kern_lock.c revision 1.43 1 /* $NetBSD: kern_lock.c,v 1.43 2000/08/22 17:31:32 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. All advertising materials mentioning features or use of this software
60 * must display the following acknowledgement:
61 * This product includes software developed by the University of
62 * California, Berkeley and its contributors.
63 * 4. Neither the name of the University nor the names of its contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
71 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
73 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
74 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
75 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
76 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * SUCH DAMAGE.
78 *
79 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
80 */
81
82 #include "opt_multiprocessor.h"
83 #include "opt_lockdebug.h"
84 #include "opt_ddb.h"
85
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/lock.h>
89 #include <sys/systm.h>
90 #include <machine/cpu.h>
91
92 #if defined(__HAVE_ATOMIC_OPERATIONS)
93 #include <machine/atomic.h>
94 #endif
95
96 #if defined(LOCKDEBUG)
97 #include <sys/syslog.h>
98 /*
99 * note that stdarg.h and the ansi style va_start macro is used for both
100 * ansi and traditional c compiles.
101 * XXX: this requires that stdarg.h define: va_alist and va_dcl
102 */
103 #include <machine/stdarg.h>
104
105 void lock_printf(const char *fmt, ...)
106 __attribute__((__format__(__printf__,1,2)));
107
108 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
109 #endif
110
111 /*
112 * Locking primitives implementation.
113 * Locks provide shared/exclusive sychronization.
114 */
115
116 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
117 #if defined(MULTIPROCESSOR) /* { */
118 #if defined(__HAVE_ATOMIC_OPERATIONS) /* { */
119 #define COUNT_CPU(cpu_id, x) \
120 atomic_add_ulong(&curcpu()->ci_spin_locks, (x))
121 #else
122 #define COUNT_CPU(cpu_id, x) /* not safe */
123 #endif /* __HAVE_ATOMIC_OPERATIONS */ /* } */
124 #else
125 u_long spin_locks;
126 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
127 #endif /* MULTIPROCESSOR */ /* } */
128
129 #define COUNT(lkp, p, cpu_id, x) \
130 do { \
131 if ((lkp)->lk_flags & LK_SPIN) \
132 COUNT_CPU((cpu_id), (x)); \
133 else \
134 (p)->p_locks += (x); \
135 } while (/*CONSTCOND*/0)
136 #else
137 #define COUNT(lkp, p, cpu_id, x)
138 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
139
140 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
141 do { \
142 if ((flags) & LK_SPIN) \
143 s = splsched(); \
144 simple_lock(&(lkp)->lk_interlock); \
145 } while (0)
146
147 #define INTERLOCK_RELEASE(lkp, flags, s) \
148 do { \
149 simple_unlock(&(lkp)->lk_interlock); \
150 if ((flags) & LK_SPIN) \
151 splx(s); \
152 } while (0)
153
154 /*
155 * Acquire a resource.
156 */
157 #define ACQUIRE(lkp, error, extflags, drain, wanted) \
158 if ((extflags) & LK_SPIN) { \
159 int interlocked; \
160 \
161 if ((drain) == 0) \
162 (lkp)->lk_waitcount++; \
163 for (interlocked = 1;;) { \
164 if (wanted) { \
165 if (interlocked) { \
166 INTERLOCK_RELEASE((lkp), \
167 LK_SPIN, s); \
168 interlocked = 0; \
169 } \
170 } else if (interlocked) { \
171 break; \
172 } else { \
173 INTERLOCK_ACQUIRE((lkp), LK_SPIN, s); \
174 interlocked = 1; \
175 } \
176 } \
177 if ((drain) == 0) \
178 (lkp)->lk_waitcount--; \
179 KASSERT((wanted) == 0); \
180 error = 0; /* sanity */ \
181 } else { \
182 for (error = 0; wanted; ) { \
183 if ((drain)) \
184 (lkp)->lk_flags |= LK_WAITDRAIN; \
185 else \
186 (lkp)->lk_waitcount++; \
187 /* XXX Cast away volatile. */ \
188 error = ltsleep((drain) ? &(lkp)->lk_flags : \
189 (void *)(lkp), (lkp)->lk_prio, \
190 (lkp)->lk_wmesg, (lkp)->lk_timo, \
191 &(lkp)->lk_interlock); \
192 if ((drain) == 0) \
193 (lkp)->lk_waitcount--; \
194 if (error) \
195 break; \
196 if ((extflags) & LK_SLEEPFAIL) { \
197 error = ENOLCK; \
198 break; \
199 } \
200 } \
201 }
202
203 #define SETHOLDER(lkp, pid, cpu_id) \
204 do { \
205 if ((lkp)->lk_flags & LK_SPIN) \
206 (lkp)->lk_cpu = cpu_id; \
207 else \
208 (lkp)->lk_lockholder = pid; \
209 } while (/*CONSTCOND*/0)
210
211 #define WEHOLDIT(lkp, pid, cpu_id) \
212 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
213 ((lkp)->lk_cpu == (cpu_id)) : ((lkp)->lk_lockholder == (pid)))
214
215 #define WAKEUP_WAITER(lkp) \
216 do { \
217 if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) { \
218 /* XXX Cast away volatile. */ \
219 wakeup_one((void *)(lkp)); \
220 } \
221 } while (/*CONSTCOND*/0)
222
223 #if defined(LOCKDEBUG) /* { */
224 #if defined(MULTIPROCESSOR) /* { */
225 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
226
227 #define SPINLOCK_LIST_LOCK() \
228 __cpu_simple_lock(&spinlock_list_slock.lock_data)
229
230 #define SPINLOCK_LIST_UNLOCK() \
231 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
232 #else
233 #define SPINLOCK_LIST_LOCK() /* nothing */
234
235 #define SPINLOCK_LIST_UNLOCK() /* nothing */
236 #endif /* MULTIPROCESSOR */ /* } */
237
238 TAILQ_HEAD(, lock) spinlock_list =
239 TAILQ_HEAD_INITIALIZER(spinlock_list);
240
241 #define HAVEIT(lkp) \
242 do { \
243 if ((lkp)->lk_flags & LK_SPIN) { \
244 int s = splhigh(); \
245 SPINLOCK_LIST_LOCK(); \
246 /* XXX Cast away volatile. */ \
247 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
248 lk_list); \
249 SPINLOCK_LIST_UNLOCK(); \
250 splx(s); \
251 } \
252 } while (/*CONSTCOND*/0)
253
254 #define DONTHAVEIT(lkp) \
255 do { \
256 if ((lkp)->lk_flags & LK_SPIN) { \
257 int s = splhigh(); \
258 SPINLOCK_LIST_LOCK(); \
259 /* XXX Cast away volatile. */ \
260 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
261 lk_list); \
262 SPINLOCK_LIST_UNLOCK(); \
263 splx(s); \
264 } \
265 } while (/*CONSTCOND*/0)
266 #else
267 #define HAVEIT(lkp) /* nothing */
268
269 #define DONTHAVEIT(lkp) /* nothing */
270 #endif /* LOCKDEBUG */ /* } */
271
272 #if defined(LOCKDEBUG)
273 /*
274 * Lock debug printing routine; can be configured to print to console
275 * or log to syslog.
276 */
277 void
278 lock_printf(const char *fmt, ...)
279 {
280 va_list ap;
281
282 va_start(ap, fmt);
283 if (lock_debug_syslog)
284 vlog(LOG_DEBUG, fmt, ap);
285 else
286 vprintf(fmt, ap);
287 va_end(ap);
288 }
289 #endif /* LOCKDEBUG */
290
291 /*
292 * Initialize a lock; required before use.
293 */
294 void
295 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
296 {
297
298 memset(lkp, 0, sizeof(struct lock));
299 simple_lock_init(&lkp->lk_interlock);
300 lkp->lk_flags = flags & LK_EXTFLG_MASK;
301 if (flags & LK_SPIN)
302 lkp->lk_cpu = LK_NOCPU;
303 else {
304 lkp->lk_lockholder = LK_NOPROC;
305 lkp->lk_prio = prio;
306 lkp->lk_timo = timo;
307 }
308 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
309 }
310
311 /*
312 * Determine the status of a lock.
313 */
314 int
315 lockstatus(struct lock *lkp)
316 {
317 int s, lock_type = 0;
318
319 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
320 if (lkp->lk_exclusivecount != 0)
321 lock_type = LK_EXCLUSIVE;
322 else if (lkp->lk_sharecount != 0)
323 lock_type = LK_SHARED;
324 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
325 return (lock_type);
326 }
327
328 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
329 /*
330 * Make sure no spin locks are held by a CPU that is about
331 * to context switch.
332 */
333 void
334 spinlock_switchcheck(void)
335 {
336 u_long cnt;
337 int s;
338
339 s = splhigh();
340 #if defined(MULTIPROCESSOR)
341 cnt = curcpu()->ci_spin_locks;
342 #else
343 cnt = spin_locks;
344 #endif
345 splx(s);
346
347 if (cnt != 0)
348 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
349 (u_long) cpu_number(), cnt);
350 }
351 #endif /* LOCKDEBUG || DIAGNOSTIC */
352
353 /*
354 * XXX XXX kludge around another kludge..
355 *
356 * vfs_shutdown() may be called from interrupt context, either as a result
357 * of a panic, or from the debugger. It proceeds to call
358 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
359 *
360 * We would like to make an attempt to sync the filesystems in this case, so
361 * if this happens, we treat attempts to acquire locks specially.
362 * All locks are acquired on behalf of proc0.
363 *
364 * If we've already paniced, we don't block waiting for locks, but
365 * just barge right ahead since we're already going down in flames.
366 */
367
368 /*
369 * Set, change, or release a lock.
370 *
371 * Shared requests increment the shared count. Exclusive requests set the
372 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
373 * accepted shared locks and shared-to-exclusive upgrades to go away.
374 */
375 int
376 lockmgr(__volatile struct lock *lkp, u_int flags,
377 struct simplelock *interlkp)
378 {
379 int error;
380 pid_t pid;
381 int extflags;
382 cpuid_t cpu_id;
383 struct proc *p = curproc;
384 int lock_shutdown_noblock = 0;
385 int s;
386
387 error = 0;
388
389 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
390 if (flags & LK_INTERLOCK)
391 simple_unlock(interlkp);
392 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
393
394 #ifdef DIAGNOSTIC /* { */
395 /*
396 * Don't allow spins on sleep locks and don't allow sleeps
397 * on spin locks.
398 */
399 if ((flags ^ lkp->lk_flags) & LK_SPIN)
400 panic("lockmgr: sleep/spin mismatch\n");
401 #endif /* } */
402
403 if (extflags & LK_SPIN)
404 pid = LK_KERNPROC;
405 else {
406 if (p == NULL) {
407 if (!doing_shutdown) {
408 #ifdef DIAGNOSTIC
409 panic("lockmgr: no context");
410 #endif
411 } else {
412 p = &proc0;
413 if (panicstr && (!(flags & LK_NOWAIT))) {
414 flags |= LK_NOWAIT;
415 lock_shutdown_noblock = 1;
416 }
417 }
418 }
419 pid = p->p_pid;
420 }
421 cpu_id = cpu_number();
422
423 /*
424 * Once a lock has drained, the LK_DRAINING flag is set and an
425 * exclusive lock is returned. The only valid operation thereafter
426 * is a single release of that exclusive lock. This final release
427 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
428 * further requests of any sort will result in a panic. The bits
429 * selected for these two flags are chosen so that they will be set
430 * in memory that is freed (freed memory is filled with 0xdeadbeef).
431 * The final release is permitted to give a new lease on life to
432 * the lock by specifying LK_REENABLE.
433 */
434 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
435 #ifdef DIAGNOSTIC /* { */
436 if (lkp->lk_flags & LK_DRAINED)
437 panic("lockmgr: using decommissioned lock");
438 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
439 WEHOLDIT(lkp, pid, cpu_id) == 0)
440 panic("lockmgr: non-release on draining lock: %d\n",
441 flags & LK_TYPE_MASK);
442 #endif /* DIAGNOSTIC */ /* } */
443 lkp->lk_flags &= ~LK_DRAINING;
444 if ((flags & LK_REENABLE) == 0)
445 lkp->lk_flags |= LK_DRAINED;
446 }
447
448 switch (flags & LK_TYPE_MASK) {
449
450 case LK_SHARED:
451 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
452 /*
453 * If just polling, check to see if we will block.
454 */
455 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
456 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
457 error = EBUSY;
458 break;
459 }
460 /*
461 * Wait for exclusive locks and upgrades to clear.
462 */
463 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
464 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
465 if (error)
466 break;
467 lkp->lk_sharecount++;
468 COUNT(lkp, p, cpu_id, 1);
469 break;
470 }
471 /*
472 * We hold an exclusive lock, so downgrade it to shared.
473 * An alternative would be to fail with EDEADLK.
474 */
475 lkp->lk_sharecount++;
476 COUNT(lkp, p, cpu_id, 1);
477 /* fall into downgrade */
478
479 case LK_DOWNGRADE:
480 if (WEHOLDIT(lkp, pid, cpu_id) == 0 ||
481 lkp->lk_exclusivecount == 0)
482 panic("lockmgr: not holding exclusive lock");
483 lkp->lk_sharecount += lkp->lk_exclusivecount;
484 lkp->lk_exclusivecount = 0;
485 lkp->lk_recurselevel = 0;
486 lkp->lk_flags &= ~LK_HAVE_EXCL;
487 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
488 DONTHAVEIT(lkp);
489 WAKEUP_WAITER(lkp);
490 break;
491
492 case LK_EXCLUPGRADE:
493 /*
494 * If another process is ahead of us to get an upgrade,
495 * then we want to fail rather than have an intervening
496 * exclusive access.
497 */
498 if (lkp->lk_flags & LK_WANT_UPGRADE) {
499 lkp->lk_sharecount--;
500 COUNT(lkp, p, cpu_id, -1);
501 error = EBUSY;
502 break;
503 }
504 /* fall into normal upgrade */
505
506 case LK_UPGRADE:
507 /*
508 * Upgrade a shared lock to an exclusive one. If another
509 * shared lock has already requested an upgrade to an
510 * exclusive lock, our shared lock is released and an
511 * exclusive lock is requested (which will be granted
512 * after the upgrade). If we return an error, the file
513 * will always be unlocked.
514 */
515 if (WEHOLDIT(lkp, pid, cpu_id) || lkp->lk_sharecount <= 0)
516 panic("lockmgr: upgrade exclusive lock");
517 lkp->lk_sharecount--;
518 COUNT(lkp, p, cpu_id, -1);
519 /*
520 * If we are just polling, check to see if we will block.
521 */
522 if ((extflags & LK_NOWAIT) &&
523 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
524 lkp->lk_sharecount > 1)) {
525 error = EBUSY;
526 break;
527 }
528 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
529 /*
530 * We are first shared lock to request an upgrade, so
531 * request upgrade and wait for the shared count to
532 * drop to zero, then take exclusive lock.
533 */
534 lkp->lk_flags |= LK_WANT_UPGRADE;
535 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
536 lkp->lk_flags &= ~LK_WANT_UPGRADE;
537 if (error)
538 break;
539 lkp->lk_flags |= LK_HAVE_EXCL;
540 SETHOLDER(lkp, pid, cpu_id);
541 HAVEIT(lkp);
542 if (lkp->lk_exclusivecount != 0)
543 panic("lockmgr: non-zero exclusive count");
544 lkp->lk_exclusivecount = 1;
545 if (extflags & LK_SETRECURSE)
546 lkp->lk_recurselevel = 1;
547 COUNT(lkp, p, cpu_id, 1);
548 break;
549 }
550 /*
551 * Someone else has requested upgrade. Release our shared
552 * lock, awaken upgrade requestor if we are the last shared
553 * lock, then request an exclusive lock.
554 */
555 if (lkp->lk_sharecount == 0)
556 WAKEUP_WAITER(lkp);
557 /* fall into exclusive request */
558
559 case LK_EXCLUSIVE:
560 if (WEHOLDIT(lkp, pid, cpu_id)) {
561 /*
562 * Recursive lock.
563 */
564 if ((extflags & LK_CANRECURSE) == 0 &&
565 lkp->lk_recurselevel == 0) {
566 if (extflags & LK_RECURSEFAIL) {
567 error = EDEADLK;
568 break;
569 } else
570 panic("lockmgr: locking against myself");
571 }
572 lkp->lk_exclusivecount++;
573 if (extflags & LK_SETRECURSE &&
574 lkp->lk_recurselevel == 0)
575 lkp->lk_recurselevel = lkp->lk_exclusivecount;
576 COUNT(lkp, p, cpu_id, 1);
577 break;
578 }
579 /*
580 * If we are just polling, check to see if we will sleep.
581 */
582 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
583 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
584 lkp->lk_sharecount != 0)) {
585 error = EBUSY;
586 break;
587 }
588 /*
589 * Try to acquire the want_exclusive flag.
590 */
591 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
592 (LK_HAVE_EXCL | LK_WANT_EXCL));
593 if (error)
594 break;
595 lkp->lk_flags |= LK_WANT_EXCL;
596 /*
597 * Wait for shared locks and upgrades to finish.
598 */
599 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
600 (lkp->lk_flags & LK_WANT_UPGRADE));
601 lkp->lk_flags &= ~LK_WANT_EXCL;
602 if (error)
603 break;
604 lkp->lk_flags |= LK_HAVE_EXCL;
605 SETHOLDER(lkp, pid, cpu_id);
606 HAVEIT(lkp);
607 if (lkp->lk_exclusivecount != 0)
608 panic("lockmgr: non-zero exclusive count");
609 lkp->lk_exclusivecount = 1;
610 if (extflags & LK_SETRECURSE)
611 lkp->lk_recurselevel = 1;
612 COUNT(lkp, p, cpu_id, 1);
613 break;
614
615 case LK_RELEASE:
616 if (lkp->lk_exclusivecount != 0) {
617 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
618 if (lkp->lk_flags & LK_SPIN) {
619 panic("lockmgr: processor %lu, not "
620 "exclusive lock holder %lu "
621 "unlocking", cpu_id, lkp->lk_cpu);
622 } else {
623 panic("lockmgr: pid %d, not "
624 "exclusive lock holder %d "
625 "unlocking", pid,
626 lkp->lk_lockholder);
627 }
628 }
629 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
630 lkp->lk_recurselevel = 0;
631 lkp->lk_exclusivecount--;
632 COUNT(lkp, p, cpu_id, -1);
633 if (lkp->lk_exclusivecount == 0) {
634 lkp->lk_flags &= ~LK_HAVE_EXCL;
635 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
636 DONTHAVEIT(lkp);
637 }
638 } else if (lkp->lk_sharecount != 0) {
639 lkp->lk_sharecount--;
640 COUNT(lkp, p, cpu_id, -1);
641 }
642 #ifdef DIAGNOSTIC
643 else
644 panic("lockmgr: release of unlocked lock!");
645 #endif
646 WAKEUP_WAITER(lkp);
647 break;
648
649 case LK_DRAIN:
650 /*
651 * Check that we do not already hold the lock, as it can
652 * never drain if we do. Unfortunately, we have no way to
653 * check for holding a shared lock, but at least we can
654 * check for an exclusive one.
655 */
656 if (WEHOLDIT(lkp, pid, cpu_id))
657 panic("lockmgr: draining against myself");
658 /*
659 * If we are just polling, check to see if we will sleep.
660 */
661 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
662 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
663 lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
664 error = EBUSY;
665 break;
666 }
667 ACQUIRE(lkp, error, extflags, 1,
668 ((lkp->lk_flags &
669 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
670 lkp->lk_sharecount != 0 ||
671 lkp->lk_waitcount != 0));
672 if (error)
673 break;
674 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
675 SETHOLDER(lkp, pid, cpu_id);
676 HAVEIT(lkp);
677 lkp->lk_exclusivecount = 1;
678 /* XXX unlikely that we'd want this */
679 if (extflags & LK_SETRECURSE)
680 lkp->lk_recurselevel = 1;
681 COUNT(lkp, p, cpu_id, 1);
682 break;
683
684 default:
685 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
686 panic("lockmgr: unknown locktype request %d",
687 flags & LK_TYPE_MASK);
688 /* NOTREACHED */
689 }
690 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
691 ((lkp->lk_flags &
692 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
693 lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
694 lkp->lk_flags &= ~LK_WAITDRAIN;
695 wakeup_one((void *)&lkp->lk_flags);
696 }
697 /*
698 * Note that this panic will be a recursive panic, since
699 * we only set lock_shutdown_noblock above if panicstr != NULL.
700 */
701 if (error && lock_shutdown_noblock)
702 panic("lockmgr: deadlock (see previous panic)");
703
704 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
705 return (error);
706 }
707
708 /*
709 * Print out information about state of a lock. Used by VOP_PRINT
710 * routines to display ststus about contained locks.
711 */
712 void
713 lockmgr_printinfo(__volatile struct lock *lkp)
714 {
715
716 if (lkp->lk_sharecount)
717 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
718 lkp->lk_sharecount);
719 else if (lkp->lk_flags & LK_HAVE_EXCL) {
720 printf(" lock type %s: EXCL (count %d) by ",
721 lkp->lk_wmesg, lkp->lk_exclusivecount);
722 if (lkp->lk_flags & LK_SPIN)
723 printf("processor %lu", lkp->lk_cpu);
724 else
725 printf("pid %d", lkp->lk_lockholder);
726 } else
727 printf(" not locked");
728 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
729 printf(" with %d pending", lkp->lk_waitcount);
730 }
731
732 #if defined(LOCKDEBUG) /* { */
733 TAILQ_HEAD(, simplelock) simplelock_list =
734 TAILQ_HEAD_INITIALIZER(simplelock_list);
735
736 #if defined(MULTIPROCESSOR) /* { */
737 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
738
739 #define SLOCK_LIST_LOCK() \
740 __cpu_simple_lock(&simplelock_list_slock.lock_data)
741
742 #define SLOCK_LIST_UNLOCK() \
743 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
744
745 #if defined(__HAVE_ATOMIC_OPERATIONS) /* { */
746 #define SLOCK_COUNT(x) \
747 atomic_add_ulong(&curcpu()->ci_simple_locks, (x))
748 #else
749 #define SLOCK_COUNT(x) /* not safe */
750 #endif /* __HAVE_ATOMIC_OPERATIONS */ /* } */
751 #else
752 u_long simple_locks;
753
754 #define SLOCK_LIST_LOCK() /* nothing */
755
756 #define SLOCK_LIST_UNLOCK() /* nothing */
757
758 #define SLOCK_COUNT(x) simple_locks += (x)
759 #endif /* MULTIPROCESSOR */ /* } */
760
761 #ifdef DDB /* { */
762 int simple_lock_debugger = 0;
763 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
764 #else
765 #define SLOCK_DEBUGGER() /* nothing */
766 #endif /* } */
767
768 #ifdef MULTIPROCESSOR
769 #define SLOCK_MP() lock_printf("on cpu %d\n", cpu_number())
770 #else
771 #define SLOCK_MP() /* nothing */
772 #endif
773
774 #define SLOCK_WHERE(str, alp, id, l) \
775 do { \
776 lock_printf(str); \
777 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
778 SLOCK_MP(); \
779 if ((alp)->lock_file != NULL) \
780 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
781 (alp)->lock_line); \
782 if ((alp)->unlock_file != NULL) \
783 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
784 (alp)->unlock_line); \
785 SLOCK_DEBUGGER(); \
786 } while (/*CONSTCOND*/0)
787
788 /*
789 * Simple lock functions so that the debugger can see from whence
790 * they are being called.
791 */
792 void
793 simple_lock_init(struct simplelock *alp)
794 {
795
796 #if defined(MULTIPROCESSOR) /* { */
797 __cpu_simple_lock_init(&alp->lock_data);
798 #else
799 alp->lock_data = __SIMPLELOCK_UNLOCKED;
800 #endif /* } */
801 alp->lock_file = NULL;
802 alp->lock_line = 0;
803 alp->unlock_file = NULL;
804 alp->unlock_line = 0;
805 alp->lock_holder = LK_NOCPU;
806 }
807
808 void
809 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
810 {
811 cpuid_t cpu_id = cpu_number();
812 int s;
813
814 s = splhigh();
815
816 /*
817 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
818 * don't take any action, and just fall into the normal spin case.
819 */
820 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
821 #if defined(MULTIPROCESSOR) /* { */
822 if (alp->lock_holder == cpu_id) {
823 SLOCK_WHERE("simple_lock: locking against myself\n",
824 alp, id, l);
825 goto out;
826 }
827 #else
828 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
829 goto out;
830 #endif /* MULTIPROCESSOR */ /* } */
831 }
832
833 #if defined(MULTIPROCESSOR) /* { */
834 /* Acquire the lock before modifying any fields. */
835 __cpu_simple_lock(&alp->lock_data);
836 #else
837 alp->lock_data = __SIMPLELOCK_LOCKED;
838 #endif /* } */
839
840 KASSERT(alp->lock_holder == LK_NOCPU);
841
842 alp->lock_file = id;
843 alp->lock_line = l;
844 alp->lock_holder = cpu_id;
845
846 SLOCK_LIST_LOCK();
847 /* XXX Cast away volatile */
848 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
849 SLOCK_LIST_UNLOCK();
850
851 SLOCK_COUNT(1);
852
853 out:
854 splx(s);
855 }
856
857 int
858 _simple_lock_held(__volatile struct simplelock *alp)
859 {
860 cpuid_t cpu_id = cpu_number();
861 int s, locked = 0;
862
863 s = splhigh();
864
865 #if defined(MULTIPROCESSOR)
866 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
867 locked = (alp->lock_holder == cpu_id);
868 else
869 __cpu_simple_unlock(&alp->lock_data);
870 #else
871 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
872 locked = 1;
873 KASSERT(alp->lock_holder == cpu_id);
874 }
875 #endif
876
877 splx(s);
878
879 return (locked);
880 }
881
882 int
883 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
884 {
885 cpuid_t cpu_id = cpu_number();
886 int s, rv = 0;
887
888 s = splhigh();
889
890 /*
891 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
892 * don't take any action.
893 */
894 #if defined(MULTIPROCESSOR) /* { */
895 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
896 if (alp->lock_holder == cpu_id)
897 SLOCK_WHERE("simple_lock_try: locking against myself\n",
898 alp, id, l);
899 goto out;
900 }
901 #else
902 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
903 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
904 goto out;
905 }
906 alp->lock_data = __SIMPLELOCK_LOCKED;
907 #endif /* MULTIPROCESSOR */ /* } */
908
909 /*
910 * At this point, we have acquired the lock.
911 */
912
913 rv = 1;
914
915 alp->lock_file = id;
916 alp->lock_line = l;
917 alp->lock_holder = cpu_id;
918
919 SLOCK_LIST_LOCK();
920 /* XXX Cast away volatile. */
921 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
922 SLOCK_LIST_UNLOCK();
923
924 SLOCK_COUNT(1);
925
926 out:
927 splx(s);
928 return (rv);
929 }
930
931 void
932 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
933 {
934 int s;
935
936 s = splhigh();
937
938 /*
939 * MULTIPROCESSOR case: This is `safe' because we think we hold
940 * the lock, and if we don't, we don't take any action.
941 */
942 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
943 SLOCK_WHERE("simple_unlock: lock not held\n",
944 alp, id, l);
945 goto out;
946 }
947
948 SLOCK_LIST_LOCK();
949 TAILQ_REMOVE(&simplelock_list, alp, list);
950 SLOCK_LIST_UNLOCK();
951
952 SLOCK_COUNT(-1);
953
954 alp->list.tqe_next = NULL; /* sanity */
955 alp->list.tqe_prev = NULL; /* sanity */
956
957 alp->unlock_file = id;
958 alp->unlock_line = l;
959
960 #if defined(MULTIPROCESSOR) /* { */
961 alp->lock_holder = LK_NOCPU;
962 /* Now that we've modified all fields, release the lock. */
963 __cpu_simple_unlock(&alp->lock_data);
964 #else
965 alp->lock_data = __SIMPLELOCK_UNLOCKED;
966 KASSERT(alp->lock_holder == cpu_number());
967 alp->lock_holder = LK_NOCPU;
968 #endif /* } */
969
970 out:
971 splx(s);
972 }
973
974 void
975 simple_lock_dump(void)
976 {
977 struct simplelock *alp;
978 int s;
979
980 s = splhigh();
981 SLOCK_LIST_LOCK();
982 lock_printf("all simple locks:\n");
983 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
984 alp = TAILQ_NEXT(alp, list)) {
985 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
986 alp->lock_file, alp->lock_line);
987 }
988 SLOCK_LIST_UNLOCK();
989 splx(s);
990 }
991
992 void
993 simple_lock_freecheck(void *start, void *end)
994 {
995 struct simplelock *alp;
996 int s;
997
998 s = splhigh();
999 SLOCK_LIST_LOCK();
1000 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1001 alp = TAILQ_NEXT(alp, list)) {
1002 if ((void *)alp >= start && (void *)alp < end) {
1003 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1004 alp, alp->lock_holder, alp->lock_file,
1005 alp->lock_line);
1006 SLOCK_DEBUGGER();
1007 }
1008 }
1009 SLOCK_LIST_UNLOCK();
1010 splx(s);
1011 }
1012
1013 void
1014 simple_lock_switchcheck(void)
1015 {
1016 struct simplelock *alp;
1017 cpuid_t cpu_id = cpu_number();
1018 int s;
1019
1020 /*
1021 * We must be holding exactly one lock: the sched_lock.
1022 */
1023
1024 SCHED_ASSERT_LOCKED();
1025
1026 s = splhigh(); /* XXX spllock */
1027 SLOCK_LIST_LOCK();
1028 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1029 alp = TAILQ_NEXT(alp, list)) {
1030 if (alp == &sched_lock)
1031 continue;
1032 if (alp->lock_holder == cpu_id) {
1033 lock_printf("switching with held simple_lock %p "
1034 "CPU %lu %s:%d\n",
1035 alp, alp->lock_holder, alp->lock_file,
1036 alp->lock_line);
1037 SLOCK_DEBUGGER();
1038 }
1039 }
1040 SLOCK_LIST_UNLOCK();
1041 splx(s);
1042 }
1043 #endif /* LOCKDEBUG */ /* } */
1044