Home | History | Annotate | Line # | Download | only in kern
kern_lock.c revision 1.171
      1 /*	$NetBSD: kern_lock.c,v 1.171 2020/05/02 09:13:40 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.171 2020/05/02 09:13:40 martin Exp $");
     35 
     36 #ifdef _KERNEL_OPT
     37 #include "opt_lockdebug.h"
     38 #endif
     39 
     40 #include <sys/param.h>
     41 #include <sys/proc.h>
     42 #include <sys/lock.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/lockdebug.h>
     46 #include <sys/cpu.h>
     47 #include <sys/syslog.h>
     48 #include <sys/atomic.h>
     49 #include <sys/lwp.h>
     50 #include <sys/pserialize.h>
     51 
     52 #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
     53 #include <sys/ksyms.h>
     54 #endif
     55 
     56 #include <machine/lock.h>
     57 
     58 #include <dev/lockstat.h>
     59 
     60 #define	RETURN_ADDRESS	(uintptr_t)__builtin_return_address(0)
     61 
     62 bool	kernel_lock_dodebug;
     63 
     64 __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
     65     __cacheline_aligned;
     66 
     67 void
     68 assert_sleepable(void)
     69 {
     70 	const char *reason;
     71 	uint64_t pctr;
     72 	bool idle;
     73 
     74 	if (panicstr != NULL) {
     75 		return;
     76 	}
     77 
     78 	LOCKDEBUG_BARRIER(kernel_lock, 1);
     79 
     80 	/*
     81 	 * Avoid disabling/re-enabling preemption here since this
     82 	 * routine may be called in delicate situations.
     83 	 */
     84 	do {
     85 		pctr = lwp_pctr();
     86 		__insn_barrier();
     87 		idle = CURCPU_IDLE_P();
     88 		__insn_barrier();
     89 	} while (pctr != lwp_pctr());
     90 
     91 	reason = NULL;
     92 	if (idle && !cold &&
     93 	    kcpuset_isset(kcpuset_running, cpu_index(curcpu()))) {
     94 		reason = "idle";
     95 	}
     96 	if (cpu_intr_p()) {
     97 		reason = "interrupt";
     98 	}
     99 	if (cpu_softintr_p()) {
    100 		reason = "softint";
    101 	}
    102 	if (!pserialize_not_in_read_section()) {
    103 		reason = "pserialize";
    104 	}
    105 
    106 	if (reason) {
    107 		panic("%s: %s caller=%p", __func__, reason,
    108 		    (void *)RETURN_ADDRESS);
    109 	}
    110 }
    111 
    112 /*
    113  * Functions for manipulating the kernel_lock.  We put them here
    114  * so that they show up in profiles.
    115  */
    116 
    117 #define	_KERNEL_LOCK_ABORT(msg)						\
    118     LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
    119 
    120 #ifdef LOCKDEBUG
    121 #define	_KERNEL_LOCK_ASSERT(cond)					\
    122 do {									\
    123 	if (!(cond))							\
    124 		_KERNEL_LOCK_ABORT("assertion failed: " #cond);		\
    125 } while (/* CONSTCOND */ 0)
    126 #else
    127 #define	_KERNEL_LOCK_ASSERT(cond)	/* nothing */
    128 #endif
    129 
    130 static void	_kernel_lock_dump(const volatile void *, lockop_printer_t);
    131 
    132 lockops_t _kernel_lock_ops = {
    133 	.lo_name = "Kernel lock",
    134 	.lo_type = LOCKOPS_SPIN,
    135 	.lo_dump = _kernel_lock_dump,
    136 };
    137 
    138 /*
    139  * Initialize the kernel lock.
    140  */
    141 void
    142 kernel_lock_init(void)
    143 {
    144 
    145 	__cpu_simple_lock_init(kernel_lock);
    146 	kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
    147 	    RETURN_ADDRESS);
    148 }
    149 CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
    150 
    151 /*
    152  * Print debugging information about the kernel lock.
    153  */
    154 static void
    155 _kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
    156 {
    157 	struct cpu_info *ci = curcpu();
    158 
    159 	(void)junk;
    160 
    161 	pr("curcpu holds : %18d wanted by: %#018lx\n",
    162 	    ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
    163 }
    164 
    165 /*
    166  * Acquire 'nlocks' holds on the kernel lock.
    167  *
    168  * Although it may not look it, this is one of the most central, intricate
    169  * routines in the kernel, and tons of code elsewhere depends on its exact
    170  * behaviour.  If you change something in here, expect it to bite you in the
    171  * rear.
    172  */
    173 void
    174 _kernel_lock(int nlocks)
    175 {
    176 	struct cpu_info *ci;
    177 	LOCKSTAT_TIMER(spintime);
    178 	LOCKSTAT_FLAG(lsflag);
    179 	struct lwp *owant;
    180 #ifdef LOCKDEBUG
    181 	u_int spins = 0;
    182 #endif
    183 	int s;
    184 	struct lwp *l = curlwp;
    185 
    186 	_KERNEL_LOCK_ASSERT(nlocks > 0);
    187 
    188 	s = splvm();
    189 	ci = curcpu();
    190 	if (ci->ci_biglock_count != 0) {
    191 		_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    192 		ci->ci_biglock_count += nlocks;
    193 		l->l_blcnt += nlocks;
    194 		splx(s);
    195 		return;
    196 	}
    197 
    198 	_KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
    199 	LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
    200 	    0);
    201 
    202 	if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
    203 		ci->ci_biglock_count = nlocks;
    204 		l->l_blcnt = nlocks;
    205 		LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    206 		    RETURN_ADDRESS, 0);
    207 		splx(s);
    208 		return;
    209 	}
    210 
    211 	/*
    212 	 * To remove the ordering constraint between adaptive mutexes
    213 	 * and kernel_lock we must make it appear as if this thread is
    214 	 * blocking.  For non-interlocked mutex release, a store fence
    215 	 * is required to ensure that the result of any mutex_exit()
    216 	 * by the current LWP becomes visible on the bus before the set
    217 	 * of ci->ci_biglock_wanted becomes visible.
    218 	 *
    219 	 * However, we won't set ci_biglock_wanted until we've spun for
    220 	 * a bit, as we don't want to make any lock waiters in rw_oncpu()
    221 	 * or mutex_oncpu() block prematurely.
    222 	 */
    223 	membar_producer();
    224 	owant = ci->ci_biglock_wanted;
    225 	ci->ci_biglock_wanted = l;
    226 #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
    227 	l->l_ld_wanted = __builtin_return_address(0);
    228 #endif
    229 
    230 	/*
    231 	 * Spin until we acquire the lock.  Once we have it, record the
    232 	 * time spent with lockstat.
    233 	 */
    234 	LOCKSTAT_ENTER(lsflag);
    235 	LOCKSTAT_START_TIMER(lsflag, spintime);
    236 
    237 	do {
    238 		splx(s);
    239 		while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
    240 #ifdef LOCKDEBUG
    241 			if (SPINLOCK_SPINOUT(spins)) {
    242 				extern int start_init_exec;
    243 				if (start_init_exec)
    244 					_KERNEL_LOCK_ABORT("spinout");
    245 			}
    246 			SPINLOCK_BACKOFF_HOOK;
    247 			SPINLOCK_SPIN_HOOK;
    248 #endif
    249 		}
    250 		s = splvm();
    251 	} while (!__cpu_simple_lock_try(kernel_lock));
    252 
    253 	ci->ci_biglock_count = nlocks;
    254 	l->l_blcnt = nlocks;
    255 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    256 	LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    257 	    RETURN_ADDRESS, 0);
    258 	if (owant == NULL) {
    259 		LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
    260 		    LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
    261 	}
    262 	LOCKSTAT_EXIT(lsflag);
    263 	splx(s);
    264 
    265 	/*
    266 	 * Now that we have kernel_lock, reset ci_biglock_wanted.  This
    267 	 * store must be unbuffered (immediately visible on the bus) in
    268 	 * order for non-interlocked mutex release to work correctly.
    269 	 * It must be visible before a mutex_exit() can execute on this
    270 	 * processor.
    271 	 *
    272 	 * Note: only where CAS is available in hardware will this be
    273 	 * an unbuffered write, but non-interlocked release cannot be
    274 	 * done on CPUs without CAS in hardware.
    275 	 */
    276 	(void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
    277 
    278 	/*
    279 	 * Issue a memory barrier as we have acquired a lock.  This also
    280 	 * prevents stores from a following mutex_exit() being reordered
    281 	 * to occur before our store to ci_biglock_wanted above.
    282 	 */
    283 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    284 	membar_enter();
    285 #endif
    286 }
    287 
    288 /*
    289  * Release 'nlocks' holds on the kernel lock.  If 'nlocks' is zero, release
    290  * all holds.
    291  */
    292 void
    293 _kernel_unlock(int nlocks, int *countp)
    294 {
    295 	struct cpu_info *ci;
    296 	u_int olocks;
    297 	int s;
    298 	struct lwp *l = curlwp;
    299 
    300 	_KERNEL_LOCK_ASSERT(nlocks < 2);
    301 
    302 	olocks = l->l_blcnt;
    303 
    304 	if (olocks == 0) {
    305 		_KERNEL_LOCK_ASSERT(nlocks <= 0);
    306 		if (countp != NULL)
    307 			*countp = 0;
    308 		return;
    309 	}
    310 
    311 	_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    312 
    313 	if (nlocks == 0)
    314 		nlocks = olocks;
    315 	else if (nlocks == -1) {
    316 		nlocks = 1;
    317 		_KERNEL_LOCK_ASSERT(olocks == 1);
    318 	}
    319 	s = splvm();
    320 	ci = curcpu();
    321 	_KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
    322 	if (ci->ci_biglock_count == nlocks) {
    323 		LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
    324 		    RETURN_ADDRESS, 0);
    325 		ci->ci_biglock_count = 0;
    326 		__cpu_simple_unlock(kernel_lock);
    327 		l->l_blcnt -= nlocks;
    328 		splx(s);
    329 		if (l->l_dopreempt)
    330 			kpreempt(0);
    331 	} else {
    332 		ci->ci_biglock_count -= nlocks;
    333 		l->l_blcnt -= nlocks;
    334 		splx(s);
    335 	}
    336 
    337 	if (countp != NULL)
    338 		*countp = olocks;
    339 }
    340 
    341 bool
    342 _kernel_locked_p(void)
    343 {
    344 	return __SIMPLELOCK_LOCKED_P(kernel_lock);
    345 }
    346