visible.
201 */
202 membar_producer();
203 owant = ci->ci_biglock_wanted;
204 ci->ci_biglock_wanted = l;
205
206 /*
207 * Spin until we acquire the lock. Once we have it, record the
208 * time spent with lockstat.
209 */
210 LOCKSTAT_ENTER(lsflag);
211 LOCKSTAT_START_TIMER(lsflag, spintime);
212
213 spins = 0;
214 do {
215 splx(s);
216 while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
217 if (SPINLOCK_SPINOUT(spins)) {
218 extern int start_init_exec;
219 if (!start_init_exec)
220 _KERNEL_LOCK_ABORT("spinout");
221 }
222 SPINLOCK_BACKOFF_HOOK;
223 SPINLOCK_SPIN_HOOK;
224 }
225 s = splvm();
226 } while (!__cpu_simple_lock_try(kernel_lock));
227
228 ci->ci_biglock_count = nlocks;
229 l->l_blcnt = nlocks;
230 LOCKSTAT_STOP_TIMER(lsflag, spintime);
231 LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
232 RETURN_ADDRESS, 0);
233 if (owant == NULL) {
234 LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
235 LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
236 }
237 LOCKSTAT_EXIT(lsflag);
238 splx(s);
239
240 /*
241 * Now that we have kernel_lock, reset ci_biglock_wanted. This
242 * store must be unbuffered (immediately visible on the bus) in
243 * order for non-interlocked mutex release to work correctly.
244 * It must be visible before a mutex_exit() can execute on this
245 * processor.
246 *
247 * Note: only where CAS is available in hardware will this be
248 * an unbuffered write, but non-interlocked release cannot be
249 * done on CPUs without CAS in hardware.
250 */
251 (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
252
253 /*
254 * Issue a memory barrier as we have acquired a lock. This also
255 * prevents stores from a following mutex_exit() being reordered
256 * to occur before our store to ci_biglock_wanted above.
257 */
258 membar_enter();
259 }
260
261 /*
262 * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
263 * all holds.
264 */
265 void
266 _kernel_unlock(int nlocks, int *countp)
267 {
268 struct cpu_info *ci;
269 u_int olocks;
270 int s;
271 struct lwp *l = curlwp;
272
273 _KERNEL_LOCK_ASSERT(nlocks < 2);
274
275 olocks = l->l_blcnt;
276
277 if (olocks == 0) {
278 _KERNEL_LOCK_ASSERT(nlocks <= 0);
279 if (countp != NULL)
280 *countp = 0;
281 return;
282 }
283
284 _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
285
286 if (nlocks == 0)
287 nlocks = olocks;
288 else if (nlocks == -1) {
289 nlocks = 1;
290 _KERNEL_LOCK_ASSERT(olocks == 1);
291 }
292 s = splvm();
293 ci = curcpu();
294 _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
295 if (ci->ci_biglock_count == nlocks) {
296 LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
297 RETURN_ADDRESS, 0);
298 ci->ci_biglock_count = 0;
299 __cpu_simple_unlock(kernel_lock);
300 l->l_blcnt -= nlocks;
301 splx(s);
302 if (l->l_dopreempt)
303 kpreempt(0);
304 } else {
305 ci->ci_biglock_count -= nlocks;
306 l->l_blcnt -= nlocks;
307 splx(s);
308 }
309
310 if (countp != NULL)
311 *countp = olocks;
312 }
313
314 bool
315 _kernel_locked_p(void)
316 {
317 return __SIMPLELOCK_LOCKED_P(kernel_lock);
318 }
319