kern_lock.c revision 1.38 1 /* $NetBSD: kern_lock.c,v 1.38 2000/08/17 04:15:43 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. All advertising materials mentioning features or use of this software
60 * must display the following acknowledgement:
61 * This product includes software developed by the University of
62 * California, Berkeley and its contributors.
63 * 4. Neither the name of the University nor the names of its contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
71 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
73 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
74 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
75 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
76 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * SUCH DAMAGE.
78 *
79 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
80 */
81
82 #include "opt_multiprocessor.h"
83 #include "opt_lockdebug.h"
84 #include "opt_ddb.h"
85
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/lock.h>
89 #include <sys/systm.h>
90 #include <machine/cpu.h>
91
92 #if defined(__HAVE_ATOMIC_OPERATIONS)
93 #include <machine/atomic.h>
94 #endif
95
96 #if defined(LOCKDEBUG)
97 #include <sys/syslog.h>
98 /*
99 * note that stdarg.h and the ansi style va_start macro is used for both
100 * ansi and traditional c compiles.
101 * XXX: this requires that stdarg.h define: va_alist and va_dcl
102 */
103 #include <machine/stdarg.h>
104
105 void lock_printf(const char *fmt, ...)
106 __attribute__((__format__(__printf__,1,2)));
107
108 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
109 #endif
110
111 /*
112 * Locking primitives implementation.
113 * Locks provide shared/exclusive sychronization.
114 */
115
116 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
117 #if defined(MULTIPROCESSOR) /* { */
118 #if defined(__HAVE_ATOMIC_OPERATIONS) /* { */
119 #define COUNT_CPU(cpu_id, x) \
120 atomic_add_ulong(&curcpu()->ci_spin_locks, (x))
121 #else
122 #define COUNT_CPU(cpu_id, x) /* not safe */
123 #endif /* __HAVE_ATOMIC_OPERATIONS */ /* } */
124 #else
125 u_long spin_locks;
126 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
127 #endif /* MULTIPROCESSOR */ /* } */
128
129 #define COUNT(lkp, p, cpu_id, x) \
130 do { \
131 if ((lkp)->lk_flags & LK_SPIN) \
132 COUNT_CPU((cpu_id), (x)); \
133 else \
134 (p)->p_locks += (x); \
135 } while (/*CONSTCOND*/0)
136 #else
137 #define COUNT(lkp, p, cpu_id, x)
138 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
139
140 /*
141 * Acquire a resource.
142 */
143 #define ACQUIRE(lkp, error, extflags, drain, wanted) \
144 if ((extflags) & LK_SPIN) { \
145 int interlocked; \
146 \
147 if ((drain) == 0) \
148 (lkp)->lk_waitcount++; \
149 for (interlocked = 1;;) { \
150 if (wanted) { \
151 if (interlocked) { \
152 simple_unlock(&(lkp)->lk_interlock); \
153 interlocked = 0; \
154 } \
155 } else if (interlocked) { \
156 break; \
157 } else { \
158 simple_lock(&(lkp)->lk_interlock); \
159 interlocked = 1; \
160 } \
161 } \
162 if ((drain) == 0) \
163 (lkp)->lk_waitcount--; \
164 KASSERT((wanted) == 0); \
165 error = 0; /* sanity */ \
166 } else { \
167 for (error = 0; wanted; ) { \
168 if ((drain)) \
169 (lkp)->lk_flags |= LK_WAITDRAIN; \
170 else \
171 (lkp)->lk_waitcount++; \
172 /* XXX Cast away volatile. */ \
173 error = ltsleep((drain) ? &(lkp)->lk_flags : \
174 (void *)(lkp), (lkp)->lk_prio, \
175 (lkp)->lk_wmesg, (lkp)->lk_timo, \
176 &(lkp)->lk_interlock); \
177 if ((drain) == 0) \
178 (lkp)->lk_waitcount--; \
179 if (error) \
180 break; \
181 if ((extflags) & LK_SLEEPFAIL) { \
182 error = ENOLCK; \
183 break; \
184 } \
185 } \
186 }
187
188 #define SETHOLDER(lkp, pid, cpu_id) \
189 do { \
190 if ((lkp)->lk_flags & LK_SPIN) \
191 (lkp)->lk_cpu = cpu_id; \
192 else \
193 (lkp)->lk_lockholder = pid; \
194 } while (/*CONSTCOND*/0)
195
196 #define WEHOLDIT(lkp, pid, cpu_id) \
197 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
198 ((lkp)->lk_cpu == (cpu_id)) : ((lkp)->lk_lockholder == (pid)))
199
200 #define WAKEUP_WAITER(lkp) \
201 do { \
202 if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) { \
203 /* XXX Cast away volatile. */ \
204 wakeup_one((void *)(lkp)); \
205 } \
206 } while (/*CONSTCOND*/0)
207
208 #if defined(LOCKDEBUG) /* { */
209 #if defined(MULTIPROCESSOR) /* { */
210 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
211
212 #define SPINLOCK_LIST_LOCK() \
213 __cpu_simple_lock(&spinlock_list_slock.lock_data)
214
215 #define SPINLOCK_LIST_UNLOCK() \
216 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
217 #else
218 #define SPINLOCK_LIST_LOCK() /* nothing */
219
220 #define SPINLOCK_LIST_UNLOCK() /* nothing */
221 #endif /* MULTIPROCESSOR */ /* } */
222
223 TAILQ_HEAD(, lock) spinlock_list =
224 TAILQ_HEAD_INITIALIZER(spinlock_list);
225
226 #define HAVEIT(lkp) \
227 do { \
228 if ((lkp)->lk_flags & LK_SPIN) { \
229 int s = splhigh(); \
230 SPINLOCK_LIST_LOCK(); \
231 /* XXX Cast away volatile. */ \
232 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
233 lk_list); \
234 SPINLOCK_LIST_UNLOCK(); \
235 splx(s); \
236 } \
237 } while (/*CONSTCOND*/0)
238
239 #define DONTHAVEIT(lkp) \
240 do { \
241 if ((lkp)->lk_flags & LK_SPIN) { \
242 int s = splhigh(); \
243 SPINLOCK_LIST_LOCK(); \
244 /* XXX Cast away volatile. */ \
245 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
246 lk_list); \
247 SPINLOCK_LIST_UNLOCK(); \
248 splx(s); \
249 } \
250 } while (/*CONSTCOND*/0)
251 #else
252 #define HAVEIT(lkp) /* nothing */
253
254 #define DONTHAVEIT(lkp) /* nothing */
255 #endif /* LOCKDEBUG */ /* } */
256
257 #if defined(LOCKDEBUG)
258 /*
259 * Lock debug printing routine; can be configured to print to console
260 * or log to syslog.
261 */
262 void
263 lock_printf(const char *fmt, ...)
264 {
265 va_list ap;
266
267 va_start(ap, fmt);
268 if (lock_debug_syslog)
269 vlog(LOG_DEBUG, fmt, ap);
270 else
271 vprintf(fmt, ap);
272 va_end(ap);
273 }
274 #endif /* LOCKDEBUG */
275
276 /*
277 * Initialize a lock; required before use.
278 */
279 void
280 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
281 {
282
283 memset(lkp, 0, sizeof(struct lock));
284 simple_lock_init(&lkp->lk_interlock);
285 lkp->lk_flags = flags & LK_EXTFLG_MASK;
286 if (flags & LK_SPIN)
287 lkp->lk_cpu = LK_NOCPU;
288 else {
289 lkp->lk_lockholder = LK_NOPROC;
290 lkp->lk_prio = prio;
291 lkp->lk_timo = timo;
292 }
293 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
294 }
295
296 /*
297 * Determine the status of a lock.
298 */
299 int
300 lockstatus(struct lock *lkp)
301 {
302 int lock_type = 0;
303
304 simple_lock(&lkp->lk_interlock);
305 if (lkp->lk_exclusivecount != 0)
306 lock_type = LK_EXCLUSIVE;
307 else if (lkp->lk_sharecount != 0)
308 lock_type = LK_SHARED;
309 simple_unlock(&lkp->lk_interlock);
310 return (lock_type);
311 }
312
313 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
314 /*
315 * Make sure no spin locks are held by a CPU that is about
316 * to context switch.
317 */
318 void
319 spinlock_switchcheck(void)
320 {
321 u_long cnt;
322 int s;
323
324 s = splhigh();
325 #if defined(MULTIPROCESSOR)
326 cnt = curcpu()->ci_spin_locks;
327 #else
328 cnt = spin_locks;
329 #endif
330 splx(s);
331
332 if (cnt != 0)
333 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
334 (u_long) cpu_number(), cnt);
335 }
336 #endif /* LOCKDEBUG || DIAGNOSTIC */
337
338 /*
339 * XXX XXX kludge around another kludge..
340 *
341 * vfs_shutdown() may be called from interrupt context, either as a result
342 * of a panic, or from the debugger. It proceeds to call
343 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
344 *
345 * We would like to make an attempt to sync the filesystems in this case, so
346 * if this happens, we treat attempts to acquire locks specially.
347 * All locks are acquired on behalf of proc0.
348 *
349 * If we've already paniced, we don't block waiting for locks, but
350 * just barge right ahead since we're already going down in flames.
351 */
352
353 /*
354 * Set, change, or release a lock.
355 *
356 * Shared requests increment the shared count. Exclusive requests set the
357 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
358 * accepted shared locks and shared-to-exclusive upgrades to go away.
359 */
360 int
361 lockmgr(__volatile struct lock *lkp, u_int flags,
362 struct simplelock *interlkp)
363 {
364 int error;
365 pid_t pid;
366 int extflags;
367 cpuid_t cpu_id;
368 struct proc *p = curproc;
369 int lock_shutdown_noblock = 0;
370
371 error = 0;
372
373 simple_lock(&lkp->lk_interlock);
374 if (flags & LK_INTERLOCK)
375 simple_unlock(interlkp);
376 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
377
378 #ifdef DIAGNOSTIC /* { */
379 /*
380 * Don't allow spins on sleep locks and don't allow sleeps
381 * on spin locks.
382 */
383 if ((flags ^ lkp->lk_flags) & LK_SPIN)
384 panic("lockmgr: sleep/spin mismatch\n");
385 #endif /* } */
386
387 if (extflags & LK_SPIN)
388 pid = LK_KERNPROC;
389 else {
390 if (p == NULL) {
391 if (!doing_shutdown) {
392 #ifdef DIAGNOSTIC
393 panic("lockmgr: no context");
394 #endif
395 } else {
396 p = &proc0;
397 if (panicstr && (!(flags & LK_NOWAIT))) {
398 flags |= LK_NOWAIT;
399 lock_shutdown_noblock = 1;
400 }
401 }
402 }
403 pid = p->p_pid;
404 }
405 cpu_id = cpu_number();
406
407 /*
408 * Once a lock has drained, the LK_DRAINING flag is set and an
409 * exclusive lock is returned. The only valid operation thereafter
410 * is a single release of that exclusive lock. This final release
411 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
412 * further requests of any sort will result in a panic. The bits
413 * selected for these two flags are chosen so that they will be set
414 * in memory that is freed (freed memory is filled with 0xdeadbeef).
415 * The final release is permitted to give a new lease on life to
416 * the lock by specifying LK_REENABLE.
417 */
418 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
419 #ifdef DIAGNOSTIC /* { */
420 if (lkp->lk_flags & LK_DRAINED)
421 panic("lockmgr: using decommissioned lock");
422 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
423 WEHOLDIT(lkp, pid, cpu_id) == 0)
424 panic("lockmgr: non-release on draining lock: %d\n",
425 flags & LK_TYPE_MASK);
426 #endif /* DIAGNOSTIC */ /* } */
427 lkp->lk_flags &= ~LK_DRAINING;
428 if ((flags & LK_REENABLE) == 0)
429 lkp->lk_flags |= LK_DRAINED;
430 }
431
432 switch (flags & LK_TYPE_MASK) {
433
434 case LK_SHARED:
435 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
436 /*
437 * If just polling, check to see if we will block.
438 */
439 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
440 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
441 error = EBUSY;
442 break;
443 }
444 /*
445 * Wait for exclusive locks and upgrades to clear.
446 */
447 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
448 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
449 if (error)
450 break;
451 lkp->lk_sharecount++;
452 COUNT(lkp, p, cpu_id, 1);
453 break;
454 }
455 /*
456 * We hold an exclusive lock, so downgrade it to shared.
457 * An alternative would be to fail with EDEADLK.
458 */
459 lkp->lk_sharecount++;
460 COUNT(lkp, p, cpu_id, 1);
461 /* fall into downgrade */
462
463 case LK_DOWNGRADE:
464 if (WEHOLDIT(lkp, pid, cpu_id) == 0 ||
465 lkp->lk_exclusivecount == 0)
466 panic("lockmgr: not holding exclusive lock");
467 lkp->lk_sharecount += lkp->lk_exclusivecount;
468 lkp->lk_exclusivecount = 0;
469 lkp->lk_recurselevel = 0;
470 lkp->lk_flags &= ~LK_HAVE_EXCL;
471 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
472 DONTHAVEIT(lkp);
473 WAKEUP_WAITER(lkp);
474 break;
475
476 case LK_EXCLUPGRADE:
477 /*
478 * If another process is ahead of us to get an upgrade,
479 * then we want to fail rather than have an intervening
480 * exclusive access.
481 */
482 if (lkp->lk_flags & LK_WANT_UPGRADE) {
483 lkp->lk_sharecount--;
484 COUNT(lkp, p, cpu_id, -1);
485 error = EBUSY;
486 break;
487 }
488 /* fall into normal upgrade */
489
490 case LK_UPGRADE:
491 /*
492 * Upgrade a shared lock to an exclusive one. If another
493 * shared lock has already requested an upgrade to an
494 * exclusive lock, our shared lock is released and an
495 * exclusive lock is requested (which will be granted
496 * after the upgrade). If we return an error, the file
497 * will always be unlocked.
498 */
499 if (WEHOLDIT(lkp, pid, cpu_id) || lkp->lk_sharecount <= 0)
500 panic("lockmgr: upgrade exclusive lock");
501 lkp->lk_sharecount--;
502 COUNT(lkp, p, cpu_id, -1);
503 /*
504 * If we are just polling, check to see if we will block.
505 */
506 if ((extflags & LK_NOWAIT) &&
507 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
508 lkp->lk_sharecount > 1)) {
509 error = EBUSY;
510 break;
511 }
512 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
513 /*
514 * We are first shared lock to request an upgrade, so
515 * request upgrade and wait for the shared count to
516 * drop to zero, then take exclusive lock.
517 */
518 lkp->lk_flags |= LK_WANT_UPGRADE;
519 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
520 lkp->lk_flags &= ~LK_WANT_UPGRADE;
521 if (error)
522 break;
523 lkp->lk_flags |= LK_HAVE_EXCL;
524 SETHOLDER(lkp, pid, cpu_id);
525 HAVEIT(lkp);
526 if (lkp->lk_exclusivecount != 0)
527 panic("lockmgr: non-zero exclusive count");
528 lkp->lk_exclusivecount = 1;
529 if (extflags & LK_SETRECURSE)
530 lkp->lk_recurselevel = 1;
531 COUNT(lkp, p, cpu_id, 1);
532 break;
533 }
534 /*
535 * Someone else has requested upgrade. Release our shared
536 * lock, awaken upgrade requestor if we are the last shared
537 * lock, then request an exclusive lock.
538 */
539 if (lkp->lk_sharecount == 0)
540 WAKEUP_WAITER(lkp);
541 /* fall into exclusive request */
542
543 case LK_EXCLUSIVE:
544 if (WEHOLDIT(lkp, pid, cpu_id)) {
545 /*
546 * Recursive lock.
547 */
548 if ((extflags & LK_CANRECURSE) == 0 &&
549 lkp->lk_recurselevel == 0) {
550 if (extflags & LK_RECURSEFAIL) {
551 error = EDEADLK;
552 break;
553 } else
554 panic("lockmgr: locking against myself");
555 }
556 lkp->lk_exclusivecount++;
557 if (extflags & LK_SETRECURSE &&
558 lkp->lk_recurselevel == 0)
559 lkp->lk_recurselevel = lkp->lk_exclusivecount;
560 COUNT(lkp, p, cpu_id, 1);
561 break;
562 }
563 /*
564 * If we are just polling, check to see if we will sleep.
565 */
566 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
567 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
568 lkp->lk_sharecount != 0)) {
569 error = EBUSY;
570 break;
571 }
572 /*
573 * Try to acquire the want_exclusive flag.
574 */
575 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
576 (LK_HAVE_EXCL | LK_WANT_EXCL));
577 if (error)
578 break;
579 lkp->lk_flags |= LK_WANT_EXCL;
580 /*
581 * Wait for shared locks and upgrades to finish.
582 */
583 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
584 (lkp->lk_flags & LK_WANT_UPGRADE));
585 lkp->lk_flags &= ~LK_WANT_EXCL;
586 if (error)
587 break;
588 lkp->lk_flags |= LK_HAVE_EXCL;
589 SETHOLDER(lkp, pid, cpu_id);
590 HAVEIT(lkp);
591 if (lkp->lk_exclusivecount != 0)
592 panic("lockmgr: non-zero exclusive count");
593 lkp->lk_exclusivecount = 1;
594 if (extflags & LK_SETRECURSE)
595 lkp->lk_recurselevel = 1;
596 COUNT(lkp, p, cpu_id, 1);
597 break;
598
599 case LK_RELEASE:
600 if (lkp->lk_exclusivecount != 0) {
601 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
602 if (lkp->lk_flags & LK_SPIN) {
603 panic("lockmgr: processor %lu, not "
604 "exclusive lock holder %lu "
605 "unlocking", cpu_id, lkp->lk_cpu);
606 } else {
607 panic("lockmgr: pid %d, not "
608 "exclusive lock holder %d "
609 "unlocking", pid,
610 lkp->lk_lockholder);
611 }
612 }
613 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
614 lkp->lk_recurselevel = 0;
615 lkp->lk_exclusivecount--;
616 COUNT(lkp, p, cpu_id, -1);
617 if (lkp->lk_exclusivecount == 0) {
618 lkp->lk_flags &= ~LK_HAVE_EXCL;
619 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
620 DONTHAVEIT(lkp);
621 }
622 } else if (lkp->lk_sharecount != 0) {
623 lkp->lk_sharecount--;
624 COUNT(lkp, p, cpu_id, -1);
625 }
626 WAKEUP_WAITER(lkp);
627 break;
628
629 case LK_DRAIN:
630 /*
631 * Check that we do not already hold the lock, as it can
632 * never drain if we do. Unfortunately, we have no way to
633 * check for holding a shared lock, but at least we can
634 * check for an exclusive one.
635 */
636 if (WEHOLDIT(lkp, pid, cpu_id))
637 panic("lockmgr: draining against myself");
638 /*
639 * If we are just polling, check to see if we will sleep.
640 */
641 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
642 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
643 lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
644 error = EBUSY;
645 break;
646 }
647 ACQUIRE(lkp, error, extflags, 1,
648 ((lkp->lk_flags &
649 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
650 lkp->lk_sharecount != 0 ||
651 lkp->lk_waitcount != 0));
652 if (error)
653 break;
654 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
655 SETHOLDER(lkp, pid, cpu_id);
656 HAVEIT(lkp);
657 lkp->lk_exclusivecount = 1;
658 /* XXX unlikely that we'd want this */
659 if (extflags & LK_SETRECURSE)
660 lkp->lk_recurselevel = 1;
661 COUNT(lkp, p, cpu_id, 1);
662 break;
663
664 default:
665 simple_unlock(&lkp->lk_interlock);
666 panic("lockmgr: unknown locktype request %d",
667 flags & LK_TYPE_MASK);
668 /* NOTREACHED */
669 }
670 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
671 ((lkp->lk_flags &
672 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
673 lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
674 lkp->lk_flags &= ~LK_WAITDRAIN;
675 wakeup_one((void *)&lkp->lk_flags);
676 }
677 /*
678 * Note that this panic will be a recursive panic, since
679 * we only set lock_shutdown_noblock above if panicstr != NULL.
680 */
681 if (error && lock_shutdown_noblock)
682 panic("lockmgr: deadlock (see previous panic)");
683
684 simple_unlock(&lkp->lk_interlock);
685 return (error);
686 }
687
688 /*
689 * Print out information about state of a lock. Used by VOP_PRINT
690 * routines to display ststus about contained locks.
691 */
692 void
693 lockmgr_printinfo(__volatile struct lock *lkp)
694 {
695
696 if (lkp->lk_sharecount)
697 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
698 lkp->lk_sharecount);
699 else if (lkp->lk_flags & LK_HAVE_EXCL) {
700 printf(" lock type %s: EXCL (count %d) by ",
701 lkp->lk_wmesg, lkp->lk_exclusivecount);
702 if (lkp->lk_flags & LK_SPIN)
703 printf("processor %lu", lkp->lk_cpu);
704 else
705 printf("pid %d", lkp->lk_lockholder);
706 } else
707 printf(" not locked");
708 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
709 printf(" with %d pending", lkp->lk_waitcount);
710 }
711
712 #if defined(LOCKDEBUG) /* { */
713 TAILQ_HEAD(, simplelock) simplelock_list =
714 TAILQ_HEAD_INITIALIZER(simplelock_list);
715
716 #if defined(MULTIPROCESSOR) /* { */
717 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
718
719 #define SLOCK_LIST_LOCK() \
720 __cpu_simple_lock(&simplelock_list_slock.lock_data)
721
722 #define SLOCK_LIST_UNLOCK() \
723 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
724
725 #if defined(__HAVE_ATOMIC_OPERATIONS) /* { */
726 #define SLOCK_COUNT(x) \
727 atomic_add_ulong(&curcpu()->ci_simple_locks, (x))
728 #else
729 #define SLOCK_COUNT(x) /* not safe */
730 #endif /* __HAVE_ATOMIC_OPERATIONS */ /* } */
731 #else
732 u_long simple_locks;
733
734 #define SLOCK_LIST_LOCK() /* nothing */
735
736 #define SLOCK_LIST_UNLOCK() /* nothing */
737
738 #define SLOCK_COUNT(x) simple_locks += (x)
739 #endif /* MULTIPROCESSOR */ /* } */
740
741 #ifdef DDB /* { */
742 int simple_lock_debugger = 0;
743 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
744 #else
745 #define SLOCK_DEBUGGER() /* nothing */
746 #endif /* } */
747
748 #ifdef MULTIPROCESSOR
749 #define SLOCK_MP() lock_printf("on cpu %d\n", cpu_number())
750 #else
751 #define SLOCK_MP() /* nothing */
752 #endif
753
754 #define SLOCK_WHERE(str, alp, id, l) \
755 do { \
756 lock_printf(str); \
757 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
758 SLOCK_MP(); \
759 if ((alp)->lock_file != NULL) \
760 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
761 (alp)->lock_line); \
762 if ((alp)->unlock_file != NULL) \
763 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
764 (alp)->unlock_line); \
765 SLOCK_DEBUGGER(); \
766 } while (/*CONSTCOND*/0)
767
768 /*
769 * Simple lock functions so that the debugger can see from whence
770 * they are being called.
771 */
772 void
773 simple_lock_init(struct simplelock *alp)
774 {
775
776 #if defined(MULTIPROCESSOR) /* { */
777 __cpu_simple_lock_init(&alp->lock_data);
778 #else
779 alp->lock_data = __SIMPLELOCK_UNLOCKED;
780 #endif /* } */
781 alp->lock_file = NULL;
782 alp->lock_line = 0;
783 alp->unlock_file = NULL;
784 alp->unlock_line = 0;
785 alp->lock_holder = 0;
786 }
787
788 void
789 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
790 {
791 cpuid_t cpu_id = cpu_number();
792 int s;
793
794 s = splhigh();
795
796 /*
797 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
798 * don't take any action, and just fall into the normal spin case.
799 */
800 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
801 #if defined(MULTIPROCESSOR) /* { */
802 if (alp->lock_holder == cpu_id) {
803 SLOCK_WHERE("simple_lock: locking against myself\n",
804 alp, id, l);
805 goto out;
806 }
807 #else
808 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
809 goto out;
810 #endif /* MULTIPROCESSOR */ /* } */
811 }
812
813 #if defined(MULTIPROCESSOR) /* { */
814 /* Acquire the lock before modifying any fields. */
815 __cpu_simple_lock(&alp->lock_data);
816 #else
817 alp->lock_data = __SIMPLELOCK_LOCKED;
818 #endif /* } */
819
820 alp->lock_file = id;
821 alp->lock_line = l;
822 alp->lock_holder = cpu_id;
823
824 SLOCK_LIST_LOCK();
825 /* XXX Cast away volatile */
826 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
827 SLOCK_LIST_UNLOCK();
828
829 SLOCK_COUNT(1);
830
831 out:
832 splx(s);
833 }
834
835 int
836 _simple_lock_held(__volatile struct simplelock *alp)
837 {
838 #if defined(MULTIPROCESSOR)
839 cpuid_t cpu_id = cpu_number();
840 int s, locked = 0;
841
842 s = splhigh();
843 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
844 locked = (alp->lock_holder == cpu_id);
845 else
846 __cpu_simple_unlock(&alp->lock_data);
847 splx(s);
848 #else
849 int s, locked;
850
851 s = splhigh();
852 locked = (alp->lock_data == __SIMPLELOCK_LOCKED);
853 splx(s);
854 #endif
855 return (locked);
856 }
857
858 int
859 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
860 {
861 cpuid_t cpu_id = cpu_number();
862 int s, rv = 0;
863
864 s = splhigh();
865
866 /*
867 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
868 * don't take any action.
869 */
870 #if defined(MULTIPROCESSOR) /* { */
871 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
872 if (alp->lock_holder == cpu_id)
873 SLOCK_WHERE("simple_lock_try: locking against myself\n",
874 alp, id, l);
875 goto out;
876 }
877 #else
878 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
879 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
880 goto out;
881 }
882 alp->lock_data = __SIMPLELOCK_LOCKED;
883 #endif /* MULTIPROCESSOR */ /* } */
884
885 /*
886 * At this point, we have acquired the lock.
887 */
888
889 rv = 1;
890
891 alp->lock_file = id;
892 alp->lock_line = l;
893 alp->lock_holder = cpu_id;
894
895 SLOCK_LIST_LOCK();
896 /* XXX Cast away volatile. */
897 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
898 SLOCK_LIST_UNLOCK();
899
900 SLOCK_COUNT(1);
901
902 out:
903 splx(s);
904 return (rv);
905 }
906
907 void
908 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
909 {
910 int s;
911
912 s = splhigh();
913
914 /*
915 * MULTIPROCESSOR case: This is `safe' because we think we hold
916 * the lock, and if we don't, we don't take any action.
917 */
918 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
919 SLOCK_WHERE("simple_unlock: lock not held\n",
920 alp, id, l);
921 goto out;
922 }
923
924 SLOCK_LIST_LOCK();
925 TAILQ_REMOVE(&simplelock_list, alp, list);
926 SLOCK_LIST_UNLOCK();
927
928 SLOCK_COUNT(-1);
929
930 alp->list.tqe_next = NULL; /* sanity */
931 alp->list.tqe_prev = NULL; /* sanity */
932
933 alp->unlock_file = id;
934 alp->unlock_line = l;
935
936 #if defined(MULTIPROCESSOR) /* { */
937 alp->lock_holder = LK_NOCPU;
938 /* Now that we've modified all fields, release the lock. */
939 __cpu_simple_unlock(&alp->lock_data);
940 #else
941 alp->lock_data = __SIMPLELOCK_UNLOCKED;
942 #endif /* } */
943
944 out:
945 splx(s);
946 }
947
948 void
949 simple_lock_dump(void)
950 {
951 struct simplelock *alp;
952 int s;
953
954 s = splhigh();
955 SLOCK_LIST_LOCK();
956 lock_printf("all simple locks:\n");
957 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
958 alp = TAILQ_NEXT(alp, list)) {
959 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
960 alp->lock_file, alp->lock_line);
961 }
962 SLOCK_LIST_UNLOCK();
963 splx(s);
964 }
965
966 void
967 simple_lock_freecheck(void *start, void *end)
968 {
969 struct simplelock *alp;
970 int s;
971
972 s = splhigh();
973 SLOCK_LIST_LOCK();
974 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
975 alp = TAILQ_NEXT(alp, list)) {
976 if ((void *)alp >= start && (void *)alp < end) {
977 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
978 alp, alp->lock_holder, alp->lock_file,
979 alp->lock_line);
980 SLOCK_DEBUGGER();
981 }
982 }
983 SLOCK_LIST_UNLOCK();
984 splx(s);
985 }
986
987 void
988 simple_lock_switchcheck(void)
989 {
990 struct simplelock *alp;
991 cpuid_t cpu_id = cpu_number();
992 int s;
993
994 s = splhigh();
995 SLOCK_LIST_LOCK();
996 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
997 alp = TAILQ_NEXT(alp, list)) {
998 if (alp->lock_holder == cpu_id) {
999 lock_printf("switching with held simple_lock %p "
1000 "CPU %lu %s:%d\n",
1001 alp, alp->lock_holder, alp->lock_file,
1002 alp->lock_line);
1003 SLOCK_DEBUGGER();
1004 }
1005 }
1006 SLOCK_LIST_UNLOCK();
1007 splx(s);
1008 }
1009 #endif /* LOCKDEBUG */ /* } */
1010