kern_lock.c revision 1.47 1 /* $NetBSD: kern_lock.c,v 1.47 2000/08/26 19:26:43 sommerfeld Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. All advertising materials mentioning features or use of this software
60 * must display the following acknowledgement:
61 * This product includes software developed by the University of
62 * California, Berkeley and its contributors.
63 * 4. Neither the name of the University nor the names of its contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
71 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
73 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
74 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
75 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
76 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * SUCH DAMAGE.
78 *
79 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
80 */
81
82 #include "opt_multiprocessor.h"
83 #include "opt_lockdebug.h"
84 #include "opt_ddb.h"
85
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/lock.h>
89 #include <sys/systm.h>
90 #include <machine/cpu.h>
91
92 #if defined(LOCKDEBUG)
93 #include <sys/syslog.h>
94 /*
95 * note that stdarg.h and the ansi style va_start macro is used for both
96 * ansi and traditional c compiles.
97 * XXX: this requires that stdarg.h define: va_alist and va_dcl
98 */
99 #include <machine/stdarg.h>
100
101 void lock_printf(const char *fmt, ...)
102 __attribute__((__format__(__printf__,1,2)));
103
104 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
105 #endif
106
107 /*
108 * Locking primitives implementation.
109 * Locks provide shared/exclusive sychronization.
110 */
111
112 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
113 #if defined(MULTIPROCESSOR) /* { */
114 #define COUNT_CPU(cpu_id, x) \
115 curcpu()->ci_spin_locks += (x)
116 #else
117 u_long spin_locks;
118 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
119 #endif /* MULTIPROCESSOR */ /* } */
120
121 #define COUNT(lkp, p, cpu_id, x) \
122 do { \
123 if ((lkp)->lk_flags & LK_SPIN) \
124 COUNT_CPU((cpu_id), (x)); \
125 else \
126 (p)->p_locks += (x); \
127 } while (/*CONSTCOND*/0)
128 #else
129 #define COUNT(lkp, p, cpu_id, x)
130 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
131
132 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
133 do { \
134 if ((flags) & LK_SPIN) \
135 s = splsched(); \
136 simple_lock(&(lkp)->lk_interlock); \
137 } while (0)
138
139 #define INTERLOCK_RELEASE(lkp, flags, s) \
140 do { \
141 simple_unlock(&(lkp)->lk_interlock); \
142 if ((flags) & LK_SPIN) \
143 splx(s); \
144 } while (0)
145
146 /*
147 * Acquire a resource.
148 */
149 #define ACQUIRE(lkp, error, extflags, drain, wanted) \
150 if ((extflags) & LK_SPIN) { \
151 int interlocked; \
152 \
153 if ((drain) == 0) \
154 (lkp)->lk_waitcount++; \
155 for (interlocked = 1;;) { \
156 if (wanted) { \
157 if (interlocked) { \
158 INTERLOCK_RELEASE((lkp), \
159 LK_SPIN, s); \
160 interlocked = 0; \
161 } \
162 } else if (interlocked) { \
163 break; \
164 } else { \
165 INTERLOCK_ACQUIRE((lkp), LK_SPIN, s); \
166 interlocked = 1; \
167 } \
168 } \
169 if ((drain) == 0) \
170 (lkp)->lk_waitcount--; \
171 KASSERT((wanted) == 0); \
172 error = 0; /* sanity */ \
173 } else { \
174 for (error = 0; wanted; ) { \
175 if ((drain)) \
176 (lkp)->lk_flags |= LK_WAITDRAIN; \
177 else \
178 (lkp)->lk_waitcount++; \
179 /* XXX Cast away volatile. */ \
180 error = ltsleep((drain) ? &(lkp)->lk_flags : \
181 (void *)(lkp), (lkp)->lk_prio, \
182 (lkp)->lk_wmesg, (lkp)->lk_timo, \
183 &(lkp)->lk_interlock); \
184 if ((drain) == 0) \
185 (lkp)->lk_waitcount--; \
186 if (error) \
187 break; \
188 if ((extflags) & LK_SLEEPFAIL) { \
189 error = ENOLCK; \
190 break; \
191 } \
192 } \
193 }
194
195 #define SETHOLDER(lkp, pid, cpu_id) \
196 do { \
197 if ((lkp)->lk_flags & LK_SPIN) \
198 (lkp)->lk_cpu = cpu_id; \
199 else \
200 (lkp)->lk_lockholder = pid; \
201 } while (/*CONSTCOND*/0)
202
203 #define WEHOLDIT(lkp, pid, cpu_id) \
204 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
205 ((lkp)->lk_cpu == (cpu_id)) : ((lkp)->lk_lockholder == (pid)))
206
207 #define WAKEUP_WAITER(lkp) \
208 do { \
209 if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) { \
210 /* XXX Cast away volatile. */ \
211 wakeup_one((void *)(lkp)); \
212 } \
213 } while (/*CONSTCOND*/0)
214
215 #if defined(LOCKDEBUG) /* { */
216 #if defined(MULTIPROCESSOR) /* { */
217 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
218
219 #define SPINLOCK_LIST_LOCK() \
220 __cpu_simple_lock(&spinlock_list_slock.lock_data)
221
222 #define SPINLOCK_LIST_UNLOCK() \
223 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
224 #else
225 #define SPINLOCK_LIST_LOCK() /* nothing */
226
227 #define SPINLOCK_LIST_UNLOCK() /* nothing */
228 #endif /* MULTIPROCESSOR */ /* } */
229
230 TAILQ_HEAD(, lock) spinlock_list =
231 TAILQ_HEAD_INITIALIZER(spinlock_list);
232
233 #define HAVEIT(lkp) \
234 do { \
235 if ((lkp)->lk_flags & LK_SPIN) { \
236 int s = spllock(); \
237 SPINLOCK_LIST_LOCK(); \
238 /* XXX Cast away volatile. */ \
239 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
240 lk_list); \
241 SPINLOCK_LIST_UNLOCK(); \
242 splx(s); \
243 } \
244 } while (/*CONSTCOND*/0)
245
246 #define DONTHAVEIT(lkp) \
247 do { \
248 if ((lkp)->lk_flags & LK_SPIN) { \
249 int s = spllock(); \
250 SPINLOCK_LIST_LOCK(); \
251 /* XXX Cast away volatile. */ \
252 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
253 lk_list); \
254 SPINLOCK_LIST_UNLOCK(); \
255 splx(s); \
256 } \
257 } while (/*CONSTCOND*/0)
258 #else
259 #define HAVEIT(lkp) /* nothing */
260
261 #define DONTHAVEIT(lkp) /* nothing */
262 #endif /* LOCKDEBUG */ /* } */
263
264 #if defined(LOCKDEBUG)
265 /*
266 * Lock debug printing routine; can be configured to print to console
267 * or log to syslog.
268 */
269 void
270 lock_printf(const char *fmt, ...)
271 {
272 va_list ap;
273
274 va_start(ap, fmt);
275 if (lock_debug_syslog)
276 vlog(LOG_DEBUG, fmt, ap);
277 else
278 vprintf(fmt, ap);
279 va_end(ap);
280 }
281 #endif /* LOCKDEBUG */
282
283 /*
284 * Initialize a lock; required before use.
285 */
286 void
287 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
288 {
289
290 memset(lkp, 0, sizeof(struct lock));
291 simple_lock_init(&lkp->lk_interlock);
292 lkp->lk_flags = flags & LK_EXTFLG_MASK;
293 if (flags & LK_SPIN)
294 lkp->lk_cpu = LK_NOCPU;
295 else {
296 lkp->lk_lockholder = LK_NOPROC;
297 lkp->lk_prio = prio;
298 lkp->lk_timo = timo;
299 }
300 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
301 }
302
303 /*
304 * Determine the status of a lock.
305 */
306 int
307 lockstatus(struct lock *lkp)
308 {
309 int s, lock_type = 0;
310
311 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
312 if (lkp->lk_exclusivecount != 0)
313 lock_type = LK_EXCLUSIVE;
314 else if (lkp->lk_sharecount != 0)
315 lock_type = LK_SHARED;
316 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
317 return (lock_type);
318 }
319
320 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
321 /*
322 * Make sure no spin locks are held by a CPU that is about
323 * to context switch.
324 */
325 void
326 spinlock_switchcheck(void)
327 {
328 u_long cnt;
329 int s;
330
331 s = spllock();
332 #if defined(MULTIPROCESSOR)
333 cnt = curcpu()->ci_spin_locks;
334 #else
335 cnt = spin_locks;
336 #endif
337 splx(s);
338
339 if (cnt != 0)
340 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
341 (u_long) cpu_number(), cnt);
342 }
343 #endif /* LOCKDEBUG || DIAGNOSTIC */
344
345 /*
346 * Locks and IPLs (interrupt priority levels):
347 *
348 * Locks which may be taken from interrupt context must be handled
349 * very carefully; you must spl to the highest IPL where the lock
350 * is needed before acquiring the lock.
351 *
352 * It is also important to avoid deadlock, since certain (very high
353 * priority) interrupts are often needed to keep the system as a whole
354 * from deadlocking, and must not be blocked while you are spinning
355 * waiting for a lower-priority lock.
356 *
357 * In addition, the lock-debugging hooks themselves need to use locks!
358 *
359 * A raw __cpu_simple_lock may be used from interrupts are long as it
360 * is acquired and held at a single IPL.
361 *
362 * A simple_lock (which is a __cpu_simple_lock wrapped with some
363 * debugging hooks) may be used at or below spllock(), which is
364 * typically at or just below splhigh() (i.e. blocks everything
365 * but certain machine-dependent extremely high priority interrupts).
366 *
367 * spinlockmgr spinlocks should be used at or below splsched().
368 *
369 * Some platforms may have interrupts of higher priority than splsched(),
370 * including hard serial interrupts, inter-processor interrupts, and
371 * kernel debugger traps.
372 */
373
374 /*
375 * XXX XXX kludge around another kludge..
376 *
377 * vfs_shutdown() may be called from interrupt context, either as a result
378 * of a panic, or from the debugger. It proceeds to call
379 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
380 *
381 * We would like to make an attempt to sync the filesystems in this case, so
382 * if this happens, we treat attempts to acquire locks specially.
383 * All locks are acquired on behalf of proc0.
384 *
385 * If we've already paniced, we don't block waiting for locks, but
386 * just barge right ahead since we're already going down in flames.
387 */
388
389 /*
390 * Set, change, or release a lock.
391 *
392 * Shared requests increment the shared count. Exclusive requests set the
393 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
394 * accepted shared locks and shared-to-exclusive upgrades to go away.
395 */
396 int
397 lockmgr(__volatile struct lock *lkp, u_int flags,
398 struct simplelock *interlkp)
399 {
400 int error;
401 pid_t pid;
402 int extflags;
403 cpuid_t cpu_id;
404 struct proc *p = curproc;
405 int lock_shutdown_noblock = 0;
406 int s;
407
408 error = 0;
409
410 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
411 if (flags & LK_INTERLOCK)
412 simple_unlock(interlkp);
413 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
414
415 #ifdef DIAGNOSTIC /* { */
416 /*
417 * Don't allow spins on sleep locks and don't allow sleeps
418 * on spin locks.
419 */
420 if ((flags ^ lkp->lk_flags) & LK_SPIN)
421 panic("lockmgr: sleep/spin mismatch\n");
422 #endif /* } */
423
424 if (extflags & LK_SPIN)
425 pid = LK_KERNPROC;
426 else {
427 if (p == NULL) {
428 if (!doing_shutdown) {
429 #ifdef DIAGNOSTIC
430 panic("lockmgr: no context");
431 #endif
432 } else {
433 p = &proc0;
434 if (panicstr && (!(flags & LK_NOWAIT))) {
435 flags |= LK_NOWAIT;
436 lock_shutdown_noblock = 1;
437 }
438 }
439 }
440 pid = p->p_pid;
441 }
442 cpu_id = cpu_number();
443
444 /*
445 * Once a lock has drained, the LK_DRAINING flag is set and an
446 * exclusive lock is returned. The only valid operation thereafter
447 * is a single release of that exclusive lock. This final release
448 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
449 * further requests of any sort will result in a panic. The bits
450 * selected for these two flags are chosen so that they will be set
451 * in memory that is freed (freed memory is filled with 0xdeadbeef).
452 * The final release is permitted to give a new lease on life to
453 * the lock by specifying LK_REENABLE.
454 */
455 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
456 #ifdef DIAGNOSTIC /* { */
457 if (lkp->lk_flags & LK_DRAINED)
458 panic("lockmgr: using decommissioned lock");
459 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
460 WEHOLDIT(lkp, pid, cpu_id) == 0)
461 panic("lockmgr: non-release on draining lock: %d\n",
462 flags & LK_TYPE_MASK);
463 #endif /* DIAGNOSTIC */ /* } */
464 lkp->lk_flags &= ~LK_DRAINING;
465 if ((flags & LK_REENABLE) == 0)
466 lkp->lk_flags |= LK_DRAINED;
467 }
468
469 switch (flags & LK_TYPE_MASK) {
470
471 case LK_SHARED:
472 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
473 /*
474 * If just polling, check to see if we will block.
475 */
476 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
477 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
478 error = EBUSY;
479 break;
480 }
481 /*
482 * Wait for exclusive locks and upgrades to clear.
483 */
484 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
485 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
486 if (error)
487 break;
488 lkp->lk_sharecount++;
489 COUNT(lkp, p, cpu_id, 1);
490 break;
491 }
492 /*
493 * We hold an exclusive lock, so downgrade it to shared.
494 * An alternative would be to fail with EDEADLK.
495 */
496 lkp->lk_sharecount++;
497 COUNT(lkp, p, cpu_id, 1);
498 /* fall into downgrade */
499
500 case LK_DOWNGRADE:
501 if (WEHOLDIT(lkp, pid, cpu_id) == 0 ||
502 lkp->lk_exclusivecount == 0)
503 panic("lockmgr: not holding exclusive lock");
504 lkp->lk_sharecount += lkp->lk_exclusivecount;
505 lkp->lk_exclusivecount = 0;
506 lkp->lk_recurselevel = 0;
507 lkp->lk_flags &= ~LK_HAVE_EXCL;
508 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
509 DONTHAVEIT(lkp);
510 WAKEUP_WAITER(lkp);
511 break;
512
513 case LK_EXCLUPGRADE:
514 /*
515 * If another process is ahead of us to get an upgrade,
516 * then we want to fail rather than have an intervening
517 * exclusive access.
518 */
519 if (lkp->lk_flags & LK_WANT_UPGRADE) {
520 lkp->lk_sharecount--;
521 COUNT(lkp, p, cpu_id, -1);
522 error = EBUSY;
523 break;
524 }
525 /* fall into normal upgrade */
526
527 case LK_UPGRADE:
528 /*
529 * Upgrade a shared lock to an exclusive one. If another
530 * shared lock has already requested an upgrade to an
531 * exclusive lock, our shared lock is released and an
532 * exclusive lock is requested (which will be granted
533 * after the upgrade). If we return an error, the file
534 * will always be unlocked.
535 */
536 if (WEHOLDIT(lkp, pid, cpu_id) || lkp->lk_sharecount <= 0)
537 panic("lockmgr: upgrade exclusive lock");
538 lkp->lk_sharecount--;
539 COUNT(lkp, p, cpu_id, -1);
540 /*
541 * If we are just polling, check to see if we will block.
542 */
543 if ((extflags & LK_NOWAIT) &&
544 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
545 lkp->lk_sharecount > 1)) {
546 error = EBUSY;
547 break;
548 }
549 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
550 /*
551 * We are first shared lock to request an upgrade, so
552 * request upgrade and wait for the shared count to
553 * drop to zero, then take exclusive lock.
554 */
555 lkp->lk_flags |= LK_WANT_UPGRADE;
556 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
557 lkp->lk_flags &= ~LK_WANT_UPGRADE;
558 if (error)
559 break;
560 lkp->lk_flags |= LK_HAVE_EXCL;
561 SETHOLDER(lkp, pid, cpu_id);
562 HAVEIT(lkp);
563 if (lkp->lk_exclusivecount != 0)
564 panic("lockmgr: non-zero exclusive count");
565 lkp->lk_exclusivecount = 1;
566 if (extflags & LK_SETRECURSE)
567 lkp->lk_recurselevel = 1;
568 COUNT(lkp, p, cpu_id, 1);
569 break;
570 }
571 /*
572 * Someone else has requested upgrade. Release our shared
573 * lock, awaken upgrade requestor if we are the last shared
574 * lock, then request an exclusive lock.
575 */
576 if (lkp->lk_sharecount == 0)
577 WAKEUP_WAITER(lkp);
578 /* fall into exclusive request */
579
580 case LK_EXCLUSIVE:
581 if (WEHOLDIT(lkp, pid, cpu_id)) {
582 /*
583 * Recursive lock.
584 */
585 if ((extflags & LK_CANRECURSE) == 0 &&
586 lkp->lk_recurselevel == 0) {
587 if (extflags & LK_RECURSEFAIL) {
588 error = EDEADLK;
589 break;
590 } else
591 panic("lockmgr: locking against myself");
592 }
593 lkp->lk_exclusivecount++;
594 if (extflags & LK_SETRECURSE &&
595 lkp->lk_recurselevel == 0)
596 lkp->lk_recurselevel = lkp->lk_exclusivecount;
597 COUNT(lkp, p, cpu_id, 1);
598 break;
599 }
600 /*
601 * If we are just polling, check to see if we will sleep.
602 */
603 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
604 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
605 lkp->lk_sharecount != 0)) {
606 error = EBUSY;
607 break;
608 }
609 /*
610 * Try to acquire the want_exclusive flag.
611 */
612 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
613 (LK_HAVE_EXCL | LK_WANT_EXCL));
614 if (error)
615 break;
616 lkp->lk_flags |= LK_WANT_EXCL;
617 /*
618 * Wait for shared locks and upgrades to finish.
619 */
620 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
621 (lkp->lk_flags & LK_WANT_UPGRADE));
622 lkp->lk_flags &= ~LK_WANT_EXCL;
623 if (error)
624 break;
625 lkp->lk_flags |= LK_HAVE_EXCL;
626 SETHOLDER(lkp, pid, cpu_id);
627 HAVEIT(lkp);
628 if (lkp->lk_exclusivecount != 0)
629 panic("lockmgr: non-zero exclusive count");
630 lkp->lk_exclusivecount = 1;
631 if (extflags & LK_SETRECURSE)
632 lkp->lk_recurselevel = 1;
633 COUNT(lkp, p, cpu_id, 1);
634 break;
635
636 case LK_RELEASE:
637 if (lkp->lk_exclusivecount != 0) {
638 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
639 if (lkp->lk_flags & LK_SPIN) {
640 panic("lockmgr: processor %lu, not "
641 "exclusive lock holder %lu "
642 "unlocking", cpu_id, lkp->lk_cpu);
643 } else {
644 panic("lockmgr: pid %d, not "
645 "exclusive lock holder %d "
646 "unlocking", pid,
647 lkp->lk_lockholder);
648 }
649 }
650 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
651 lkp->lk_recurselevel = 0;
652 lkp->lk_exclusivecount--;
653 COUNT(lkp, p, cpu_id, -1);
654 if (lkp->lk_exclusivecount == 0) {
655 lkp->lk_flags &= ~LK_HAVE_EXCL;
656 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
657 DONTHAVEIT(lkp);
658 }
659 } else if (lkp->lk_sharecount != 0) {
660 lkp->lk_sharecount--;
661 COUNT(lkp, p, cpu_id, -1);
662 }
663 #ifdef DIAGNOSTIC
664 else
665 panic("lockmgr: release of unlocked lock!");
666 #endif
667 WAKEUP_WAITER(lkp);
668 break;
669
670 case LK_DRAIN:
671 /*
672 * Check that we do not already hold the lock, as it can
673 * never drain if we do. Unfortunately, we have no way to
674 * check for holding a shared lock, but at least we can
675 * check for an exclusive one.
676 */
677 if (WEHOLDIT(lkp, pid, cpu_id))
678 panic("lockmgr: draining against myself");
679 /*
680 * If we are just polling, check to see if we will sleep.
681 */
682 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
683 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
684 lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
685 error = EBUSY;
686 break;
687 }
688 ACQUIRE(lkp, error, extflags, 1,
689 ((lkp->lk_flags &
690 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
691 lkp->lk_sharecount != 0 ||
692 lkp->lk_waitcount != 0));
693 if (error)
694 break;
695 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
696 SETHOLDER(lkp, pid, cpu_id);
697 HAVEIT(lkp);
698 lkp->lk_exclusivecount = 1;
699 /* XXX unlikely that we'd want this */
700 if (extflags & LK_SETRECURSE)
701 lkp->lk_recurselevel = 1;
702 COUNT(lkp, p, cpu_id, 1);
703 break;
704
705 default:
706 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
707 panic("lockmgr: unknown locktype request %d",
708 flags & LK_TYPE_MASK);
709 /* NOTREACHED */
710 }
711 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
712 ((lkp->lk_flags &
713 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
714 lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
715 lkp->lk_flags &= ~LK_WAITDRAIN;
716 wakeup_one((void *)&lkp->lk_flags);
717 }
718 /*
719 * Note that this panic will be a recursive panic, since
720 * we only set lock_shutdown_noblock above if panicstr != NULL.
721 */
722 if (error && lock_shutdown_noblock)
723 panic("lockmgr: deadlock (see previous panic)");
724
725 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
726 return (error);
727 }
728
729 /*
730 * For a recursive spinlock held one or more times by the current CPU,
731 * release all N locks, and return N.
732 * Intended for use in mi_switch() shortly before context switching.
733 */
734
735 int
736 spinlock_release_all(__volatile struct lock *lkp)
737 {
738 int s, count;
739 cpuid_t cpu_id;
740
741 KASSERT(lkp->lk_flags & LK_SPIN);
742
743 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
744
745 cpu_id = cpu_number();
746 count = lkp->lk_exclusivecount;
747
748 if (count != 0) {
749 #ifdef DIAGNOSTIC
750 if (WEHOLDIT(lkp, 0, cpu_id) == 0) {
751 panic("spinlock_release_all: processor %lu, not "
752 "exclusive lock holder %lu "
753 "unlocking", (long)cpu_id, lkp->lk_cpu);
754 }
755 #endif
756 lkp->lk_recurselevel = 0;
757 lkp->lk_exclusivecount = 0;
758 COUNT_CPU(cpu_id, -count);
759 lkp->lk_flags &= ~LK_HAVE_EXCL;
760 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
761 DONTHAVEIT(lkp);
762 }
763 #ifdef DIAGNOSTIC
764 else if (lkp->lk_sharecount != 0)
765 panic("spinlock_release_all: release of shared lock!");
766 else
767 panic("spinlock_release_all: release of unlocked lock!");
768 #endif
769 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
770
771 return (count);
772 }
773
774 /*
775 * For a recursive spinlock held one or more times by the current CPU,
776 * release all N locks, and return N.
777 * Intended for use in mi_switch() right after resuming execution.
778 */
779
780 void
781 spinlock_acquire_count(__volatile struct lock *lkp, int count)
782 {
783 int s, error;
784 cpuid_t cpu_id;
785
786 KASSERT(lkp->lk_flags & LK_SPIN);
787
788 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
789
790 cpu_id = cpu_number();
791
792 #ifdef DIAGNOSTIC
793 if (WEHOLDIT(lkp, LK_NOPROC, cpu_id))
794 panic("spinlock_acquire_count: processor %lu already holds lock\n", (long)cpu_id);
795 #endif
796 /*
797 * Try to acquire the want_exclusive flag.
798 */
799 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_flags &
800 (LK_HAVE_EXCL | LK_WANT_EXCL));
801 lkp->lk_flags |= LK_WANT_EXCL;
802 /*
803 * Wait for shared locks and upgrades to finish.
804 */
805 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_sharecount != 0 ||
806 (lkp->lk_flags & LK_WANT_UPGRADE));
807 lkp->lk_flags &= ~LK_WANT_EXCL;
808 lkp->lk_flags |= LK_HAVE_EXCL;
809 SETHOLDER(lkp, LK_NOPROC, cpu_id);
810 HAVEIT(lkp);
811 if (lkp->lk_exclusivecount != 0)
812 panic("lockmgr: non-zero exclusive count");
813 lkp->lk_exclusivecount = count;
814 lkp->lk_recurselevel = 1;
815 COUNT_CPU(cpu_id, count);
816
817 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
818 }
819
820
821
822 /*
823 * Print out information about state of a lock. Used by VOP_PRINT
824 * routines to display ststus about contained locks.
825 */
826 void
827 lockmgr_printinfo(__volatile struct lock *lkp)
828 {
829
830 if (lkp->lk_sharecount)
831 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
832 lkp->lk_sharecount);
833 else if (lkp->lk_flags & LK_HAVE_EXCL) {
834 printf(" lock type %s: EXCL (count %d) by ",
835 lkp->lk_wmesg, lkp->lk_exclusivecount);
836 if (lkp->lk_flags & LK_SPIN)
837 printf("processor %lu", lkp->lk_cpu);
838 else
839 printf("pid %d", lkp->lk_lockholder);
840 } else
841 printf(" not locked");
842 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
843 printf(" with %d pending", lkp->lk_waitcount);
844 }
845
846 #if defined(LOCKDEBUG) /* { */
847 TAILQ_HEAD(, simplelock) simplelock_list =
848 TAILQ_HEAD_INITIALIZER(simplelock_list);
849
850 #if defined(MULTIPROCESSOR) /* { */
851 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
852
853 #define SLOCK_LIST_LOCK() \
854 __cpu_simple_lock(&simplelock_list_slock.lock_data)
855
856 #define SLOCK_LIST_UNLOCK() \
857 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
858
859 #define SLOCK_COUNT(x) \
860 curcpu()->ci_simple_locks += (x)
861 #else
862 u_long simple_locks;
863
864 #define SLOCK_LIST_LOCK() /* nothing */
865
866 #define SLOCK_LIST_UNLOCK() /* nothing */
867
868 #define SLOCK_COUNT(x) simple_locks += (x)
869 #endif /* MULTIPROCESSOR */ /* } */
870
871 #ifdef DDB /* { */
872 #ifdef MULTIPROCESSOR
873 int simple_lock_debugger = 1; /* more serious on MP */
874 #else
875 int simple_lock_debugger = 0;
876 #endif
877 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
878 #else
879 #define SLOCK_DEBUGGER() /* nothing */
880 #endif /* } */
881
882 #ifdef MULTIPROCESSOR
883 #define SLOCK_MP() lock_printf("on cpu %ld\n", \
884 (u_long) cpu_number())
885 #else
886 #define SLOCK_MP() /* nothing */
887 #endif
888
889 #define SLOCK_WHERE(str, alp, id, l) \
890 do { \
891 lock_printf(str); \
892 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
893 SLOCK_MP(); \
894 if ((alp)->lock_file != NULL) \
895 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
896 (alp)->lock_line); \
897 if ((alp)->unlock_file != NULL) \
898 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
899 (alp)->unlock_line); \
900 SLOCK_DEBUGGER(); \
901 } while (/*CONSTCOND*/0)
902
903 /*
904 * Simple lock functions so that the debugger can see from whence
905 * they are being called.
906 */
907 void
908 simple_lock_init(struct simplelock *alp)
909 {
910
911 #if defined(MULTIPROCESSOR) /* { */
912 __cpu_simple_lock_init(&alp->lock_data);
913 #else
914 alp->lock_data = __SIMPLELOCK_UNLOCKED;
915 #endif /* } */
916 alp->lock_file = NULL;
917 alp->lock_line = 0;
918 alp->unlock_file = NULL;
919 alp->unlock_line = 0;
920 alp->lock_holder = LK_NOCPU;
921 }
922
923 void
924 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
925 {
926 cpuid_t cpu_id = cpu_number();
927 int s;
928
929 s = spllock();
930
931 /*
932 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
933 * don't take any action, and just fall into the normal spin case.
934 */
935 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
936 #if defined(MULTIPROCESSOR) /* { */
937 if (alp->lock_holder == cpu_id) {
938 SLOCK_WHERE("simple_lock: locking against myself\n",
939 alp, id, l);
940 goto out;
941 }
942 #else
943 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
944 goto out;
945 #endif /* MULTIPROCESSOR */ /* } */
946 }
947
948 #if defined(MULTIPROCESSOR) /* { */
949 /* Acquire the lock before modifying any fields. */
950 __cpu_simple_lock(&alp->lock_data);
951 #else
952 alp->lock_data = __SIMPLELOCK_LOCKED;
953 #endif /* } */
954
955 if (alp->lock_holder != LK_NOCPU) {
956 SLOCK_WHERE("simple_lock: uninitialized lock\n",
957 alp, id, l);
958 }
959 alp->lock_file = id;
960 alp->lock_line = l;
961 alp->lock_holder = cpu_id;
962
963 SLOCK_LIST_LOCK();
964 /* XXX Cast away volatile */
965 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
966 SLOCK_LIST_UNLOCK();
967
968 SLOCK_COUNT(1);
969
970 out:
971 splx(s);
972 }
973
974 int
975 _simple_lock_held(__volatile struct simplelock *alp)
976 {
977 cpuid_t cpu_id = cpu_number();
978 int s, locked = 0;
979
980 s = spllock();
981
982 #if defined(MULTIPROCESSOR)
983 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
984 locked = (alp->lock_holder == cpu_id);
985 else
986 __cpu_simple_unlock(&alp->lock_data);
987 #else
988 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
989 locked = 1;
990 KASSERT(alp->lock_holder == cpu_id);
991 }
992 #endif
993
994 splx(s);
995
996 return (locked);
997 }
998
999 int
1000 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
1001 {
1002 cpuid_t cpu_id = cpu_number();
1003 int s, rv = 0;
1004
1005 s = spllock();
1006
1007 /*
1008 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1009 * don't take any action.
1010 */
1011 #if defined(MULTIPROCESSOR) /* { */
1012 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1013 if (alp->lock_holder == cpu_id)
1014 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1015 alp, id, l);
1016 goto out;
1017 }
1018 #else
1019 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1020 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1021 goto out;
1022 }
1023 alp->lock_data = __SIMPLELOCK_LOCKED;
1024 #endif /* MULTIPROCESSOR */ /* } */
1025
1026 /*
1027 * At this point, we have acquired the lock.
1028 */
1029
1030 rv = 1;
1031
1032 alp->lock_file = id;
1033 alp->lock_line = l;
1034 alp->lock_holder = cpu_id;
1035
1036 SLOCK_LIST_LOCK();
1037 /* XXX Cast away volatile. */
1038 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1039 SLOCK_LIST_UNLOCK();
1040
1041 SLOCK_COUNT(1);
1042
1043 out:
1044 splx(s);
1045 return (rv);
1046 }
1047
1048 void
1049 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
1050 {
1051 int s;
1052
1053 s = spllock();
1054
1055 /*
1056 * MULTIPROCESSOR case: This is `safe' because we think we hold
1057 * the lock, and if we don't, we don't take any action.
1058 */
1059 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1060 SLOCK_WHERE("simple_unlock: lock not held\n",
1061 alp, id, l);
1062 goto out;
1063 }
1064
1065 SLOCK_LIST_LOCK();
1066 TAILQ_REMOVE(&simplelock_list, alp, list);
1067 SLOCK_LIST_UNLOCK();
1068
1069 SLOCK_COUNT(-1);
1070
1071 alp->list.tqe_next = NULL; /* sanity */
1072 alp->list.tqe_prev = NULL; /* sanity */
1073
1074 alp->unlock_file = id;
1075 alp->unlock_line = l;
1076
1077 #if defined(MULTIPROCESSOR) /* { */
1078 alp->lock_holder = LK_NOCPU;
1079 /* Now that we've modified all fields, release the lock. */
1080 __cpu_simple_unlock(&alp->lock_data);
1081 #else
1082 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1083 KASSERT(alp->lock_holder == cpu_number());
1084 alp->lock_holder = LK_NOCPU;
1085 #endif /* } */
1086
1087 out:
1088 splx(s);
1089 }
1090
1091 void
1092 simple_lock_dump(void)
1093 {
1094 struct simplelock *alp;
1095 int s;
1096
1097 s = spllock();
1098 SLOCK_LIST_LOCK();
1099 lock_printf("all simple locks:\n");
1100 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1101 alp = TAILQ_NEXT(alp, list)) {
1102 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1103 alp->lock_file, alp->lock_line);
1104 }
1105 SLOCK_LIST_UNLOCK();
1106 splx(s);
1107 }
1108
1109 void
1110 simple_lock_freecheck(void *start, void *end)
1111 {
1112 struct simplelock *alp;
1113 int s;
1114
1115 s = spllock();
1116 SLOCK_LIST_LOCK();
1117 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1118 alp = TAILQ_NEXT(alp, list)) {
1119 if ((void *)alp >= start && (void *)alp < end) {
1120 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1121 alp, alp->lock_holder, alp->lock_file,
1122 alp->lock_line);
1123 SLOCK_DEBUGGER();
1124 }
1125 }
1126 SLOCK_LIST_UNLOCK();
1127 splx(s);
1128 }
1129
1130 void
1131 simple_lock_switchcheck(void)
1132 {
1133 struct simplelock *alp;
1134 cpuid_t cpu_id = cpu_number();
1135 int s;
1136
1137 /*
1138 * We must be holding exactly one lock: the sched_lock.
1139 */
1140
1141 SCHED_ASSERT_LOCKED();
1142
1143 s = spllock();
1144 SLOCK_LIST_LOCK();
1145 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1146 alp = TAILQ_NEXT(alp, list)) {
1147 if (alp == &sched_lock)
1148 continue;
1149 if (alp->lock_holder == cpu_id) {
1150 lock_printf("switching with held simple_lock %p "
1151 "CPU %lu %s:%d\n",
1152 alp, alp->lock_holder, alp->lock_file,
1153 alp->lock_line);
1154 SLOCK_DEBUGGER();
1155 }
1156 }
1157 SLOCK_LIST_UNLOCK();
1158 splx(s);
1159 }
1160 #endif /* LOCKDEBUG */ /* } */
1161