Home | History | Annotate | Line # | Download | only in kern
kern_lock.c revision 1.44
      1 /*	$NetBSD: kern_lock.c,v 1.44 2000/08/22 19:47:26 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * This code is derived from software contributed to The NetBSD Foundation
     12  * by Ross Harvey.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  * 3. All advertising materials mentioning features or use of this software
     23  *    must display the following acknowledgement:
     24  *	This product includes software developed by the NetBSD
     25  *	Foundation, Inc. and its contributors.
     26  * 4. Neither the name of The NetBSD Foundation nor the names of its
     27  *    contributors may be used to endorse or promote products derived
     28  *    from this software without specific prior written permission.
     29  *
     30  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     31  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     32  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     33  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     34  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     35  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     36  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     37  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     38  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     40  * POSSIBILITY OF SUCH DAMAGE.
     41  */
     42 
     43 /*
     44  * Copyright (c) 1995
     45  *	The Regents of the University of California.  All rights reserved.
     46  *
     47  * This code contains ideas from software contributed to Berkeley by
     48  * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
     49  * System project at Carnegie-Mellon University.
     50  *
     51  * Redistribution and use in source and binary forms, with or without
     52  * modification, are permitted provided that the following conditions
     53  * are met:
     54  * 1. Redistributions of source code must retain the above copyright
     55  *    notice, this list of conditions and the following disclaimer.
     56  * 2. Redistributions in binary form must reproduce the above copyright
     57  *    notice, this list of conditions and the following disclaimer in the
     58  *    documentation and/or other materials provided with the distribution.
     59  * 3. All advertising materials mentioning features or use of this software
     60  *    must display the following acknowledgement:
     61  *	This product includes software developed by the University of
     62  *	California, Berkeley and its contributors.
     63  * 4. Neither the name of the University nor the names of its contributors
     64  *    may be used to endorse or promote products derived from this software
     65  *    without specific prior written permission.
     66  *
     67  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     70  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     71  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     72  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     73  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     74  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     75  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     76  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     77  * SUCH DAMAGE.
     78  *
     79  *	@(#)kern_lock.c	8.18 (Berkeley) 5/21/95
     80  */
     81 
     82 #include "opt_multiprocessor.h"
     83 #include "opt_lockdebug.h"
     84 #include "opt_ddb.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/proc.h>
     88 #include <sys/lock.h>
     89 #include <sys/systm.h>
     90 #include <machine/cpu.h>
     91 
     92 #if defined(__HAVE_ATOMIC_OPERATIONS)
     93 #include <machine/atomic.h>
     94 #endif
     95 
     96 #if defined(LOCKDEBUG)
     97 #include <sys/syslog.h>
     98 /*
     99  * note that stdarg.h and the ansi style va_start macro is used for both
    100  * ansi and traditional c compiles.
    101  * XXX: this requires that stdarg.h define: va_alist and va_dcl
    102  */
    103 #include <machine/stdarg.h>
    104 
    105 void	lock_printf(const char *fmt, ...)
    106     __attribute__((__format__(__printf__,1,2)));
    107 
    108 int	lock_debug_syslog = 0;	/* defaults to printf, but can be patched */
    109 #endif
    110 
    111 /*
    112  * Locking primitives implementation.
    113  * Locks provide shared/exclusive sychronization.
    114  */
    115 
    116 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
    117 #if defined(MULTIPROCESSOR) /* { */
    118 #if defined(__HAVE_ATOMIC_OPERATIONS) /* { */
    119 #define	COUNT_CPU(cpu_id, x)						\
    120 	atomic_add_ulong(&curcpu()->ci_spin_locks, (x))
    121 #else
    122 #define	COUNT_CPU(cpu_id, x)	/* not safe */
    123 #endif /* __HAVE_ATOMIC_OPERATIONS */ /* } */
    124 #else
    125 u_long	spin_locks;
    126 #define	COUNT_CPU(cpu_id, x)	spin_locks += (x)
    127 #endif /* MULTIPROCESSOR */ /* } */
    128 
    129 #define	COUNT(lkp, p, cpu_id, x)					\
    130 do {									\
    131 	if ((lkp)->lk_flags & LK_SPIN)					\
    132 		COUNT_CPU((cpu_id), (x));				\
    133 	else								\
    134 		(p)->p_locks += (x);					\
    135 } while (/*CONSTCOND*/0)
    136 #else
    137 #define COUNT(lkp, p, cpu_id, x)
    138 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
    139 
    140 #define	INTERLOCK_ACQUIRE(lkp, flags, s)				\
    141 do {									\
    142 	if ((flags) & LK_SPIN)						\
    143 		s = splsched();						\
    144 	simple_lock(&(lkp)->lk_interlock);				\
    145 } while (0)
    146 
    147 #define	INTERLOCK_RELEASE(lkp, flags, s)				\
    148 do {									\
    149 	simple_unlock(&(lkp)->lk_interlock);				\
    150 	if ((flags) & LK_SPIN)						\
    151 		splx(s);						\
    152 } while (0)
    153 
    154 /*
    155  * Acquire a resource.
    156  */
    157 #define ACQUIRE(lkp, error, extflags, drain, wanted)			\
    158 	if ((extflags) & LK_SPIN) {					\
    159 		int interlocked;					\
    160 									\
    161 		if ((drain) == 0)					\
    162 			(lkp)->lk_waitcount++;				\
    163 		for (interlocked = 1;;) {				\
    164 			if (wanted) {					\
    165 				if (interlocked) {			\
    166 					INTERLOCK_RELEASE((lkp),	\
    167 					    LK_SPIN, s);		\
    168 					interlocked = 0;		\
    169 				}					\
    170 			} else if (interlocked) {			\
    171 				break;					\
    172 			} else {					\
    173 				INTERLOCK_ACQUIRE((lkp), LK_SPIN, s);	\
    174 				interlocked = 1;			\
    175 			}						\
    176 		}							\
    177 		if ((drain) == 0)					\
    178 			(lkp)->lk_waitcount--;				\
    179 		KASSERT((wanted) == 0);					\
    180 		error = 0;	/* sanity */				\
    181 	} else {							\
    182 		for (error = 0; wanted; ) {				\
    183 			if ((drain))					\
    184 				(lkp)->lk_flags |= LK_WAITDRAIN;	\
    185 			else						\
    186 				(lkp)->lk_waitcount++;			\
    187 			/* XXX Cast away volatile. */			\
    188 			error = ltsleep((drain) ? &(lkp)->lk_flags :	\
    189 			    (void *)(lkp), (lkp)->lk_prio,		\
    190 			    (lkp)->lk_wmesg, (lkp)->lk_timo,		\
    191 			    &(lkp)->lk_interlock);			\
    192 			if ((drain) == 0)				\
    193 				(lkp)->lk_waitcount--;			\
    194 			if (error)					\
    195 				break;					\
    196 			if ((extflags) & LK_SLEEPFAIL) {		\
    197 				error = ENOLCK;				\
    198 				break;					\
    199 			}						\
    200 		}							\
    201 	}
    202 
    203 #define	SETHOLDER(lkp, pid, cpu_id)					\
    204 do {									\
    205 	if ((lkp)->lk_flags & LK_SPIN)					\
    206 		(lkp)->lk_cpu = cpu_id;					\
    207 	else								\
    208 		(lkp)->lk_lockholder = pid;				\
    209 } while (/*CONSTCOND*/0)
    210 
    211 #define	WEHOLDIT(lkp, pid, cpu_id)					\
    212 	(((lkp)->lk_flags & LK_SPIN) != 0 ?				\
    213 	 ((lkp)->lk_cpu == (cpu_id)) : ((lkp)->lk_lockholder == (pid)))
    214 
    215 #define	WAKEUP_WAITER(lkp)						\
    216 do {									\
    217 	if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) {	\
    218 		/* XXX Cast away volatile. */				\
    219 		wakeup_one((void *)(lkp));				\
    220 	}								\
    221 } while (/*CONSTCOND*/0)
    222 
    223 #if defined(LOCKDEBUG) /* { */
    224 #if defined(MULTIPROCESSOR) /* { */
    225 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
    226 
    227 #define	SPINLOCK_LIST_LOCK()						\
    228 	__cpu_simple_lock(&spinlock_list_slock.lock_data)
    229 
    230 #define	SPINLOCK_LIST_UNLOCK()						\
    231 	__cpu_simple_unlock(&spinlock_list_slock.lock_data)
    232 #else
    233 #define	SPINLOCK_LIST_LOCK()	/* nothing */
    234 
    235 #define	SPINLOCK_LIST_UNLOCK()	/* nothing */
    236 #endif /* MULTIPROCESSOR */ /* } */
    237 
    238 TAILQ_HEAD(, lock) spinlock_list =
    239     TAILQ_HEAD_INITIALIZER(spinlock_list);
    240 
    241 #define	HAVEIT(lkp)							\
    242 do {									\
    243 	if ((lkp)->lk_flags & LK_SPIN) {				\
    244 		int s = spllock();					\
    245 		SPINLOCK_LIST_LOCK();					\
    246 		/* XXX Cast away volatile. */				\
    247 		TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp),	\
    248 		    lk_list);						\
    249 		SPINLOCK_LIST_UNLOCK();					\
    250 		splx(s);						\
    251 	}								\
    252 } while (/*CONSTCOND*/0)
    253 
    254 #define	DONTHAVEIT(lkp)							\
    255 do {									\
    256 	if ((lkp)->lk_flags & LK_SPIN) {				\
    257 		int s = spllock();					\
    258 		SPINLOCK_LIST_LOCK();					\
    259 		/* XXX Cast away volatile. */				\
    260 		TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp),	\
    261 		    lk_list);						\
    262 		SPINLOCK_LIST_UNLOCK();					\
    263 		splx(s);						\
    264 	}								\
    265 } while (/*CONSTCOND*/0)
    266 #else
    267 #define	HAVEIT(lkp)		/* nothing */
    268 
    269 #define	DONTHAVEIT(lkp)		/* nothing */
    270 #endif /* LOCKDEBUG */ /* } */
    271 
    272 #if defined(LOCKDEBUG)
    273 /*
    274  * Lock debug printing routine; can be configured to print to console
    275  * or log to syslog.
    276  */
    277 void
    278 lock_printf(const char *fmt, ...)
    279 {
    280 	va_list ap;
    281 
    282 	va_start(ap, fmt);
    283 	if (lock_debug_syslog)
    284 		vlog(LOG_DEBUG, fmt, ap);
    285 	else
    286 		vprintf(fmt, ap);
    287 	va_end(ap);
    288 }
    289 #endif /* LOCKDEBUG */
    290 
    291 /*
    292  * Initialize a lock; required before use.
    293  */
    294 void
    295 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
    296 {
    297 
    298 	memset(lkp, 0, sizeof(struct lock));
    299 	simple_lock_init(&lkp->lk_interlock);
    300 	lkp->lk_flags = flags & LK_EXTFLG_MASK;
    301 	if (flags & LK_SPIN)
    302 		lkp->lk_cpu = LK_NOCPU;
    303 	else {
    304 		lkp->lk_lockholder = LK_NOPROC;
    305 		lkp->lk_prio = prio;
    306 		lkp->lk_timo = timo;
    307 	}
    308 	lkp->lk_wmesg = wmesg;	/* just a name for spin locks */
    309 }
    310 
    311 /*
    312  * Determine the status of a lock.
    313  */
    314 int
    315 lockstatus(struct lock *lkp)
    316 {
    317 	int s, lock_type = 0;
    318 
    319 	INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
    320 	if (lkp->lk_exclusivecount != 0)
    321 		lock_type = LK_EXCLUSIVE;
    322 	else if (lkp->lk_sharecount != 0)
    323 		lock_type = LK_SHARED;
    324 	INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
    325 	return (lock_type);
    326 }
    327 
    328 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    329 /*
    330  * Make sure no spin locks are held by a CPU that is about
    331  * to context switch.
    332  */
    333 void
    334 spinlock_switchcheck(void)
    335 {
    336 	u_long cnt;
    337 	int s;
    338 
    339 	s = spllock();
    340 #if defined(MULTIPROCESSOR)
    341 	cnt = curcpu()->ci_spin_locks;
    342 #else
    343 	cnt = spin_locks;
    344 #endif
    345 	splx(s);
    346 
    347 	if (cnt != 0)
    348 		panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
    349 		    (u_long) cpu_number(), cnt);
    350 }
    351 #endif /* LOCKDEBUG || DIAGNOSTIC */
    352 
    353 /*
    354  * Locks and IPLs (interrupt priority levels):
    355  *
    356  * Locks which may be taken from interrupt context must be handled
    357  * very carefully; you must spl to the highest IPL where the lock
    358  * is needed before acquiring the lock.
    359  *
    360  * It is also important to avoid deadlock, since certain (very high
    361  * priority) interrupts are often needed to keep the system as a whole
    362  * from deadlocking, and must not be blocked while you are spinning
    363  * waiting for a lower-priority lock.
    364  *
    365  * In addition, the lock-debugging hooks themselves need to use locks!
    366  *
    367  * A raw __cpu_simple_lock may be used from interrupts are long as it
    368  * is acquired and held at a single IPL.
    369  *
    370  * A simple_lock (which is a __cpu_simple_lock wrapped with some
    371  * debugging hooks) may be used at or below spllock(), which is
    372  * typically at or just below splhigh() (i.e. blocks everything
    373  * but certain machine-dependent extremely high priority interrupts).
    374  *
    375  * spinlockmgr spinlocks should be used at or below splsched().
    376  *
    377  * Some platforms may have interrupts of higher priority than splsched(),
    378  * including hard serial interrupts, inter-processor interrupts, and
    379  * kernel debugger traps.
    380  */
    381 
    382 /*
    383  * XXX XXX kludge around another kludge..
    384  *
    385  * vfs_shutdown() may be called from interrupt context, either as a result
    386  * of a panic, or from the debugger.   It proceeds to call
    387  * sys_sync(&proc0, ...), pretending its running on behalf of proc0
    388  *
    389  * We would like to make an attempt to sync the filesystems in this case, so
    390  * if this happens, we treat attempts to acquire locks specially.
    391  * All locks are acquired on behalf of proc0.
    392  *
    393  * If we've already paniced, we don't block waiting for locks, but
    394  * just barge right ahead since we're already going down in flames.
    395  */
    396 
    397 /*
    398  * Set, change, or release a lock.
    399  *
    400  * Shared requests increment the shared count. Exclusive requests set the
    401  * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
    402  * accepted shared locks and shared-to-exclusive upgrades to go away.
    403  */
    404 int
    405 lockmgr(__volatile struct lock *lkp, u_int flags,
    406     struct simplelock *interlkp)
    407 {
    408 	int error;
    409 	pid_t pid;
    410 	int extflags;
    411 	cpuid_t cpu_id;
    412 	struct proc *p = curproc;
    413 	int lock_shutdown_noblock = 0;
    414 	int s;
    415 
    416 	error = 0;
    417 
    418 	INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
    419 	if (flags & LK_INTERLOCK)
    420 		simple_unlock(interlkp);
    421 	extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
    422 
    423 #ifdef DIAGNOSTIC /* { */
    424 	/*
    425 	 * Don't allow spins on sleep locks and don't allow sleeps
    426 	 * on spin locks.
    427 	 */
    428 	if ((flags ^ lkp->lk_flags) & LK_SPIN)
    429 		panic("lockmgr: sleep/spin mismatch\n");
    430 #endif /* } */
    431 
    432 	if (extflags & LK_SPIN)
    433 		pid = LK_KERNPROC;
    434 	else {
    435 		if (p == NULL) {
    436 			if (!doing_shutdown) {
    437 #ifdef DIAGNOSTIC
    438 				panic("lockmgr: no context");
    439 #endif
    440 			} else {
    441 				p = &proc0;
    442 				if (panicstr && (!(flags & LK_NOWAIT))) {
    443 					flags |= LK_NOWAIT;
    444 					lock_shutdown_noblock = 1;
    445 				}
    446 			}
    447 		}
    448 		pid = p->p_pid;
    449 	}
    450 	cpu_id = cpu_number();
    451 
    452 	/*
    453 	 * Once a lock has drained, the LK_DRAINING flag is set and an
    454 	 * exclusive lock is returned. The only valid operation thereafter
    455 	 * is a single release of that exclusive lock. This final release
    456 	 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
    457 	 * further requests of any sort will result in a panic. The bits
    458 	 * selected for these two flags are chosen so that they will be set
    459 	 * in memory that is freed (freed memory is filled with 0xdeadbeef).
    460 	 * The final release is permitted to give a new lease on life to
    461 	 * the lock by specifying LK_REENABLE.
    462 	 */
    463 	if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
    464 #ifdef DIAGNOSTIC /* { */
    465 		if (lkp->lk_flags & LK_DRAINED)
    466 			panic("lockmgr: using decommissioned lock");
    467 		if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
    468 		    WEHOLDIT(lkp, pid, cpu_id) == 0)
    469 			panic("lockmgr: non-release on draining lock: %d\n",
    470 			    flags & LK_TYPE_MASK);
    471 #endif /* DIAGNOSTIC */ /* } */
    472 		lkp->lk_flags &= ~LK_DRAINING;
    473 		if ((flags & LK_REENABLE) == 0)
    474 			lkp->lk_flags |= LK_DRAINED;
    475 	}
    476 
    477 	switch (flags & LK_TYPE_MASK) {
    478 
    479 	case LK_SHARED:
    480 		if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
    481 			/*
    482 			 * If just polling, check to see if we will block.
    483 			 */
    484 			if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
    485 			    (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
    486 				error = EBUSY;
    487 				break;
    488 			}
    489 			/*
    490 			 * Wait for exclusive locks and upgrades to clear.
    491 			 */
    492 			ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
    493 			    (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
    494 			if (error)
    495 				break;
    496 			lkp->lk_sharecount++;
    497 			COUNT(lkp, p, cpu_id, 1);
    498 			break;
    499 		}
    500 		/*
    501 		 * We hold an exclusive lock, so downgrade it to shared.
    502 		 * An alternative would be to fail with EDEADLK.
    503 		 */
    504 		lkp->lk_sharecount++;
    505 		COUNT(lkp, p, cpu_id, 1);
    506 		/* fall into downgrade */
    507 
    508 	case LK_DOWNGRADE:
    509 		if (WEHOLDIT(lkp, pid, cpu_id) == 0 ||
    510 		    lkp->lk_exclusivecount == 0)
    511 			panic("lockmgr: not holding exclusive lock");
    512 		lkp->lk_sharecount += lkp->lk_exclusivecount;
    513 		lkp->lk_exclusivecount = 0;
    514 		lkp->lk_recurselevel = 0;
    515 		lkp->lk_flags &= ~LK_HAVE_EXCL;
    516 		SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
    517 		DONTHAVEIT(lkp);
    518 		WAKEUP_WAITER(lkp);
    519 		break;
    520 
    521 	case LK_EXCLUPGRADE:
    522 		/*
    523 		 * If another process is ahead of us to get an upgrade,
    524 		 * then we want to fail rather than have an intervening
    525 		 * exclusive access.
    526 		 */
    527 		if (lkp->lk_flags & LK_WANT_UPGRADE) {
    528 			lkp->lk_sharecount--;
    529 			COUNT(lkp, p, cpu_id, -1);
    530 			error = EBUSY;
    531 			break;
    532 		}
    533 		/* fall into normal upgrade */
    534 
    535 	case LK_UPGRADE:
    536 		/*
    537 		 * Upgrade a shared lock to an exclusive one. If another
    538 		 * shared lock has already requested an upgrade to an
    539 		 * exclusive lock, our shared lock is released and an
    540 		 * exclusive lock is requested (which will be granted
    541 		 * after the upgrade). If we return an error, the file
    542 		 * will always be unlocked.
    543 		 */
    544 		if (WEHOLDIT(lkp, pid, cpu_id) || lkp->lk_sharecount <= 0)
    545 			panic("lockmgr: upgrade exclusive lock");
    546 		lkp->lk_sharecount--;
    547 		COUNT(lkp, p, cpu_id, -1);
    548 		/*
    549 		 * If we are just polling, check to see if we will block.
    550 		 */
    551 		if ((extflags & LK_NOWAIT) &&
    552 		    ((lkp->lk_flags & LK_WANT_UPGRADE) ||
    553 		     lkp->lk_sharecount > 1)) {
    554 			error = EBUSY;
    555 			break;
    556 		}
    557 		if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
    558 			/*
    559 			 * We are first shared lock to request an upgrade, so
    560 			 * request upgrade and wait for the shared count to
    561 			 * drop to zero, then take exclusive lock.
    562 			 */
    563 			lkp->lk_flags |= LK_WANT_UPGRADE;
    564 			ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
    565 			lkp->lk_flags &= ~LK_WANT_UPGRADE;
    566 			if (error)
    567 				break;
    568 			lkp->lk_flags |= LK_HAVE_EXCL;
    569 			SETHOLDER(lkp, pid, cpu_id);
    570 			HAVEIT(lkp);
    571 			if (lkp->lk_exclusivecount != 0)
    572 				panic("lockmgr: non-zero exclusive count");
    573 			lkp->lk_exclusivecount = 1;
    574 			if (extflags & LK_SETRECURSE)
    575 				lkp->lk_recurselevel = 1;
    576 			COUNT(lkp, p, cpu_id, 1);
    577 			break;
    578 		}
    579 		/*
    580 		 * Someone else has requested upgrade. Release our shared
    581 		 * lock, awaken upgrade requestor if we are the last shared
    582 		 * lock, then request an exclusive lock.
    583 		 */
    584 		if (lkp->lk_sharecount == 0)
    585 			WAKEUP_WAITER(lkp);
    586 		/* fall into exclusive request */
    587 
    588 	case LK_EXCLUSIVE:
    589 		if (WEHOLDIT(lkp, pid, cpu_id)) {
    590 			/*
    591 			 * Recursive lock.
    592 			 */
    593 			if ((extflags & LK_CANRECURSE) == 0 &&
    594 			     lkp->lk_recurselevel == 0) {
    595 				if (extflags & LK_RECURSEFAIL) {
    596 					error = EDEADLK;
    597 					break;
    598 				} else
    599 					panic("lockmgr: locking against myself");
    600 			}
    601 			lkp->lk_exclusivecount++;
    602 			if (extflags & LK_SETRECURSE &&
    603 			    lkp->lk_recurselevel == 0)
    604 				lkp->lk_recurselevel = lkp->lk_exclusivecount;
    605 			COUNT(lkp, p, cpu_id, 1);
    606 			break;
    607 		}
    608 		/*
    609 		 * If we are just polling, check to see if we will sleep.
    610 		 */
    611 		if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
    612 		     (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
    613 		     lkp->lk_sharecount != 0)) {
    614 			error = EBUSY;
    615 			break;
    616 		}
    617 		/*
    618 		 * Try to acquire the want_exclusive flag.
    619 		 */
    620 		ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
    621 		    (LK_HAVE_EXCL | LK_WANT_EXCL));
    622 		if (error)
    623 			break;
    624 		lkp->lk_flags |= LK_WANT_EXCL;
    625 		/*
    626 		 * Wait for shared locks and upgrades to finish.
    627 		 */
    628 		ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
    629 		       (lkp->lk_flags & LK_WANT_UPGRADE));
    630 		lkp->lk_flags &= ~LK_WANT_EXCL;
    631 		if (error)
    632 			break;
    633 		lkp->lk_flags |= LK_HAVE_EXCL;
    634 		SETHOLDER(lkp, pid, cpu_id);
    635 		HAVEIT(lkp);
    636 		if (lkp->lk_exclusivecount != 0)
    637 			panic("lockmgr: non-zero exclusive count");
    638 		lkp->lk_exclusivecount = 1;
    639 		if (extflags & LK_SETRECURSE)
    640 			lkp->lk_recurselevel = 1;
    641 		COUNT(lkp, p, cpu_id, 1);
    642 		break;
    643 
    644 	case LK_RELEASE:
    645 		if (lkp->lk_exclusivecount != 0) {
    646 			if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
    647 				if (lkp->lk_flags & LK_SPIN) {
    648 					panic("lockmgr: processor %lu, not "
    649 					    "exclusive lock holder %lu "
    650 					    "unlocking", cpu_id, lkp->lk_cpu);
    651 				} else {
    652 					panic("lockmgr: pid %d, not "
    653 					    "exclusive lock holder %d "
    654 					    "unlocking", pid,
    655 					    lkp->lk_lockholder);
    656 				}
    657 			}
    658 			if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
    659 				lkp->lk_recurselevel = 0;
    660 			lkp->lk_exclusivecount--;
    661 			COUNT(lkp, p, cpu_id, -1);
    662 			if (lkp->lk_exclusivecount == 0) {
    663 				lkp->lk_flags &= ~LK_HAVE_EXCL;
    664 				SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
    665 				DONTHAVEIT(lkp);
    666 			}
    667 		} else if (lkp->lk_sharecount != 0) {
    668 			lkp->lk_sharecount--;
    669 			COUNT(lkp, p, cpu_id, -1);
    670 		}
    671 #ifdef DIAGNOSTIC
    672 		else
    673 			panic("lockmgr: release of unlocked lock!");
    674 #endif
    675 		WAKEUP_WAITER(lkp);
    676 		break;
    677 
    678 	case LK_DRAIN:
    679 		/*
    680 		 * Check that we do not already hold the lock, as it can
    681 		 * never drain if we do. Unfortunately, we have no way to
    682 		 * check for holding a shared lock, but at least we can
    683 		 * check for an exclusive one.
    684 		 */
    685 		if (WEHOLDIT(lkp, pid, cpu_id))
    686 			panic("lockmgr: draining against myself");
    687 		/*
    688 		 * If we are just polling, check to see if we will sleep.
    689 		 */
    690 		if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
    691 		     (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
    692 		     lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
    693 			error = EBUSY;
    694 			break;
    695 		}
    696 		ACQUIRE(lkp, error, extflags, 1,
    697 		    ((lkp->lk_flags &
    698 		     (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
    699 		     lkp->lk_sharecount != 0 ||
    700 		     lkp->lk_waitcount != 0));
    701 		if (error)
    702 			break;
    703 		lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
    704 		SETHOLDER(lkp, pid, cpu_id);
    705 		HAVEIT(lkp);
    706 		lkp->lk_exclusivecount = 1;
    707 		/* XXX unlikely that we'd want this */
    708 		if (extflags & LK_SETRECURSE)
    709 			lkp->lk_recurselevel = 1;
    710 		COUNT(lkp, p, cpu_id, 1);
    711 		break;
    712 
    713 	default:
    714 		INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
    715 		panic("lockmgr: unknown locktype request %d",
    716 		    flags & LK_TYPE_MASK);
    717 		/* NOTREACHED */
    718 	}
    719 	if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
    720 	    ((lkp->lk_flags &
    721 	      (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
    722 	     lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
    723 		lkp->lk_flags &= ~LK_WAITDRAIN;
    724 		wakeup_one((void *)&lkp->lk_flags);
    725 	}
    726 	/*
    727 	 * Note that this panic will be a recursive panic, since
    728 	 * we only set lock_shutdown_noblock above if panicstr != NULL.
    729 	 */
    730 	if (error && lock_shutdown_noblock)
    731 		panic("lockmgr: deadlock (see previous panic)");
    732 
    733 	INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
    734 	return (error);
    735 }
    736 
    737 /*
    738  * Print out information about state of a lock. Used by VOP_PRINT
    739  * routines to display ststus about contained locks.
    740  */
    741 void
    742 lockmgr_printinfo(__volatile struct lock *lkp)
    743 {
    744 
    745 	if (lkp->lk_sharecount)
    746 		printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
    747 		    lkp->lk_sharecount);
    748 	else if (lkp->lk_flags & LK_HAVE_EXCL) {
    749 		printf(" lock type %s: EXCL (count %d) by ",
    750 		    lkp->lk_wmesg, lkp->lk_exclusivecount);
    751 		if (lkp->lk_flags & LK_SPIN)
    752 			printf("processor %lu", lkp->lk_cpu);
    753 		else
    754 			printf("pid %d", lkp->lk_lockholder);
    755 	} else
    756 		printf(" not locked");
    757 	if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
    758 		printf(" with %d pending", lkp->lk_waitcount);
    759 }
    760 
    761 #if defined(LOCKDEBUG) /* { */
    762 TAILQ_HEAD(, simplelock) simplelock_list =
    763     TAILQ_HEAD_INITIALIZER(simplelock_list);
    764 
    765 #if defined(MULTIPROCESSOR) /* { */
    766 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
    767 
    768 #define	SLOCK_LIST_LOCK()						\
    769 	__cpu_simple_lock(&simplelock_list_slock.lock_data)
    770 
    771 #define	SLOCK_LIST_UNLOCK()						\
    772 	__cpu_simple_unlock(&simplelock_list_slock.lock_data)
    773 
    774 #if defined(__HAVE_ATOMIC_OPERATIONS) /* { */
    775 #define	SLOCK_COUNT(x)							\
    776 	atomic_add_ulong(&curcpu()->ci_simple_locks, (x))
    777 #else
    778 #define	SLOCK_COUNT(x)		/* not safe */
    779 #endif /* __HAVE_ATOMIC_OPERATIONS */ /* } */
    780 #else
    781 u_long simple_locks;
    782 
    783 #define	SLOCK_LIST_LOCK()	/* nothing */
    784 
    785 #define	SLOCK_LIST_UNLOCK()	/* nothing */
    786 
    787 #define	SLOCK_COUNT(x)		simple_locks += (x)
    788 #endif /* MULTIPROCESSOR */ /* } */
    789 
    790 #ifdef DDB /* { */
    791 int simple_lock_debugger = 0;
    792 #define	SLOCK_DEBUGGER()	if (simple_lock_debugger) Debugger()
    793 #else
    794 #define	SLOCK_DEBUGGER()	/* nothing */
    795 #endif /* } */
    796 
    797 #ifdef MULTIPROCESSOR
    798 #define SLOCK_MP()		lock_printf("on cpu %d\n", cpu_number())
    799 #else
    800 #define SLOCK_MP()		/* nothing */
    801 #endif
    802 
    803 #define	SLOCK_WHERE(str, alp, id, l)					\
    804 do {									\
    805 	lock_printf(str);						\
    806 	lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
    807 	SLOCK_MP();							\
    808 	if ((alp)->lock_file != NULL)					\
    809 		lock_printf("last locked: %s:%d\n", (alp)->lock_file,	\
    810 		    (alp)->lock_line);					\
    811 	if ((alp)->unlock_file != NULL)					\
    812 		lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
    813 		    (alp)->unlock_line);				\
    814 	SLOCK_DEBUGGER();						\
    815 } while (/*CONSTCOND*/0)
    816 
    817 /*
    818  * Simple lock functions so that the debugger can see from whence
    819  * they are being called.
    820  */
    821 void
    822 simple_lock_init(struct simplelock *alp)
    823 {
    824 
    825 #if defined(MULTIPROCESSOR) /* { */
    826 	__cpu_simple_lock_init(&alp->lock_data);
    827 #else
    828 	alp->lock_data = __SIMPLELOCK_UNLOCKED;
    829 #endif /* } */
    830 	alp->lock_file = NULL;
    831 	alp->lock_line = 0;
    832 	alp->unlock_file = NULL;
    833 	alp->unlock_line = 0;
    834 	alp->lock_holder = LK_NOCPU;
    835 }
    836 
    837 void
    838 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
    839 {
    840 	cpuid_t cpu_id = cpu_number();
    841 	int s;
    842 
    843 	s = spllock();
    844 
    845 	/*
    846 	 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
    847 	 * don't take any action, and just fall into the normal spin case.
    848 	 */
    849 	if (alp->lock_data == __SIMPLELOCK_LOCKED) {
    850 #if defined(MULTIPROCESSOR) /* { */
    851 		if (alp->lock_holder == cpu_id) {
    852 			SLOCK_WHERE("simple_lock: locking against myself\n",
    853 			    alp, id, l);
    854 			goto out;
    855 		}
    856 #else
    857 		SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
    858 		goto out;
    859 #endif /* MULTIPROCESSOR */ /* } */
    860 	}
    861 
    862 #if defined(MULTIPROCESSOR) /* { */
    863 	/* Acquire the lock before modifying any fields. */
    864 	__cpu_simple_lock(&alp->lock_data);
    865 #else
    866 	alp->lock_data = __SIMPLELOCK_LOCKED;
    867 #endif /* } */
    868 
    869 	KASSERT(alp->lock_holder == LK_NOCPU);
    870 
    871 	alp->lock_file = id;
    872 	alp->lock_line = l;
    873 	alp->lock_holder = cpu_id;
    874 
    875 	SLOCK_LIST_LOCK();
    876 	/* XXX Cast away volatile */
    877 	TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
    878 	SLOCK_LIST_UNLOCK();
    879 
    880 	SLOCK_COUNT(1);
    881 
    882  out:
    883 	splx(s);
    884 }
    885 
    886 int
    887 _simple_lock_held(__volatile struct simplelock *alp)
    888 {
    889 	cpuid_t cpu_id = cpu_number();
    890 	int s, locked = 0;
    891 
    892 	s = spllock();
    893 
    894 #if defined(MULTIPROCESSOR)
    895 	if (__cpu_simple_lock_try(&alp->lock_data) == 0)
    896 		locked = (alp->lock_holder == cpu_id);
    897 	else
    898 		__cpu_simple_unlock(&alp->lock_data);
    899 #else
    900 	if (alp->lock_data == __SIMPLELOCK_LOCKED) {
    901 		locked = 1;
    902 		KASSERT(alp->lock_holder == cpu_id);
    903 	}
    904 #endif
    905 
    906 	splx(s);
    907 
    908 	return (locked);
    909 }
    910 
    911 int
    912 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
    913 {
    914 	cpuid_t cpu_id = cpu_number();
    915 	int s, rv = 0;
    916 
    917 	s = spllock();
    918 
    919 	/*
    920 	 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
    921 	 * don't take any action.
    922 	 */
    923 #if defined(MULTIPROCESSOR) /* { */
    924 	if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
    925 		if (alp->lock_holder == cpu_id)
    926 			SLOCK_WHERE("simple_lock_try: locking against myself\n",
    927 			    alp, id, l);
    928 		goto out;
    929 	}
    930 #else
    931 	if (alp->lock_data == __SIMPLELOCK_LOCKED) {
    932 		SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
    933 		goto out;
    934 	}
    935 	alp->lock_data = __SIMPLELOCK_LOCKED;
    936 #endif /* MULTIPROCESSOR */ /* } */
    937 
    938 	/*
    939 	 * At this point, we have acquired the lock.
    940 	 */
    941 
    942 	rv = 1;
    943 
    944 	alp->lock_file = id;
    945 	alp->lock_line = l;
    946 	alp->lock_holder = cpu_id;
    947 
    948 	SLOCK_LIST_LOCK();
    949 	/* XXX Cast away volatile. */
    950 	TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
    951 	SLOCK_LIST_UNLOCK();
    952 
    953 	SLOCK_COUNT(1);
    954 
    955  out:
    956 	splx(s);
    957 	return (rv);
    958 }
    959 
    960 void
    961 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
    962 {
    963 	int s;
    964 
    965 	s = spllock();
    966 
    967 	/*
    968 	 * MULTIPROCESSOR case: This is `safe' because we think we hold
    969 	 * the lock, and if we don't, we don't take any action.
    970 	 */
    971 	if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
    972 		SLOCK_WHERE("simple_unlock: lock not held\n",
    973 		    alp, id, l);
    974 		goto out;
    975 	}
    976 
    977 	SLOCK_LIST_LOCK();
    978 	TAILQ_REMOVE(&simplelock_list, alp, list);
    979 	SLOCK_LIST_UNLOCK();
    980 
    981 	SLOCK_COUNT(-1);
    982 
    983 	alp->list.tqe_next = NULL;	/* sanity */
    984 	alp->list.tqe_prev = NULL;	/* sanity */
    985 
    986 	alp->unlock_file = id;
    987 	alp->unlock_line = l;
    988 
    989 #if defined(MULTIPROCESSOR) /* { */
    990 	alp->lock_holder = LK_NOCPU;
    991 	/* Now that we've modified all fields, release the lock. */
    992 	__cpu_simple_unlock(&alp->lock_data);
    993 #else
    994 	alp->lock_data = __SIMPLELOCK_UNLOCKED;
    995 	KASSERT(alp->lock_holder == cpu_number());
    996 	alp->lock_holder = LK_NOCPU;
    997 #endif /* } */
    998 
    999  out:
   1000 	splx(s);
   1001 }
   1002 
   1003 void
   1004 simple_lock_dump(void)
   1005 {
   1006 	struct simplelock *alp;
   1007 	int s;
   1008 
   1009 	s = spllock();
   1010 	SLOCK_LIST_LOCK();
   1011 	lock_printf("all simple locks:\n");
   1012 	for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
   1013 	     alp = TAILQ_NEXT(alp, list)) {
   1014 		lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
   1015 		    alp->lock_file, alp->lock_line);
   1016 	}
   1017 	SLOCK_LIST_UNLOCK();
   1018 	splx(s);
   1019 }
   1020 
   1021 void
   1022 simple_lock_freecheck(void *start, void *end)
   1023 {
   1024 	struct simplelock *alp;
   1025 	int s;
   1026 
   1027 	s = spllock();
   1028 	SLOCK_LIST_LOCK();
   1029 	for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
   1030 	     alp = TAILQ_NEXT(alp, list)) {
   1031 		if ((void *)alp >= start && (void *)alp < end) {
   1032 			lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
   1033 			    alp, alp->lock_holder, alp->lock_file,
   1034 			    alp->lock_line);
   1035 			SLOCK_DEBUGGER();
   1036 		}
   1037 	}
   1038 	SLOCK_LIST_UNLOCK();
   1039 	splx(s);
   1040 }
   1041 
   1042 void
   1043 simple_lock_switchcheck(void)
   1044 {
   1045 	struct simplelock *alp;
   1046 	cpuid_t cpu_id = cpu_number();
   1047 	int s;
   1048 
   1049 	/*
   1050 	 * We must be holding exactly one lock: the sched_lock.
   1051 	 */
   1052 
   1053 	SCHED_ASSERT_LOCKED();
   1054 
   1055 	s = spllock();
   1056 	SLOCK_LIST_LOCK();
   1057 	for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
   1058 	     alp = TAILQ_NEXT(alp, list)) {
   1059 		if (alp == &sched_lock)
   1060 			continue;
   1061 		if (alp->lock_holder == cpu_id) {
   1062 			lock_printf("switching with held simple_lock %p "
   1063 			    "CPU %lu %s:%d\n",
   1064 			    alp, alp->lock_holder, alp->lock_file,
   1065 			    alp->lock_line);
   1066 			SLOCK_DEBUGGER();
   1067 		}
   1068 	}
   1069 	SLOCK_LIST_UNLOCK();
   1070 	splx(s);
   1071 }
   1072 #endif /* LOCKDEBUG */ /* } */
   1073