kern_lock.c revision 1.49 1 /* $NetBSD: kern_lock.c,v 1.49 2000/11/20 20:04:49 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. All advertising materials mentioning features or use of this software
60 * must display the following acknowledgement:
61 * This product includes software developed by the University of
62 * California, Berkeley and its contributors.
63 * 4. Neither the name of the University nor the names of its contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
71 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
73 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
74 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
75 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
76 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * SUCH DAMAGE.
78 *
79 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
80 */
81
82 #include "opt_multiprocessor.h"
83 #include "opt_lockdebug.h"
84 #include "opt_ddb.h"
85
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/lock.h>
89 #include <sys/systm.h>
90 #include <machine/cpu.h>
91
92 #if defined(LOCKDEBUG)
93 #include <sys/syslog.h>
94 /*
95 * note that stdarg.h and the ansi style va_start macro is used for both
96 * ansi and traditional c compiles.
97 * XXX: this requires that stdarg.h define: va_alist and va_dcl
98 */
99 #include <machine/stdarg.h>
100
101 void lock_printf(const char *fmt, ...)
102 __attribute__((__format__(__printf__,1,2)));
103
104 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
105 #endif
106
107 /*
108 * Locking primitives implementation.
109 * Locks provide shared/exclusive sychronization.
110 */
111
112 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
113 #if defined(MULTIPROCESSOR) /* { */
114 #define COUNT_CPU(cpu_id, x) \
115 curcpu()->ci_spin_locks += (x)
116 #else
117 u_long spin_locks;
118 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
119 #endif /* MULTIPROCESSOR */ /* } */
120
121 #define COUNT(lkp, p, cpu_id, x) \
122 do { \
123 if ((lkp)->lk_flags & LK_SPIN) \
124 COUNT_CPU((cpu_id), (x)); \
125 else \
126 (p)->p_locks += (x); \
127 } while (/*CONSTCOND*/0)
128 #else
129 #define COUNT(lkp, p, cpu_id, x)
130 #define COUNT_CPU(cpu_id, x)
131 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
132
133 #ifndef SPINLOCK_INTERLOCK_RELEASE_HOOK /* from <machine/lock.h> */
134 #define SPINLOCK_INTERLOCK_RELEASE_HOOK /* nothing */
135 #endif
136
137 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
138 do { \
139 if ((flags) & LK_SPIN) \
140 s = splsched(); \
141 simple_lock(&(lkp)->lk_interlock); \
142 } while (0)
143
144 #define INTERLOCK_RELEASE(lkp, flags, s) \
145 do { \
146 simple_unlock(&(lkp)->lk_interlock); \
147 if ((flags) & LK_SPIN) { \
148 splx(s); \
149 SPINLOCK_INTERLOCK_RELEASE_HOOK; \
150 } \
151 } while (0)
152
153 /*
154 * Acquire a resource.
155 */
156 #define ACQUIRE(lkp, error, extflags, drain, wanted) \
157 if ((extflags) & LK_SPIN) { \
158 int interlocked; \
159 \
160 if ((drain) == 0) \
161 (lkp)->lk_waitcount++; \
162 for (interlocked = 1;;) { \
163 if (wanted) { \
164 if (interlocked) { \
165 INTERLOCK_RELEASE((lkp), \
166 LK_SPIN, s); \
167 interlocked = 0; \
168 } \
169 } else if (interlocked) { \
170 break; \
171 } else { \
172 INTERLOCK_ACQUIRE((lkp), LK_SPIN, s); \
173 interlocked = 1; \
174 } \
175 } \
176 if ((drain) == 0) \
177 (lkp)->lk_waitcount--; \
178 KASSERT((wanted) == 0); \
179 error = 0; /* sanity */ \
180 } else { \
181 for (error = 0; wanted; ) { \
182 if ((drain)) \
183 (lkp)->lk_flags |= LK_WAITDRAIN; \
184 else \
185 (lkp)->lk_waitcount++; \
186 /* XXX Cast away volatile. */ \
187 error = ltsleep((drain) ? &(lkp)->lk_flags : \
188 (void *)(lkp), (lkp)->lk_prio, \
189 (lkp)->lk_wmesg, (lkp)->lk_timo, \
190 &(lkp)->lk_interlock); \
191 if ((drain) == 0) \
192 (lkp)->lk_waitcount--; \
193 if (error) \
194 break; \
195 if ((extflags) & LK_SLEEPFAIL) { \
196 error = ENOLCK; \
197 break; \
198 } \
199 } \
200 }
201
202 #define SETHOLDER(lkp, pid, cpu_id) \
203 do { \
204 if ((lkp)->lk_flags & LK_SPIN) \
205 (lkp)->lk_cpu = cpu_id; \
206 else \
207 (lkp)->lk_lockholder = pid; \
208 } while (/*CONSTCOND*/0)
209
210 #define WEHOLDIT(lkp, pid, cpu_id) \
211 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
212 ((lkp)->lk_cpu == (cpu_id)) : ((lkp)->lk_lockholder == (pid)))
213
214 #define WAKEUP_WAITER(lkp) \
215 do { \
216 if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) { \
217 /* XXX Cast away volatile. */ \
218 wakeup_one((void *)(lkp)); \
219 } \
220 } while (/*CONSTCOND*/0)
221
222 #if defined(LOCKDEBUG) /* { */
223 #if defined(MULTIPROCESSOR) /* { */
224 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
225
226 #define SPINLOCK_LIST_LOCK() \
227 __cpu_simple_lock(&spinlock_list_slock.lock_data)
228
229 #define SPINLOCK_LIST_UNLOCK() \
230 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
231 #else
232 #define SPINLOCK_LIST_LOCK() /* nothing */
233
234 #define SPINLOCK_LIST_UNLOCK() /* nothing */
235 #endif /* MULTIPROCESSOR */ /* } */
236
237 TAILQ_HEAD(, lock) spinlock_list =
238 TAILQ_HEAD_INITIALIZER(spinlock_list);
239
240 #define HAVEIT(lkp) \
241 do { \
242 if ((lkp)->lk_flags & LK_SPIN) { \
243 int s = spllock(); \
244 SPINLOCK_LIST_LOCK(); \
245 /* XXX Cast away volatile. */ \
246 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
247 lk_list); \
248 SPINLOCK_LIST_UNLOCK(); \
249 splx(s); \
250 } \
251 } while (/*CONSTCOND*/0)
252
253 #define DONTHAVEIT(lkp) \
254 do { \
255 if ((lkp)->lk_flags & LK_SPIN) { \
256 int s = spllock(); \
257 SPINLOCK_LIST_LOCK(); \
258 /* XXX Cast away volatile. */ \
259 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
260 lk_list); \
261 SPINLOCK_LIST_UNLOCK(); \
262 splx(s); \
263 } \
264 } while (/*CONSTCOND*/0)
265 #else
266 #define HAVEIT(lkp) /* nothing */
267
268 #define DONTHAVEIT(lkp) /* nothing */
269 #endif /* LOCKDEBUG */ /* } */
270
271 #if defined(LOCKDEBUG)
272 /*
273 * Lock debug printing routine; can be configured to print to console
274 * or log to syslog.
275 */
276 void
277 lock_printf(const char *fmt, ...)
278 {
279 va_list ap;
280
281 va_start(ap, fmt);
282 if (lock_debug_syslog)
283 vlog(LOG_DEBUG, fmt, ap);
284 else
285 vprintf(fmt, ap);
286 va_end(ap);
287 }
288 #endif /* LOCKDEBUG */
289
290 /*
291 * Initialize a lock; required before use.
292 */
293 void
294 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
295 {
296
297 memset(lkp, 0, sizeof(struct lock));
298 simple_lock_init(&lkp->lk_interlock);
299 lkp->lk_flags = flags & LK_EXTFLG_MASK;
300 if (flags & LK_SPIN)
301 lkp->lk_cpu = LK_NOCPU;
302 else {
303 lkp->lk_lockholder = LK_NOPROC;
304 lkp->lk_prio = prio;
305 lkp->lk_timo = timo;
306 }
307 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
308 }
309
310 /*
311 * Determine the status of a lock.
312 */
313 int
314 lockstatus(struct lock *lkp)
315 {
316 int s, lock_type = 0;
317
318 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
319 if (lkp->lk_exclusivecount != 0)
320 lock_type = LK_EXCLUSIVE;
321 else if (lkp->lk_sharecount != 0)
322 lock_type = LK_SHARED;
323 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
324 return (lock_type);
325 }
326
327 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
328 /*
329 * Make sure no spin locks are held by a CPU that is about
330 * to context switch.
331 */
332 void
333 spinlock_switchcheck(void)
334 {
335 u_long cnt;
336 int s;
337
338 s = spllock();
339 #if defined(MULTIPROCESSOR)
340 cnt = curcpu()->ci_spin_locks;
341 #else
342 cnt = spin_locks;
343 #endif
344 splx(s);
345
346 if (cnt != 0)
347 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
348 (u_long) cpu_number(), cnt);
349 }
350 #endif /* LOCKDEBUG || DIAGNOSTIC */
351
352 /*
353 * Locks and IPLs (interrupt priority levels):
354 *
355 * Locks which may be taken from interrupt context must be handled
356 * very carefully; you must spl to the highest IPL where the lock
357 * is needed before acquiring the lock.
358 *
359 * It is also important to avoid deadlock, since certain (very high
360 * priority) interrupts are often needed to keep the system as a whole
361 * from deadlocking, and must not be blocked while you are spinning
362 * waiting for a lower-priority lock.
363 *
364 * In addition, the lock-debugging hooks themselves need to use locks!
365 *
366 * A raw __cpu_simple_lock may be used from interrupts are long as it
367 * is acquired and held at a single IPL.
368 *
369 * A simple_lock (which is a __cpu_simple_lock wrapped with some
370 * debugging hooks) may be used at or below spllock(), which is
371 * typically at or just below splhigh() (i.e. blocks everything
372 * but certain machine-dependent extremely high priority interrupts).
373 *
374 * spinlockmgr spinlocks should be used at or below splsched().
375 *
376 * Some platforms may have interrupts of higher priority than splsched(),
377 * including hard serial interrupts, inter-processor interrupts, and
378 * kernel debugger traps.
379 */
380
381 /*
382 * XXX XXX kludge around another kludge..
383 *
384 * vfs_shutdown() may be called from interrupt context, either as a result
385 * of a panic, or from the debugger. It proceeds to call
386 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
387 *
388 * We would like to make an attempt to sync the filesystems in this case, so
389 * if this happens, we treat attempts to acquire locks specially.
390 * All locks are acquired on behalf of proc0.
391 *
392 * If we've already paniced, we don't block waiting for locks, but
393 * just barge right ahead since we're already going down in flames.
394 */
395
396 /*
397 * Set, change, or release a lock.
398 *
399 * Shared requests increment the shared count. Exclusive requests set the
400 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
401 * accepted shared locks and shared-to-exclusive upgrades to go away.
402 */
403 int
404 lockmgr(__volatile struct lock *lkp, u_int flags,
405 struct simplelock *interlkp)
406 {
407 int error;
408 pid_t pid;
409 int extflags;
410 cpuid_t cpu_id;
411 struct proc *p = curproc;
412 int lock_shutdown_noblock = 0;
413 int s;
414
415 error = 0;
416
417 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
418 if (flags & LK_INTERLOCK)
419 simple_unlock(interlkp);
420 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
421
422 #ifdef DIAGNOSTIC /* { */
423 /*
424 * Don't allow spins on sleep locks and don't allow sleeps
425 * on spin locks.
426 */
427 if ((flags ^ lkp->lk_flags) & LK_SPIN)
428 panic("lockmgr: sleep/spin mismatch\n");
429 #endif /* } */
430
431 if (extflags & LK_SPIN)
432 pid = LK_KERNPROC;
433 else {
434 if (p == NULL) {
435 if (!doing_shutdown) {
436 #ifdef DIAGNOSTIC
437 panic("lockmgr: no context");
438 #endif
439 } else {
440 p = &proc0;
441 if (panicstr && (!(flags & LK_NOWAIT))) {
442 flags |= LK_NOWAIT;
443 lock_shutdown_noblock = 1;
444 }
445 }
446 }
447 pid = p->p_pid;
448 }
449 cpu_id = cpu_number();
450
451 /*
452 * Once a lock has drained, the LK_DRAINING flag is set and an
453 * exclusive lock is returned. The only valid operation thereafter
454 * is a single release of that exclusive lock. This final release
455 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
456 * further requests of any sort will result in a panic. The bits
457 * selected for these two flags are chosen so that they will be set
458 * in memory that is freed (freed memory is filled with 0xdeadbeef).
459 * The final release is permitted to give a new lease on life to
460 * the lock by specifying LK_REENABLE.
461 */
462 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
463 #ifdef DIAGNOSTIC /* { */
464 if (lkp->lk_flags & LK_DRAINED)
465 panic("lockmgr: using decommissioned lock");
466 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
467 WEHOLDIT(lkp, pid, cpu_id) == 0)
468 panic("lockmgr: non-release on draining lock: %d\n",
469 flags & LK_TYPE_MASK);
470 #endif /* DIAGNOSTIC */ /* } */
471 lkp->lk_flags &= ~LK_DRAINING;
472 if ((flags & LK_REENABLE) == 0)
473 lkp->lk_flags |= LK_DRAINED;
474 }
475
476 switch (flags & LK_TYPE_MASK) {
477
478 case LK_SHARED:
479 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
480 /*
481 * If just polling, check to see if we will block.
482 */
483 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
484 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
485 error = EBUSY;
486 break;
487 }
488 /*
489 * Wait for exclusive locks and upgrades to clear.
490 */
491 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
492 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
493 if (error)
494 break;
495 lkp->lk_sharecount++;
496 COUNT(lkp, p, cpu_id, 1);
497 break;
498 }
499 /*
500 * We hold an exclusive lock, so downgrade it to shared.
501 * An alternative would be to fail with EDEADLK.
502 */
503 lkp->lk_sharecount++;
504 COUNT(lkp, p, cpu_id, 1);
505 /* fall into downgrade */
506
507 case LK_DOWNGRADE:
508 if (WEHOLDIT(lkp, pid, cpu_id) == 0 ||
509 lkp->lk_exclusivecount == 0)
510 panic("lockmgr: not holding exclusive lock");
511 lkp->lk_sharecount += lkp->lk_exclusivecount;
512 lkp->lk_exclusivecount = 0;
513 lkp->lk_recurselevel = 0;
514 lkp->lk_flags &= ~LK_HAVE_EXCL;
515 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
516 DONTHAVEIT(lkp);
517 WAKEUP_WAITER(lkp);
518 break;
519
520 case LK_EXCLUPGRADE:
521 /*
522 * If another process is ahead of us to get an upgrade,
523 * then we want to fail rather than have an intervening
524 * exclusive access.
525 */
526 if (lkp->lk_flags & LK_WANT_UPGRADE) {
527 lkp->lk_sharecount--;
528 COUNT(lkp, p, cpu_id, -1);
529 error = EBUSY;
530 break;
531 }
532 /* fall into normal upgrade */
533
534 case LK_UPGRADE:
535 /*
536 * Upgrade a shared lock to an exclusive one. If another
537 * shared lock has already requested an upgrade to an
538 * exclusive lock, our shared lock is released and an
539 * exclusive lock is requested (which will be granted
540 * after the upgrade). If we return an error, the file
541 * will always be unlocked.
542 */
543 if (WEHOLDIT(lkp, pid, cpu_id) || lkp->lk_sharecount <= 0)
544 panic("lockmgr: upgrade exclusive lock");
545 lkp->lk_sharecount--;
546 COUNT(lkp, p, cpu_id, -1);
547 /*
548 * If we are just polling, check to see if we will block.
549 */
550 if ((extflags & LK_NOWAIT) &&
551 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
552 lkp->lk_sharecount > 1)) {
553 error = EBUSY;
554 break;
555 }
556 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
557 /*
558 * We are first shared lock to request an upgrade, so
559 * request upgrade and wait for the shared count to
560 * drop to zero, then take exclusive lock.
561 */
562 lkp->lk_flags |= LK_WANT_UPGRADE;
563 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
564 lkp->lk_flags &= ~LK_WANT_UPGRADE;
565 if (error)
566 break;
567 lkp->lk_flags |= LK_HAVE_EXCL;
568 SETHOLDER(lkp, pid, cpu_id);
569 HAVEIT(lkp);
570 if (lkp->lk_exclusivecount != 0)
571 panic("lockmgr: non-zero exclusive count");
572 lkp->lk_exclusivecount = 1;
573 if (extflags & LK_SETRECURSE)
574 lkp->lk_recurselevel = 1;
575 COUNT(lkp, p, cpu_id, 1);
576 break;
577 }
578 /*
579 * Someone else has requested upgrade. Release our shared
580 * lock, awaken upgrade requestor if we are the last shared
581 * lock, then request an exclusive lock.
582 */
583 if (lkp->lk_sharecount == 0)
584 WAKEUP_WAITER(lkp);
585 /* fall into exclusive request */
586
587 case LK_EXCLUSIVE:
588 if (WEHOLDIT(lkp, pid, cpu_id)) {
589 /*
590 * Recursive lock.
591 */
592 if ((extflags & LK_CANRECURSE) == 0 &&
593 lkp->lk_recurselevel == 0) {
594 if (extflags & LK_RECURSEFAIL) {
595 error = EDEADLK;
596 break;
597 } else
598 panic("lockmgr: locking against myself");
599 }
600 lkp->lk_exclusivecount++;
601 if (extflags & LK_SETRECURSE &&
602 lkp->lk_recurselevel == 0)
603 lkp->lk_recurselevel = lkp->lk_exclusivecount;
604 COUNT(lkp, p, cpu_id, 1);
605 break;
606 }
607 /*
608 * If we are just polling, check to see if we will sleep.
609 */
610 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
611 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
612 lkp->lk_sharecount != 0)) {
613 error = EBUSY;
614 break;
615 }
616 /*
617 * Try to acquire the want_exclusive flag.
618 */
619 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
620 (LK_HAVE_EXCL | LK_WANT_EXCL));
621 if (error)
622 break;
623 lkp->lk_flags |= LK_WANT_EXCL;
624 /*
625 * Wait for shared locks and upgrades to finish.
626 */
627 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
628 (lkp->lk_flags & LK_WANT_UPGRADE));
629 lkp->lk_flags &= ~LK_WANT_EXCL;
630 if (error)
631 break;
632 lkp->lk_flags |= LK_HAVE_EXCL;
633 SETHOLDER(lkp, pid, cpu_id);
634 HAVEIT(lkp);
635 if (lkp->lk_exclusivecount != 0)
636 panic("lockmgr: non-zero exclusive count");
637 lkp->lk_exclusivecount = 1;
638 if (extflags & LK_SETRECURSE)
639 lkp->lk_recurselevel = 1;
640 COUNT(lkp, p, cpu_id, 1);
641 break;
642
643 case LK_RELEASE:
644 if (lkp->lk_exclusivecount != 0) {
645 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
646 if (lkp->lk_flags & LK_SPIN) {
647 panic("lockmgr: processor %lu, not "
648 "exclusive lock holder %lu "
649 "unlocking", cpu_id, lkp->lk_cpu);
650 } else {
651 panic("lockmgr: pid %d, not "
652 "exclusive lock holder %d "
653 "unlocking", pid,
654 lkp->lk_lockholder);
655 }
656 }
657 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
658 lkp->lk_recurselevel = 0;
659 lkp->lk_exclusivecount--;
660 COUNT(lkp, p, cpu_id, -1);
661 if (lkp->lk_exclusivecount == 0) {
662 lkp->lk_flags &= ~LK_HAVE_EXCL;
663 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
664 DONTHAVEIT(lkp);
665 }
666 } else if (lkp->lk_sharecount != 0) {
667 lkp->lk_sharecount--;
668 COUNT(lkp, p, cpu_id, -1);
669 }
670 #ifdef DIAGNOSTIC
671 else
672 panic("lockmgr: release of unlocked lock!");
673 #endif
674 WAKEUP_WAITER(lkp);
675 break;
676
677 case LK_DRAIN:
678 /*
679 * Check that we do not already hold the lock, as it can
680 * never drain if we do. Unfortunately, we have no way to
681 * check for holding a shared lock, but at least we can
682 * check for an exclusive one.
683 */
684 if (WEHOLDIT(lkp, pid, cpu_id))
685 panic("lockmgr: draining against myself");
686 /*
687 * If we are just polling, check to see if we will sleep.
688 */
689 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
690 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
691 lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
692 error = EBUSY;
693 break;
694 }
695 ACQUIRE(lkp, error, extflags, 1,
696 ((lkp->lk_flags &
697 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
698 lkp->lk_sharecount != 0 ||
699 lkp->lk_waitcount != 0));
700 if (error)
701 break;
702 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
703 SETHOLDER(lkp, pid, cpu_id);
704 HAVEIT(lkp);
705 lkp->lk_exclusivecount = 1;
706 /* XXX unlikely that we'd want this */
707 if (extflags & LK_SETRECURSE)
708 lkp->lk_recurselevel = 1;
709 COUNT(lkp, p, cpu_id, 1);
710 break;
711
712 default:
713 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
714 panic("lockmgr: unknown locktype request %d",
715 flags & LK_TYPE_MASK);
716 /* NOTREACHED */
717 }
718 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
719 ((lkp->lk_flags &
720 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
721 lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
722 lkp->lk_flags &= ~LK_WAITDRAIN;
723 wakeup_one((void *)&lkp->lk_flags);
724 }
725 /*
726 * Note that this panic will be a recursive panic, since
727 * we only set lock_shutdown_noblock above if panicstr != NULL.
728 */
729 if (error && lock_shutdown_noblock)
730 panic("lockmgr: deadlock (see previous panic)");
731
732 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
733 return (error);
734 }
735
736 /*
737 * For a recursive spinlock held one or more times by the current CPU,
738 * release all N locks, and return N.
739 * Intended for use in mi_switch() shortly before context switching.
740 */
741
742 int
743 spinlock_release_all(__volatile struct lock *lkp)
744 {
745 int s, count;
746 cpuid_t cpu_id;
747
748 KASSERT(lkp->lk_flags & LK_SPIN);
749
750 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
751
752 cpu_id = cpu_number();
753 count = lkp->lk_exclusivecount;
754
755 if (count != 0) {
756 #ifdef DIAGNOSTIC
757 if (WEHOLDIT(lkp, 0, cpu_id) == 0) {
758 panic("spinlock_release_all: processor %lu, not "
759 "exclusive lock holder %lu "
760 "unlocking", (long)cpu_id, lkp->lk_cpu);
761 }
762 #endif
763 lkp->lk_recurselevel = 0;
764 lkp->lk_exclusivecount = 0;
765 COUNT_CPU(cpu_id, -count);
766 lkp->lk_flags &= ~LK_HAVE_EXCL;
767 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
768 DONTHAVEIT(lkp);
769 }
770 #ifdef DIAGNOSTIC
771 else if (lkp->lk_sharecount != 0)
772 panic("spinlock_release_all: release of shared lock!");
773 else
774 panic("spinlock_release_all: release of unlocked lock!");
775 #endif
776 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
777
778 return (count);
779 }
780
781 /*
782 * For a recursive spinlock held one or more times by the current CPU,
783 * release all N locks, and return N.
784 * Intended for use in mi_switch() right after resuming execution.
785 */
786
787 void
788 spinlock_acquire_count(__volatile struct lock *lkp, int count)
789 {
790 int s, error;
791 cpuid_t cpu_id;
792
793 KASSERT(lkp->lk_flags & LK_SPIN);
794
795 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
796
797 cpu_id = cpu_number();
798
799 #ifdef DIAGNOSTIC
800 if (WEHOLDIT(lkp, LK_NOPROC, cpu_id))
801 panic("spinlock_acquire_count: processor %lu already holds lock\n", (long)cpu_id);
802 #endif
803 /*
804 * Try to acquire the want_exclusive flag.
805 */
806 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_flags &
807 (LK_HAVE_EXCL | LK_WANT_EXCL));
808 lkp->lk_flags |= LK_WANT_EXCL;
809 /*
810 * Wait for shared locks and upgrades to finish.
811 */
812 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_sharecount != 0 ||
813 (lkp->lk_flags & LK_WANT_UPGRADE));
814 lkp->lk_flags &= ~LK_WANT_EXCL;
815 lkp->lk_flags |= LK_HAVE_EXCL;
816 SETHOLDER(lkp, LK_NOPROC, cpu_id);
817 HAVEIT(lkp);
818 if (lkp->lk_exclusivecount != 0)
819 panic("lockmgr: non-zero exclusive count");
820 lkp->lk_exclusivecount = count;
821 lkp->lk_recurselevel = 1;
822 COUNT_CPU(cpu_id, count);
823
824 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
825 }
826
827
828
829 /*
830 * Print out information about state of a lock. Used by VOP_PRINT
831 * routines to display ststus about contained locks.
832 */
833 void
834 lockmgr_printinfo(__volatile struct lock *lkp)
835 {
836
837 if (lkp->lk_sharecount)
838 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
839 lkp->lk_sharecount);
840 else if (lkp->lk_flags & LK_HAVE_EXCL) {
841 printf(" lock type %s: EXCL (count %d) by ",
842 lkp->lk_wmesg, lkp->lk_exclusivecount);
843 if (lkp->lk_flags & LK_SPIN)
844 printf("processor %lu", lkp->lk_cpu);
845 else
846 printf("pid %d", lkp->lk_lockholder);
847 } else
848 printf(" not locked");
849 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
850 printf(" with %d pending", lkp->lk_waitcount);
851 }
852
853 #if defined(LOCKDEBUG) /* { */
854 TAILQ_HEAD(, simplelock) simplelock_list =
855 TAILQ_HEAD_INITIALIZER(simplelock_list);
856
857 #if defined(MULTIPROCESSOR) /* { */
858 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
859
860 #define SLOCK_LIST_LOCK() \
861 __cpu_simple_lock(&simplelock_list_slock.lock_data)
862
863 #define SLOCK_LIST_UNLOCK() \
864 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
865
866 #define SLOCK_COUNT(x) \
867 curcpu()->ci_simple_locks += (x)
868 #else
869 u_long simple_locks;
870
871 #define SLOCK_LIST_LOCK() /* nothing */
872
873 #define SLOCK_LIST_UNLOCK() /* nothing */
874
875 #define SLOCK_COUNT(x) simple_locks += (x)
876 #endif /* MULTIPROCESSOR */ /* } */
877
878 #ifdef DDB /* { */
879 #ifdef MULTIPROCESSOR
880 int simple_lock_debugger = 1; /* more serious on MP */
881 #else
882 int simple_lock_debugger = 0;
883 #endif
884 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
885 #else
886 #define SLOCK_DEBUGGER() /* nothing */
887 #endif /* } */
888
889 #ifdef MULTIPROCESSOR
890 #define SLOCK_MP() lock_printf("on cpu %ld\n", \
891 (u_long) cpu_number())
892 #else
893 #define SLOCK_MP() /* nothing */
894 #endif
895
896 #define SLOCK_WHERE(str, alp, id, l) \
897 do { \
898 lock_printf(str); \
899 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
900 SLOCK_MP(); \
901 if ((alp)->lock_file != NULL) \
902 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
903 (alp)->lock_line); \
904 if ((alp)->unlock_file != NULL) \
905 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
906 (alp)->unlock_line); \
907 SLOCK_DEBUGGER(); \
908 } while (/*CONSTCOND*/0)
909
910 /*
911 * Simple lock functions so that the debugger can see from whence
912 * they are being called.
913 */
914 void
915 simple_lock_init(struct simplelock *alp)
916 {
917
918 #if defined(MULTIPROCESSOR) /* { */
919 __cpu_simple_lock_init(&alp->lock_data);
920 #else
921 alp->lock_data = __SIMPLELOCK_UNLOCKED;
922 #endif /* } */
923 alp->lock_file = NULL;
924 alp->lock_line = 0;
925 alp->unlock_file = NULL;
926 alp->unlock_line = 0;
927 alp->lock_holder = LK_NOCPU;
928 }
929
930 void
931 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
932 {
933 cpuid_t cpu_id = cpu_number();
934 int s;
935
936 s = spllock();
937
938 /*
939 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
940 * don't take any action, and just fall into the normal spin case.
941 */
942 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
943 #if defined(MULTIPROCESSOR) /* { */
944 if (alp->lock_holder == cpu_id) {
945 SLOCK_WHERE("simple_lock: locking against myself\n",
946 alp, id, l);
947 goto out;
948 }
949 #else
950 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
951 goto out;
952 #endif /* MULTIPROCESSOR */ /* } */
953 }
954
955 #if defined(MULTIPROCESSOR) /* { */
956 /* Acquire the lock before modifying any fields. */
957 __cpu_simple_lock(&alp->lock_data);
958 #else
959 alp->lock_data = __SIMPLELOCK_LOCKED;
960 #endif /* } */
961
962 if (alp->lock_holder != LK_NOCPU) {
963 SLOCK_WHERE("simple_lock: uninitialized lock\n",
964 alp, id, l);
965 }
966 alp->lock_file = id;
967 alp->lock_line = l;
968 alp->lock_holder = cpu_id;
969
970 SLOCK_LIST_LOCK();
971 /* XXX Cast away volatile */
972 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
973 SLOCK_LIST_UNLOCK();
974
975 SLOCK_COUNT(1);
976
977 out:
978 splx(s);
979 }
980
981 int
982 _simple_lock_held(__volatile struct simplelock *alp)
983 {
984 cpuid_t cpu_id = cpu_number();
985 int s, locked = 0;
986
987 s = spllock();
988
989 #if defined(MULTIPROCESSOR)
990 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
991 locked = (alp->lock_holder == cpu_id);
992 else
993 __cpu_simple_unlock(&alp->lock_data);
994 #else
995 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
996 locked = 1;
997 KASSERT(alp->lock_holder == cpu_id);
998 }
999 #endif
1000
1001 splx(s);
1002
1003 return (locked);
1004 }
1005
1006 int
1007 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
1008 {
1009 cpuid_t cpu_id = cpu_number();
1010 int s, rv = 0;
1011
1012 s = spllock();
1013
1014 /*
1015 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1016 * don't take any action.
1017 */
1018 #if defined(MULTIPROCESSOR) /* { */
1019 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1020 if (alp->lock_holder == cpu_id)
1021 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1022 alp, id, l);
1023 goto out;
1024 }
1025 #else
1026 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1027 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1028 goto out;
1029 }
1030 alp->lock_data = __SIMPLELOCK_LOCKED;
1031 #endif /* MULTIPROCESSOR */ /* } */
1032
1033 /*
1034 * At this point, we have acquired the lock.
1035 */
1036
1037 rv = 1;
1038
1039 alp->lock_file = id;
1040 alp->lock_line = l;
1041 alp->lock_holder = cpu_id;
1042
1043 SLOCK_LIST_LOCK();
1044 /* XXX Cast away volatile. */
1045 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1046 SLOCK_LIST_UNLOCK();
1047
1048 SLOCK_COUNT(1);
1049
1050 out:
1051 splx(s);
1052 return (rv);
1053 }
1054
1055 void
1056 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
1057 {
1058 int s;
1059
1060 s = spllock();
1061
1062 /*
1063 * MULTIPROCESSOR case: This is `safe' because we think we hold
1064 * the lock, and if we don't, we don't take any action.
1065 */
1066 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1067 SLOCK_WHERE("simple_unlock: lock not held\n",
1068 alp, id, l);
1069 goto out;
1070 }
1071
1072 SLOCK_LIST_LOCK();
1073 TAILQ_REMOVE(&simplelock_list, alp, list);
1074 SLOCK_LIST_UNLOCK();
1075
1076 SLOCK_COUNT(-1);
1077
1078 alp->list.tqe_next = NULL; /* sanity */
1079 alp->list.tqe_prev = NULL; /* sanity */
1080
1081 alp->unlock_file = id;
1082 alp->unlock_line = l;
1083
1084 #if defined(MULTIPROCESSOR) /* { */
1085 alp->lock_holder = LK_NOCPU;
1086 /* Now that we've modified all fields, release the lock. */
1087 __cpu_simple_unlock(&alp->lock_data);
1088 #else
1089 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1090 KASSERT(alp->lock_holder == cpu_number());
1091 alp->lock_holder = LK_NOCPU;
1092 #endif /* } */
1093
1094 out:
1095 splx(s);
1096 }
1097
1098 void
1099 simple_lock_dump(void)
1100 {
1101 struct simplelock *alp;
1102 int s;
1103
1104 s = spllock();
1105 SLOCK_LIST_LOCK();
1106 lock_printf("all simple locks:\n");
1107 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1108 alp = TAILQ_NEXT(alp, list)) {
1109 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1110 alp->lock_file, alp->lock_line);
1111 }
1112 SLOCK_LIST_UNLOCK();
1113 splx(s);
1114 }
1115
1116 void
1117 simple_lock_freecheck(void *start, void *end)
1118 {
1119 struct simplelock *alp;
1120 int s;
1121
1122 s = spllock();
1123 SLOCK_LIST_LOCK();
1124 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1125 alp = TAILQ_NEXT(alp, list)) {
1126 if ((void *)alp >= start && (void *)alp < end) {
1127 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1128 alp, alp->lock_holder, alp->lock_file,
1129 alp->lock_line);
1130 SLOCK_DEBUGGER();
1131 }
1132 }
1133 SLOCK_LIST_UNLOCK();
1134 splx(s);
1135 }
1136
1137 void
1138 simple_lock_switchcheck(void)
1139 {
1140 struct simplelock *alp;
1141 cpuid_t cpu_id = cpu_number();
1142 int s;
1143
1144 /*
1145 * We must be holding exactly one lock: the sched_lock.
1146 */
1147
1148 SCHED_ASSERT_LOCKED();
1149
1150 s = spllock();
1151 SLOCK_LIST_LOCK();
1152 for (alp = TAILQ_FIRST(&simplelock_list); alp != NULL;
1153 alp = TAILQ_NEXT(alp, list)) {
1154 if (alp == &sched_lock)
1155 continue;
1156 if (alp->lock_holder == cpu_id) {
1157 lock_printf("switching with held simple_lock %p "
1158 "CPU %lu %s:%d\n",
1159 alp, alp->lock_holder, alp->lock_file,
1160 alp->lock_line);
1161 SLOCK_DEBUGGER();
1162 }
1163 }
1164 SLOCK_LIST_UNLOCK();
1165 splx(s);
1166 }
1167 #endif /* LOCKDEBUG */ /* } */
1168