Home | History | Annotate | Line # | Download | only in kern
kern_lock.c revision 1.186
      1 /*	$NetBSD: kern_lock.c,v 1.186 2023/07/07 18:02:52 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.186 2023/07/07 18:02:52 riastradh Exp $");
     35 
     36 #ifdef _KERNEL_OPT
     37 #include "opt_lockdebug.h"
     38 #endif
     39 
     40 #include <sys/param.h>
     41 #include <sys/proc.h>
     42 #include <sys/lock.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/lockdebug.h>
     46 #include <sys/cpu.h>
     47 #include <sys/syslog.h>
     48 #include <sys/atomic.h>
     49 #include <sys/lwp.h>
     50 #include <sys/pserialize.h>
     51 
     52 #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
     53 #include <sys/ksyms.h>
     54 #endif
     55 
     56 #include <machine/lock.h>
     57 
     58 #include <dev/lockstat.h>
     59 
     60 #define	RETURN_ADDRESS	(uintptr_t)__builtin_return_address(0)
     61 
     62 bool	kernel_lock_dodebug;
     63 
     64 __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
     65     __cacheline_aligned;
     66 
     67 void
     68 assert_sleepable(void)
     69 {
     70 	struct lwp *l = curlwp;
     71 	const char *reason;
     72 	uint64_t ncsw;
     73 	bool idle;
     74 
     75 	if (__predict_false(panicstr != NULL)) {
     76 		return;
     77 	}
     78 
     79 	LOCKDEBUG_BARRIER(kernel_lock, 1);
     80 
     81 	/*
     82 	 * Avoid disabling/re-enabling preemption here since this
     83 	 * routine may be called in delicate situations.
     84 	 */
     85 	do {
     86 		ncsw = l->l_ncsw;
     87 		__insn_barrier();
     88 		idle = CURCPU_IDLE_P();
     89 		__insn_barrier();
     90 	} while (__predict_false(ncsw != l->l_ncsw));
     91 
     92 	reason = NULL;
     93 	if (__predict_false(idle) && !cold) {
     94 		reason = "idle";
     95 		goto panic;
     96 	}
     97 	if (__predict_false(cpu_intr_p())) {
     98 		reason = "interrupt";
     99 		goto panic;
    100 	}
    101 	if (__predict_false(cpu_softintr_p())) {
    102 		reason = "softint";
    103 		goto panic;
    104 	}
    105 	if (__predict_false(!pserialize_not_in_read_section())) {
    106 		reason = "pserialize";
    107 		goto panic;
    108 	}
    109 	return;
    110 
    111 panic:	panic("%s: %s caller=%p", __func__, reason, (void *)RETURN_ADDRESS);
    112 }
    113 
    114 /*
    115  * Functions for manipulating the kernel_lock.  We put them here
    116  * so that they show up in profiles.
    117  */
    118 
    119 #define	_KERNEL_LOCK_ABORT(msg)						\
    120     LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
    121 
    122 #ifdef LOCKDEBUG
    123 #define	_KERNEL_LOCK_ASSERT(cond)					\
    124 do {									\
    125 	if (!(cond))							\
    126 		_KERNEL_LOCK_ABORT("assertion failed: " #cond);		\
    127 } while (/* CONSTCOND */ 0)
    128 #else
    129 #define	_KERNEL_LOCK_ASSERT(cond)	/* nothing */
    130 #endif
    131 
    132 static void	_kernel_lock_dump(const volatile void *, lockop_printer_t);
    133 
    134 lockops_t _kernel_lock_ops = {
    135 	.lo_name = "Kernel lock",
    136 	.lo_type = LOCKOPS_SPIN,
    137 	.lo_dump = _kernel_lock_dump,
    138 };
    139 
    140 #ifdef LOCKDEBUG
    141 
    142 #include <ddb/ddb.h>
    143 
    144 static void
    145 kernel_lock_trace_ipi(void *cookie)
    146 {
    147 
    148 	printf("%s[%d %s]: hogging kernel lock\n", cpu_name(curcpu()),
    149 	    curlwp->l_lid,
    150 	    curlwp->l_name ? curlwp->l_name : curproc->p_comm);
    151 	db_stacktrace();
    152 }
    153 
    154 #endif
    155 
    156 /*
    157  * Initialize the kernel lock.
    158  */
    159 void
    160 kernel_lock_init(void)
    161 {
    162 
    163 	__cpu_simple_lock_init(kernel_lock);
    164 	kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
    165 	    RETURN_ADDRESS);
    166 }
    167 CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
    168 
    169 /*
    170  * Print debugging information about the kernel lock.
    171  */
    172 static void
    173 _kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
    174 {
    175 	struct cpu_info *ci = curcpu();
    176 
    177 	(void)junk;
    178 
    179 	pr("curcpu holds : %18d wanted by: %#018lx\n",
    180 	    ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
    181 }
    182 
    183 /*
    184  * Acquire 'nlocks' holds on the kernel lock.
    185  *
    186  * Although it may not look it, this is one of the most central, intricate
    187  * routines in the kernel, and tons of code elsewhere depends on its exact
    188  * behaviour.  If you change something in here, expect it to bite you in the
    189  * rear.
    190  */
    191 void
    192 _kernel_lock(int nlocks)
    193 {
    194 	struct cpu_info *ci;
    195 	LOCKSTAT_TIMER(spintime);
    196 	LOCKSTAT_FLAG(lsflag);
    197 	struct lwp *owant;
    198 #ifdef LOCKDEBUG
    199 	static struct cpu_info *kernel_lock_holder;
    200 	u_int spins = 0;
    201 	u_int starttime = getticks();
    202 #endif
    203 	int s;
    204 	struct lwp *l = curlwp;
    205 
    206 	_KERNEL_LOCK_ASSERT(nlocks > 0);
    207 
    208 	s = splvm();
    209 	ci = curcpu();
    210 	if (ci->ci_biglock_count != 0) {
    211 		_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    212 		ci->ci_biglock_count += nlocks;
    213 		l->l_blcnt += nlocks;
    214 		splx(s);
    215 		return;
    216 	}
    217 
    218 	_KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
    219 	LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
    220 	    0);
    221 
    222 	if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
    223 #ifdef LOCKDEBUG
    224 		kernel_lock_holder = curcpu();
    225 #endif
    226 		ci->ci_biglock_count = nlocks;
    227 		l->l_blcnt = nlocks;
    228 		LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    229 		    RETURN_ADDRESS, 0);
    230 		splx(s);
    231 		return;
    232 	}
    233 
    234 	/*
    235 	 * To remove the ordering constraint between adaptive mutexes
    236 	 * and kernel_lock we must make it appear as if this thread is
    237 	 * blocking.  For non-interlocked mutex release, a store fence
    238 	 * is required to ensure that the result of any mutex_exit()
    239 	 * by the current LWP becomes visible on the bus before the set
    240 	 * of ci->ci_biglock_wanted becomes visible.
    241 	 *
    242 	 * This membar_producer matches the membar_consumer in
    243 	 * mutex_vector_enter.
    244 	 *
    245 	 * That way, if l has just released a mutex, mutex_vector_enter
    246 	 * can't see this store ci->ci_biglock_wanted := l until it
    247 	 * will also see the mutex_exit store mtx->mtx_owner := 0 which
    248 	 * clears the has-waiters bit.
    249 	 */
    250 	membar_producer();
    251 	owant = ci->ci_biglock_wanted;
    252 	atomic_store_relaxed(&ci->ci_biglock_wanted, l);
    253 #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
    254 	l->l_ld_wanted = __builtin_return_address(0);
    255 #endif
    256 
    257 	/*
    258 	 * Spin until we acquire the lock.  Once we have it, record the
    259 	 * time spent with lockstat.
    260 	 */
    261 	LOCKSTAT_ENTER(lsflag);
    262 	LOCKSTAT_START_TIMER(lsflag, spintime);
    263 
    264 	do {
    265 		splx(s);
    266 		while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
    267 #ifdef LOCKDEBUG
    268 			if (SPINLOCK_SPINOUT(spins) && start_init_exec &&
    269 			    (getticks() - starttime) > 10*hz) {
    270 				ipi_msg_t msg = {
    271 					.func = kernel_lock_trace_ipi,
    272 				};
    273 				kpreempt_disable();
    274 				ipi_unicast(&msg, kernel_lock_holder);
    275 				ipi_wait(&msg);
    276 				kpreempt_enable();
    277 				_KERNEL_LOCK_ABORT("spinout");
    278 			}
    279 #endif
    280 			SPINLOCK_BACKOFF_HOOK;
    281 			SPINLOCK_SPIN_HOOK;
    282 		}
    283 		s = splvm();
    284 	} while (!__cpu_simple_lock_try(kernel_lock));
    285 
    286 	ci->ci_biglock_count = nlocks;
    287 	l->l_blcnt = nlocks;
    288 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    289 	LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    290 	    RETURN_ADDRESS, 0);
    291 	if (owant == NULL) {
    292 		LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
    293 		    LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
    294 	}
    295 	LOCKSTAT_EXIT(lsflag);
    296 	splx(s);
    297 
    298 	/*
    299 	 * Now that we have kernel_lock, reset ci_biglock_wanted.  This
    300 	 * store must be visible on other CPUs before a mutex_exit() on
    301 	 * this CPU can test the has-waiters bit.
    302 	 *
    303 	 * This membar_enter matches the membar_enter in
    304 	 * mutex_vector_enter.  (Yes, not membar_exit -- the legacy
    305 	 * naming is confusing, but store-before-load usually pairs
    306 	 * with store-before-load, in the extremely rare cases where it
    307 	 * is used at all.)
    308 	 *
    309 	 * That way, mutex_vector_enter can't see this store
    310 	 * ci->ci_biglock_wanted := owant until it has set the
    311 	 * has-waiters bit.
    312 	 */
    313 	(void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
    314 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    315 	membar_enter();
    316 #endif
    317 
    318 #ifdef LOCKDEBUG
    319 	kernel_lock_holder = curcpu();
    320 #endif
    321 }
    322 
    323 /*
    324  * Release 'nlocks' holds on the kernel lock.  If 'nlocks' is zero, release
    325  * all holds.
    326  */
    327 void
    328 _kernel_unlock(int nlocks, int *countp)
    329 {
    330 	struct cpu_info *ci;
    331 	u_int olocks;
    332 	int s;
    333 	struct lwp *l = curlwp;
    334 
    335 	_KERNEL_LOCK_ASSERT(nlocks < 2);
    336 
    337 	olocks = l->l_blcnt;
    338 
    339 	if (olocks == 0) {
    340 		_KERNEL_LOCK_ASSERT(nlocks <= 0);
    341 		if (countp != NULL)
    342 			*countp = 0;
    343 		return;
    344 	}
    345 
    346 	_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    347 
    348 	if (nlocks == 0)
    349 		nlocks = olocks;
    350 	else if (nlocks == -1) {
    351 		nlocks = 1;
    352 		_KERNEL_LOCK_ASSERT(olocks == 1);
    353 	}
    354 	s = splvm();
    355 	ci = curcpu();
    356 	_KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
    357 	if (ci->ci_biglock_count == nlocks) {
    358 		LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
    359 		    RETURN_ADDRESS, 0);
    360 		ci->ci_biglock_count = 0;
    361 		__cpu_simple_unlock(kernel_lock);
    362 		l->l_blcnt -= nlocks;
    363 		splx(s);
    364 		if (l->l_dopreempt)
    365 			kpreempt(0);
    366 	} else {
    367 		ci->ci_biglock_count -= nlocks;
    368 		l->l_blcnt -= nlocks;
    369 		splx(s);
    370 	}
    371 
    372 	if (countp != NULL)
    373 		*countp = olocks;
    374 }
    375 
    376 bool
    377 _kernel_locked_p(void)
    378 {
    379 	return __SIMPLELOCK_LOCKED_P(kernel_lock);
    380 }
    381