kern_lock.c revision 1.164.2.2 1 /* $NetBSD: kern_lock.c,v 1.164.2.2 2020/01/25 22:38:51 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.164.2.2 2020/01/25 22:38:51 ad Exp $");
35
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/lock.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/lockdebug.h>
42 #include <sys/cpu.h>
43 #include <sys/syslog.h>
44 #include <sys/atomic.h>
45 #include <sys/lwp.h>
46 #include <sys/pserialize.h>
47
48 #include <machine/lock.h>
49
50 #include <dev/lockstat.h>
51
52 #define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
53
54 bool kernel_lock_dodebug;
55
56 __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
57 __cacheline_aligned;
58
59 void
60 assert_sleepable(void)
61 {
62 const char *reason;
63 uint64_t pctr;
64 bool idle;
65
66 if (panicstr != NULL) {
67 return;
68 }
69
70 LOCKDEBUG_BARRIER(kernel_lock, 1);
71
72 /*
73 * Avoid disabling/re-enabling preemption here since this
74 * routine may be called in delicate situations.
75 */
76 do {
77 pctr = lwp_pctr();
78 __insn_barrier();
79 idle = CURCPU_IDLE_P();
80 __insn_barrier();
81 } while (pctr != lwp_pctr());
82
83 reason = NULL;
84 if (idle && !cold &&
85 kcpuset_isset(kcpuset_running, cpu_index(curcpu()))) {
86 reason = "idle";
87 }
88 if (cpu_intr_p()) {
89 reason = "interrupt";
90 }
91 if (cpu_softintr_p()) {
92 reason = "softint";
93 }
94 if (!pserialize_not_in_read_section()) {
95 reason = "pserialize";
96 }
97
98 if (reason) {
99 panic("%s: %s caller=%p", __func__, reason,
100 (void *)RETURN_ADDRESS);
101 }
102 }
103
104 /*
105 * Functions for manipulating the kernel_lock. We put them here
106 * so that they show up in profiles.
107 */
108
109 #define _KERNEL_LOCK_ABORT(msg) \
110 LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
111
112 #ifdef LOCKDEBUG
113 #define _KERNEL_LOCK_ASSERT(cond) \
114 do { \
115 if (!(cond)) \
116 _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
117 } while (/* CONSTCOND */ 0)
118 #else
119 #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
120 #endif
121
122 static void _kernel_lock_dump(const volatile void *, lockop_printer_t);
123
124 lockops_t _kernel_lock_ops = {
125 .lo_name = "Kernel lock",
126 .lo_type = LOCKOPS_SPIN,
127 .lo_dump = _kernel_lock_dump,
128 };
129
130 /*
131 * Initialize the kernel lock.
132 */
133 void
134 kernel_lock_init(void)
135 {
136
137 __cpu_simple_lock_init(kernel_lock);
138 kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
139 RETURN_ADDRESS);
140 }
141 CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
142
143 /*
144 * Print debugging information about the kernel lock.
145 */
146 static void
147 _kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
148 {
149 struct cpu_info *ci = curcpu();
150
151 (void)junk;
152
153 pr("curcpu holds : %18d wanted by: %#018lx\n",
154 ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
155 }
156
157 /*
158 * Acquire 'nlocks' holds on the kernel lock.
159 *
160 * Although it may not look it, this is one of the most central, intricate
161 * routines in the kernel, and tons of code elsewhere depends on its exact
162 * behaviour. If you change something in here, expect it to bite you in the
163 * rear.
164 */
165 void
166 _kernel_lock(int nlocks)
167 {
168 struct cpu_info *ci;
169 LOCKSTAT_TIMER(spintime);
170 LOCKSTAT_FLAG(lsflag);
171 struct lwp *owant;
172 #ifdef LOCKDEBUG
173 u_int spins = 0;
174 #endif
175 int s;
176 struct lwp *l = curlwp;
177
178 _KERNEL_LOCK_ASSERT(nlocks > 0);
179
180 s = splvm();
181 ci = curcpu();
182 if (ci->ci_biglock_count != 0) {
183 _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
184 ci->ci_biglock_count += nlocks;
185 l->l_blcnt += nlocks;
186 splx(s);
187 return;
188 }
189
190 _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
191 LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
192 0);
193
194 if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
195 ci->ci_biglock_count = nlocks;
196 l->l_blcnt = nlocks;
197 LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
198 RETURN_ADDRESS, 0);
199 splx(s);
200 return;
201 }
202
203 /*
204 * To remove the ordering constraint between adaptive mutexes
205 * and kernel_lock we must make it appear as if this thread is
206 * blocking. For non-interlocked mutex release, a store fence
207 * is required to ensure that the result of any mutex_exit()
208 * by the current LWP becomes visible on the bus before the set
209 * of ci->ci_biglock_wanted becomes visible.
210 *
211 * However, we won't set ci_biglock_wanted until we've spun for
212 * a bit, as we don't want to make any lock waiters in rw_oncpu()
213 * or mutex_oncpu() block prematurely.
214 */
215 membar_producer();
216 owant = ci->ci_biglock_wanted;
217 ci->ci_biglock_wanted = l;
218
219 /*
220 * Spin until we acquire the lock. Once we have it, record the
221 * time spent with lockstat.
222 */
223 LOCKSTAT_ENTER(lsflag);
224 LOCKSTAT_START_TIMER(lsflag, spintime);
225
226 do {
227 splx(s);
228 while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
229 #ifdef LOCKDEBUG
230 if (SPINLOCK_SPINOUT(spins)) {
231 extern int start_init_exec;
232 if (!start_init_exec)
233 _KERNEL_LOCK_ABORT("spinout");
234 }
235 #endif
236 }
237 s = splvm();
238 } while (!__cpu_simple_lock_try(kernel_lock));
239
240 ci->ci_biglock_count = nlocks;
241 l->l_blcnt = nlocks;
242 LOCKSTAT_STOP_TIMER(lsflag, spintime);
243 LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
244 RETURN_ADDRESS, 0);
245 if (owant == NULL) {
246 LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
247 LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
248 }
249 LOCKSTAT_EXIT(lsflag);
250 splx(s);
251
252 /*
253 * Now that we have kernel_lock, reset ci_biglock_wanted. This
254 * store must be unbuffered (immediately visible on the bus) in
255 * order for non-interlocked mutex release to work correctly.
256 * It must be visible before a mutex_exit() can execute on this
257 * processor.
258 *
259 * Note: only where CAS is available in hardware will this be
260 * an unbuffered write, but non-interlocked release cannot be
261 * done on CPUs without CAS in hardware.
262 */
263 (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
264
265 /*
266 * Issue a memory barrier as we have acquired a lock. This also
267 * prevents stores from a following mutex_exit() being reordered
268 * to occur before our store to ci_biglock_wanted above.
269 */
270 #ifndef __HAVE_ATOMIC_AS_MEMBAR
271 membar_enter();
272 #endif
273 }
274
275 /*
276 * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
277 * all holds.
278 */
279 void
280 _kernel_unlock(int nlocks, int *countp)
281 {
282 struct cpu_info *ci;
283 u_int olocks;
284 int s;
285 struct lwp *l = curlwp;
286
287 _KERNEL_LOCK_ASSERT(nlocks < 2);
288
289 olocks = l->l_blcnt;
290
291 if (olocks == 0) {
292 _KERNEL_LOCK_ASSERT(nlocks <= 0);
293 if (countp != NULL)
294 *countp = 0;
295 return;
296 }
297
298 _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
299
300 if (nlocks == 0)
301 nlocks = olocks;
302 else if (nlocks == -1) {
303 nlocks = 1;
304 _KERNEL_LOCK_ASSERT(olocks == 1);
305 }
306 s = splvm();
307 ci = curcpu();
308 _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
309 if (ci->ci_biglock_count == nlocks) {
310 LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
311 RETURN_ADDRESS, 0);
312 ci->ci_biglock_count = 0;
313 __cpu_simple_unlock(kernel_lock);
314 l->l_blcnt -= nlocks;
315 splx(s);
316 if (l->l_dopreempt)
317 kpreempt(0);
318 } else {
319 ci->ci_biglock_count -= nlocks;
320 l->l_blcnt -= nlocks;
321 splx(s);
322 }
323
324 if (countp != NULL)
325 *countp = olocks;
326 }
327
328 bool
329 _kernel_locked_p(void)
330 {
331 return __SIMPLELOCK_LOCKED_P(kernel_lock);
332 }
333