kern_lock.c revision 1.51.2.8 1 /* $NetBSD: kern_lock.c,v 1.51.2.8 2002/06/20 03:47:14 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. All advertising materials mentioning features or use of this software
60 * must display the following acknowledgement:
61 * This product includes software developed by the University of
62 * California, Berkeley and its contributors.
63 * 4. Neither the name of the University nor the names of its contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
71 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
73 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
74 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
75 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
76 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * SUCH DAMAGE.
78 *
79 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.51.2.8 2002/06/20 03:47:14 nathanw Exp $");
84
85 #include "opt_multiprocessor.h"
86 #include "opt_lockdebug.h"
87 #include "opt_ddb.h"
88
89 #include <sys/param.h>
90 #include <sys/lwp.h>
91 #include <sys/proc.h>
92 #include <sys/lock.h>
93 #include <sys/systm.h>
94 #include <machine/cpu.h>
95
96 #if defined(LOCKDEBUG)
97 #include <sys/syslog.h>
98 /*
99 * note that stdarg.h and the ansi style va_start macro is used for both
100 * ansi and traditional c compiles.
101 * XXX: this requires that stdarg.h define: va_alist and va_dcl
102 */
103 #include <machine/stdarg.h>
104
105 void lock_printf(const char *fmt, ...)
106 __attribute__((__format__(__printf__,1,2)));
107
108 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
109
110 #ifdef DDB
111 #include <ddb/ddbvar.h>
112 #include <machine/db_machdep.h>
113 #include <ddb/db_command.h>
114 #include <ddb/db_interface.h>
115 #endif
116 #endif
117
118 /*
119 * Locking primitives implementation.
120 * Locks provide shared/exclusive synchronization.
121 */
122
123 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
124 #if defined(MULTIPROCESSOR) /* { */
125 #define COUNT_CPU(cpu_id, x) \
126 curcpu()->ci_spin_locks += (x)
127 #else
128 u_long spin_locks;
129 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
130 #endif /* MULTIPROCESSOR */ /* } */
131
132 #define COUNT(lkp, l, cpu_id, x) \
133 do { \
134 if ((lkp)->lk_flags & LK_SPIN) \
135 COUNT_CPU((cpu_id), (x)); \
136 else \
137 (l)->l_locks += (x); \
138 } while (/*CONSTCOND*/0)
139 #else
140 #define COUNT(lkp, p, cpu_id, x)
141 #define COUNT_CPU(cpu_id, x)
142 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
143
144 #ifndef SPINLOCK_SPIN_HOOK /* from <machine/lock.h> */
145 #define SPINLOCK_SPIN_HOOK /* nothing */
146 #endif
147
148 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
149 do { \
150 if ((flags) & LK_SPIN) \
151 s = splsched(); \
152 simple_lock(&(lkp)->lk_interlock); \
153 } while (0)
154
155 #define INTERLOCK_RELEASE(lkp, flags, s) \
156 do { \
157 simple_unlock(&(lkp)->lk_interlock); \
158 if ((flags) & LK_SPIN) \
159 splx(s); \
160 } while (0)
161
162 #if defined(LOCKDEBUG)
163 #if defined(DDB)
164 #define SPINLOCK_SPINCHECK_DEBUGGER Debugger()
165 #else
166 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
167 #endif
168
169 #define SPINLOCK_SPINCHECK_DECL \
170 /* 32-bits of count -- wrap constitutes a "spinout" */ \
171 uint32_t __spinc = 0
172
173 #define SPINLOCK_SPINCHECK \
174 do { \
175 if (++__spinc == 0) { \
176 printf("LK_SPIN spinout, excl %d, share %d\n", \
177 lkp->lk_exclusivecount, lkp->lk_sharecount); \
178 if (lkp->lk_exclusivecount) \
179 printf("held by CPU %lu\n", \
180 (u_long) lkp->lk_cpu); \
181 if (lkp->lk_lock_file) \
182 printf("last locked at %s:%d\n", \
183 lkp->lk_lock_file, lkp->lk_lock_line); \
184 if (lkp->lk_unlock_file) \
185 printf("last unlocked at %s:%d\n", \
186 lkp->lk_unlock_file, lkp->lk_unlock_line); \
187 SPINLOCK_SPINCHECK_DEBUGGER; \
188 } \
189 } while (0)
190 #else
191 #define SPINLOCK_SPINCHECK_DECL /* nothing */
192 #define SPINLOCK_SPINCHECK /* nothing */
193 #endif /* LOCKDEBUG && DDB */
194
195 /*
196 * Acquire a resource.
197 */
198 #define ACQUIRE(lkp, error, extflags, drain, wanted) \
199 if ((extflags) & LK_SPIN) { \
200 int interlocked; \
201 SPINLOCK_SPINCHECK_DECL; \
202 \
203 if ((drain) == 0) \
204 (lkp)->lk_waitcount++; \
205 for (interlocked = 1;;) { \
206 SPINLOCK_SPINCHECK; \
207 if (wanted) { \
208 if (interlocked) { \
209 INTERLOCK_RELEASE((lkp), \
210 LK_SPIN, s); \
211 interlocked = 0; \
212 } \
213 SPINLOCK_SPIN_HOOK; \
214 } else if (interlocked) { \
215 break; \
216 } else { \
217 INTERLOCK_ACQUIRE((lkp), LK_SPIN, s); \
218 interlocked = 1; \
219 } \
220 } \
221 if ((drain) == 0) \
222 (lkp)->lk_waitcount--; \
223 KASSERT((wanted) == 0); \
224 error = 0; /* sanity */ \
225 } else { \
226 for (error = 0; wanted; ) { \
227 if ((drain)) \
228 (lkp)->lk_flags |= LK_WAITDRAIN; \
229 else \
230 (lkp)->lk_waitcount++; \
231 /* XXX Cast away volatile. */ \
232 error = ltsleep((drain) ? \
233 (void *)&(lkp)->lk_flags : \
234 (void *)(lkp), (lkp)->lk_prio, \
235 (lkp)->lk_wmesg, (lkp)->lk_timo, \
236 &(lkp)->lk_interlock); \
237 if ((drain) == 0) \
238 (lkp)->lk_waitcount--; \
239 if (error) \
240 break; \
241 if ((extflags) & LK_SLEEPFAIL) { \
242 error = ENOLCK; \
243 break; \
244 } \
245 } \
246 }
247
248 #define SETHOLDER(lkp, pid, lid, cpu_id) \
249 do { \
250 if ((lkp)->lk_flags & LK_SPIN) \
251 (lkp)->lk_cpu = cpu_id; \
252 else { \
253 (lkp)->lk_lockholder = pid; \
254 (lkp)->lk_locklwp = lid; \
255 } \
256 } while (/*CONSTCOND*/0)
257
258 #define WEHOLDIT(lkp, pid, lid, cpu_id) \
259 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
260 ((lkp)->lk_cpu == (cpu_id)) : \
261 ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
262
263 #define WAKEUP_WAITER(lkp) \
264 do { \
265 if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) { \
266 /* XXX Cast away volatile. */ \
267 wakeup((void *)(lkp)); \
268 } \
269 } while (/*CONSTCOND*/0)
270
271 #if defined(LOCKDEBUG) /* { */
272 #if defined(MULTIPROCESSOR) /* { */
273 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
274
275 #define SPINLOCK_LIST_LOCK() \
276 __cpu_simple_lock(&spinlock_list_slock.lock_data)
277
278 #define SPINLOCK_LIST_UNLOCK() \
279 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
280 #else
281 #define SPINLOCK_LIST_LOCK() /* nothing */
282
283 #define SPINLOCK_LIST_UNLOCK() /* nothing */
284 #endif /* MULTIPROCESSOR */ /* } */
285
286 TAILQ_HEAD(, lock) spinlock_list =
287 TAILQ_HEAD_INITIALIZER(spinlock_list);
288
289 #define HAVEIT(lkp) \
290 do { \
291 if ((lkp)->lk_flags & LK_SPIN) { \
292 int s = spllock(); \
293 SPINLOCK_LIST_LOCK(); \
294 /* XXX Cast away volatile. */ \
295 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
296 lk_list); \
297 SPINLOCK_LIST_UNLOCK(); \
298 splx(s); \
299 } \
300 } while (/*CONSTCOND*/0)
301
302 #define DONTHAVEIT(lkp) \
303 do { \
304 if ((lkp)->lk_flags & LK_SPIN) { \
305 int s = spllock(); \
306 SPINLOCK_LIST_LOCK(); \
307 /* XXX Cast away volatile. */ \
308 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
309 lk_list); \
310 SPINLOCK_LIST_UNLOCK(); \
311 splx(s); \
312 } \
313 } while (/*CONSTCOND*/0)
314 #else
315 #define HAVEIT(lkp) /* nothing */
316
317 #define DONTHAVEIT(lkp) /* nothing */
318 #endif /* LOCKDEBUG */ /* } */
319
320 #if defined(LOCKDEBUG)
321 /*
322 * Lock debug printing routine; can be configured to print to console
323 * or log to syslog.
324 */
325 void
326 lock_printf(const char *fmt, ...)
327 {
328 va_list ap;
329
330 va_start(ap, fmt);
331 if (lock_debug_syslog)
332 vlog(LOG_DEBUG, fmt, ap);
333 else
334 vprintf(fmt, ap);
335 va_end(ap);
336 }
337 #endif /* LOCKDEBUG */
338
339 /*
340 * Initialize a lock; required before use.
341 */
342 void
343 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
344 {
345
346 memset(lkp, 0, sizeof(struct lock));
347 simple_lock_init(&lkp->lk_interlock);
348 lkp->lk_flags = flags & LK_EXTFLG_MASK;
349 if (flags & LK_SPIN)
350 lkp->lk_cpu = LK_NOCPU;
351 else {
352 lkp->lk_lockholder = LK_NOPROC;
353 lkp->lk_prio = prio;
354 lkp->lk_timo = timo;
355 }
356 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
357 #if defined(LOCKDEBUG)
358 lkp->lk_lock_file = NULL;
359 lkp->lk_unlock_file = NULL;
360 #endif
361 }
362
363 /*
364 * Determine the status of a lock.
365 */
366 int
367 lockstatus(struct lock *lkp)
368 {
369 int s, lock_type = 0;
370
371 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
372 if (lkp->lk_exclusivecount != 0)
373 lock_type = LK_EXCLUSIVE;
374 else if (lkp->lk_sharecount != 0)
375 lock_type = LK_SHARED;
376 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
377 return (lock_type);
378 }
379
380 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
381 /*
382 * Make sure no spin locks are held by a CPU that is about
383 * to context switch.
384 */
385 void
386 spinlock_switchcheck(void)
387 {
388 u_long cnt;
389 int s;
390
391 s = spllock();
392 #if defined(MULTIPROCESSOR)
393 cnt = curcpu()->ci_spin_locks;
394 #else
395 cnt = spin_locks;
396 #endif
397 splx(s);
398
399 if (cnt != 0)
400 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
401 (u_long) cpu_number(), cnt);
402 }
403 #endif /* LOCKDEBUG || DIAGNOSTIC */
404
405 /*
406 * Locks and IPLs (interrupt priority levels):
407 *
408 * Locks which may be taken from interrupt context must be handled
409 * very carefully; you must spl to the highest IPL where the lock
410 * is needed before acquiring the lock.
411 *
412 * It is also important to avoid deadlock, since certain (very high
413 * priority) interrupts are often needed to keep the system as a whole
414 * from deadlocking, and must not be blocked while you are spinning
415 * waiting for a lower-priority lock.
416 *
417 * In addition, the lock-debugging hooks themselves need to use locks!
418 *
419 * A raw __cpu_simple_lock may be used from interrupts are long as it
420 * is acquired and held at a single IPL.
421 *
422 * A simple_lock (which is a __cpu_simple_lock wrapped with some
423 * debugging hooks) may be used at or below spllock(), which is
424 * typically at or just below splhigh() (i.e. blocks everything
425 * but certain machine-dependent extremely high priority interrupts).
426 *
427 * spinlockmgr spinlocks should be used at or below splsched().
428 *
429 * Some platforms may have interrupts of higher priority than splsched(),
430 * including hard serial interrupts, inter-processor interrupts, and
431 * kernel debugger traps.
432 */
433
434 /*
435 * XXX XXX kludge around another kludge..
436 *
437 * vfs_shutdown() may be called from interrupt context, either as a result
438 * of a panic, or from the debugger. It proceeds to call
439 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
440 *
441 * We would like to make an attempt to sync the filesystems in this case, so
442 * if this happens, we treat attempts to acquire locks specially.
443 * All locks are acquired on behalf of proc0.
444 *
445 * If we've already paniced, we don't block waiting for locks, but
446 * just barge right ahead since we're already going down in flames.
447 */
448
449 /*
450 * Set, change, or release a lock.
451 *
452 * Shared requests increment the shared count. Exclusive requests set the
453 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
454 * accepted shared locks and shared-to-exclusive upgrades to go away.
455 */
456 int
457 #if defined(LOCKDEBUG)
458 _lockmgr(__volatile struct lock *lkp, u_int flags,
459 struct simplelock *interlkp, const char *file, int line)
460 #else
461 lockmgr(__volatile struct lock *lkp, u_int flags,
462 struct simplelock *interlkp)
463 #endif
464 {
465 int error;
466 pid_t pid;
467 lwpid_t lid;
468 int extflags;
469 cpuid_t cpu_id;
470 struct lwp *l = curproc;
471 int lock_shutdown_noblock = 0;
472 int s;
473
474 error = 0;
475
476 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
477 if (flags & LK_INTERLOCK)
478 simple_unlock(interlkp);
479 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
480
481 #ifdef DIAGNOSTIC /* { */
482 /*
483 * Don't allow spins on sleep locks and don't allow sleeps
484 * on spin locks.
485 */
486 if ((flags ^ lkp->lk_flags) & LK_SPIN)
487 panic("lockmgr: sleep/spin mismatch\n");
488 #endif /* } */
489
490 if (extflags & LK_SPIN) {
491 pid = LK_KERNPROC;
492 lid = 0;
493 } else {
494 if (l == NULL) {
495 if (!doing_shutdown) {
496 panic("lockmgr: no context");
497 } else {
498 l = &lwp0;
499 if (panicstr && (!(flags & LK_NOWAIT))) {
500 flags |= LK_NOWAIT;
501 lock_shutdown_noblock = 1;
502 }
503 }
504 }
505 lid = l->l_lid;
506 pid = l->l_proc->p_pid;
507 }
508 cpu_id = cpu_number();
509
510 /*
511 * Once a lock has drained, the LK_DRAINING flag is set and an
512 * exclusive lock is returned. The only valid operation thereafter
513 * is a single release of that exclusive lock. This final release
514 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
515 * further requests of any sort will result in a panic. The bits
516 * selected for these two flags are chosen so that they will be set
517 * in memory that is freed (freed memory is filled with 0xdeadbeef).
518 * The final release is permitted to give a new lease on life to
519 * the lock by specifying LK_REENABLE.
520 */
521 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
522 #ifdef DIAGNOSTIC /* { */
523 if (lkp->lk_flags & LK_DRAINED)
524 panic("lockmgr: using decommissioned lock");
525 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
526 WEHOLDIT(lkp, pid, lid, cpu_id) == 0)
527 panic("lockmgr: non-release on draining lock: %d\n",
528 flags & LK_TYPE_MASK);
529 #endif /* DIAGNOSTIC */ /* } */
530 lkp->lk_flags &= ~LK_DRAINING;
531 if ((flags & LK_REENABLE) == 0)
532 lkp->lk_flags |= LK_DRAINED;
533 }
534
535 switch (flags & LK_TYPE_MASK) {
536
537 case LK_SHARED:
538 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0) {
539 /*
540 * If just polling, check to see if we will block.
541 */
542 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
543 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
544 error = EBUSY;
545 break;
546 }
547 /*
548 * Wait for exclusive locks and upgrades to clear.
549 */
550 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
551 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
552 if (error)
553 break;
554 lkp->lk_sharecount++;
555 COUNT(lkp, l, cpu_id, 1);
556 break;
557 }
558 /*
559 * We hold an exclusive lock, so downgrade it to shared.
560 * An alternative would be to fail with EDEADLK.
561 */
562 lkp->lk_sharecount++;
563 COUNT(lkp, l, cpu_id, 1);
564 /* fall into downgrade */
565
566 case LK_DOWNGRADE:
567 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0 ||
568 lkp->lk_exclusivecount == 0)
569 panic("lockmgr: not holding exclusive lock");
570 lkp->lk_sharecount += lkp->lk_exclusivecount;
571 lkp->lk_exclusivecount = 0;
572 lkp->lk_recurselevel = 0;
573 lkp->lk_flags &= ~LK_HAVE_EXCL;
574 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
575 #if defined(LOCKDEBUG)
576 lkp->lk_unlock_file = file;
577 lkp->lk_unlock_line = line;
578 #endif
579 DONTHAVEIT(lkp);
580 WAKEUP_WAITER(lkp);
581 break;
582
583 case LK_EXCLUPGRADE:
584 /*
585 * If another process is ahead of us to get an upgrade,
586 * then we want to fail rather than have an intervening
587 * exclusive access.
588 */
589 if (lkp->lk_flags & LK_WANT_UPGRADE) {
590 lkp->lk_sharecount--;
591 COUNT(lkp, l, cpu_id, -1);
592 error = EBUSY;
593 break;
594 }
595 /* fall into normal upgrade */
596
597 case LK_UPGRADE:
598 /*
599 * Upgrade a shared lock to an exclusive one. If another
600 * shared lock has already requested an upgrade to an
601 * exclusive lock, our shared lock is released and an
602 * exclusive lock is requested (which will be granted
603 * after the upgrade). If we return an error, the file
604 * will always be unlocked.
605 */
606 if (WEHOLDIT(lkp, pid, lid, cpu_id) || lkp->lk_sharecount <= 0)
607 panic("lockmgr: upgrade exclusive lock");
608 lkp->lk_sharecount--;
609 COUNT(lkp, l, cpu_id, -1);
610 /*
611 * If we are just polling, check to see if we will block.
612 */
613 if ((extflags & LK_NOWAIT) &&
614 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
615 lkp->lk_sharecount > 1)) {
616 error = EBUSY;
617 break;
618 }
619 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
620 /*
621 * We are first shared lock to request an upgrade, so
622 * request upgrade and wait for the shared count to
623 * drop to zero, then take exclusive lock.
624 */
625 lkp->lk_flags |= LK_WANT_UPGRADE;
626 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
627 lkp->lk_flags &= ~LK_WANT_UPGRADE;
628 if (error)
629 break;
630 lkp->lk_flags |= LK_HAVE_EXCL;
631 SETHOLDER(lkp, pid, lid, cpu_id);
632 #if defined(LOCKDEBUG)
633 lkp->lk_lock_file = file;
634 lkp->lk_lock_line = line;
635 #endif
636 HAVEIT(lkp);
637 if (lkp->lk_exclusivecount != 0)
638 panic("lockmgr: non-zero exclusive count");
639 lkp->lk_exclusivecount = 1;
640 if (extflags & LK_SETRECURSE)
641 lkp->lk_recurselevel = 1;
642 COUNT(lkp, l, cpu_id, 1);
643 break;
644 }
645 /*
646 * Someone else has requested upgrade. Release our shared
647 * lock, awaken upgrade requestor if we are the last shared
648 * lock, then request an exclusive lock.
649 */
650 if (lkp->lk_sharecount == 0)
651 WAKEUP_WAITER(lkp);
652 /* fall into exclusive request */
653
654 case LK_EXCLUSIVE:
655 if (WEHOLDIT(lkp, pid, lid, cpu_id)) {
656 /*
657 * Recursive lock.
658 */
659 if ((extflags & LK_CANRECURSE) == 0 &&
660 lkp->lk_recurselevel == 0) {
661 if (extflags & LK_RECURSEFAIL) {
662 error = EDEADLK;
663 break;
664 } else
665 panic("lockmgr: locking against myself");
666 }
667 lkp->lk_exclusivecount++;
668 if (extflags & LK_SETRECURSE &&
669 lkp->lk_recurselevel == 0)
670 lkp->lk_recurselevel = lkp->lk_exclusivecount;
671 COUNT(lkp, l, cpu_id, 1);
672 break;
673 }
674 /*
675 * If we are just polling, check to see if we will sleep.
676 */
677 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
678 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
679 lkp->lk_sharecount != 0)) {
680 error = EBUSY;
681 break;
682 }
683 /*
684 * Try to acquire the want_exclusive flag.
685 */
686 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
687 (LK_HAVE_EXCL | LK_WANT_EXCL));
688 if (error)
689 break;
690 lkp->lk_flags |= LK_WANT_EXCL;
691 /*
692 * Wait for shared locks and upgrades to finish.
693 */
694 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
695 (lkp->lk_flags & LK_WANT_UPGRADE));
696 lkp->lk_flags &= ~LK_WANT_EXCL;
697 if (error)
698 break;
699 lkp->lk_flags |= LK_HAVE_EXCL;
700 SETHOLDER(lkp, pid, lid, cpu_id);
701 #if defined(LOCKDEBUG)
702 lkp->lk_lock_file = file;
703 lkp->lk_lock_line = line;
704 #endif
705 HAVEIT(lkp);
706 if (lkp->lk_exclusivecount != 0)
707 panic("lockmgr: non-zero exclusive count");
708 lkp->lk_exclusivecount = 1;
709 if (extflags & LK_SETRECURSE)
710 lkp->lk_recurselevel = 1;
711 COUNT(lkp, l, cpu_id, 1);
712 break;
713
714 case LK_RELEASE:
715 if (lkp->lk_exclusivecount != 0) {
716 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0) {
717 if (lkp->lk_flags & LK_SPIN) {
718 panic("lockmgr: processor %lu, not "
719 "exclusive lock holder %lu "
720 "unlocking", cpu_id, lkp->lk_cpu);
721 } else {
722 panic("lockmgr: pid %d, not "
723 "exclusive lock holder %d "
724 "unlocking", pid,
725 lkp->lk_lockholder);
726 }
727 }
728 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
729 lkp->lk_recurselevel = 0;
730 lkp->lk_exclusivecount--;
731 COUNT(lkp, l, cpu_id, -1);
732 if (lkp->lk_exclusivecount == 0) {
733 lkp->lk_flags &= ~LK_HAVE_EXCL;
734 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
735 #if defined(LOCKDEBUG)
736 lkp->lk_unlock_file = file;
737 lkp->lk_unlock_line = line;
738 #endif
739 DONTHAVEIT(lkp);
740 }
741 } else if (lkp->lk_sharecount != 0) {
742 lkp->lk_sharecount--;
743 COUNT(lkp, l, cpu_id, -1);
744 }
745 #ifdef DIAGNOSTIC
746 else
747 panic("lockmgr: release of unlocked lock!");
748 #endif
749 WAKEUP_WAITER(lkp);
750 break;
751
752 case LK_DRAIN:
753 /*
754 * Check that we do not already hold the lock, as it can
755 * never drain if we do. Unfortunately, we have no way to
756 * check for holding a shared lock, but at least we can
757 * check for an exclusive one.
758 */
759 if (WEHOLDIT(lkp, pid, lid, cpu_id))
760 panic("lockmgr: draining against myself");
761 /*
762 * If we are just polling, check to see if we will sleep.
763 */
764 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
765 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
766 lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
767 error = EBUSY;
768 break;
769 }
770 ACQUIRE(lkp, error, extflags, 1,
771 ((lkp->lk_flags &
772 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
773 lkp->lk_sharecount != 0 ||
774 lkp->lk_waitcount != 0));
775 if (error)
776 break;
777 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
778 SETHOLDER(lkp, pid, lid, cpu_id);
779 #if defined(LOCKDEBUG)
780 lkp->lk_lock_file = file;
781 lkp->lk_lock_line = line;
782 #endif
783 HAVEIT(lkp);
784 lkp->lk_exclusivecount = 1;
785 /* XXX unlikely that we'd want this */
786 if (extflags & LK_SETRECURSE)
787 lkp->lk_recurselevel = 1;
788 COUNT(lkp, l, cpu_id, 1);
789 break;
790
791 default:
792 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
793 panic("lockmgr: unknown locktype request %d",
794 flags & LK_TYPE_MASK);
795 /* NOTREACHED */
796 }
797 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
798 ((lkp->lk_flags &
799 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
800 lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
801 lkp->lk_flags &= ~LK_WAITDRAIN;
802 wakeup((void *)&lkp->lk_flags);
803 }
804 /*
805 * Note that this panic will be a recursive panic, since
806 * we only set lock_shutdown_noblock above if panicstr != NULL.
807 */
808 if (error && lock_shutdown_noblock)
809 panic("lockmgr: deadlock (see previous panic)");
810
811 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
812 return (error);
813 }
814
815 /*
816 * For a recursive spinlock held one or more times by the current CPU,
817 * release all N locks, and return N.
818 * Intended for use in mi_switch() shortly before context switching.
819 */
820
821 int
822 #if defined(LOCKDEBUG)
823 _spinlock_release_all(__volatile struct lock *lkp, const char *file, int line)
824 #else
825 spinlock_release_all(__volatile struct lock *lkp)
826 #endif
827 {
828 int s, count;
829 cpuid_t cpu_id;
830
831 KASSERT(lkp->lk_flags & LK_SPIN);
832
833 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
834
835 cpu_id = cpu_number();
836 count = lkp->lk_exclusivecount;
837
838 if (count != 0) {
839 #ifdef DIAGNOSTIC
840 if (WEHOLDIT(lkp, 0, 0, cpu_id) == 0) {
841 panic("spinlock_release_all: processor %lu, not "
842 "exclusive lock holder %lu "
843 "unlocking", (long)cpu_id, lkp->lk_cpu);
844 }
845 #endif
846 lkp->lk_recurselevel = 0;
847 lkp->lk_exclusivecount = 0;
848 COUNT_CPU(cpu_id, -count);
849 lkp->lk_flags &= ~LK_HAVE_EXCL;
850 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
851 #if defined(LOCKDEBUG)
852 lkp->lk_unlock_file = file;
853 lkp->lk_unlock_line = line;
854 #endif
855 DONTHAVEIT(lkp);
856 }
857 #ifdef DIAGNOSTIC
858 else if (lkp->lk_sharecount != 0)
859 panic("spinlock_release_all: release of shared lock!");
860 else
861 panic("spinlock_release_all: release of unlocked lock!");
862 #endif
863 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
864
865 return (count);
866 }
867
868 /*
869 * For a recursive spinlock held one or more times by the current CPU,
870 * release all N locks, and return N.
871 * Intended for use in mi_switch() right after resuming execution.
872 */
873
874 void
875 #if defined(LOCKDEBUG)
876 _spinlock_acquire_count(__volatile struct lock *lkp, int count,
877 const char *file, int line)
878 #else
879 spinlock_acquire_count(__volatile struct lock *lkp, int count)
880 #endif
881 {
882 int s, error;
883 cpuid_t cpu_id;
884
885 KASSERT(lkp->lk_flags & LK_SPIN);
886
887 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
888
889 cpu_id = cpu_number();
890
891 #ifdef DIAGNOSTIC
892 if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_id))
893 panic("spinlock_acquire_count: processor %lu already holds lock\n", (long)cpu_id);
894 #endif
895 /*
896 * Try to acquire the want_exclusive flag.
897 */
898 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_flags &
899 (LK_HAVE_EXCL | LK_WANT_EXCL));
900 lkp->lk_flags |= LK_WANT_EXCL;
901 /*
902 * Wait for shared locks and upgrades to finish.
903 */
904 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_sharecount != 0 ||
905 (lkp->lk_flags & LK_WANT_UPGRADE));
906 lkp->lk_flags &= ~LK_WANT_EXCL;
907 lkp->lk_flags |= LK_HAVE_EXCL;
908 SETHOLDER(lkp, LK_NOPROC, 0, cpu_id);
909 #if defined(LOCKDEBUG)
910 lkp->lk_lock_file = file;
911 lkp->lk_lock_line = line;
912 #endif
913 HAVEIT(lkp);
914 if (lkp->lk_exclusivecount != 0)
915 panic("lockmgr: non-zero exclusive count");
916 lkp->lk_exclusivecount = count;
917 lkp->lk_recurselevel = 1;
918 COUNT_CPU(cpu_id, count);
919
920 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
921 }
922
923
924
925 /*
926 * Print out information about state of a lock. Used by VOP_PRINT
927 * routines to display ststus about contained locks.
928 */
929 void
930 lockmgr_printinfo(__volatile struct lock *lkp)
931 {
932
933 if (lkp->lk_sharecount)
934 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
935 lkp->lk_sharecount);
936 else if (lkp->lk_flags & LK_HAVE_EXCL) {
937 printf(" lock type %s: EXCL (count %d) by ",
938 lkp->lk_wmesg, lkp->lk_exclusivecount);
939 if (lkp->lk_flags & LK_SPIN)
940 printf("processor %lu", lkp->lk_cpu);
941 else
942 printf("pid %d.%d", lkp->lk_lockholder,
943 lkp->lk_locklwp);
944 } else
945 printf(" not locked");
946 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
947 printf(" with %d pending", lkp->lk_waitcount);
948 }
949
950 #if defined(LOCKDEBUG) /* { */
951 TAILQ_HEAD(, simplelock) simplelock_list =
952 TAILQ_HEAD_INITIALIZER(simplelock_list);
953
954 #if defined(MULTIPROCESSOR) /* { */
955 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
956
957 #define SLOCK_LIST_LOCK() \
958 __cpu_simple_lock(&simplelock_list_slock.lock_data)
959
960 #define SLOCK_LIST_UNLOCK() \
961 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
962
963 #define SLOCK_COUNT(x) \
964 curcpu()->ci_simple_locks += (x)
965 #else
966 u_long simple_locks;
967
968 #define SLOCK_LIST_LOCK() /* nothing */
969
970 #define SLOCK_LIST_UNLOCK() /* nothing */
971
972 #define SLOCK_COUNT(x) simple_locks += (x)
973 #endif /* MULTIPROCESSOR */ /* } */
974
975 #ifdef DDB /* { */
976 #ifdef MULTIPROCESSOR
977 int simple_lock_debugger = 1; /* more serious on MP */
978 #else
979 int simple_lock_debugger = 0;
980 #endif
981 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
982 #define SLOCK_TRACE() \
983 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
984 TRUE, 65535, "", printf);
985 #else
986 #define SLOCK_DEBUGGER() /* nothing */
987 #define SLOCK_TRACE() /* nothing */
988 #endif /* } */
989
990 #ifdef MULTIPROCESSOR
991 #define SLOCK_MP() lock_printf("on cpu %ld\n", \
992 (u_long) cpu_number())
993 #else
994 #define SLOCK_MP() /* nothing */
995 #endif
996
997 #define SLOCK_WHERE(str, alp, id, l) \
998 do { \
999 lock_printf("\n"); \
1000 lock_printf(str); \
1001 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
1002 SLOCK_MP(); \
1003 if ((alp)->lock_file != NULL) \
1004 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
1005 (alp)->lock_line); \
1006 if ((alp)->unlock_file != NULL) \
1007 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1008 (alp)->unlock_line); \
1009 SLOCK_TRACE() \
1010 SLOCK_DEBUGGER(); \
1011 } while (/*CONSTCOND*/0)
1012
1013 /*
1014 * Simple lock functions so that the debugger can see from whence
1015 * they are being called.
1016 */
1017 void
1018 simple_lock_init(struct simplelock *alp)
1019 {
1020
1021 #if defined(MULTIPROCESSOR) /* { */
1022 __cpu_simple_lock_init(&alp->lock_data);
1023 #else
1024 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1025 #endif /* } */
1026 alp->lock_file = NULL;
1027 alp->lock_line = 0;
1028 alp->unlock_file = NULL;
1029 alp->unlock_line = 0;
1030 alp->lock_holder = LK_NOCPU;
1031 }
1032
1033 void
1034 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
1035 {
1036 cpuid_t cpu_id = cpu_number();
1037 int s;
1038
1039 s = spllock();
1040
1041 /*
1042 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1043 * don't take any action, and just fall into the normal spin case.
1044 */
1045 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1046 #if defined(MULTIPROCESSOR) /* { */
1047 if (alp->lock_holder == cpu_id) {
1048 SLOCK_WHERE("simple_lock: locking against myself\n",
1049 alp, id, l);
1050 goto out;
1051 }
1052 #else
1053 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1054 goto out;
1055 #endif /* MULTIPROCESSOR */ /* } */
1056 }
1057
1058 #if defined(MULTIPROCESSOR) /* { */
1059 /* Acquire the lock before modifying any fields. */
1060 __cpu_simple_lock(&alp->lock_data);
1061 #else
1062 alp->lock_data = __SIMPLELOCK_LOCKED;
1063 #endif /* } */
1064
1065 if (alp->lock_holder != LK_NOCPU) {
1066 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1067 alp, id, l);
1068 }
1069 alp->lock_file = id;
1070 alp->lock_line = l;
1071 alp->lock_holder = cpu_id;
1072
1073 SLOCK_LIST_LOCK();
1074 /* XXX Cast away volatile */
1075 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1076 SLOCK_LIST_UNLOCK();
1077
1078 SLOCK_COUNT(1);
1079
1080 out:
1081 splx(s);
1082 }
1083
1084 int
1085 _simple_lock_held(__volatile struct simplelock *alp)
1086 {
1087 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1088 cpuid_t cpu_id = cpu_number();
1089 #endif
1090 int s, locked = 0;
1091
1092 s = spllock();
1093
1094 #if defined(MULTIPROCESSOR)
1095 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1096 locked = (alp->lock_holder == cpu_id);
1097 else
1098 __cpu_simple_unlock(&alp->lock_data);
1099 #else
1100 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1101 locked = 1;
1102 KASSERT(alp->lock_holder == cpu_id);
1103 }
1104 #endif
1105
1106 splx(s);
1107
1108 return (locked);
1109 }
1110
1111 int
1112 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
1113 {
1114 cpuid_t cpu_id = cpu_number();
1115 int s, rv = 0;
1116
1117 s = spllock();
1118
1119 /*
1120 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1121 * don't take any action.
1122 */
1123 #if defined(MULTIPROCESSOR) /* { */
1124 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1125 if (alp->lock_holder == cpu_id)
1126 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1127 alp, id, l);
1128 goto out;
1129 }
1130 #else
1131 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1132 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1133 goto out;
1134 }
1135 alp->lock_data = __SIMPLELOCK_LOCKED;
1136 #endif /* MULTIPROCESSOR */ /* } */
1137
1138 /*
1139 * At this point, we have acquired the lock.
1140 */
1141
1142 rv = 1;
1143
1144 alp->lock_file = id;
1145 alp->lock_line = l;
1146 alp->lock_holder = cpu_id;
1147
1148 SLOCK_LIST_LOCK();
1149 /* XXX Cast away volatile. */
1150 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1151 SLOCK_LIST_UNLOCK();
1152
1153 SLOCK_COUNT(1);
1154
1155 out:
1156 splx(s);
1157 return (rv);
1158 }
1159
1160 void
1161 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
1162 {
1163 int s;
1164
1165 s = spllock();
1166
1167 /*
1168 * MULTIPROCESSOR case: This is `safe' because we think we hold
1169 * the lock, and if we don't, we don't take any action.
1170 */
1171 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1172 SLOCK_WHERE("simple_unlock: lock not held\n",
1173 alp, id, l);
1174 goto out;
1175 }
1176
1177 SLOCK_LIST_LOCK();
1178 TAILQ_REMOVE(&simplelock_list, alp, list);
1179 SLOCK_LIST_UNLOCK();
1180
1181 SLOCK_COUNT(-1);
1182
1183 alp->list.tqe_next = NULL; /* sanity */
1184 alp->list.tqe_prev = NULL; /* sanity */
1185
1186 alp->unlock_file = id;
1187 alp->unlock_line = l;
1188
1189 #if defined(MULTIPROCESSOR) /* { */
1190 alp->lock_holder = LK_NOCPU;
1191 /* Now that we've modified all fields, release the lock. */
1192 __cpu_simple_unlock(&alp->lock_data);
1193 #else
1194 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1195 KASSERT(alp->lock_holder == cpu_number());
1196 alp->lock_holder = LK_NOCPU;
1197 #endif /* } */
1198
1199 out:
1200 splx(s);
1201 }
1202
1203 void
1204 simple_lock_dump(void)
1205 {
1206 struct simplelock *alp;
1207 int s;
1208
1209 s = spllock();
1210 SLOCK_LIST_LOCK();
1211 lock_printf("all simple locks:\n");
1212 TAILQ_FOREACH(alp, &simplelock_list, list) {
1213 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1214 alp->lock_file, alp->lock_line);
1215 }
1216 SLOCK_LIST_UNLOCK();
1217 splx(s);
1218 }
1219
1220 void
1221 simple_lock_freecheck(void *start, void *end)
1222 {
1223 struct simplelock *alp;
1224 int s;
1225
1226 s = spllock();
1227 SLOCK_LIST_LOCK();
1228 TAILQ_FOREACH(alp, &simplelock_list, list) {
1229 if ((void *)alp >= start && (void *)alp < end) {
1230 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1231 alp, alp->lock_holder, alp->lock_file,
1232 alp->lock_line);
1233 SLOCK_DEBUGGER();
1234 }
1235 }
1236 SLOCK_LIST_UNLOCK();
1237 splx(s);
1238 }
1239
1240 /*
1241 * We must be holding exactly one lock: the sched_lock.
1242 */
1243
1244 void
1245 simple_lock_switchcheck(void)
1246 {
1247
1248 simple_lock_only_held(&sched_lock, "switching");
1249 }
1250
1251 void
1252 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1253 {
1254 struct simplelock *alp;
1255 cpuid_t cpu_id = cpu_number();
1256 int s;
1257
1258 if (lp) {
1259 LOCK_ASSERT(simple_lock_held(lp));
1260 }
1261 s = spllock();
1262 SLOCK_LIST_LOCK();
1263 TAILQ_FOREACH(alp, &simplelock_list, list) {
1264 if (alp == lp)
1265 continue;
1266 if (alp->lock_holder == cpu_id)
1267 break;
1268 }
1269 SLOCK_LIST_UNLOCK();
1270 splx(s);
1271
1272 if (alp != NULL) {
1273 lock_printf("\n%s with held simple_lock %p "
1274 "CPU %lu %s:%d\n",
1275 where, alp, alp->lock_holder, alp->lock_file,
1276 alp->lock_line);
1277 SLOCK_TRACE();
1278 SLOCK_DEBUGGER();
1279 }
1280 }
1281 #endif /* LOCKDEBUG */ /* } */
1282
1283 #if defined(MULTIPROCESSOR)
1284 /*
1285 * Functions for manipulating the kernel_lock. We put them here
1286 * so that they show up in profiles.
1287 */
1288
1289 struct lock kernel_lock;
1290
1291 void
1292 _kernel_lock_init(void)
1293 {
1294
1295 spinlockinit(&kernel_lock, "klock", 0);
1296 }
1297
1298 /*
1299 * Acquire/release the kernel lock. Intended for use in the scheduler
1300 * and the lower half of the kernel.
1301 */
1302 void
1303 _kernel_lock(int flag)
1304 {
1305
1306 SCHED_ASSERT_UNLOCKED();
1307 spinlockmgr(&kernel_lock, flag, 0);
1308 }
1309
1310 void
1311 _kernel_unlock(void)
1312 {
1313
1314 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1315 }
1316
1317 /*
1318 * Acquire/release the kernel_lock on behalf of a process. Intended for
1319 * use in the top half of the kernel.
1320 */
1321 void
1322 _kernel_proc_lock(struct lwp *l)
1323 {
1324
1325 SCHED_ASSERT_UNLOCKED();
1326 spinlockmgr(&kernel_lock, LK_EXCLUSIVE, 0);
1327 l->l_flag |= P_BIGLOCK;
1328 }
1329
1330 void
1331 _kernel_proc_unlock(struct lwp *l)
1332 {
1333
1334 l->l_flag &= ~P_BIGLOCK;
1335 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1336 }
1337 #endif /* MULTIPROCESSOR */
1338