kern_lock.c revision 1.48 1 /* $NetBSD: kern_lock.c,v 1.48 2000/08/28 21:07:52 sommerfeld Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. All advertising materials mentioning features or use of this software
60 * must display the following acknowledgement:
61 * This product includes software developed by the University of
62 * California, Berkeley and its contributors.
63 * 4. Neither the name of the University nor the names of its contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
71 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
73 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
74 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
75 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
76 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * SUCH DAMAGE.
78 *
79 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
80 */
81
82 #include "opt_multiprocessor.h"
83 #include "opt_lockdebug.h"
84 #include "opt_ddb.h"
85
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/lock.h>
89 #include <sys/systm.h>
90 #include <machine/cpu.h>
91
92 #if defined(LOCKDEBUG)
93 #include <sys/syslog.h>
94 /*
95 * note that stdarg.h and the ansi style va_start macro is used for both
96 * ansi and traditional c compiles.
97 * XXX: this requires that stdarg.h define: va_alist and va_dcl
98 */
99 #include <machine/stdarg.h>
100
101 void lock_printf(const char *fmt, ...)
102 __attribute__((__format__(__printf__,1,2)));
103
104 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
105 #endif
106
107 /*
108 * Locking primitives implementation.
109 * Locks provide shared/exclusive sychronization.
110 */
111
112 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
113 #if defined(MULTIPROCESSOR) /* { */
114 #define COUNT_CPU(cpu_id, x) \
115 curcpu()->ci_spin_locks += (x)
116 #else
117 u_long spin_locks;
118 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
119 #endif /* MULTIPROCESSOR */ /* } */
120
121 #define COUNT(lkp, p, cpu_id, x) \
122 do { \
123 if ((lkp)->lk_flags & LK_SPIN) \
124 COUNT_CPU((cpu_id), (x)); \
125 else \
126 (p)->p_locks += (x); \
127 } while (/*CONSTCOND*/0)
128 #else
129 #define COUNT(lkp, p, cpu_id, x)
130 #define COUNT_CPU(cpu_id, x)
131 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
132
133 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
134 do { \
135 if ((flags) & LK_SPIN) \
136 s = splsched(); \
137 simple_lock(&(lkp)->lk_interlock); \
138 } while (0)
139
140 #define INTERLOCK_RELEASE(lkp, flags, s) \
141 do { \
142 simple_unlock(&(lkp)->lk_interlock); \
143 if ((flags) & LK_SPIN) \
144 splx(s); \
145 } while (0)
146
147 /*
148 * Acquire a resource.
149 */
150 #define ACQUIRE(lkp, error, extflags, drain, wanted) \
151 if ((extflags) & LK_SPIN) { \
152 int interlocked; \
153 \
154 if ((drain) == 0) \
155 (lkp)->lk_waitcount++; \
156 for (interlocked = 1;;) { \
157 if (wanted) { \
158 if (interlocked) { \
159 INTERLOCK_RELEASE((lkp), \
160 LK_SPIN, s); \
161 interlocked = 0; \
162 } \
163 } else if (interlocked) { \
164 break; \
165 } else { \
166 INTERLOCK_ACQUIRE((lkp), LK_SPIN, s); \
167 interlocked = 1; \
168 } \
169 } \
170 if ((drain) == 0) \
171 (lkp)->lk_waitcount--; \
172 KASSERT((wanted) == 0); \
173 error = 0; /* sanity */ \
174 } else { \
175 for (error = 0; wanted; ) { \
176 if ((drain)) \
177 (lkp)->lk_flags |= LK_WAITDRAIN; \
178 else \
179 (lkp)->lk_waitcount++; \
180 /* XXX Cast away volatile. */ \
181 error = ltsleep((drain) ? &(lkp)->lk_flags : \
182 (void *)(lkp), (lkp)->lk_prio, \
183 (lkp)->lk_wmesg, (lkp)->lk_timo, \
184 &(lkp)->lk_interlock); \
185 if ((drain) == 0) \
186 (lkp)->lk_waitcount--; \
187 if (error) \
188 break; \
189 if ((extflags) & LK_SLEEPFAIL) { \
190 error = ENOLCK; \
191 break; \
192 } \
193 } \
194 }
195
196 #define SETHOLDER(lkp, pid, cpu_id) \
197 do { \
198 if ((lkp)->lk_flags & LK_SPIN) \
199 (lkp)->lk_cpu = cpu_id; \
200 else \
201 (lkp)->lk_lockholder = pid; \
202 } while (/*CONSTCOND*/0)
203
204 #define WEHOLDIT(lkp, pid, cpu_id) \
205 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
206 ((lkp)->lk_cpu == (cpu_id)) : ((lkp)->lk_lockholder == (pid)))
207
208 #define WAKEUP_WAITER(lkp) \
209 do { \
210 if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) { \
211 /* XXX Cast away volatile. */ \
212 wakeup_one((void *)(lkp)); \
213 } \
214 } while (/*CONSTCOND*/0)
215
216 #if defined(LOCKDEBUG) /* { */
217 #if defined(MULTIPROCESSOR) /* { */
218 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
219
220 #define SPINLOCK_LIST_LOCK() \
221 __cpu_simple_lock(&spinlock_list_slock.lock_data)
222
223 #define SPINLOCK_LIST_UNLOCK() \
224 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
225 #else
226 #define SPINLOCK_LIST_LOCK() /* nothing */
227
228 #define SPINLOCK_LIST_UNLOCK() /* nothing */
229 #endif /* MULTIPROCESSOR */ /* } */
230
231 TAILQ_HEAD(, lock) spinlock_list =
232 TAILQ_HEAD_INITIALIZER(spinlock_list);
233
234 #define HAVEIT(lkp) \
235 do { \
236 if ((lkp)->lk_flags & LK_SPIN) { \
237 int s = spllock(); \
238 SPINLOCK_LIST_LOCK(); \
239 /* XXX Cast away volatile. */ \
240 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
241 lk_list); \
242 SPINLOCK_LIST_UNLOCK(); \
243 splx(s); \
244 } \
245 } while (/*CONSTCOND*/0)
246
247 #define DONTHAVEIT(lkp) \
248 do { \
249 if ((lkp)->lk_flags & LK_SPIN) { \
250 int s = spllock(); \
251 SPINLOCK_LIST_LOCK(); \
252 /* XXX Cast away volatile. */ \
253 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
254 lk_list); \
255 SPINLOCK_LIST_UNLOCK(); \
256 splx(s); \
257 } \
258 } while (/*CONSTCOND*/0)
259 #else
260 #define HAVEIT(lkp) /* nothing */
261
262 #define DONTHAVEIT(lkp) /* nothing */
263 #endif /* LOCKDEBUG */ /* } */
264
265 #if defined(LOCKDEBUG)
266 /*
267 * Lock debug printing routine; can be configured to print to console
268 * or log to syslog.
269 */
270 void
271 lock_printf(const char *fmt, ...)
272 {
273 va_list ap;
274
275 va_start(ap, fmt);
276 if (lock_debug_syslog)
277 vlog(LOG_DEBUG, fmt, ap);
278 else
279 vprintf(fmt, ap);
280 va_end(ap);
281 }
282 #endif /* LOCKDEBUG */
283
284 /*
285 * Initialize a lock; required before use.
286 */
287 void
288 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
289 {
290
291 memset(lkp, 0, sizeof(struct lock));
292 simple_lock_init(&lkp->lk_interlock);
293 lkp->lk_flags = flags & LK_EXTFLG_MASK;
294 if (flags & LK_SPIN)
295 lkp->lk_cpu = LK_NOCPU;
296 else {
297 lkp->lk_lockholder = LK_NOPROC;
298 lkp->lk_prio = prio;
299 lkp->lk_timo = timo;
300 }
301 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
302 }
303
304 /*
305 * Determine the status of a lock.
306 */
307 int
308 lockstatus(struct lock *lkp)
309 {
310 int s, lock_type = 0;
311
312 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
313 if (lkp->lk_exclusivecount != 0)
314 lock_type = LK_EXCLUSIVE;
315 else if (lkp->lk_sharecount != 0)
316 lock_type = LK_SHARED;
317 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
318 return (lock_type);
319 }
320
321 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
322 /*
323 * Make sure no spin locks are held by a CPU that is about
324 * to context switch.
325 */
326 void
327 spinlock_switchcheck(void)
328 {
329 u_long cnt;
330 int s;
331
332 s = spllock();
333 #if defined(MULTIPROCESSOR)
334 cnt = curcpu()->ci_spin_locks;
335 #else
336 cnt = spin_locks;
337 #endif
338 splx(s);
339
340 if (cnt != 0)
341 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
342 (u_long) cpu_number(), cnt);
343 }
344 #endif /* LOCKDEBUG || DIAGNOSTIC */
345
346 /*
347 * Locks and IPLs (interrupt priority levels):
348 *
349 * Locks which may be taken from interrupt context must be handled
350 * very carefully; you must spl to the highest IPL where the lock
351 * is needed before acquiring the lock.
352 *
353 * It is also important to avoid deadlock, since certain (very high
354 * priority) interrupts are often needed to keep the system as a whole
355 * from deadlocking, and must not be blocked while you are spinning
356 * waiting for a lower-priority lock.
357 *
358 * In addition, the lock-debugging hooks themselves need to use locks!
359 *
360 * A raw __cpu_simple_lock may be used from interrupts are long as it
361 * is acquired and held at a single IPL.
362 *
363 * A simple_lock (which is a __cpu_simple_lock wrapped with some
364 * debugging hooks) may be used at or below spllock(), which is
365 * typically at or just below splhigh() (i.e. blocks everything
366 * but certain machine-dependent extremely high priority interrupts).
367 *
368 * spinlockmgr spinlocks should be used at or below splsched().
369 *
370 * Some platforms may have interrupts of higher priority than splsched(),
371 * including hard serial interrupts, inter-processor interrupts, and
372 * kernel debugger traps.
373 */
374
375 /*
376 * XXX XXX kludge around another kludge..
377 *
378 * vfs_shutdown() may be called from interrupt context, either as a result
379 * of a panic, or from the debugger. It proceeds to call
380 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
381 *
382 * We would like to make an attempt to sync the filesystems in this case, so
383 * if this happens, we treat attempts to acquire locks specially.
384 * All locks are acquired on behalf of proc0.
385 *
386 * If we've already paniced, we don't block waiting for locks, but
387 * just barge right ahead since we're already going down in flames.
388 */
389
390 /*
391 * Set, change, or release a lock.
392 *
393 * Shared requests increment the shared count. Exclusive requests set the
394 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
395 * accepted shared locks and shared-to-exclusive upgrades to go away.
396 */
397 int
398 lockmgr(__volatile struct lock *lkp, u_int flags,
399 struct simplelock *interlkp)
400 {
401 int error;
402 pid_t pid;
403 int extflags;
404 cpuid_t cpu_id;
405 struct proc *p = curproc;
406 int lock_shutdown_noblock = 0;
407 int s;
408
409 error = 0;
410
411 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
412 if (flags & LK_INTERLOCK)
413 simple_unlock(interlkp);
414 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
415
416 #ifdef DIAGNOSTIC /* { */
417 /*
418 * Don't allow spins on sleep locks and don't allow sleeps
419 * on spin locks.
420 */
421 if ((flags ^ lkp->lk_flags) & LK_SPIN)
422 panic("lockmgr: sleep/spin mismatch\n");
423 #endif /* } */
424
425 if (extflags & LK_SPIN)
426 pid = LK_KERNPROC;
427 else {
428 if (p == NULL) {
429 if (!doing_shutdown) {
430 #ifdef DIAGNOSTIC
431 panic("lockmgr: no context");
432 #endif
433 } else {
434 p = &proc0;
435 if (panicstr && (!(flags & LK_NOWAIT))) {
436 flags |= LK_NOWAIT;
437 lock_shutdown_noblock = 1;
438 }
439 }
440 }
441 pid = p->p_pid;
442 }
443 cpu_id = cpu_number();
444
445 /*
446 * Once a lock has drained, the LK_DRAINING flag is set and an
447 * exclusive lock is returned. The only valid operation thereafter
448 * is a single release of that exclusive lock. This final release
449 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
450 * further requests of any sort will result in a panic. The bits
451 * selected for these two flags are chosen so that they will be set
452 * in memory that is freed (freed memory is filled with 0xdeadbeef).
453 * The final release is permitted to give a new lease on life to
454 * the lock by specifying LK_REENABLE.
455 */
456 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
457 #ifdef DIAGNOSTIC /* { */
458 if (lkp->lk_flags & LK_DRAINED)
459 panic("lockmgr: using decommissioned lock");
460 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
461 WEHOLDIT(lkp, pid, cpu_id) == 0)
462 panic("lockmgr: non-release on draining lock: %d\n",
463 flags & LK_TYPE_MASK);
464 #endif /* DIAGNOSTIC */ /* } */
465 lkp->lk_flags &= ~LK_DRAINING;
466 if ((flags & LK_REENABLE) == 0)
467 lkp->lk_flags |= LK_DRAINED;
468 }
469
470 switch (flags & LK_TYPE_MASK) {
471
472 case LK_SHARED:
473 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
474 /*
475 * If just polling, check to see if we will block.
476 */
477 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
478 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
479 error = EBUSY;
480 break;
481 }
482 /*
483 * Wait for exclusive locks and upgrades to clear.
484 */
485 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
486 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
487 if (error)
488 break;
489 lkp->lk_sharecount++;
490 COUNT(lkp, p, cpu_id, 1);
491 break;
492 }
493 /*
494 * We hold an exclusive lock, so downgrade it to shared.
495 * An alternative would be to fail with EDEADLK.
496 */
497 lkp->lk_sharecount++;
498 COUNT(lkp, p, cpu_id, 1);
499 /* fall into downgrade */
500
501 case LK_DOWNGRADE:
502 if (WEHOLDIT(lkp, pid, cpu_id) == 0 ||
503 lkp->lk_exclusivecount == 0)
504 panic("lockmgr: not holding exclusive lock");
505 lkp->lk_sharecount += lkp->lk_exclusivecount;
506 lkp->lk_exclusivecount = 0;
507 lkp->lk_recurselevel = 0;
508 lkp->lk_flags &= ~LK_HAVE_EXCL;
509 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
510 DONTHAVEIT(lkp);
511 WAKEUP_WAITER(lkp);
512 break;
513
514 case LK_EXCLUPGRADE:
515 /*
516 * If another process is ahead of us to get an upgrade,
517 * then we want to fail rather than have an intervening
518 * exclusive access.
519 */
520 if (lkp->lk_flags & LK_WANT_UPGRADE) {
521 lkp->lk_sharecount--;
522 COUNT(lkp, p, cpu_id, -1);
523 error = EBUSY;
524 break;
525 }
526 /* fall into normal upgrade */
527
528 case LK_UPGRADE:
529 /*
530 * Upgrade a shared lock to an exclusive one. If another
531 * shared lock has already requested an upgrade to an
532 * exclusive lock, our shared lock is released and an
533 * exclusive lock is requested (which will be granted
534 * after the upgrade). If we return an error, the file
535 * will always be unlocked.
536 */
537 if (WEHOLDIT(lkp, pid, cpu_id) || lkp->lk_sharecount <= 0)
538 panic("lockmgr: upgrade exclusive lock");
539 lkp->lk_sharecount--;
540 COUNT(lkp, p, cpu_id, -1);
541 /*
542 * If we are just polling, check to see if we will block.
543 */
544 if ((extflags & LK_NOWAIT) &&
545 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
546 lkp->lk_sharecount > 1)) {
547 error = EBUSY;
548 break;
549 }
550 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
551 /*
552 * We are first shared lock to request an upgrade, so
553 * request upgrade and wait for the shared count to
554 * drop to zero, then take exclusive lock.
555 */
556 lkp->lk_flags |= LK_WANT_UPGRADE;
557 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
558 lkp->lk_flags &= ~LK_WANT_UPGRADE;
559 if (error)
560 break;
561 lkp->lk_flags |= LK_HAVE_EXCL;
562 SETHOLDER(lkp, pid, cpu_id);
563 HAVEIT(lkp);
564 if (lkp->lk_exclusivecount != 0)
565 panic("lockmgr: non-zero exclusive count");
566 lkp->lk_exclusivecount = 1;
567 if (extflags & LK_SETRECURSE)
568 lkp->lk_recurselevel = 1;
569 COUNT(lkp, p, cpu_id, 1);
570 break;
571 }
572 /*
573 * Someone else has requested upgrade. Release our shared
574 * lock, awaken upgrade requestor if we are the last shared
575 * lock, then request an exclusive lock.
576 */
577 if (lkp->lk_sharecount == 0)
578 WAKEUP_WAITER(lkp);
579 /* fall into exclusive request */
580
581 case LK_EXCLUSIVE:
582 if (WEHOLDIT(lkp, pid, cpu_id)) {
583 /*
584 * Recursive lock.
585 */
586 if ((extflags & LK_CANRECURSE) == 0 &&
587 lkp->lk_recurselevel == 0) {
588 if (extflags & LK_RECURSEFAIL) {
589 error = EDEADLK;
590 break;
591 } else
592 panic("lockmgr: locking against myself");
593 }
594 lkp->lk_exclusivecount++;
595 if (extflags & LK_SETRECURSE &&
596 lkp->lk_recurselevel == 0)
597 lkp->lk_recurselevel = lkp->lk_exclusivecount;
598 COUNT(lkp, p, cpu_id, 1);
599 break;
600 }
601 /*
602 * If we are just polling, check to see if we will sleep.
603 */
604 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
605 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
606 lkp->lk_sharecount != 0)) {
607 error = EBUSY;
608 break;
609 }
610 /*
611 * Try to acquire the want_exclusive flag.
612 */
613 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
614 (LK_HAVE_EXCL | LK_WANT_EXCL));
615 if (error)
616 break;
617 lkp->lk_flags |= LK_WANT_EXCL;
618 /*
619 * Wait for shared locks and upgrades to finish.
620 */
621 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
622 (lkp->lk_flags & LK_WANT_UPGRADE));
623 lkp->lk_flags &= ~LK_WANT_EXCL;
624 if (error)
625 break;
626 lkp->lk_flags |= LK_HAVE_EXCL;
627 SETHOLDER(lkp, pid, cpu_id);
628 HAVEIT(lkp);
629 if (lkp->lk_exclusivecount != 0)
630 panic("lockmgr: non-zero exclusive count");
631 lkp->lk_exclusivecount = 1;
632 if (extflags & LK_SETRECURSE)
633 lkp->lk_recurselevel = 1;
634 COUNT(lkp, p, cpu_id, 1);
635 break;
636
637 case LK_RELEASE:
638 if (lkp->lk_exclusivecount != 0) {
639 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
640 if (lkp->lk_flags & LK_SPIN) {
641 panic("lockmgr: processor %lu, not "
642 "exclusive lock holder %lu "
643 "unlocking", cpu_id, lkp->lk_cpu);
644 } else {
645 panic("lockmgr: pid %d, not "
646 "exclusive lock holder %d "
647 "unlocking", pid,
648 lkp->lk_lockholder);
649 }
650 }
651 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
652 lkp->lk_recurselevel = 0;
653 lkp->lk_exclusivecount--;
654 COUNT(lkp, p, cpu_id, -1);
655 if (lkp->lk_exclusivecount == 0) {
656 lkp->lk_flags &= ~LK_HAVE_EXCL;
657 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
658 DONTHAVEIT(lkp);
659 }
660 } else if (lkp->lk_sharecount != 0) {
661 lkp->lk_sharecount--;
662 COUNT(lkp, p, cpu_id, -1);
663 }
664 #ifdef DIAGNOSTIC
665 else
666 panic("lockmgr: release of unlocked lock!");
667 #endif
668 WAKEUP_WAITER(lkp);
669 break;
670
671 case LK_DRAIN:
672 /*
673 * Check that we do not already hold the lock, as it can
674 * never drain if we do. Unfortunately, we have no way to
675 * check for holding a shared lock, but at least we can
676 * check for an exclusive one.
677 */
678 if (WEHOLDIT(lkp, pid, cpu_id))
679 panic("lockmgr: draining against myself");
680 /*
681 * If we are just polling, check to see if we will sleep.
682 */
683 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
684 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
685 lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
686 error = EBUSY;
687 break;
688 }
689 ACQUIRE(lkp, error, extflags, 1,
690 ((lkp->lk_flags &
691 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
692 lkp->lk_sharecount != 0 ||
693 lkp->lk_waitcount != 0));
694 if (error)
695 break;
696 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
697 SETHOLDER(lkp, pid, cpu_id);
698 HAVEIT(lkp);
699 lkp->lk_exclusivecount = 1;
700 /* XXX unlikely that we'd want this */
701 if (extflags & LK_SETRECURSE)
702 lkp->lk_recurselevel = 1;
703 COUNT(lkp, p, cpu_id, 1);
704 break;
705
706 default:
707 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
708 panic("lockmgr: unknown locktype request %d",
709 flags & LK_TYPE_MASK);
710 /* NOTREACHED */
711 }
712 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
713 ((lkp->lk_flags &
714 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
715 lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
716 lkp->lk_flags &= ~LK_WAITDRAIN;
717 wakeup_one((void *)&lkp->lk_flags);
718 }
719 /*
720 * Note that this panic will be a recursive panic, since
721 * we only set lock_shutdown_noblock above if panicstr != NULL.
722 */
723 if (error && lock_shutdown_noblock)
724 panic("lockmgr: deadlock (see previous panic)");
725
726 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
727 return (error);
728 }
729
730 /*
731 * For a recursive spinlock held one or more times by the current CPU,
732 * release all N locks, and return N.
733 * Intended for use in mi_switch() shortly before context switching.
734 */
735
736 int
737 spinlock_release_all(__volatile struct lock *lkp)
738 {
739 int s, count;
740 cpuid_t cpu_id;
741
742 KASSERT(lkp->lk_flags & LK_SPIN);
743
744 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
745
746 cpu_id = cpu_number();
747 count = lkp->lk_exclusivecount;
748
749 if (count != 0) {
750 #ifdef DIAGNOSTIC
751 if (WEHOLDIT(lkp, 0, cpu_id) == 0) {
752 panic("spinlock_release_all: processor %lu, not "
753 "exclusive lock holder %lu "
754 "unlocking", (long)cpu_id, lkp->lk_cpu);
755 }
756 #endif
757 lkp->lk_recurselevel = 0;
758 lkp->lk_exclusivecount = 0;
759 COUNT_CPU(cpu_id, -count);
760 lkp->lk_flags &= ~LK_HAVE_EXCL;
761 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
762 DONTHAVEIT(lkp);
763 }
764 #ifdef DIAGNOSTIC
765 else if (lkp->lk_sharecount != 0)
766 panic("spinlock_release_all: release of shared lock!");
767 else
768 panic("spinlock_release_all: release of unlocked lock!");
769 #endif
770 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
771
772 return (count);
773 }
774
775 /*
776 * For a recursive spinlock held one or more times by the current CPU,
777 * release all N locks, and return N.
778 * Intended for use in mi_switch() right after resuming execution.
779 */
780
781 void
782 spinlock_acquire_count(__volatile struct lock *lkp, int count)
783 {
784 int s, error;
785 cpuid_t cpu_id;
786
787 KASSERT(lkp->lk_flags & LK_SPIN);
788
789 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
790
791 cpu_id = cpu_number();
792
793 #ifdef DIAGNOSTIC
794 if (WEHOLDIT(lkp, LK_NOPROC, cpu_id))
795 panic("spinlock_acquire_count: processor %lu already holds lock\n", (long)cpu_id);
796 #endif
797 /*
798 * Try to acquire the want_exclusive flag.
799 */
800 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_flags &
801 (LK_HAVE_EXCL | LK_WANT_EXCL));
802 lkp->lk_flags |= LK_WANT_EXCL;
803 /*
804 * Wait for shared locks and upgrades to finish.
805 */
806 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_sharecount != 0 ||
807 (lkp->lk_flags & LK_WANT_UPGRADE));
808 lkp->lk_flags &= ~LK_WANT_EXCL;
809 lkp->lk_flags |= LK_HAVE_EXCL;
810 SETHOLDER(lkp, LK_NOPROC, cpu_id);
811 HAVEIT(lkp);
812 if (lkp->lk_exclusivecount != 0)
813 panic("lockmgr: non-zero exclusive count");
814 lkp->lk_exclusivecount = count;
815 lkp->lk_recurselevel = 1;
816 COUNT_CPU(cpu_id, count);
817
818 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
819 }
820
821
822
823 /*
824 * Print out information about state of a lock. Used by VOP_PRINT
825 * routines to display ststus about contained locks.
826 */
827 void
828 lockmgr_printinfo(__volatile struct lock *lkp)
829 {
830
831 if (lkp->lk_sharecount)
832 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
833 lkp->lk_sharecount);
834 else if (lkp->lk_flags & LK_HAVE_EXCL) {
835 printf(" lock type %s: EXCL (count %d) by ",
836 lkp->lk_wmesg, lkp->lk_exclusivecount);
837 if (lkp->lk_flags & LK_SPIN)
838 printf("processor %lu", lkp->lk_cpu);
839 else
840 printf("pid %d", lkp->lk_lockholder);
841 } else
842 printf(" not locked");
843 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
844 printf(" with %d pending", lkp->lk_waitcount);
845 }
846
847 #if defined(LOCKDEBUG) /* { */
848 TAILQ_HEAD(, simplelock) simplelock_list =
849 TAILQ_HEAD_INITIALIZER(simplelock_list);
850
851 #if defined(MULTIPROCESSOR) /* { */
852 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
853
854 #define SLOCK_LIST_LOCK() \
855 __cpu_simple_lock(&simplelock_list_slock.lock_data)
856
857 #define SLOCK_LIST_UNLOCK() \
858 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
859
860 #define SLOCK_COUNT(x) \
861 curcpu()->ci_simple_locks += (x)
862 #else
863 u_long simple_locks;
864
865 #define SLOCK_LIST_LOCK() /* nothing */
866
867 #define SLOCK_LIST_UNLOCK() /* nothing */
868
869 #define SLOCK_COUNT(x) simple_locks += (x)
870 #endif /* MULTIPROCESSOR */ /* } */
871
872 #ifdef DDB /* { */
873 #ifdef MULTIPROCESSOR
874 int simple_lock_debugger = 1; /* more serious on MP */
875 #else
876 int simple_lock_debugger = 0;
877 #endif
878 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
879 #else
880 #define SLOCK_DEBUGGER() /* nothing */
881 #endif /* } */
882
883 #ifdef MULTIPROCESSOR
884 #define SLOCK_MP() lock_printf("on cpu %ld\n", \
885 (u_long) cpu_number())
886 #else
887 #define SLOCK_MP() /* nothing */
888 #endif
889
890 #define SLOCK_WHERE(str, alp, id, l) \
891 do { \
892 lock_printf(str); \
893 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
894 SLOCK_MP(); \
895 if ((alp)->lock_file != NULL) \
896 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
897 (alp)->lock_line); \
898 if ((alp)->unlock_file != NULL) \
899 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
900 (alp)->unlock_line); \
901 SLOCK_DEBUGGER(); \
902 } while (/*CONSTCOND*/0)
903
904 /*
905 * Simple lock functions so that the debugger can see from whence
906 * they are being called.
907 */
908 void
909 simple_lock_init(struct simplelock *alp)
910 {
911
912 #if defined(MULTIPROCESSOR) /* { */
913 __cpu_simple_lock_init(&alp->lock_data);
914 #else
915 alp->lock_data = __SIMPLELOCK_UNLOCKED;
916 #endif /* } */
917 alp->lock_file = NULL;
918 alp->lock_line = 0;
919 alp->unlock_file = NULL;
920 alp->unlock_line = 0;
921 alp->lock_holder = LK_NOCPU;
922 }
923
924 void
925 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
926 {
927 cpuid_t cpu_id = cpu_number();
928 int s;
929
930 s = spllock();
931
932 /*
933 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
934 * don't take any action, and just fall into the normal spin case.
935 */
936 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
937 #if defined(MULTIPROCESSOR) /* { */
938 if (alp->lock_holder == cpu_id) {
939 SLOCK_WHERE("simple_lock: locking against myself\n",
940 alp, id, l);
941 goto out;
942 }
943 #else
944 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
945 goto out;
946 #endif /* MULTIPROCESSOR */ /* } */
947 }
948
949 #if defined(MULTIPROCESSOR) /* { */
950 /* Acquire the lock before modifying any fields. */
951 __cpu_simple_lock(&alp->lock_data);
952 #else
953 alp->lock_data = __SIMPLELOCK_LOCKED;
954 #endif /* } */
955
956 if (alp->lock_holder != LK_NOCPU) {
957 SLOCK_WHERE("simple_lock: uninitialized lock\n",
958 alp, id, l);
959 }
960 alp->lock_file = id;
961 alp->lock_line = l;
962 alp->lock_holder = cpu_id;
963
964 SLOCK_LIST_LOCK();
965 /* XXX Cast away volatile */
966 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
967 SLOCK_LIST_UNLOCK();
968
969 SLOCK_COUNT(1);
970
971 out:
972 splx(s);
973 }
974
975 int
976 _simple_lock_held(__volatile struct simplelock *alp)
977 {
978 cpuid_t cpu_id = cpu_number();
979 int s, locked = 0;
980
981 s = spllock();
982
983 #if defined(MULTIPROCESSOR)
984 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
985 locked = (alp->lock_holder == cpu_id);
986 else
987 __cpu_simple_unlock(&alp->lock_data);
988 #else
989 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
990 locked = 1;
991 KASSERT(alp->lock_holder == cpu_id);
992 }
993 #endif
994
995 splx(s);
996
997 return (locked);
998 }
999
1000 int
1001 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
1002 {
1003 cpuid_t cpu_id = cpu_number();
1004 int s, rv = 0;
1005
1006 s = spllock();
1007
1008 /*
1009 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1010 * don't take any action.
1011 */
1012 #if defined(MULTIPROCESSOR) /* { */
1013 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1014 if (alp->lock_holder == cpu_id)
1015 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1016 alp, id, l);
1017 goto out;
1018 }
1019 #else
1020 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1021 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1022 goto out;
1023 }
1024 alp->lock_data = __SIMPLELOCK_LOCKED;
1025 #endif /* MULTIPROCESSOR */ /* } */
1026
1027 /*
1028 * At this point, we have acquired the lock.
1029 */
1030
1031 rv = 1;
1032
1033 alp->lock_file = id;
1034 alp->lock_line = l;
1035 alp->lock_holder = cpu_id;
1036
1037 SLOCK_LIST_LOCK();
1038 /* XXX Cast away volatile. */
1039 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1040 SLOCK_LIST_UNLOCK();
1041
1042 SLOCK_COUNT(1);
1043
1044 out:
1045 splx(s);
1046 return (rv);
1047 }
1048
1049 void
1050 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
1051 {
1052 int s;
1053
1054 s = spllock();
1055
1056 /*
1057 * MULTIPROCESSOR case: This is `safe' because we think we hold
1058 * the lock, and if we don't, we don't take any action.
1059 */
1060 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1061 SLOCK_WHERE("simple_unlock: lock not held\n",
1062 alp, id, l);
1063 goto out;
1064 }
1065
1066 SLOCK_LIST_LOCK();
1067 TAILQ_REMOVE(&simplelock_list, alp, list);
1068 SLOCK_LIST_UNLOCK();
1069
1070 SLOCK_COUNT(-1);
1071
1072 alp->list.tqe_next = NULL; /* sanity */
1073 alp->list.tqe_prev = NULL; /* sanity */
1074
1075 alp->unlock_file = id;
1076 alp->unlock_line = l;
1077
1078 #if defined(MULTIPROCESSOR) /* { */
1079 alp->lock_holder = LK_NOCPU;
1080 /* Now that we've modified all fields, release the lock. */
1081 __cpu_simple_unlock(&alp->lock_data);
1082 #else
1083 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1084 KASSERT(alp->lock_holder == cpu_number());
1085 alp->lock_holder = LK_NOCPU;
1086 #endif /* } */
1087
1088 out:
1089 splx(s);
1090 }
1091
1092 void
1093 simple_lock_dump(void)
1094 {
1095 struct simplelock *alp;
1096 int s;
1097
1098 s = spllock();
1099 SLOCK_LIST_LOCK();
1100 lock_printf("all simple locks:\n");
1101 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1102 alp = TAILQ_NEXT(alp, list)) {
1103 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1104 alp->lock_file, alp->lock_line);
1105 }
1106 SLOCK_LIST_UNLOCK();
1107 splx(s);
1108 }
1109
1110 void
1111 simple_lock_freecheck(void *start, void *end)
1112 {
1113 struct simplelock *alp;
1114 int s;
1115
1116 s = spllock();
1117 SLOCK_LIST_LOCK();
1118 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1119 alp = TAILQ_NEXT(alp, list)) {
1120 if ((void *)alp >= start && (void *)alp < end) {
1121 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1122 alp, alp->lock_holder, alp->lock_file,
1123 alp->lock_line);
1124 SLOCK_DEBUGGER();
1125 }
1126 }
1127 SLOCK_LIST_UNLOCK();
1128 splx(s);
1129 }
1130
1131 void
1132 simple_lock_switchcheck(void)
1133 {
1134 struct simplelock *alp;
1135 cpuid_t cpu_id = cpu_number();
1136 int s;
1137
1138 /*
1139 * We must be holding exactly one lock: the sched_lock.
1140 */
1141
1142 SCHED_ASSERT_LOCKED();
1143
1144 s = spllock();
1145 SLOCK_LIST_LOCK();
1146 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1147 alp = TAILQ_NEXT(alp, list)) {
1148 if (alp == &sched_lock)
1149 continue;
1150 if (alp->lock_holder == cpu_id) {
1151 lock_printf("switching with held simple_lock %p "
1152 "CPU %lu %s:%d\n",
1153 alp, alp->lock_holder, alp->lock_file,
1154 alp->lock_line);
1155 SLOCK_DEBUGGER();
1156 }
1157 }
1158 SLOCK_LIST_UNLOCK();
1159 splx(s);
1160 }
1161 #endif /* LOCKDEBUG */ /* } */
1162