kern_lock.c revision 1.165 1 /* $NetBSD: kern_lock.c,v 1.165 2020/01/17 20:26:22 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.165 2020/01/17 20:26:22 ad Exp $");
35
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/lock.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/lockdebug.h>
42 #include <sys/cpu.h>
43 #include <sys/syslog.h>
44 #include <sys/atomic.h>
45 #include <sys/lwp.h>
46 #include <sys/pserialize.h>
47
48 #include <machine/lock.h>
49
50 #include <dev/lockstat.h>
51
52 #define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
53
54 bool kernel_lock_dodebug;
55
56 __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
57 __cacheline_aligned;
58
59 void
60 assert_sleepable(void)
61 {
62 const char *reason;
63 uint64_t pctr;
64 bool idle;
65
66 if (panicstr != NULL) {
67 return;
68 }
69
70 LOCKDEBUG_BARRIER(kernel_lock, 1);
71
72 /*
73 * Avoid disabling/re-enabling preemption here since this
74 * routine may be called in delicate situations.
75 */
76 do {
77 pctr = lwp_pctr();
78 __insn_barrier();
79 idle = CURCPU_IDLE_P();
80 __insn_barrier();
81 } while (pctr != lwp_pctr());
82
83 reason = NULL;
84 if (idle && !cold &&
85 kcpuset_isset(kcpuset_running, cpu_index(curcpu()))) {
86 reason = "idle";
87 }
88 if (cpu_intr_p()) {
89 reason = "interrupt";
90 }
91 if (cpu_softintr_p()) {
92 reason = "softint";
93 }
94 if (!pserialize_not_in_read_section()) {
95 reason = "pserialize";
96 }
97
98 if (reason) {
99 panic("%s: %s caller=%p", __func__, reason,
100 (void *)RETURN_ADDRESS);
101 }
102 }
103
104 /*
105 * Functions for manipulating the kernel_lock. We put them here
106 * so that they show up in profiles.
107 */
108
109 #define _KERNEL_LOCK_ABORT(msg) \
110 LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
111
112 #ifdef LOCKDEBUG
113 #define _KERNEL_LOCK_ASSERT(cond) \
114 do { \
115 if (!(cond)) \
116 _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
117 } while (/* CONSTCOND */ 0)
118 #else
119 #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
120 #endif
121
122 static void _kernel_lock_dump(const volatile void *, lockop_printer_t);
123
124 lockops_t _kernel_lock_ops = {
125 .lo_name = "Kernel lock",
126 .lo_type = LOCKOPS_SPIN,
127 .lo_dump = _kernel_lock_dump,
128 };
129
130 /*
131 * Initialize the kernel lock.
132 */
133 void
134 kernel_lock_init(void)
135 {
136
137 __cpu_simple_lock_init(kernel_lock);
138 kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
139 RETURN_ADDRESS);
140 }
141 CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
142
143 /*
144 * Print debugging information about the kernel lock.
145 */
146 static void
147 _kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
148 {
149 struct cpu_info *ci = curcpu();
150
151 (void)junk;
152
153 pr("curcpu holds : %18d wanted by: %#018lx\n",
154 ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
155 }
156
157 /*
158 * Acquire 'nlocks' holds on the kernel lock.
159 */
160 void
161 _kernel_lock(int nlocks)
162 {
163 struct cpu_info *ci;
164 LOCKSTAT_TIMER(spintime);
165 LOCKSTAT_FLAG(lsflag);
166 struct lwp *owant;
167 u_int count;
168 #ifdef LOCKDEBUG
169 u_int spins = 0;
170 #endif
171 int s;
172 struct lwp *l = curlwp;
173
174 _KERNEL_LOCK_ASSERT(nlocks > 0);
175
176 s = splvm();
177 ci = curcpu();
178 if (ci->ci_biglock_count != 0) {
179 _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
180 ci->ci_biglock_count += nlocks;
181 l->l_blcnt += nlocks;
182 splx(s);
183 return;
184 }
185
186 _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
187 LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
188 0);
189
190 if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
191 ci->ci_biglock_count = nlocks;
192 l->l_blcnt = nlocks;
193 LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
194 RETURN_ADDRESS, 0);
195 splx(s);
196 return;
197 }
198
199 /*
200 * To remove the ordering constraint between adaptive mutexes
201 * and kernel_lock we must make it appear as if this thread is
202 * blocking. For non-interlocked mutex release, a store fence
203 * is required to ensure that the result of any mutex_exit()
204 * by the current LWP becomes visible on the bus before the set
205 * of ci->ci_biglock_wanted becomes visible.
206 *
207 * However, we won't set ci_biglock_wanted until we've spun for
208 * a bit, as we don't want to make any lock waiters in rw_oncpu()
209 * or mutex_oncpu() block prematurely.
210 */
211 membar_producer();
212 owant = ci->ci_biglock_wanted;
213
214 /*
215 * Spin until we acquire the lock. Once we have it, record the
216 * time spent with lockstat.
217 */
218 LOCKSTAT_ENTER(lsflag);
219 LOCKSTAT_START_TIMER(lsflag, spintime);
220
221 count = SPINLOCK_BACKOFF_MIN;
222 do {
223 splx(s);
224 while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
225 #ifdef LOCKDEBUG
226 if (SPINLOCK_SPINOUT(spins)) {
227 extern int start_init_exec;
228 if (!start_init_exec)
229 _KERNEL_LOCK_ABORT("spinout");
230 }
231 #endif
232 SPINLOCK_BACKOFF(count);
233 if (count == SPINLOCK_BACKOFF_MAX) {
234 /* Ok, waiting for real. */
235 ci->ci_biglock_wanted = l;
236 }
237 }
238 s = splvm();
239 } while (!__cpu_simple_lock_try(kernel_lock));
240
241 ci->ci_biglock_count = nlocks;
242 l->l_blcnt = nlocks;
243 splx(s);
244
245 LOCKSTAT_STOP_TIMER(lsflag, spintime);
246 LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
247 RETURN_ADDRESS, 0);
248 if (owant == NULL) {
249 LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
250 LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
251 }
252 LOCKSTAT_EXIT(lsflag);
253
254 /*
255 * Now that we have kernel_lock, reset ci_biglock_wanted. This
256 * store must be unbuffered (immediately visible on the bus) in
257 * order for non-interlocked mutex release to work correctly.
258 * It must be visible before a mutex_exit() can execute on this
259 * processor.
260 *
261 * Note: only where CAS is available in hardware will this be
262 * an unbuffered write, but non-interlocked release cannot be
263 * done on CPUs without CAS in hardware.
264 */
265 (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
266
267 /*
268 * Issue a memory barrier as we have acquired a lock. This also
269 * prevents stores from a following mutex_exit() being reordered
270 * to occur before our store to ci_biglock_wanted above.
271 */
272 #ifndef __HAVE_ATOMIC_AS_MEMBAR
273 membar_enter();
274 #endif
275 }
276
277 /*
278 * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
279 * all holds.
280 */
281 void
282 _kernel_unlock(int nlocks, int *countp)
283 {
284 struct cpu_info *ci;
285 u_int olocks;
286 int s;
287 struct lwp *l = curlwp;
288
289 _KERNEL_LOCK_ASSERT(nlocks < 2);
290
291 olocks = l->l_blcnt;
292
293 if (olocks == 0) {
294 _KERNEL_LOCK_ASSERT(nlocks <= 0);
295 if (countp != NULL)
296 *countp = 0;
297 return;
298 }
299
300 _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
301
302 if (nlocks == 0)
303 nlocks = olocks;
304 else if (nlocks == -1) {
305 nlocks = 1;
306 _KERNEL_LOCK_ASSERT(olocks == 1);
307 }
308 s = splvm();
309 ci = curcpu();
310 _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
311 if (ci->ci_biglock_count == nlocks) {
312 LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
313 RETURN_ADDRESS, 0);
314 ci->ci_biglock_count = 0;
315 __cpu_simple_unlock(kernel_lock);
316 l->l_blcnt -= nlocks;
317 splx(s);
318 if (l->l_dopreempt)
319 kpreempt(0);
320 } else {
321 ci->ci_biglock_count -= nlocks;
322 l->l_blcnt -= nlocks;
323 splx(s);
324 }
325
326 if (countp != NULL)
327 *countp = olocks;
328 }
329
330 bool
331 _kernel_locked_p(void)
332 {
333 return __SIMPLELOCK_LOCKED_P(kernel_lock);
334 }
335