kern_lock.c revision 1.34 1 /* $NetBSD: kern_lock.c,v 1.34 2000/08/07 21:55:23 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. All advertising materials mentioning features or use of this software
60 * must display the following acknowledgement:
61 * This product includes software developed by the University of
62 * California, Berkeley and its contributors.
63 * 4. Neither the name of the University nor the names of its contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
71 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
73 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
74 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
75 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
76 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * SUCH DAMAGE.
78 *
79 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
80 */
81
82 #include "opt_multiprocessor.h"
83 #include "opt_lockdebug.h"
84 #include "opt_ddb.h"
85
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/lock.h>
89 #include <sys/systm.h>
90 #include <machine/cpu.h>
91
92 #if defined(__HAVE_ATOMIC_OPERATIONS)
93 #include <machine/atomic.h>
94 #endif
95
96 #if defined(LOCKDEBUG)
97 #include <sys/syslog.h>
98 /*
99 * note that stdarg.h and the ansi style va_start macro is used for both
100 * ansi and traditional c compiles.
101 * XXX: this requires that stdarg.h define: va_alist and va_dcl
102 */
103 #include <machine/stdarg.h>
104
105 void lock_printf(const char *fmt, ...);
106
107 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
108 #endif
109
110 /*
111 * Locking primitives implementation.
112 * Locks provide shared/exclusive sychronization.
113 */
114
115 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
116 #if defined(MULTIPROCESSOR) /* { */
117 #if defined(__HAVE_ATOMIC_OPERATIONS) /* { */
118 #define COUNT_CPU(cpu_id, x) \
119 atomic_add_ulong(&curcpu()->ci_spin_locks, (x))
120 #else
121 #define COUNT_CPU(cpu_id, x) /* not safe */
122 #endif /* __HAVE_ATOMIC_OPERATIONS */ /* } */
123 #else
124 u_long spin_locks;
125 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
126 #endif /* MULTIPROCESSOR */ /* } */
127
128 #define COUNT(lkp, p, cpu_id, x) \
129 do { \
130 if ((lkp)->lk_flags & LK_SPIN) \
131 COUNT_CPU((cpu_id), (x)); \
132 else \
133 (p)->p_locks += (x); \
134 } while (/*CONSTCOND*/0)
135 #else
136 #define COUNT(lkp, p, cpu_id, x)
137 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
138
139 /*
140 * Acquire a resource.
141 */
142 #define ACQUIRE(lkp, error, extflags, drain, wanted) \
143 if ((extflags) & LK_SPIN) { \
144 int interlocked; \
145 \
146 if ((drain) == 0) \
147 (lkp)->lk_waitcount++; \
148 for (interlocked = 1;;) { \
149 if (wanted) { \
150 if (interlocked) { \
151 simple_unlock(&(lkp)->lk_interlock); \
152 interlocked = 0; \
153 } \
154 } else if (interlocked) { \
155 break; \
156 } else { \
157 simple_lock(&(lkp)->lk_interlock); \
158 interlocked = 1; \
159 } \
160 } \
161 if ((drain) == 0) \
162 (lkp)->lk_waitcount--; \
163 KASSERT((wanted) == 0); \
164 error = 0; /* sanity */ \
165 } else { \
166 for (error = 0; wanted; ) { \
167 if ((drain)) \
168 (lkp)->lk_flags |= LK_WAITDRAIN; \
169 else \
170 (lkp)->lk_waitcount++; \
171 /* XXX Cast away volatile. */ \
172 error = ltsleep((drain) ? &(lkp)->lk_flags : \
173 (void *)(lkp), (lkp)->lk_prio, \
174 (lkp)->lk_wmesg, (lkp)->lk_timo, \
175 &(lkp)->lk_interlock); \
176 if ((drain) == 0) \
177 (lkp)->lk_waitcount--; \
178 if (error) \
179 break; \
180 if ((extflags) & LK_SLEEPFAIL) { \
181 error = ENOLCK; \
182 break; \
183 } \
184 } \
185 }
186
187 #define SETHOLDER(lkp, pid, cpu_id) \
188 do { \
189 if ((lkp)->lk_flags & LK_SPIN) \
190 (lkp)->lk_cpu = cpu_id; \
191 else \
192 (lkp)->lk_lockholder = pid; \
193 } while (/*CONSTCOND*/0)
194
195 #define WEHOLDIT(lkp, pid, cpu_id) \
196 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
197 ((lkp)->lk_cpu == (cpu_id)) : ((lkp)->lk_lockholder == (pid)))
198
199 #define WAKEUP_WAITER(lkp) \
200 do { \
201 if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) { \
202 /* XXX Cast away volatile. */ \
203 wakeup_one((void *)(lkp)); \
204 } \
205 } while (/*CONSTCOND*/0)
206
207 #if defined(LOCKDEBUG) /* { */
208 #if defined(MULTIPROCESSOR) /* { */
209 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
210
211 #define SPINLOCK_LIST_LOCK() \
212 __cpu_simple_lock(&spinlock_list_slock.lock_data)
213
214 #define SPINLOCK_LIST_UNLOCK() \
215 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
216 #else
217 #define SPINLOCK_LIST_LOCK() /* nothing */
218
219 #define SPINLOCK_LIST_UNLOCK() /* nothing */
220 #endif /* MULTIPROCESSOR */ /* } */
221
222 TAILQ_HEAD(, lock) spinlock_list =
223 TAILQ_HEAD_INITIALIZER(spinlock_list);
224
225 #define HAVEIT(lkp) \
226 do { \
227 if ((lkp)->lk_flags & LK_SPIN) { \
228 int s = splhigh(); \
229 SPINLOCK_LIST_LOCK(); \
230 /* XXX Cast away volatile. */ \
231 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
232 lk_list); \
233 SPINLOCK_LIST_UNLOCK(); \
234 splx(s); \
235 } \
236 } while (/*CONSTCOND*/0)
237
238 #define DONTHAVEIT(lkp) \
239 do { \
240 if ((lkp)->lk_flags & LK_SPIN) { \
241 int s = splhigh(); \
242 SPINLOCK_LIST_LOCK(); \
243 /* XXX Cast away volatile. */ \
244 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
245 lk_list); \
246 SPINLOCK_LIST_UNLOCK(); \
247 splx(s); \
248 } \
249 } while (/*CONSTCOND*/0)
250 #else
251 #define HAVEIT(lkp) /* nothing */
252
253 #define DONTHAVEIT(lkp) /* nothing */
254 #endif /* LOCKDEBUG */ /* } */
255
256 #if defined(LOCKDEBUG)
257 /*
258 * Lock debug printing routine; can be configured to print to console
259 * or log to syslog.
260 */
261 void
262 lock_printf(const char *fmt, ...)
263 {
264 va_list ap;
265
266 va_start(ap, fmt);
267 if (lock_debug_syslog)
268 vlog(LOG_DEBUG, fmt, ap);
269 else
270 vprintf(fmt, ap);
271 va_end(ap);
272 }
273 #endif /* LOCKDEBUG */
274
275 /*
276 * Initialize a lock; required before use.
277 */
278 void
279 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
280 {
281
282 memset(lkp, 0, sizeof(struct lock));
283 simple_lock_init(&lkp->lk_interlock);
284 lkp->lk_flags = flags & LK_EXTFLG_MASK;
285 if (flags & LK_SPIN)
286 lkp->lk_cpu = LK_NOCPU;
287 else {
288 lkp->lk_lockholder = LK_NOPROC;
289 lkp->lk_prio = prio;
290 lkp->lk_timo = timo;
291 }
292 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
293 }
294
295 /*
296 * Determine the status of a lock.
297 */
298 int
299 lockstatus(struct lock *lkp)
300 {
301 int lock_type = 0;
302
303 simple_lock(&lkp->lk_interlock);
304 if (lkp->lk_exclusivecount != 0)
305 lock_type = LK_EXCLUSIVE;
306 else if (lkp->lk_sharecount != 0)
307 lock_type = LK_SHARED;
308 simple_unlock(&lkp->lk_interlock);
309 return (lock_type);
310 }
311
312 /*
313 * XXX XXX kludge around another kludge..
314 *
315 * vfs_shutdown() may be called from interrupt context, either as a result
316 * of a panic, or from the debugger. It proceeds to call
317 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
318 *
319 * We would like to make an attempt to sync the filesystems in this case, so
320 * if this happens, we treat attempts to acquire locks specially.
321 * All locks are acquired on behalf of proc0.
322 *
323 * If we've already paniced, we don't block waiting for locks, but
324 * just barge right ahead since we're already going down in flames.
325 */
326
327 /*
328 * Set, change, or release a lock.
329 *
330 * Shared requests increment the shared count. Exclusive requests set the
331 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
332 * accepted shared locks and shared-to-exclusive upgrades to go away.
333 */
334 int
335 lockmgr(__volatile struct lock *lkp, u_int flags,
336 struct simplelock *interlkp)
337 {
338 int error;
339 pid_t pid;
340 int extflags;
341 cpuid_t cpu_id;
342 struct proc *p = curproc;
343 int lock_shutdown_noblock = 0;
344
345 error = 0;
346
347 simple_lock(&lkp->lk_interlock);
348 if (flags & LK_INTERLOCK)
349 simple_unlock(interlkp);
350 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
351
352 #ifdef DIAGNOSTIC /* { */
353 /*
354 * Don't allow spins on sleep locks and don't allow sleeps
355 * on spin locks.
356 */
357 if ((flags ^ lkp->lk_flags) & LK_SPIN)
358 panic("lockmgr: sleep/spin mismatch\n");
359 #endif /* } */
360
361 if (extflags & LK_SPIN)
362 pid = LK_KERNPROC;
363 else {
364 if (p == NULL) {
365 if (!doing_shutdown) {
366 #ifdef DIAGNOSTIC
367 panic("lockmgr: no context");
368 #endif
369 } else {
370 p = &proc0;
371 if (panicstr && (!(flags & LK_NOWAIT))) {
372 flags |= LK_NOWAIT;
373 lock_shutdown_noblock = 1;
374 }
375 }
376 }
377 pid = p->p_pid;
378 }
379 cpu_id = cpu_number();
380
381 /*
382 * Once a lock has drained, the LK_DRAINING flag is set and an
383 * exclusive lock is returned. The only valid operation thereafter
384 * is a single release of that exclusive lock. This final release
385 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
386 * further requests of any sort will result in a panic. The bits
387 * selected for these two flags are chosen so that they will be set
388 * in memory that is freed (freed memory is filled with 0xdeadbeef).
389 * The final release is permitted to give a new lease on life to
390 * the lock by specifying LK_REENABLE.
391 */
392 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
393 #ifdef DIAGNOSTIC /* { */
394 if (lkp->lk_flags & LK_DRAINED)
395 panic("lockmgr: using decommissioned lock");
396 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
397 WEHOLDIT(lkp, pid, cpu_id) == 0)
398 panic("lockmgr: non-release on draining lock: %d\n",
399 flags & LK_TYPE_MASK);
400 #endif /* DIAGNOSTIC */ /* } */
401 lkp->lk_flags &= ~LK_DRAINING;
402 if ((flags & LK_REENABLE) == 0)
403 lkp->lk_flags |= LK_DRAINED;
404 }
405
406 switch (flags & LK_TYPE_MASK) {
407
408 case LK_SHARED:
409 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
410 /*
411 * If just polling, check to see if we will block.
412 */
413 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
414 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
415 error = EBUSY;
416 break;
417 }
418 /*
419 * Wait for exclusive locks and upgrades to clear.
420 */
421 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
422 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
423 if (error)
424 break;
425 lkp->lk_sharecount++;
426 COUNT(lkp, p, cpu_id, 1);
427 break;
428 }
429 /*
430 * We hold an exclusive lock, so downgrade it to shared.
431 * An alternative would be to fail with EDEADLK.
432 */
433 lkp->lk_sharecount++;
434 COUNT(lkp, p, cpu_id, 1);
435 /* fall into downgrade */
436
437 case LK_DOWNGRADE:
438 if (WEHOLDIT(lkp, pid, cpu_id) == 0 ||
439 lkp->lk_exclusivecount == 0)
440 panic("lockmgr: not holding exclusive lock");
441 lkp->lk_sharecount += lkp->lk_exclusivecount;
442 lkp->lk_exclusivecount = 0;
443 lkp->lk_recurselevel = 0;
444 lkp->lk_flags &= ~LK_HAVE_EXCL;
445 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
446 DONTHAVEIT(lkp);
447 WAKEUP_WAITER(lkp);
448 break;
449
450 case LK_EXCLUPGRADE:
451 /*
452 * If another process is ahead of us to get an upgrade,
453 * then we want to fail rather than have an intervening
454 * exclusive access.
455 */
456 if (lkp->lk_flags & LK_WANT_UPGRADE) {
457 lkp->lk_sharecount--;
458 COUNT(lkp, p, cpu_id, -1);
459 error = EBUSY;
460 break;
461 }
462 /* fall into normal upgrade */
463
464 case LK_UPGRADE:
465 /*
466 * Upgrade a shared lock to an exclusive one. If another
467 * shared lock has already requested an upgrade to an
468 * exclusive lock, our shared lock is released and an
469 * exclusive lock is requested (which will be granted
470 * after the upgrade). If we return an error, the file
471 * will always be unlocked.
472 */
473 if (WEHOLDIT(lkp, pid, cpu_id) || lkp->lk_sharecount <= 0)
474 panic("lockmgr: upgrade exclusive lock");
475 lkp->lk_sharecount--;
476 COUNT(lkp, p, cpu_id, -1);
477 /*
478 * If we are just polling, check to see if we will block.
479 */
480 if ((extflags & LK_NOWAIT) &&
481 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
482 lkp->lk_sharecount > 1)) {
483 error = EBUSY;
484 break;
485 }
486 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
487 /*
488 * We are first shared lock to request an upgrade, so
489 * request upgrade and wait for the shared count to
490 * drop to zero, then take exclusive lock.
491 */
492 lkp->lk_flags |= LK_WANT_UPGRADE;
493 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
494 lkp->lk_flags &= ~LK_WANT_UPGRADE;
495 if (error)
496 break;
497 lkp->lk_flags |= LK_HAVE_EXCL;
498 SETHOLDER(lkp, pid, cpu_id);
499 HAVEIT(lkp);
500 if (lkp->lk_exclusivecount != 0)
501 panic("lockmgr: non-zero exclusive count");
502 lkp->lk_exclusivecount = 1;
503 if (extflags & LK_SETRECURSE)
504 lkp->lk_recurselevel = 1;
505 COUNT(lkp, p, cpu_id, 1);
506 break;
507 }
508 /*
509 * Someone else has requested upgrade. Release our shared
510 * lock, awaken upgrade requestor if we are the last shared
511 * lock, then request an exclusive lock.
512 */
513 if (lkp->lk_sharecount == 0)
514 WAKEUP_WAITER(lkp);
515 /* fall into exclusive request */
516
517 case LK_EXCLUSIVE:
518 if (WEHOLDIT(lkp, pid, cpu_id)) {
519 /*
520 * Recursive lock.
521 */
522 if ((extflags & LK_CANRECURSE) == 0 &&
523 lkp->lk_recurselevel == 0) {
524 if (extflags & LK_RECURSEFAIL) {
525 error = EDEADLK;
526 break;
527 } else
528 panic("lockmgr: locking against myself");
529 }
530 lkp->lk_exclusivecount++;
531 if (extflags & LK_SETRECURSE &&
532 lkp->lk_recurselevel == 0)
533 lkp->lk_recurselevel = lkp->lk_exclusivecount;
534 COUNT(lkp, p, cpu_id, 1);
535 break;
536 }
537 /*
538 * If we are just polling, check to see if we will sleep.
539 */
540 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
541 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
542 lkp->lk_sharecount != 0)) {
543 error = EBUSY;
544 break;
545 }
546 /*
547 * Try to acquire the want_exclusive flag.
548 */
549 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
550 (LK_HAVE_EXCL | LK_WANT_EXCL));
551 if (error)
552 break;
553 lkp->lk_flags |= LK_WANT_EXCL;
554 /*
555 * Wait for shared locks and upgrades to finish.
556 */
557 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
558 (lkp->lk_flags & LK_WANT_UPGRADE));
559 lkp->lk_flags &= ~LK_WANT_EXCL;
560 if (error)
561 break;
562 lkp->lk_flags |= LK_HAVE_EXCL;
563 SETHOLDER(lkp, pid, cpu_id);
564 HAVEIT(lkp);
565 if (lkp->lk_exclusivecount != 0)
566 panic("lockmgr: non-zero exclusive count");
567 lkp->lk_exclusivecount = 1;
568 if (extflags & LK_SETRECURSE)
569 lkp->lk_recurselevel = 1;
570 COUNT(lkp, p, cpu_id, 1);
571 break;
572
573 case LK_RELEASE:
574 if (lkp->lk_exclusivecount != 0) {
575 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
576 if (lkp->lk_flags & LK_SPIN) {
577 panic("lockmgr: processor %lu, not "
578 "exclusive lock holder %lu "
579 "unlocking", cpu_id, lkp->lk_cpu);
580 } else {
581 panic("lockmgr: pid %d, not "
582 "exclusive lock holder %d "
583 "unlocking", pid,
584 lkp->lk_lockholder);
585 }
586 }
587 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
588 lkp->lk_recurselevel = 0;
589 lkp->lk_exclusivecount--;
590 COUNT(lkp, p, cpu_id, -1);
591 if (lkp->lk_exclusivecount == 0) {
592 lkp->lk_flags &= ~LK_HAVE_EXCL;
593 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
594 DONTHAVEIT(lkp);
595 }
596 } else if (lkp->lk_sharecount != 0) {
597 lkp->lk_sharecount--;
598 COUNT(lkp, p, cpu_id, -1);
599 }
600 WAKEUP_WAITER(lkp);
601 break;
602
603 case LK_DRAIN:
604 /*
605 * Check that we do not already hold the lock, as it can
606 * never drain if we do. Unfortunately, we have no way to
607 * check for holding a shared lock, but at least we can
608 * check for an exclusive one.
609 */
610 if (WEHOLDIT(lkp, pid, cpu_id))
611 panic("lockmgr: draining against myself");
612 /*
613 * If we are just polling, check to see if we will sleep.
614 */
615 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
616 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
617 lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
618 error = EBUSY;
619 break;
620 }
621 ACQUIRE(lkp, error, extflags, 1,
622 ((lkp->lk_flags &
623 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
624 lkp->lk_sharecount != 0 ||
625 lkp->lk_waitcount != 0));
626 if (error)
627 break;
628 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
629 SETHOLDER(lkp, pid, cpu_id);
630 HAVEIT(lkp);
631 lkp->lk_exclusivecount = 1;
632 /* XXX unlikely that we'd want this */
633 if (extflags & LK_SETRECURSE)
634 lkp->lk_recurselevel = 1;
635 COUNT(lkp, p, cpu_id, 1);
636 break;
637
638 default:
639 simple_unlock(&lkp->lk_interlock);
640 panic("lockmgr: unknown locktype request %d",
641 flags & LK_TYPE_MASK);
642 /* NOTREACHED */
643 }
644 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
645 ((lkp->lk_flags &
646 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
647 lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
648 lkp->lk_flags &= ~LK_WAITDRAIN;
649 wakeup_one((void *)&lkp->lk_flags);
650 }
651 /*
652 * Note that this panic will be a recursive panic, since
653 * we only set lock_shutdown_noblock above if panicstr != NULL.
654 */
655 if (error && lock_shutdown_noblock)
656 panic("lockmgr: deadlock (see previous panic)");
657
658 simple_unlock(&lkp->lk_interlock);
659 return (error);
660 }
661
662 /*
663 * Print out information about state of a lock. Used by VOP_PRINT
664 * routines to display ststus about contained locks.
665 */
666 void
667 lockmgr_printinfo(__volatile struct lock *lkp)
668 {
669
670 if (lkp->lk_sharecount)
671 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
672 lkp->lk_sharecount);
673 else if (lkp->lk_flags & LK_HAVE_EXCL) {
674 printf(" lock type %s: EXCL (count %d) by ",
675 lkp->lk_wmesg, lkp->lk_exclusivecount);
676 if (lkp->lk_flags & LK_SPIN)
677 printf("processor %lu", lkp->lk_cpu);
678 else
679 printf("pid %d", lkp->lk_lockholder);
680 } else
681 printf(" not locked");
682 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
683 printf(" with %d pending", lkp->lk_waitcount);
684 }
685
686 #if defined(LOCKDEBUG) /* { */
687 TAILQ_HEAD(, simplelock) simplelock_list =
688 TAILQ_HEAD_INITIALIZER(simplelock_list);
689
690 #if defined(MULTIPROCESSOR) /* { */
691 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
692
693 #define SLOCK_LIST_LOCK() \
694 __cpu_simple_lock(&simplelock_list_slock.lock_data)
695
696 #define SLOCK_LIST_UNLOCK() \
697 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
698
699 #if defined(__HAVE_ATOMIC_OPERATIONS) /* { */
700 #define SLOCK_COUNT(x) \
701 atomic_add_ulong(&curcpu()->ci_simple_locks, (x))
702 #else
703 #define SLOCK_COUNT(x) /* not safe */
704 #endif /* __HAVE_ATOMIC_OPERATIONS */ /* } */
705 #else
706 u_long simple_locks;
707
708 #define SLOCK_LIST_LOCK() /* nothing */
709
710 #define SLOCK_LIST_UNLOCK() /* nothing */
711
712 #define SLOCK_COUNT(x) simple_locks += (x)
713 #endif /* MULTIPROCESSOR */ /* } */
714
715 #ifdef DDB /* { */
716 int simple_lock_debugger = 0;
717 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
718 #else
719 #define SLOCK_DEBUGGER() /* nothing */
720 #endif /* } */
721
722 #ifdef MULTIPROCESSOR
723 #define SLOCK_MP() lock_printf("on cpu %d\n", cpu_number())
724 #else
725 #define SLOCK_MP() /* nothing */
726 #endif
727
728 #define SLOCK_WHERE(str, alp, id, l) \
729 do { \
730 lock_printf(str); \
731 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
732 SLOCK_MP(); \
733 if ((alp)->lock_file != NULL) \
734 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
735 (alp)->lock_line); \
736 if ((alp)->unlock_file != NULL) \
737 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
738 (alp)->unlock_line); \
739 SLOCK_DEBUGGER(); \
740 } while (/*CONSTCOND*/0)
741
742 /*
743 * Simple lock functions so that the debugger can see from whence
744 * they are being called.
745 */
746 void
747 simple_lock_init(struct simplelock *alp)
748 {
749
750 #if defined(MULTIPROCESSOR) /* { */
751 __cpu_simple_lock_init(&alp->lock_data);
752 #else
753 alp->lock_data = __SIMPLELOCK_UNLOCKED;
754 #endif /* } */
755 alp->lock_file = NULL;
756 alp->lock_line = 0;
757 alp->unlock_file = NULL;
758 alp->unlock_line = 0;
759 alp->lock_holder = 0;
760 }
761
762 void
763 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
764 {
765 cpuid_t cpu_id = cpu_number();
766 int s;
767
768 s = splhigh();
769
770 /*
771 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
772 * don't take any action, and just fall into the normal spin case.
773 */
774 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
775 #if defined(MULTIPROCESSOR) /* { */
776 if (alp->lock_holder == cpu_id) {
777 SLOCK_WHERE("simple_lock: locking against myself\n",
778 alp, id, l);
779 goto out;
780 }
781 #else
782 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
783 goto out;
784 #endif /* MULTIPROCESSOR */ /* } */
785 }
786
787 #if defined(MULTIPROCESSOR) /* { */
788 /* Acquire the lock before modifying any fields. */
789 __cpu_simple_lock(&alp->lock_data);
790 #else
791 alp->lock_data = __SIMPLELOCK_LOCKED;
792 #endif /* } */
793
794 alp->lock_file = id;
795 alp->lock_line = l;
796 alp->lock_holder = cpu_id;
797
798 SLOCK_LIST_LOCK();
799 /* XXX Cast away volatile */
800 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
801 SLOCK_LIST_UNLOCK();
802
803 SLOCK_COUNT(1);
804
805 out:
806 splx(s);
807 }
808
809 int
810 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
811 {
812 cpuid_t cpu_id = cpu_number();
813 int s, rv = 0;
814
815 s = splhigh();
816
817 /*
818 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
819 * don't take any action.
820 */
821 #if defined(MULTIPROCESSOR) /* { */
822 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
823 if (alp->lock_holder == cpu_id)
824 SLOCK_WHERE("simple_lock_try: locking against myself\n",
825 alp, id, l);
826 goto out;
827 }
828 #else
829 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
830 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
831 goto out;
832 }
833 alp->lock_data = __SIMPLELOCK_LOCKED;
834 #endif /* MULTIPROCESSOR */ /* } */
835
836 /*
837 * At this point, we have acquired the lock.
838 */
839
840 rv = 1;
841
842 alp->lock_file = id;
843 alp->lock_line = l;
844 alp->lock_holder = cpu_id;
845
846 SLOCK_LIST_LOCK();
847 /* XXX Cast away volatile. */
848 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
849 SLOCK_LIST_UNLOCK();
850
851 SLOCK_COUNT(1);
852
853 out:
854 splx(s);
855 return (rv);
856 }
857
858 void
859 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
860 {
861 int s;
862
863 s = splhigh();
864
865 /*
866 * MULTIPROCESSOR case: This is `safe' because we think we hold
867 * the lock, and if we don't, we don't take any action.
868 */
869 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
870 SLOCK_WHERE("simple_unlock: lock not held\n",
871 alp, id, l);
872 goto out;
873 }
874
875 SLOCK_LIST_LOCK();
876 TAILQ_REMOVE(&simplelock_list, alp, list);
877 SLOCK_LIST_UNLOCK();
878
879 SLOCK_COUNT(-1);
880
881 alp->list.tqe_next = NULL; /* sanity */
882 alp->list.tqe_prev = NULL; /* sanity */
883
884 alp->unlock_file = id;
885 alp->unlock_line = l;
886
887 #if defined(MULTIPROCESSOR) /* { */
888 alp->lock_holder = LK_NOCPU;
889 /* Now that we've modified all fields, release the lock. */
890 __cpu_simple_unlock(&alp->lock_data);
891 #else
892 alp->lock_data = __SIMPLELOCK_UNLOCKED;
893 #endif /* } */
894
895 out:
896 splx(s);
897 }
898
899 void
900 simple_lock_dump(void)
901 {
902 struct simplelock *alp;
903 int s;
904
905 s = splhigh();
906 SLOCK_LIST_LOCK();
907 lock_printf("all simple locks:\n");
908 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
909 alp = TAILQ_NEXT(alp, list)) {
910 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
911 alp->lock_file, alp->lock_line);
912 }
913 SLOCK_LIST_UNLOCK();
914 splx(s);
915 }
916
917 void
918 simple_lock_freecheck(void *start, void *end)
919 {
920 struct simplelock *alp;
921 int s;
922
923 s = splhigh();
924 SLOCK_LIST_LOCK();
925 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
926 alp = TAILQ_NEXT(alp, list)) {
927 if ((void *)alp >= start && (void *)alp < end) {
928 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
929 alp, alp->lock_holder, alp->lock_file,
930 alp->lock_line);
931 SLOCK_DEBUGGER();
932 }
933 }
934 SLOCK_LIST_UNLOCK();
935 splx(s);
936 }
937
938 void
939 simple_lock_switchcheck(void)
940 {
941 struct simplelock *alp;
942 cpuid_t cpu_id = cpu_number();
943 int s;
944
945 s = splhigh();
946 SLOCK_LIST_LOCK();
947 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
948 alp = TAILQ_NEXT(alp, list)) {
949 if (alp->lock_holder == cpu_id) {
950 lock_printf("switching with held simple_lock %p "
951 "CPU %lu %s:%s\n",
952 alp, alp->lock_holder, alp->lock_file,
953 alp->lock_line);
954 SLOCK_DEBUGGER();
955 }
956 }
957 SLOCK_LIST_UNLOCK();
958 splx(s);
959 }
960 #endif /* LOCKDEBUG */ /* } */
961