kern_lock.c revision 1.186 1 /* $NetBSD: kern_lock.c,v 1.186 2023/07/07 18:02:52 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.186 2023/07/07 18:02:52 riastradh Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_lockdebug.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/proc.h>
42 #include <sys/lock.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lockdebug.h>
46 #include <sys/cpu.h>
47 #include <sys/syslog.h>
48 #include <sys/atomic.h>
49 #include <sys/lwp.h>
50 #include <sys/pserialize.h>
51
52 #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
53 #include <sys/ksyms.h>
54 #endif
55
56 #include <machine/lock.h>
57
58 #include <dev/lockstat.h>
59
60 #define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
61
62 bool kernel_lock_dodebug;
63
64 __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
65 __cacheline_aligned;
66
67 void
68 assert_sleepable(void)
69 {
70 struct lwp *l = curlwp;
71 const char *reason;
72 uint64_t ncsw;
73 bool idle;
74
75 if (__predict_false(panicstr != NULL)) {
76 return;
77 }
78
79 LOCKDEBUG_BARRIER(kernel_lock, 1);
80
81 /*
82 * Avoid disabling/re-enabling preemption here since this
83 * routine may be called in delicate situations.
84 */
85 do {
86 ncsw = l->l_ncsw;
87 __insn_barrier();
88 idle = CURCPU_IDLE_P();
89 __insn_barrier();
90 } while (__predict_false(ncsw != l->l_ncsw));
91
92 reason = NULL;
93 if (__predict_false(idle) && !cold) {
94 reason = "idle";
95 goto panic;
96 }
97 if (__predict_false(cpu_intr_p())) {
98 reason = "interrupt";
99 goto panic;
100 }
101 if (__predict_false(cpu_softintr_p())) {
102 reason = "softint";
103 goto panic;
104 }
105 if (__predict_false(!pserialize_not_in_read_section())) {
106 reason = "pserialize";
107 goto panic;
108 }
109 return;
110
111 panic: panic("%s: %s caller=%p", __func__, reason, (void *)RETURN_ADDRESS);
112 }
113
114 /*
115 * Functions for manipulating the kernel_lock. We put them here
116 * so that they show up in profiles.
117 */
118
119 #define _KERNEL_LOCK_ABORT(msg) \
120 LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
121
122 #ifdef LOCKDEBUG
123 #define _KERNEL_LOCK_ASSERT(cond) \
124 do { \
125 if (!(cond)) \
126 _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
127 } while (/* CONSTCOND */ 0)
128 #else
129 #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
130 #endif
131
132 static void _kernel_lock_dump(const volatile void *, lockop_printer_t);
133
134 lockops_t _kernel_lock_ops = {
135 .lo_name = "Kernel lock",
136 .lo_type = LOCKOPS_SPIN,
137 .lo_dump = _kernel_lock_dump,
138 };
139
140 #ifdef LOCKDEBUG
141
142 #include <ddb/ddb.h>
143
144 static void
145 kernel_lock_trace_ipi(void *cookie)
146 {
147
148 printf("%s[%d %s]: hogging kernel lock\n", cpu_name(curcpu()),
149 curlwp->l_lid,
150 curlwp->l_name ? curlwp->l_name : curproc->p_comm);
151 db_stacktrace();
152 }
153
154 #endif
155
156 /*
157 * Initialize the kernel lock.
158 */
159 void
160 kernel_lock_init(void)
161 {
162
163 __cpu_simple_lock_init(kernel_lock);
164 kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
165 RETURN_ADDRESS);
166 }
167 CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
168
169 /*
170 * Print debugging information about the kernel lock.
171 */
172 static void
173 _kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
174 {
175 struct cpu_info *ci = curcpu();
176
177 (void)junk;
178
179 pr("curcpu holds : %18d wanted by: %#018lx\n",
180 ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
181 }
182
183 /*
184 * Acquire 'nlocks' holds on the kernel lock.
185 *
186 * Although it may not look it, this is one of the most central, intricate
187 * routines in the kernel, and tons of code elsewhere depends on its exact
188 * behaviour. If you change something in here, expect it to bite you in the
189 * rear.
190 */
191 void
192 _kernel_lock(int nlocks)
193 {
194 struct cpu_info *ci;
195 LOCKSTAT_TIMER(spintime);
196 LOCKSTAT_FLAG(lsflag);
197 struct lwp *owant;
198 #ifdef LOCKDEBUG
199 static struct cpu_info *kernel_lock_holder;
200 u_int spins = 0;
201 u_int starttime = getticks();
202 #endif
203 int s;
204 struct lwp *l = curlwp;
205
206 _KERNEL_LOCK_ASSERT(nlocks > 0);
207
208 s = splvm();
209 ci = curcpu();
210 if (ci->ci_biglock_count != 0) {
211 _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
212 ci->ci_biglock_count += nlocks;
213 l->l_blcnt += nlocks;
214 splx(s);
215 return;
216 }
217
218 _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
219 LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
220 0);
221
222 if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
223 #ifdef LOCKDEBUG
224 kernel_lock_holder = curcpu();
225 #endif
226 ci->ci_biglock_count = nlocks;
227 l->l_blcnt = nlocks;
228 LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
229 RETURN_ADDRESS, 0);
230 splx(s);
231 return;
232 }
233
234 /*
235 * To remove the ordering constraint between adaptive mutexes
236 * and kernel_lock we must make it appear as if this thread is
237 * blocking. For non-interlocked mutex release, a store fence
238 * is required to ensure that the result of any mutex_exit()
239 * by the current LWP becomes visible on the bus before the set
240 * of ci->ci_biglock_wanted becomes visible.
241 *
242 * This membar_producer matches the membar_consumer in
243 * mutex_vector_enter.
244 *
245 * That way, if l has just released a mutex, mutex_vector_enter
246 * can't see this store ci->ci_biglock_wanted := l until it
247 * will also see the mutex_exit store mtx->mtx_owner := 0 which
248 * clears the has-waiters bit.
249 */
250 membar_producer();
251 owant = ci->ci_biglock_wanted;
252 atomic_store_relaxed(&ci->ci_biglock_wanted, l);
253 #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
254 l->l_ld_wanted = __builtin_return_address(0);
255 #endif
256
257 /*
258 * Spin until we acquire the lock. Once we have it, record the
259 * time spent with lockstat.
260 */
261 LOCKSTAT_ENTER(lsflag);
262 LOCKSTAT_START_TIMER(lsflag, spintime);
263
264 do {
265 splx(s);
266 while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
267 #ifdef LOCKDEBUG
268 if (SPINLOCK_SPINOUT(spins) && start_init_exec &&
269 (getticks() - starttime) > 10*hz) {
270 ipi_msg_t msg = {
271 .func = kernel_lock_trace_ipi,
272 };
273 kpreempt_disable();
274 ipi_unicast(&msg, kernel_lock_holder);
275 ipi_wait(&msg);
276 kpreempt_enable();
277 _KERNEL_LOCK_ABORT("spinout");
278 }
279 #endif
280 SPINLOCK_BACKOFF_HOOK;
281 SPINLOCK_SPIN_HOOK;
282 }
283 s = splvm();
284 } while (!__cpu_simple_lock_try(kernel_lock));
285
286 ci->ci_biglock_count = nlocks;
287 l->l_blcnt = nlocks;
288 LOCKSTAT_STOP_TIMER(lsflag, spintime);
289 LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
290 RETURN_ADDRESS, 0);
291 if (owant == NULL) {
292 LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
293 LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
294 }
295 LOCKSTAT_EXIT(lsflag);
296 splx(s);
297
298 /*
299 * Now that we have kernel_lock, reset ci_biglock_wanted. This
300 * store must be visible on other CPUs before a mutex_exit() on
301 * this CPU can test the has-waiters bit.
302 *
303 * This membar_enter matches the membar_enter in
304 * mutex_vector_enter. (Yes, not membar_exit -- the legacy
305 * naming is confusing, but store-before-load usually pairs
306 * with store-before-load, in the extremely rare cases where it
307 * is used at all.)
308 *
309 * That way, mutex_vector_enter can't see this store
310 * ci->ci_biglock_wanted := owant until it has set the
311 * has-waiters bit.
312 */
313 (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
314 #ifndef __HAVE_ATOMIC_AS_MEMBAR
315 membar_enter();
316 #endif
317
318 #ifdef LOCKDEBUG
319 kernel_lock_holder = curcpu();
320 #endif
321 }
322
323 /*
324 * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
325 * all holds.
326 */
327 void
328 _kernel_unlock(int nlocks, int *countp)
329 {
330 struct cpu_info *ci;
331 u_int olocks;
332 int s;
333 struct lwp *l = curlwp;
334
335 _KERNEL_LOCK_ASSERT(nlocks < 2);
336
337 olocks = l->l_blcnt;
338
339 if (olocks == 0) {
340 _KERNEL_LOCK_ASSERT(nlocks <= 0);
341 if (countp != NULL)
342 *countp = 0;
343 return;
344 }
345
346 _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
347
348 if (nlocks == 0)
349 nlocks = olocks;
350 else if (nlocks == -1) {
351 nlocks = 1;
352 _KERNEL_LOCK_ASSERT(olocks == 1);
353 }
354 s = splvm();
355 ci = curcpu();
356 _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
357 if (ci->ci_biglock_count == nlocks) {
358 LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
359 RETURN_ADDRESS, 0);
360 ci->ci_biglock_count = 0;
361 __cpu_simple_unlock(kernel_lock);
362 l->l_blcnt -= nlocks;
363 splx(s);
364 if (l->l_dopreempt)
365 kpreempt(0);
366 } else {
367 ci->ci_biglock_count -= nlocks;
368 l->l_blcnt -= nlocks;
369 splx(s);
370 }
371
372 if (countp != NULL)
373 *countp = olocks;
374 }
375
376 bool
377 _kernel_locked_p(void)
378 {
379 return __SIMPLELOCK_LOCKED_P(kernel_lock);
380 }
381