kern_lock.c revision 1.32.2.2 1 /* $NetBSD: kern_lock.c,v 1.32.2.2 2000/08/11 23:10:15 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. All advertising materials mentioning features or use of this software
60 * must display the following acknowledgement:
61 * This product includes software developed by the University of
62 * California, Berkeley and its contributors.
63 * 4. Neither the name of the University nor the names of its contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
71 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
73 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
74 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
75 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
76 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * SUCH DAMAGE.
78 *
79 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
80 */
81
82 #include "opt_multiprocessor.h"
83 #include "opt_lockdebug.h"
84 #include "opt_ddb.h"
85
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/lock.h>
89 #include <sys/systm.h>
90 #include <machine/cpu.h>
91
92 #if defined(__HAVE_ATOMIC_OPERATIONS)
93 #include <machine/atomic.h>
94 #endif
95
96 #if defined(LOCKDEBUG)
97 #include <sys/syslog.h>
98 /*
99 * note that stdarg.h and the ansi style va_start macro is used for both
100 * ansi and traditional c compiles.
101 * XXX: this requires that stdarg.h define: va_alist and va_dcl
102 */
103 #include <machine/stdarg.h>
104
105 void lock_printf __P((const char *fmt, ...));
106
107 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
108 #endif
109
110 /*
111 * Locking primitives implementation.
112 * Locks provide shared/exclusive sychronization.
113 */
114
115 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
116 #if defined(MULTIPROCESSOR) /* { */
117 #if defined(__HAVE_ATOMIC_OPERATIONS) /* { */
118 #define COUNT_CPU(cpu_id, x) \
119 atomic_add_ulong(&curcpu()->ci_spin_locks, (x))
120 #else
121 #define COUNT_CPU(cpu_id, x) /* not safe */
122 #endif /* __HAVE_ATOMIC_OPERATIONS */ /* } */
123 #else
124 u_long spin_locks;
125 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
126 #endif /* MULTIPROCESSOR */ /* } */
127
128 #define COUNT(lkp, p, cpu_id, x) \
129 do { \
130 if ((lkp)->lk_flags & LK_SPIN) \
131 COUNT_CPU((cpu_id), (x)); \
132 else \
133 (p)->p_locks += (x); \
134 } while (/*CONSTCOND*/0)
135 #else
136 #define COUNT(lkp, p, cpu_id, x)
137 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
138
139 /*
140 * Acquire a resource.
141 */
142 #define ACQUIRE(lkp, error, extflags, drain, wanted) \
143 if ((extflags) & LK_SPIN) { \
144 int interlocked; \
145 \
146 if ((drain) == 0) \
147 (lkp)->lk_waitcount++; \
148 for (interlocked = 1;;) { \
149 if (wanted) { \
150 if (interlocked) { \
151 simple_unlock(&(lkp)->lk_interlock); \
152 interlocked = 0; \
153 } \
154 } else if (interlocked) { \
155 break; \
156 } else { \
157 simple_lock(&(lkp)->lk_interlock); \
158 interlocked = 1; \
159 } \
160 } \
161 if ((drain) == 0) \
162 (lkp)->lk_waitcount--; \
163 KASSERT((wanted) == 0); \
164 error = 0; /* sanity */ \
165 } else { \
166 for (error = 0; wanted; ) { \
167 if ((drain)) \
168 (lkp)->lk_flags |= LK_WAITDRAIN; \
169 else \
170 (lkp)->lk_waitcount++; \
171 /* XXX Cast away volatile. */ \
172 error = ltsleep((drain) ? &(lkp)->lk_flags : \
173 (void *)(lkp), (lkp)->lk_prio, \
174 (lkp)->lk_wmesg, (lkp)->lk_timo, \
175 &(lkp)->lk_interlock); \
176 if ((drain) == 0) \
177 (lkp)->lk_waitcount--; \
178 if (error) \
179 break; \
180 if ((extflags) & LK_SLEEPFAIL) { \
181 error = ENOLCK; \
182 break; \
183 } \
184 } \
185 }
186
187 #define SETHOLDER(lkp, pid, cpu_id) \
188 do { \
189 if ((lkp)->lk_flags & LK_SPIN) \
190 (lkp)->lk_cpu = cpu_id; \
191 else \
192 (lkp)->lk_lockholder = pid; \
193 } while (/*CONSTCOND*/0)
194
195 #define WEHOLDIT(lkp, pid, cpu_id) \
196 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
197 ((lkp)->lk_cpu == (cpu_id)) : ((lkp)->lk_lockholder == (pid)))
198
199 #define WAKEUP_WAITER(lkp) \
200 do { \
201 if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) { \
202 /* XXX Cast away volatile. */ \
203 wakeup_one((void *)(lkp)); \
204 } \
205 } while (/*CONSTCOND*/0)
206
207 #if defined(LOCKDEBUG) /* { */
208 #if defined(MULTIPROCESSOR) /* { */
209 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
210
211 #define SPINLOCK_LIST_LOCK() \
212 __cpu_simple_lock(&spinlock_list_slock.lock_data)
213
214 #define SPINLOCK_LIST_UNLOCK() \
215 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
216 #else
217 #define SPINLOCK_LIST_LOCK() /* nothing */
218
219 #define SPINLOCK_LIST_UNLOCK() /* nothing */
220 #endif /* MULTIPROCESSOR */ /* } */
221
222 TAILQ_HEAD(, lock) spinlock_list =
223 TAILQ_HEAD_INITIALIZER(spinlock_list);
224
225 #define HAVEIT(lkp) \
226 do { \
227 if ((lkp)->lk_flags & LK_SPIN) { \
228 int s = splhigh(); \
229 SPINLOCK_LIST_LOCK(); \
230 /* XXX Cast away volatile. */ \
231 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
232 lk_list); \
233 SPINLOCK_LIST_UNLOCK(); \
234 splx(s); \
235 } \
236 } while (/*CONSTCOND*/0)
237
238 #define DONTHAVEIT(lkp) \
239 do { \
240 if ((lkp)->lk_flags & LK_SPIN) { \
241 int s = splhigh(); \
242 SPINLOCK_LIST_LOCK(); \
243 /* XXX Cast away volatile. */ \
244 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
245 lk_list); \
246 SPINLOCK_LIST_UNLOCK(); \
247 splx(s); \
248 } \
249 } while (/*CONSTCOND*/0)
250 #else
251 #define HAVEIT(lkp) /* nothing */
252
253 #define DONTHAVEIT(lkp) /* nothing */
254 #endif /* LOCKDEBUG */ /* } */
255
256 #if defined(LOCKDEBUG)
257 /*
258 * Lock debug printing routine; can be configured to print to console
259 * or log to syslog.
260 */
261 void
262 #ifdef __STDC__
263 lock_printf(const char *fmt, ...)
264 #else
265 lock_printf(fmt, va_alist)
266 char *fmt;
267 va_dcl
268 #endif
269 {
270 va_list ap;
271
272 va_start(ap, fmt);
273 if (lock_debug_syslog)
274 vlog(LOG_DEBUG, fmt, ap);
275 else
276 vprintf(fmt, ap);
277 va_end(ap);
278 }
279 #endif /* LOCKDEBUG */
280
281 /*
282 * Initialize a lock; required before use.
283 */
284 void
285 lockinit(lkp, prio, wmesg, timo, flags)
286 struct lock *lkp;
287 int prio;
288 const char *wmesg;
289 int timo;
290 int flags;
291 {
292
293 memset(lkp, 0, sizeof(struct lock));
294 simple_lock_init(&lkp->lk_interlock);
295 lkp->lk_flags = flags & LK_EXTFLG_MASK;
296 if (flags & LK_SPIN)
297 lkp->lk_cpu = LK_NOCPU;
298 else {
299 lkp->lk_lockholder = LK_NOPROC;
300 lkp->lk_prio = prio;
301 lkp->lk_timo = timo;
302 }
303 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
304 }
305
306 /*
307 * Determine the status of a lock.
308 */
309 int
310 lockstatus(lkp)
311 struct lock *lkp;
312 {
313 int lock_type = 0;
314
315 simple_lock(&lkp->lk_interlock);
316 if (lkp->lk_exclusivecount != 0)
317 lock_type = LK_EXCLUSIVE;
318 else if (lkp->lk_sharecount != 0)
319 lock_type = LK_SHARED;
320 simple_unlock(&lkp->lk_interlock);
321 return (lock_type);
322 }
323
324 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
325 /*
326 * Make sure no spin locks are held by a CPU that is about
327 * to context switch.
328 */
329 void
330 spinlock_switchcheck(void)
331 {
332 u_long cnt;
333 int s;
334
335 s = splhigh();
336 #if defined(MULTIPROCESSOR)
337 cnt = curcpu()->ci_spin_locks;
338 #else
339 cnt = spin_locks;
340 #endif
341 splx(s);
342
343 if (cnt != 0)
344 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
345 (u_long) cpu_number(), cnt);
346 }
347 #endif /* LOCKDEBUG || DIAGNOSTIC */
348
349 /*
350 * XXX XXX kludge around another kludge..
351 *
352 * vfs_shutdown() may be called from interrupt context, either as a result
353 * of a panic, or from the debugger. It proceeds to call
354 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
355 *
356 * We would like to make an attempt to sync the filesystems in this case, so
357 * if this happens, we treat attempts to acquire locks specially.
358 * All locks are acquired on behalf of proc0.
359 *
360 * If we've already paniced, we don't block waiting for locks, but
361 * just barge right ahead since we're already going down in flames.
362 */
363
364 /*
365 * Set, change, or release a lock.
366 *
367 * Shared requests increment the shared count. Exclusive requests set the
368 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
369 * accepted shared locks and shared-to-exclusive upgrades to go away.
370 */
371 int
372 lockmgr(lkp, flags, interlkp)
373 __volatile struct lock *lkp;
374 u_int flags;
375 struct simplelock *interlkp;
376 {
377 int error;
378 pid_t pid;
379 int extflags;
380 cpuid_t cpu_id;
381 struct proc *p = curproc;
382 int lock_shutdown_noblock = 0;
383
384 error = 0;
385
386 simple_lock(&lkp->lk_interlock);
387 if (flags & LK_INTERLOCK)
388 simple_unlock(interlkp);
389 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
390
391 #ifdef DIAGNOSTIC /* { */
392 /*
393 * Don't allow spins on sleep locks and don't allow sleeps
394 * on spin locks.
395 */
396 if ((flags ^ lkp->lk_flags) & LK_SPIN)
397 panic("lockmgr: sleep/spin mismatch\n");
398 #endif /* } */
399
400 if (extflags & LK_SPIN)
401 pid = LK_KERNPROC;
402 else {
403 if (p == NULL) {
404 if (!doing_shutdown) {
405 #ifdef DIAGNOSTIC
406 panic("lockmgr: no context");
407 #endif
408 } else {
409 p = &proc0;
410 if (panicstr && (!(flags & LK_NOWAIT))) {
411 flags |= LK_NOWAIT;
412 lock_shutdown_noblock = 1;
413 }
414 }
415 }
416 pid = p->p_pid;
417 }
418 cpu_id = cpu_number();
419
420 /*
421 * Once a lock has drained, the LK_DRAINING flag is set and an
422 * exclusive lock is returned. The only valid operation thereafter
423 * is a single release of that exclusive lock. This final release
424 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
425 * further requests of any sort will result in a panic. The bits
426 * selected for these two flags are chosen so that they will be set
427 * in memory that is freed (freed memory is filled with 0xdeadbeef).
428 * The final release is permitted to give a new lease on life to
429 * the lock by specifying LK_REENABLE.
430 */
431 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
432 #ifdef DIAGNOSTIC /* { */
433 if (lkp->lk_flags & LK_DRAINED)
434 panic("lockmgr: using decommissioned lock");
435 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
436 WEHOLDIT(lkp, pid, cpu_id) == 0)
437 panic("lockmgr: non-release on draining lock: %d\n",
438 flags & LK_TYPE_MASK);
439 #endif /* DIAGNOSTIC */ /* } */
440 lkp->lk_flags &= ~LK_DRAINING;
441 if ((flags & LK_REENABLE) == 0)
442 lkp->lk_flags |= LK_DRAINED;
443 }
444
445 switch (flags & LK_TYPE_MASK) {
446
447 case LK_SHARED:
448 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
449 /*
450 * If just polling, check to see if we will block.
451 */
452 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
453 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
454 error = EBUSY;
455 break;
456 }
457 /*
458 * Wait for exclusive locks and upgrades to clear.
459 */
460 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
461 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
462 if (error)
463 break;
464 lkp->lk_sharecount++;
465 COUNT(lkp, p, cpu_id, 1);
466 break;
467 }
468 /*
469 * We hold an exclusive lock, so downgrade it to shared.
470 * An alternative would be to fail with EDEADLK.
471 */
472 lkp->lk_sharecount++;
473 COUNT(lkp, p, cpu_id, 1);
474 /* fall into downgrade */
475
476 case LK_DOWNGRADE:
477 if (WEHOLDIT(lkp, pid, cpu_id) == 0 ||
478 lkp->lk_exclusivecount == 0)
479 panic("lockmgr: not holding exclusive lock");
480 lkp->lk_sharecount += lkp->lk_exclusivecount;
481 lkp->lk_exclusivecount = 0;
482 lkp->lk_recurselevel = 0;
483 lkp->lk_flags &= ~LK_HAVE_EXCL;
484 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
485 DONTHAVEIT(lkp);
486 WAKEUP_WAITER(lkp);
487 break;
488
489 case LK_EXCLUPGRADE:
490 /*
491 * If another process is ahead of us to get an upgrade,
492 * then we want to fail rather than have an intervening
493 * exclusive access.
494 */
495 if (lkp->lk_flags & LK_WANT_UPGRADE) {
496 lkp->lk_sharecount--;
497 COUNT(lkp, p, cpu_id, -1);
498 error = EBUSY;
499 break;
500 }
501 /* fall into normal upgrade */
502
503 case LK_UPGRADE:
504 /*
505 * Upgrade a shared lock to an exclusive one. If another
506 * shared lock has already requested an upgrade to an
507 * exclusive lock, our shared lock is released and an
508 * exclusive lock is requested (which will be granted
509 * after the upgrade). If we return an error, the file
510 * will always be unlocked.
511 */
512 if (WEHOLDIT(lkp, pid, cpu_id) || lkp->lk_sharecount <= 0)
513 panic("lockmgr: upgrade exclusive lock");
514 lkp->lk_sharecount--;
515 COUNT(lkp, p, cpu_id, -1);
516 /*
517 * If we are just polling, check to see if we will block.
518 */
519 if ((extflags & LK_NOWAIT) &&
520 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
521 lkp->lk_sharecount > 1)) {
522 error = EBUSY;
523 break;
524 }
525 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
526 /*
527 * We are first shared lock to request an upgrade, so
528 * request upgrade and wait for the shared count to
529 * drop to zero, then take exclusive lock.
530 */
531 lkp->lk_flags |= LK_WANT_UPGRADE;
532 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
533 lkp->lk_flags &= ~LK_WANT_UPGRADE;
534 if (error)
535 break;
536 lkp->lk_flags |= LK_HAVE_EXCL;
537 SETHOLDER(lkp, pid, cpu_id);
538 HAVEIT(lkp);
539 if (lkp->lk_exclusivecount != 0)
540 panic("lockmgr: non-zero exclusive count");
541 lkp->lk_exclusivecount = 1;
542 if (extflags & LK_SETRECURSE)
543 lkp->lk_recurselevel = 1;
544 COUNT(lkp, p, cpu_id, 1);
545 break;
546 }
547 /*
548 * Someone else has requested upgrade. Release our shared
549 * lock, awaken upgrade requestor if we are the last shared
550 * lock, then request an exclusive lock.
551 */
552 if (lkp->lk_sharecount == 0)
553 WAKEUP_WAITER(lkp);
554 /* fall into exclusive request */
555
556 case LK_EXCLUSIVE:
557 if (WEHOLDIT(lkp, pid, cpu_id)) {
558 /*
559 * Recursive lock.
560 */
561 if ((extflags & LK_CANRECURSE) == 0 &&
562 lkp->lk_recurselevel == 0) {
563 if (extflags & LK_RECURSEFAIL) {
564 error = EDEADLK;
565 break;
566 } else
567 panic("lockmgr: locking against myself");
568 }
569 lkp->lk_exclusivecount++;
570 if (extflags & LK_SETRECURSE &&
571 lkp->lk_recurselevel == 0)
572 lkp->lk_recurselevel = lkp->lk_exclusivecount;
573 COUNT(lkp, p, cpu_id, 1);
574 break;
575 }
576 /*
577 * If we are just polling, check to see if we will sleep.
578 */
579 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
580 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
581 lkp->lk_sharecount != 0)) {
582 error = EBUSY;
583 break;
584 }
585 /*
586 * Try to acquire the want_exclusive flag.
587 */
588 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
589 (LK_HAVE_EXCL | LK_WANT_EXCL));
590 if (error)
591 break;
592 lkp->lk_flags |= LK_WANT_EXCL;
593 /*
594 * Wait for shared locks and upgrades to finish.
595 */
596 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
597 (lkp->lk_flags & LK_WANT_UPGRADE));
598 lkp->lk_flags &= ~LK_WANT_EXCL;
599 if (error)
600 break;
601 lkp->lk_flags |= LK_HAVE_EXCL;
602 SETHOLDER(lkp, pid, cpu_id);
603 HAVEIT(lkp);
604 if (lkp->lk_exclusivecount != 0)
605 panic("lockmgr: non-zero exclusive count");
606 lkp->lk_exclusivecount = 1;
607 if (extflags & LK_SETRECURSE)
608 lkp->lk_recurselevel = 1;
609 COUNT(lkp, p, cpu_id, 1);
610 break;
611
612 case LK_RELEASE:
613 if (lkp->lk_exclusivecount != 0) {
614 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
615 if (lkp->lk_flags & LK_SPIN) {
616 panic("lockmgr: processor %lu, not "
617 "exclusive lock holder %lu "
618 "unlocking", cpu_id, lkp->lk_cpu);
619 } else {
620 panic("lockmgr: pid %d, not "
621 "exclusive lock holder %d "
622 "unlocking", pid,
623 lkp->lk_lockholder);
624 }
625 }
626 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
627 lkp->lk_recurselevel = 0;
628 lkp->lk_exclusivecount--;
629 COUNT(lkp, p, cpu_id, -1);
630 if (lkp->lk_exclusivecount == 0) {
631 lkp->lk_flags &= ~LK_HAVE_EXCL;
632 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
633 DONTHAVEIT(lkp);
634 }
635 } else if (lkp->lk_sharecount != 0) {
636 lkp->lk_sharecount--;
637 COUNT(lkp, p, cpu_id, -1);
638 }
639 WAKEUP_WAITER(lkp);
640 break;
641
642 case LK_DRAIN:
643 /*
644 * Check that we do not already hold the lock, as it can
645 * never drain if we do. Unfortunately, we have no way to
646 * check for holding a shared lock, but at least we can
647 * check for an exclusive one.
648 */
649 if (WEHOLDIT(lkp, pid, cpu_id))
650 panic("lockmgr: draining against myself");
651 /*
652 * If we are just polling, check to see if we will sleep.
653 */
654 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
655 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
656 lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
657 error = EBUSY;
658 break;
659 }
660 ACQUIRE(lkp, error, extflags, 1,
661 ((lkp->lk_flags &
662 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
663 lkp->lk_sharecount != 0 ||
664 lkp->lk_waitcount != 0));
665 if (error)
666 break;
667 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
668 SETHOLDER(lkp, pid, cpu_id);
669 HAVEIT(lkp);
670 lkp->lk_exclusivecount = 1;
671 /* XXX unlikely that we'd want this */
672 if (extflags & LK_SETRECURSE)
673 lkp->lk_recurselevel = 1;
674 COUNT(lkp, p, cpu_id, 1);
675 break;
676
677 default:
678 simple_unlock(&lkp->lk_interlock);
679 panic("lockmgr: unknown locktype request %d",
680 flags & LK_TYPE_MASK);
681 /* NOTREACHED */
682 }
683 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
684 ((lkp->lk_flags &
685 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
686 lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
687 lkp->lk_flags &= ~LK_WAITDRAIN;
688 wakeup_one((void *)&lkp->lk_flags);
689 }
690 /*
691 * Note that this panic will be a recursive panic, since
692 * we only set lock_shutdown_noblock above if panicstr != NULL.
693 */
694 if (error && lock_shutdown_noblock)
695 panic("lockmgr: deadlock (see previous panic)");
696
697 simple_unlock(&lkp->lk_interlock);
698 return (error);
699 }
700
701 /*
702 * Print out information about state of a lock. Used by VOP_PRINT
703 * routines to display ststus about contained locks.
704 */
705 void
706 lockmgr_printinfo(lkp)
707 __volatile struct lock *lkp;
708 {
709
710 if (lkp->lk_sharecount)
711 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
712 lkp->lk_sharecount);
713 else if (lkp->lk_flags & LK_HAVE_EXCL) {
714 printf(" lock type %s: EXCL (count %d) by ",
715 lkp->lk_wmesg, lkp->lk_exclusivecount);
716 if (lkp->lk_flags & LK_SPIN)
717 printf("processor %lu", lkp->lk_cpu);
718 else
719 printf("pid %d", lkp->lk_lockholder);
720 } else
721 printf(" not locked");
722 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
723 printf(" with %d pending", lkp->lk_waitcount);
724 }
725
726 #if defined(LOCKDEBUG) /* { */
727 TAILQ_HEAD(, simplelock) simplelock_list =
728 TAILQ_HEAD_INITIALIZER(simplelock_list);
729
730 #if defined(MULTIPROCESSOR) /* { */
731 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
732
733 #define SLOCK_LIST_LOCK() \
734 __cpu_simple_lock(&simplelock_list_slock.lock_data)
735
736 #define SLOCK_LIST_UNLOCK() \
737 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
738
739 #if defined(__HAVE_ATOMIC_OPERATIONS) /* { */
740 #define SLOCK_COUNT(x) \
741 atomic_add_ulong(&curcpu()->ci_simple_locks, (x))
742 #else
743 #define SLOCK_COUNT(x) /* not safe */
744 #endif /* __HAVE_ATOMIC_OPERATIONS */ /* } */
745 #else
746 u_long simple_locks;
747
748 #define SLOCK_LIST_LOCK() /* nothing */
749
750 #define SLOCK_LIST_UNLOCK() /* nothing */
751
752 #define SLOCK_COUNT(x) simple_locks += (x)
753 #endif /* MULTIPROCESSOR */ /* } */
754
755 #ifdef DDB /* { */
756 int simple_lock_debugger = 0;
757 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
758 #else
759 #define SLOCK_DEBUGGER() /* nothing */
760 #endif /* } */
761
762 #ifdef MULTIPROCESSOR
763 #define SLOCK_MP() lock_printf("on cpu %d\n", cpu_number())
764 #else
765 #define SLOCK_MP() /* nothing */
766 #endif
767
768 #define SLOCK_WHERE(str, alp, id, l) \
769 do { \
770 lock_printf(str); \
771 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
772 SLOCK_MP(); \
773 if ((alp)->lock_file != NULL) \
774 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
775 (alp)->lock_line); \
776 if ((alp)->unlock_file != NULL) \
777 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
778 (alp)->unlock_line); \
779 SLOCK_DEBUGGER(); \
780 } while (/*CONSTCOND*/0)
781
782 /*
783 * Simple lock functions so that the debugger can see from whence
784 * they are being called.
785 */
786 void
787 simple_lock_init(alp)
788 struct simplelock *alp;
789 {
790
791 #if defined(MULTIPROCESSOR) /* { */
792 __cpu_simple_lock_init(&alp->lock_data);
793 #else
794 alp->lock_data = __SIMPLELOCK_UNLOCKED;
795 #endif /* } */
796 alp->lock_file = NULL;
797 alp->lock_line = 0;
798 alp->unlock_file = NULL;
799 alp->unlock_line = 0;
800 alp->lock_holder = 0;
801 }
802
803 void
804 _simple_lock(alp, id, l)
805 __volatile struct simplelock *alp;
806 const char *id;
807 int l;
808 {
809 cpuid_t cpu_id = cpu_number();
810 int s;
811
812 s = splhigh();
813
814 /*
815 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
816 * don't take any action, and just fall into the normal spin case.
817 */
818 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
819 #if defined(MULTIPROCESSOR) /* { */
820 if (alp->lock_holder == cpu_id) {
821 SLOCK_WHERE("simple_lock: locking against myself\n",
822 alp, id, l);
823 goto out;
824 }
825 #else
826 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
827 goto out;
828 #endif /* MULTIPROCESSOR */ /* } */
829 }
830
831 #if defined(MULTIPROCESSOR) /* { */
832 /* Acquire the lock before modifying any fields. */
833 __cpu_simple_lock(&alp->lock_data);
834 #else
835 alp->lock_data = __SIMPLELOCK_LOCKED;
836 #endif /* } */
837
838 alp->lock_file = id;
839 alp->lock_line = l;
840 alp->lock_holder = cpu_id;
841
842 SLOCK_LIST_LOCK();
843 /* XXX Cast away volatile */
844 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
845 SLOCK_LIST_UNLOCK();
846
847 SLOCK_COUNT(1);
848
849 out:
850 splx(s);
851 }
852
853 int
854 _simple_lock_try(alp, id, l)
855 __volatile struct simplelock *alp;
856 const char *id;
857 int l;
858 {
859 cpuid_t cpu_id = cpu_number();
860 int s, rv = 0;
861
862 s = splhigh();
863
864 /*
865 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
866 * don't take any action.
867 */
868 #if defined(MULTIPROCESSOR) /* { */
869 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
870 if (alp->lock_holder == cpu_id)
871 SLOCK_WHERE("simple_lock_try: locking against myself\n",
872 alp, id, l);
873 goto out;
874 }
875 #else
876 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
877 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
878 goto out;
879 }
880 alp->lock_data = __SIMPLELOCK_LOCKED;
881 #endif /* MULTIPROCESSOR */ /* } */
882
883 /*
884 * At this point, we have acquired the lock.
885 */
886
887 rv = 1;
888
889 alp->lock_file = id;
890 alp->lock_line = l;
891 alp->lock_holder = cpu_id;
892
893 SLOCK_LIST_LOCK();
894 /* XXX Cast away volatile. */
895 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
896 SLOCK_LIST_UNLOCK();
897
898 SLOCK_COUNT(1);
899
900 out:
901 splx(s);
902 return (rv);
903 }
904
905 void
906 _simple_unlock(alp, id, l)
907 __volatile struct simplelock *alp;
908 const char *id;
909 int l;
910 {
911 int s;
912
913 s = splhigh();
914
915 /*
916 * MULTIPROCESSOR case: This is `safe' because we think we hold
917 * the lock, and if we don't, we don't take any action.
918 */
919 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
920 SLOCK_WHERE("simple_unlock: lock not held\n",
921 alp, id, l);
922 goto out;
923 }
924
925 SLOCK_LIST_LOCK();
926 TAILQ_REMOVE(&simplelock_list, alp, list);
927 SLOCK_LIST_UNLOCK();
928
929 SLOCK_COUNT(-1);
930
931 alp->list.tqe_next = NULL; /* sanity */
932 alp->list.tqe_prev = NULL; /* sanity */
933
934 alp->unlock_file = id;
935 alp->unlock_line = l;
936
937 #if defined(MULTIPROCESSOR) /* { */
938 alp->lock_holder = LK_NOCPU;
939 /* Now that we've modified all fields, release the lock. */
940 __cpu_simple_unlock(&alp->lock_data);
941 #else
942 alp->lock_data = __SIMPLELOCK_UNLOCKED;
943 #endif /* } */
944
945 out:
946 splx(s);
947 }
948
949 void
950 simple_lock_dump()
951 {
952 struct simplelock *alp;
953 int s;
954
955 s = splhigh();
956 SLOCK_LIST_LOCK();
957 lock_printf("all simple locks:\n");
958 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
959 alp = TAILQ_NEXT(alp, list)) {
960 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
961 alp->lock_file, alp->lock_line);
962 }
963 SLOCK_LIST_UNLOCK();
964 splx(s);
965 }
966
967 void
968 simple_lock_freecheck(start, end)
969 void *start, *end;
970 {
971 struct simplelock *alp;
972 int s;
973
974 s = splhigh();
975 SLOCK_LIST_LOCK();
976 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
977 alp = TAILQ_NEXT(alp, list)) {
978 if ((void *)alp >= start && (void *)alp < end) {
979 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
980 alp, alp->lock_holder, alp->lock_file,
981 alp->lock_line);
982 SLOCK_DEBUGGER();
983 }
984 }
985 SLOCK_LIST_UNLOCK();
986 splx(s);
987 }
988
989 void
990 simple_lock_switchcheck(void)
991 {
992 struct simplelock *alp;
993 cpuid_t cpu_id = cpu_number();
994 int s;
995
996 s = splhigh();
997 SLOCK_LIST_LOCK();
998 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
999 alp = TAILQ_NEXT(alp, list)) {
1000 if (alp->lock_holder == cpu_id) {
1001 lock_printf("switching with held simple_lock %p "
1002 "CPU %lu %s:%s\n",
1003 alp, alp->lock_holder, alp->lock_file,
1004 alp->lock_line);
1005 SLOCK_DEBUGGER();
1006 }
1007 }
1008 SLOCK_LIST_UNLOCK();
1009 splx(s);
1010 }
1011 #endif /* LOCKDEBUG */ /* } */
1012