kern_lock.c revision 1.62 1 /* $NetBSD: kern_lock.c,v 1.62 2002/05/21 01:38:27 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. All advertising materials mentioning features or use of this software
60 * must display the following acknowledgement:
61 * This product includes software developed by the University of
62 * California, Berkeley and its contributors.
63 * 4. Neither the name of the University nor the names of its contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
66 *
67 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
71 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
73 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
74 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
75 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
76 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * SUCH DAMAGE.
78 *
79 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.62 2002/05/21 01:38:27 thorpej Exp $");
84
85 #include "opt_multiprocessor.h"
86 #include "opt_lockdebug.h"
87 #include "opt_ddb.h"
88
89 #include <sys/param.h>
90 #include <sys/proc.h>
91 #include <sys/lock.h>
92 #include <sys/systm.h>
93 #include <machine/cpu.h>
94
95 #if defined(LOCKDEBUG)
96 #include <sys/syslog.h>
97 /*
98 * note that stdarg.h and the ansi style va_start macro is used for both
99 * ansi and traditional c compiles.
100 * XXX: this requires that stdarg.h define: va_alist and va_dcl
101 */
102 #include <machine/stdarg.h>
103
104 void lock_printf(const char *fmt, ...)
105 __attribute__((__format__(__printf__,1,2)));
106
107 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
108
109 #ifdef DDB
110 #include <ddb/ddbvar.h>
111 #include <machine/db_machdep.h>
112 #include <ddb/db_command.h>
113 #include <ddb/db_interface.h>
114 #endif
115 #endif
116
117 /*
118 * Locking primitives implementation.
119 * Locks provide shared/exclusive synchronization.
120 */
121
122 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
123 #if defined(MULTIPROCESSOR) /* { */
124 #define COUNT_CPU(cpu_id, x) \
125 curcpu()->ci_spin_locks += (x)
126 #else
127 u_long spin_locks;
128 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
129 #endif /* MULTIPROCESSOR */ /* } */
130
131 #define COUNT(lkp, p, cpu_id, x) \
132 do { \
133 if ((lkp)->lk_flags & LK_SPIN) \
134 COUNT_CPU((cpu_id), (x)); \
135 else \
136 (p)->p_locks += (x); \
137 } while (/*CONSTCOND*/0)
138 #else
139 #define COUNT(lkp, p, cpu_id, x)
140 #define COUNT_CPU(cpu_id, x)
141 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
142
143 #ifndef SPINLOCK_SPIN_HOOK /* from <machine/lock.h> */
144 #define SPINLOCK_SPIN_HOOK /* nothing */
145 #endif
146
147 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
148 do { \
149 if ((flags) & LK_SPIN) \
150 s = splsched(); \
151 simple_lock(&(lkp)->lk_interlock); \
152 } while (0)
153
154 #define INTERLOCK_RELEASE(lkp, flags, s) \
155 do { \
156 simple_unlock(&(lkp)->lk_interlock); \
157 if ((flags) & LK_SPIN) \
158 splx(s); \
159 } while (0)
160
161 #if defined(LOCKDEBUG)
162 #if defined(DDB)
163 #define SPINLOCK_SPINCHECK_DEBUGGER Debugger()
164 #else
165 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
166 #endif
167
168 #define SPINLOCK_SPINCHECK_DECL \
169 /* 32-bits of count -- wrap constitutes a "spinout" */ \
170 uint32_t __spinc = 0
171
172 #define SPINLOCK_SPINCHECK \
173 do { \
174 if (++__spinc == 0) { \
175 printf("LK_SPIN spinout, excl %d, share %d\n", \
176 lkp->lk_exclusivecount, lkp->lk_sharecount); \
177 if (lkp->lk_exclusivecount) \
178 printf("held by CPU %lu\n", \
179 (u_long) lkp->lk_cpu); \
180 if (lkp->lk_lock_file) \
181 printf("last locked at %s:%d\n", \
182 lkp->lk_lock_file, lkp->lk_lock_line); \
183 if (lkp->lk_unlock_file) \
184 printf("last unlocked at %s:%d\n", \
185 lkp->lk_unlock_file, lkp->lk_unlock_line); \
186 SPINLOCK_SPINCHECK_DEBUGGER; \
187 } \
188 } while (0)
189 #else
190 #define SPINLOCK_SPINCHECK_DECL /* nothing */
191 #define SPINLOCK_SPINCHECK /* nothing */
192 #endif /* LOCKDEBUG && DDB */
193
194 /*
195 * Acquire a resource.
196 */
197 #define ACQUIRE(lkp, error, extflags, drain, wanted) \
198 if ((extflags) & LK_SPIN) { \
199 int interlocked; \
200 SPINLOCK_SPINCHECK_DECL; \
201 \
202 if ((drain) == 0) \
203 (lkp)->lk_waitcount++; \
204 for (interlocked = 1;;) { \
205 SPINLOCK_SPINCHECK; \
206 if (wanted) { \
207 if (interlocked) { \
208 INTERLOCK_RELEASE((lkp), \
209 LK_SPIN, s); \
210 interlocked = 0; \
211 } \
212 SPINLOCK_SPIN_HOOK; \
213 } else if (interlocked) { \
214 break; \
215 } else { \
216 INTERLOCK_ACQUIRE((lkp), LK_SPIN, s); \
217 interlocked = 1; \
218 } \
219 } \
220 if ((drain) == 0) \
221 (lkp)->lk_waitcount--; \
222 KASSERT((wanted) == 0); \
223 error = 0; /* sanity */ \
224 } else { \
225 for (error = 0; wanted; ) { \
226 if ((drain)) \
227 (lkp)->lk_flags |= LK_WAITDRAIN; \
228 else \
229 (lkp)->lk_waitcount++; \
230 /* XXX Cast away volatile. */ \
231 error = ltsleep((drain) ? \
232 (void *)&(lkp)->lk_flags : \
233 (void *)(lkp), (lkp)->lk_prio, \
234 (lkp)->lk_wmesg, (lkp)->lk_timo, \
235 &(lkp)->lk_interlock); \
236 if ((drain) == 0) \
237 (lkp)->lk_waitcount--; \
238 if (error) \
239 break; \
240 if ((extflags) & LK_SLEEPFAIL) { \
241 error = ENOLCK; \
242 break; \
243 } \
244 } \
245 }
246
247 #define SETHOLDER(lkp, pid, cpu_id) \
248 do { \
249 if ((lkp)->lk_flags & LK_SPIN) \
250 (lkp)->lk_cpu = cpu_id; \
251 else \
252 (lkp)->lk_lockholder = pid; \
253 } while (/*CONSTCOND*/0)
254
255 #define WEHOLDIT(lkp, pid, cpu_id) \
256 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
257 ((lkp)->lk_cpu == (cpu_id)) : ((lkp)->lk_lockholder == (pid)))
258
259 #define WAKEUP_WAITER(lkp) \
260 do { \
261 if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) { \
262 /* XXX Cast away volatile. */ \
263 wakeup((void *)(lkp)); \
264 } \
265 } while (/*CONSTCOND*/0)
266
267 #if defined(LOCKDEBUG) /* { */
268 #if defined(MULTIPROCESSOR) /* { */
269 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
270
271 #define SPINLOCK_LIST_LOCK() \
272 __cpu_simple_lock(&spinlock_list_slock.lock_data)
273
274 #define SPINLOCK_LIST_UNLOCK() \
275 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
276 #else
277 #define SPINLOCK_LIST_LOCK() /* nothing */
278
279 #define SPINLOCK_LIST_UNLOCK() /* nothing */
280 #endif /* MULTIPROCESSOR */ /* } */
281
282 TAILQ_HEAD(, lock) spinlock_list =
283 TAILQ_HEAD_INITIALIZER(spinlock_list);
284
285 #define HAVEIT(lkp) \
286 do { \
287 if ((lkp)->lk_flags & LK_SPIN) { \
288 int s = spllock(); \
289 SPINLOCK_LIST_LOCK(); \
290 /* XXX Cast away volatile. */ \
291 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
292 lk_list); \
293 SPINLOCK_LIST_UNLOCK(); \
294 splx(s); \
295 } \
296 } while (/*CONSTCOND*/0)
297
298 #define DONTHAVEIT(lkp) \
299 do { \
300 if ((lkp)->lk_flags & LK_SPIN) { \
301 int s = spllock(); \
302 SPINLOCK_LIST_LOCK(); \
303 /* XXX Cast away volatile. */ \
304 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
305 lk_list); \
306 SPINLOCK_LIST_UNLOCK(); \
307 splx(s); \
308 } \
309 } while (/*CONSTCOND*/0)
310 #else
311 #define HAVEIT(lkp) /* nothing */
312
313 #define DONTHAVEIT(lkp) /* nothing */
314 #endif /* LOCKDEBUG */ /* } */
315
316 #if defined(LOCKDEBUG)
317 /*
318 * Lock debug printing routine; can be configured to print to console
319 * or log to syslog.
320 */
321 void
322 lock_printf(const char *fmt, ...)
323 {
324 va_list ap;
325
326 va_start(ap, fmt);
327 if (lock_debug_syslog)
328 vlog(LOG_DEBUG, fmt, ap);
329 else
330 vprintf(fmt, ap);
331 va_end(ap);
332 }
333 #endif /* LOCKDEBUG */
334
335 /*
336 * Initialize a lock; required before use.
337 */
338 void
339 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
340 {
341
342 memset(lkp, 0, sizeof(struct lock));
343 simple_lock_init(&lkp->lk_interlock);
344 lkp->lk_flags = flags & LK_EXTFLG_MASK;
345 if (flags & LK_SPIN)
346 lkp->lk_cpu = LK_NOCPU;
347 else {
348 lkp->lk_lockholder = LK_NOPROC;
349 lkp->lk_prio = prio;
350 lkp->lk_timo = timo;
351 }
352 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
353 #if defined(LOCKDEBUG)
354 lkp->lk_lock_file = NULL;
355 lkp->lk_unlock_file = NULL;
356 #endif
357 }
358
359 /*
360 * Determine the status of a lock.
361 */
362 int
363 lockstatus(struct lock *lkp)
364 {
365 int s, lock_type = 0;
366
367 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
368 if (lkp->lk_exclusivecount != 0)
369 lock_type = LK_EXCLUSIVE;
370 else if (lkp->lk_sharecount != 0)
371 lock_type = LK_SHARED;
372 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
373 return (lock_type);
374 }
375
376 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
377 /*
378 * Make sure no spin locks are held by a CPU that is about
379 * to context switch.
380 */
381 void
382 spinlock_switchcheck(void)
383 {
384 u_long cnt;
385 int s;
386
387 s = spllock();
388 #if defined(MULTIPROCESSOR)
389 cnt = curcpu()->ci_spin_locks;
390 #else
391 cnt = spin_locks;
392 #endif
393 splx(s);
394
395 if (cnt != 0)
396 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
397 (u_long) cpu_number(), cnt);
398 }
399 #endif /* LOCKDEBUG || DIAGNOSTIC */
400
401 /*
402 * Locks and IPLs (interrupt priority levels):
403 *
404 * Locks which may be taken from interrupt context must be handled
405 * very carefully; you must spl to the highest IPL where the lock
406 * is needed before acquiring the lock.
407 *
408 * It is also important to avoid deadlock, since certain (very high
409 * priority) interrupts are often needed to keep the system as a whole
410 * from deadlocking, and must not be blocked while you are spinning
411 * waiting for a lower-priority lock.
412 *
413 * In addition, the lock-debugging hooks themselves need to use locks!
414 *
415 * A raw __cpu_simple_lock may be used from interrupts are long as it
416 * is acquired and held at a single IPL.
417 *
418 * A simple_lock (which is a __cpu_simple_lock wrapped with some
419 * debugging hooks) may be used at or below spllock(), which is
420 * typically at or just below splhigh() (i.e. blocks everything
421 * but certain machine-dependent extremely high priority interrupts).
422 *
423 * spinlockmgr spinlocks should be used at or below splsched().
424 *
425 * Some platforms may have interrupts of higher priority than splsched(),
426 * including hard serial interrupts, inter-processor interrupts, and
427 * kernel debugger traps.
428 */
429
430 /*
431 * XXX XXX kludge around another kludge..
432 *
433 * vfs_shutdown() may be called from interrupt context, either as a result
434 * of a panic, or from the debugger. It proceeds to call
435 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
436 *
437 * We would like to make an attempt to sync the filesystems in this case, so
438 * if this happens, we treat attempts to acquire locks specially.
439 * All locks are acquired on behalf of proc0.
440 *
441 * If we've already paniced, we don't block waiting for locks, but
442 * just barge right ahead since we're already going down in flames.
443 */
444
445 /*
446 * Set, change, or release a lock.
447 *
448 * Shared requests increment the shared count. Exclusive requests set the
449 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
450 * accepted shared locks and shared-to-exclusive upgrades to go away.
451 */
452 int
453 #if defined(LOCKDEBUG)
454 _lockmgr(__volatile struct lock *lkp, u_int flags,
455 struct simplelock *interlkp, const char *file, int line)
456 #else
457 lockmgr(__volatile struct lock *lkp, u_int flags,
458 struct simplelock *interlkp)
459 #endif
460 {
461 int error;
462 pid_t pid;
463 int extflags;
464 cpuid_t cpu_id;
465 struct proc *p = curproc;
466 int lock_shutdown_noblock = 0;
467 int s;
468
469 error = 0;
470
471 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
472 if (flags & LK_INTERLOCK)
473 simple_unlock(interlkp);
474 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
475
476 #ifdef DIAGNOSTIC /* { */
477 /*
478 * Don't allow spins on sleep locks and don't allow sleeps
479 * on spin locks.
480 */
481 if ((flags ^ lkp->lk_flags) & LK_SPIN)
482 panic("lockmgr: sleep/spin mismatch\n");
483 #endif /* } */
484
485 if (extflags & LK_SPIN)
486 pid = LK_KERNPROC;
487 else {
488 if (p == NULL) {
489 if (!doing_shutdown) {
490 panic("lockmgr: no context");
491 } else {
492 p = &proc0;
493 if (panicstr && (!(flags & LK_NOWAIT))) {
494 flags |= LK_NOWAIT;
495 lock_shutdown_noblock = 1;
496 }
497 }
498 }
499 pid = p->p_pid;
500 }
501 cpu_id = cpu_number();
502
503 /*
504 * Once a lock has drained, the LK_DRAINING flag is set and an
505 * exclusive lock is returned. The only valid operation thereafter
506 * is a single release of that exclusive lock. This final release
507 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
508 * further requests of any sort will result in a panic. The bits
509 * selected for these two flags are chosen so that they will be set
510 * in memory that is freed (freed memory is filled with 0xdeadbeef).
511 * The final release is permitted to give a new lease on life to
512 * the lock by specifying LK_REENABLE.
513 */
514 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
515 #ifdef DIAGNOSTIC /* { */
516 if (lkp->lk_flags & LK_DRAINED)
517 panic("lockmgr: using decommissioned lock");
518 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
519 WEHOLDIT(lkp, pid, cpu_id) == 0)
520 panic("lockmgr: non-release on draining lock: %d\n",
521 flags & LK_TYPE_MASK);
522 #endif /* DIAGNOSTIC */ /* } */
523 lkp->lk_flags &= ~LK_DRAINING;
524 if ((flags & LK_REENABLE) == 0)
525 lkp->lk_flags |= LK_DRAINED;
526 }
527
528 switch (flags & LK_TYPE_MASK) {
529
530 case LK_SHARED:
531 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
532 /*
533 * If just polling, check to see if we will block.
534 */
535 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
536 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
537 error = EBUSY;
538 break;
539 }
540 /*
541 * Wait for exclusive locks and upgrades to clear.
542 */
543 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
544 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
545 if (error)
546 break;
547 lkp->lk_sharecount++;
548 COUNT(lkp, p, cpu_id, 1);
549 break;
550 }
551 /*
552 * We hold an exclusive lock, so downgrade it to shared.
553 * An alternative would be to fail with EDEADLK.
554 */
555 lkp->lk_sharecount++;
556 COUNT(lkp, p, cpu_id, 1);
557 /* fall into downgrade */
558
559 case LK_DOWNGRADE:
560 if (WEHOLDIT(lkp, pid, cpu_id) == 0 ||
561 lkp->lk_exclusivecount == 0)
562 panic("lockmgr: not holding exclusive lock");
563 lkp->lk_sharecount += lkp->lk_exclusivecount;
564 lkp->lk_exclusivecount = 0;
565 lkp->lk_recurselevel = 0;
566 lkp->lk_flags &= ~LK_HAVE_EXCL;
567 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
568 #if defined(LOCKDEBUG)
569 lkp->lk_unlock_file = file;
570 lkp->lk_unlock_line = line;
571 #endif
572 DONTHAVEIT(lkp);
573 WAKEUP_WAITER(lkp);
574 break;
575
576 case LK_EXCLUPGRADE:
577 /*
578 * If another process is ahead of us to get an upgrade,
579 * then we want to fail rather than have an intervening
580 * exclusive access.
581 */
582 if (lkp->lk_flags & LK_WANT_UPGRADE) {
583 lkp->lk_sharecount--;
584 COUNT(lkp, p, cpu_id, -1);
585 error = EBUSY;
586 break;
587 }
588 /* fall into normal upgrade */
589
590 case LK_UPGRADE:
591 /*
592 * Upgrade a shared lock to an exclusive one. If another
593 * shared lock has already requested an upgrade to an
594 * exclusive lock, our shared lock is released and an
595 * exclusive lock is requested (which will be granted
596 * after the upgrade). If we return an error, the file
597 * will always be unlocked.
598 */
599 if (WEHOLDIT(lkp, pid, cpu_id) || lkp->lk_sharecount <= 0)
600 panic("lockmgr: upgrade exclusive lock");
601 lkp->lk_sharecount--;
602 COUNT(lkp, p, cpu_id, -1);
603 /*
604 * If we are just polling, check to see if we will block.
605 */
606 if ((extflags & LK_NOWAIT) &&
607 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
608 lkp->lk_sharecount > 1)) {
609 error = EBUSY;
610 break;
611 }
612 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
613 /*
614 * We are first shared lock to request an upgrade, so
615 * request upgrade and wait for the shared count to
616 * drop to zero, then take exclusive lock.
617 */
618 lkp->lk_flags |= LK_WANT_UPGRADE;
619 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
620 lkp->lk_flags &= ~LK_WANT_UPGRADE;
621 if (error)
622 break;
623 lkp->lk_flags |= LK_HAVE_EXCL;
624 SETHOLDER(lkp, pid, cpu_id);
625 #if defined(LOCKDEBUG)
626 lkp->lk_lock_file = file;
627 lkp->lk_lock_line = line;
628 #endif
629 HAVEIT(lkp);
630 if (lkp->lk_exclusivecount != 0)
631 panic("lockmgr: non-zero exclusive count");
632 lkp->lk_exclusivecount = 1;
633 if (extflags & LK_SETRECURSE)
634 lkp->lk_recurselevel = 1;
635 COUNT(lkp, p, cpu_id, 1);
636 break;
637 }
638 /*
639 * Someone else has requested upgrade. Release our shared
640 * lock, awaken upgrade requestor if we are the last shared
641 * lock, then request an exclusive lock.
642 */
643 if (lkp->lk_sharecount == 0)
644 WAKEUP_WAITER(lkp);
645 /* fall into exclusive request */
646
647 case LK_EXCLUSIVE:
648 if (WEHOLDIT(lkp, pid, cpu_id)) {
649 /*
650 * Recursive lock.
651 */
652 if ((extflags & LK_CANRECURSE) == 0 &&
653 lkp->lk_recurselevel == 0) {
654 if (extflags & LK_RECURSEFAIL) {
655 error = EDEADLK;
656 break;
657 } else
658 panic("lockmgr: locking against myself");
659 }
660 lkp->lk_exclusivecount++;
661 if (extflags & LK_SETRECURSE &&
662 lkp->lk_recurselevel == 0)
663 lkp->lk_recurselevel = lkp->lk_exclusivecount;
664 COUNT(lkp, p, cpu_id, 1);
665 break;
666 }
667 /*
668 * If we are just polling, check to see if we will sleep.
669 */
670 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
671 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
672 lkp->lk_sharecount != 0)) {
673 error = EBUSY;
674 break;
675 }
676 /*
677 * Try to acquire the want_exclusive flag.
678 */
679 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
680 (LK_HAVE_EXCL | LK_WANT_EXCL));
681 if (error)
682 break;
683 lkp->lk_flags |= LK_WANT_EXCL;
684 /*
685 * Wait for shared locks and upgrades to finish.
686 */
687 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
688 (lkp->lk_flags & LK_WANT_UPGRADE));
689 lkp->lk_flags &= ~LK_WANT_EXCL;
690 if (error)
691 break;
692 lkp->lk_flags |= LK_HAVE_EXCL;
693 SETHOLDER(lkp, pid, cpu_id);
694 #if defined(LOCKDEBUG)
695 lkp->lk_lock_file = file;
696 lkp->lk_lock_line = line;
697 #endif
698 HAVEIT(lkp);
699 if (lkp->lk_exclusivecount != 0)
700 panic("lockmgr: non-zero exclusive count");
701 lkp->lk_exclusivecount = 1;
702 if (extflags & LK_SETRECURSE)
703 lkp->lk_recurselevel = 1;
704 COUNT(lkp, p, cpu_id, 1);
705 break;
706
707 case LK_RELEASE:
708 if (lkp->lk_exclusivecount != 0) {
709 if (WEHOLDIT(lkp, pid, cpu_id) == 0) {
710 if (lkp->lk_flags & LK_SPIN) {
711 panic("lockmgr: processor %lu, not "
712 "exclusive lock holder %lu "
713 "unlocking", cpu_id, lkp->lk_cpu);
714 } else {
715 panic("lockmgr: pid %d, not "
716 "exclusive lock holder %d "
717 "unlocking", pid,
718 lkp->lk_lockholder);
719 }
720 }
721 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
722 lkp->lk_recurselevel = 0;
723 lkp->lk_exclusivecount--;
724 COUNT(lkp, p, cpu_id, -1);
725 if (lkp->lk_exclusivecount == 0) {
726 lkp->lk_flags &= ~LK_HAVE_EXCL;
727 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
728 #if defined(LOCKDEBUG)
729 lkp->lk_unlock_file = file;
730 lkp->lk_unlock_line = line;
731 #endif
732 DONTHAVEIT(lkp);
733 }
734 } else if (lkp->lk_sharecount != 0) {
735 lkp->lk_sharecount--;
736 COUNT(lkp, p, cpu_id, -1);
737 }
738 #ifdef DIAGNOSTIC
739 else
740 panic("lockmgr: release of unlocked lock!");
741 #endif
742 WAKEUP_WAITER(lkp);
743 break;
744
745 case LK_DRAIN:
746 /*
747 * Check that we do not already hold the lock, as it can
748 * never drain if we do. Unfortunately, we have no way to
749 * check for holding a shared lock, but at least we can
750 * check for an exclusive one.
751 */
752 if (WEHOLDIT(lkp, pid, cpu_id))
753 panic("lockmgr: draining against myself");
754 /*
755 * If we are just polling, check to see if we will sleep.
756 */
757 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
758 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
759 lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
760 error = EBUSY;
761 break;
762 }
763 ACQUIRE(lkp, error, extflags, 1,
764 ((lkp->lk_flags &
765 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
766 lkp->lk_sharecount != 0 ||
767 lkp->lk_waitcount != 0));
768 if (error)
769 break;
770 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
771 SETHOLDER(lkp, pid, cpu_id);
772 #if defined(LOCKDEBUG)
773 lkp->lk_lock_file = file;
774 lkp->lk_lock_line = line;
775 #endif
776 HAVEIT(lkp);
777 lkp->lk_exclusivecount = 1;
778 /* XXX unlikely that we'd want this */
779 if (extflags & LK_SETRECURSE)
780 lkp->lk_recurselevel = 1;
781 COUNT(lkp, p, cpu_id, 1);
782 break;
783
784 default:
785 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
786 panic("lockmgr: unknown locktype request %d",
787 flags & LK_TYPE_MASK);
788 /* NOTREACHED */
789 }
790 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
791 ((lkp->lk_flags &
792 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
793 lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
794 lkp->lk_flags &= ~LK_WAITDRAIN;
795 wakeup((void *)&lkp->lk_flags);
796 }
797 /*
798 * Note that this panic will be a recursive panic, since
799 * we only set lock_shutdown_noblock above if panicstr != NULL.
800 */
801 if (error && lock_shutdown_noblock)
802 panic("lockmgr: deadlock (see previous panic)");
803
804 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
805 return (error);
806 }
807
808 /*
809 * For a recursive spinlock held one or more times by the current CPU,
810 * release all N locks, and return N.
811 * Intended for use in mi_switch() shortly before context switching.
812 */
813
814 int
815 #if defined(LOCKDEBUG)
816 _spinlock_release_all(__volatile struct lock *lkp, const char *file, int line)
817 #else
818 spinlock_release_all(__volatile struct lock *lkp)
819 #endif
820 {
821 int s, count;
822 cpuid_t cpu_id;
823
824 KASSERT(lkp->lk_flags & LK_SPIN);
825
826 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
827
828 cpu_id = cpu_number();
829 count = lkp->lk_exclusivecount;
830
831 if (count != 0) {
832 #ifdef DIAGNOSTIC
833 if (WEHOLDIT(lkp, 0, cpu_id) == 0) {
834 panic("spinlock_release_all: processor %lu, not "
835 "exclusive lock holder %lu "
836 "unlocking", (long)cpu_id, lkp->lk_cpu);
837 }
838 #endif
839 lkp->lk_recurselevel = 0;
840 lkp->lk_exclusivecount = 0;
841 COUNT_CPU(cpu_id, -count);
842 lkp->lk_flags &= ~LK_HAVE_EXCL;
843 SETHOLDER(lkp, LK_NOPROC, LK_NOCPU);
844 #if defined(LOCKDEBUG)
845 lkp->lk_unlock_file = file;
846 lkp->lk_unlock_line = line;
847 #endif
848 DONTHAVEIT(lkp);
849 }
850 #ifdef DIAGNOSTIC
851 else if (lkp->lk_sharecount != 0)
852 panic("spinlock_release_all: release of shared lock!");
853 else
854 panic("spinlock_release_all: release of unlocked lock!");
855 #endif
856 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
857
858 return (count);
859 }
860
861 /*
862 * For a recursive spinlock held one or more times by the current CPU,
863 * release all N locks, and return N.
864 * Intended for use in mi_switch() right after resuming execution.
865 */
866
867 void
868 #if defined(LOCKDEBUG)
869 _spinlock_acquire_count(__volatile struct lock *lkp, int count,
870 const char *file, int line)
871 #else
872 spinlock_acquire_count(__volatile struct lock *lkp, int count)
873 #endif
874 {
875 int s, error;
876 cpuid_t cpu_id;
877
878 KASSERT(lkp->lk_flags & LK_SPIN);
879
880 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
881
882 cpu_id = cpu_number();
883
884 #ifdef DIAGNOSTIC
885 if (WEHOLDIT(lkp, LK_NOPROC, cpu_id))
886 panic("spinlock_acquire_count: processor %lu already holds lock\n", (long)cpu_id);
887 #endif
888 /*
889 * Try to acquire the want_exclusive flag.
890 */
891 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_flags &
892 (LK_HAVE_EXCL | LK_WANT_EXCL));
893 lkp->lk_flags |= LK_WANT_EXCL;
894 /*
895 * Wait for shared locks and upgrades to finish.
896 */
897 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_sharecount != 0 ||
898 (lkp->lk_flags & LK_WANT_UPGRADE));
899 lkp->lk_flags &= ~LK_WANT_EXCL;
900 lkp->lk_flags |= LK_HAVE_EXCL;
901 SETHOLDER(lkp, LK_NOPROC, cpu_id);
902 #if defined(LOCKDEBUG)
903 lkp->lk_lock_file = file;
904 lkp->lk_lock_line = line;
905 #endif
906 HAVEIT(lkp);
907 if (lkp->lk_exclusivecount != 0)
908 panic("lockmgr: non-zero exclusive count");
909 lkp->lk_exclusivecount = count;
910 lkp->lk_recurselevel = 1;
911 COUNT_CPU(cpu_id, count);
912
913 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
914 }
915
916
917
918 /*
919 * Print out information about state of a lock. Used by VOP_PRINT
920 * routines to display ststus about contained locks.
921 */
922 void
923 lockmgr_printinfo(__volatile struct lock *lkp)
924 {
925
926 if (lkp->lk_sharecount)
927 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
928 lkp->lk_sharecount);
929 else if (lkp->lk_flags & LK_HAVE_EXCL) {
930 printf(" lock type %s: EXCL (count %d) by ",
931 lkp->lk_wmesg, lkp->lk_exclusivecount);
932 if (lkp->lk_flags & LK_SPIN)
933 printf("processor %lu", lkp->lk_cpu);
934 else
935 printf("pid %d", lkp->lk_lockholder);
936 } else
937 printf(" not locked");
938 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
939 printf(" with %d pending", lkp->lk_waitcount);
940 }
941
942 #if defined(LOCKDEBUG) /* { */
943 TAILQ_HEAD(, simplelock) simplelock_list =
944 TAILQ_HEAD_INITIALIZER(simplelock_list);
945
946 #if defined(MULTIPROCESSOR) /* { */
947 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
948
949 #define SLOCK_LIST_LOCK() \
950 __cpu_simple_lock(&simplelock_list_slock.lock_data)
951
952 #define SLOCK_LIST_UNLOCK() \
953 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
954
955 #define SLOCK_COUNT(x) \
956 curcpu()->ci_simple_locks += (x)
957 #else
958 u_long simple_locks;
959
960 #define SLOCK_LIST_LOCK() /* nothing */
961
962 #define SLOCK_LIST_UNLOCK() /* nothing */
963
964 #define SLOCK_COUNT(x) simple_locks += (x)
965 #endif /* MULTIPROCESSOR */ /* } */
966
967 #ifdef DDB /* { */
968 #ifdef MULTIPROCESSOR
969 int simple_lock_debugger = 1; /* more serious on MP */
970 #else
971 int simple_lock_debugger = 0;
972 #endif
973 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
974 #define SLOCK_TRACE() \
975 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
976 TRUE, 65535, "", printf);
977 #else
978 #define SLOCK_DEBUGGER() /* nothing */
979 #define SLOCK_TRACE() /* nothing */
980 #endif /* } */
981
982 #ifdef MULTIPROCESSOR
983 #define SLOCK_MP() lock_printf("on cpu %ld\n", \
984 (u_long) cpu_number())
985 #else
986 #define SLOCK_MP() /* nothing */
987 #endif
988
989 #define SLOCK_WHERE(str, alp, id, l) \
990 do { \
991 lock_printf("\n"); \
992 lock_printf(str); \
993 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
994 SLOCK_MP(); \
995 if ((alp)->lock_file != NULL) \
996 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
997 (alp)->lock_line); \
998 if ((alp)->unlock_file != NULL) \
999 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1000 (alp)->unlock_line); \
1001 SLOCK_TRACE() \
1002 SLOCK_DEBUGGER(); \
1003 } while (/*CONSTCOND*/0)
1004
1005 /*
1006 * Simple lock functions so that the debugger can see from whence
1007 * they are being called.
1008 */
1009 void
1010 simple_lock_init(struct simplelock *alp)
1011 {
1012
1013 #if defined(MULTIPROCESSOR) /* { */
1014 __cpu_simple_lock_init(&alp->lock_data);
1015 #else
1016 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1017 #endif /* } */
1018 alp->lock_file = NULL;
1019 alp->lock_line = 0;
1020 alp->unlock_file = NULL;
1021 alp->unlock_line = 0;
1022 alp->lock_holder = LK_NOCPU;
1023 }
1024
1025 void
1026 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
1027 {
1028 cpuid_t cpu_id = cpu_number();
1029 int s;
1030
1031 s = spllock();
1032
1033 /*
1034 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1035 * don't take any action, and just fall into the normal spin case.
1036 */
1037 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1038 #if defined(MULTIPROCESSOR) /* { */
1039 if (alp->lock_holder == cpu_id) {
1040 SLOCK_WHERE("simple_lock: locking against myself\n",
1041 alp, id, l);
1042 goto out;
1043 }
1044 #else
1045 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1046 goto out;
1047 #endif /* MULTIPROCESSOR */ /* } */
1048 }
1049
1050 #if defined(MULTIPROCESSOR) /* { */
1051 /* Acquire the lock before modifying any fields. */
1052 __cpu_simple_lock(&alp->lock_data);
1053 #else
1054 alp->lock_data = __SIMPLELOCK_LOCKED;
1055 #endif /* } */
1056
1057 if (alp->lock_holder != LK_NOCPU) {
1058 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1059 alp, id, l);
1060 }
1061 alp->lock_file = id;
1062 alp->lock_line = l;
1063 alp->lock_holder = cpu_id;
1064
1065 SLOCK_LIST_LOCK();
1066 /* XXX Cast away volatile */
1067 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1068 SLOCK_LIST_UNLOCK();
1069
1070 SLOCK_COUNT(1);
1071
1072 out:
1073 splx(s);
1074 }
1075
1076 int
1077 _simple_lock_held(__volatile struct simplelock *alp)
1078 {
1079 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1080 cpuid_t cpu_id = cpu_number();
1081 #endif
1082 int s, locked = 0;
1083
1084 s = spllock();
1085
1086 #if defined(MULTIPROCESSOR)
1087 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1088 locked = (alp->lock_holder == cpu_id);
1089 else
1090 __cpu_simple_unlock(&alp->lock_data);
1091 #else
1092 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1093 locked = 1;
1094 KASSERT(alp->lock_holder == cpu_id);
1095 }
1096 #endif
1097
1098 splx(s);
1099
1100 return (locked);
1101 }
1102
1103 int
1104 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
1105 {
1106 cpuid_t cpu_id = cpu_number();
1107 int s, rv = 0;
1108
1109 s = spllock();
1110
1111 /*
1112 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1113 * don't take any action.
1114 */
1115 #if defined(MULTIPROCESSOR) /* { */
1116 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1117 if (alp->lock_holder == cpu_id)
1118 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1119 alp, id, l);
1120 goto out;
1121 }
1122 #else
1123 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1124 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1125 goto out;
1126 }
1127 alp->lock_data = __SIMPLELOCK_LOCKED;
1128 #endif /* MULTIPROCESSOR */ /* } */
1129
1130 /*
1131 * At this point, we have acquired the lock.
1132 */
1133
1134 rv = 1;
1135
1136 alp->lock_file = id;
1137 alp->lock_line = l;
1138 alp->lock_holder = cpu_id;
1139
1140 SLOCK_LIST_LOCK();
1141 /* XXX Cast away volatile. */
1142 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1143 SLOCK_LIST_UNLOCK();
1144
1145 SLOCK_COUNT(1);
1146
1147 out:
1148 splx(s);
1149 return (rv);
1150 }
1151
1152 void
1153 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
1154 {
1155 int s;
1156
1157 s = spllock();
1158
1159 /*
1160 * MULTIPROCESSOR case: This is `safe' because we think we hold
1161 * the lock, and if we don't, we don't take any action.
1162 */
1163 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1164 SLOCK_WHERE("simple_unlock: lock not held\n",
1165 alp, id, l);
1166 goto out;
1167 }
1168
1169 SLOCK_LIST_LOCK();
1170 TAILQ_REMOVE(&simplelock_list, alp, list);
1171 SLOCK_LIST_UNLOCK();
1172
1173 SLOCK_COUNT(-1);
1174
1175 alp->list.tqe_next = NULL; /* sanity */
1176 alp->list.tqe_prev = NULL; /* sanity */
1177
1178 alp->unlock_file = id;
1179 alp->unlock_line = l;
1180
1181 #if defined(MULTIPROCESSOR) /* { */
1182 alp->lock_holder = LK_NOCPU;
1183 /* Now that we've modified all fields, release the lock. */
1184 __cpu_simple_unlock(&alp->lock_data);
1185 #else
1186 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1187 KASSERT(alp->lock_holder == cpu_number());
1188 alp->lock_holder = LK_NOCPU;
1189 #endif /* } */
1190
1191 out:
1192 splx(s);
1193 }
1194
1195 void
1196 simple_lock_dump(void)
1197 {
1198 struct simplelock *alp;
1199 int s;
1200
1201 s = spllock();
1202 SLOCK_LIST_LOCK();
1203 lock_printf("all simple locks:\n");
1204 TAILQ_FOREACH(alp, &simplelock_list, list) {
1205 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1206 alp->lock_file, alp->lock_line);
1207 }
1208 SLOCK_LIST_UNLOCK();
1209 splx(s);
1210 }
1211
1212 void
1213 simple_lock_freecheck(void *start, void *end)
1214 {
1215 struct simplelock *alp;
1216 int s;
1217
1218 s = spllock();
1219 SLOCK_LIST_LOCK();
1220 TAILQ_FOREACH(alp, &simplelock_list, list) {
1221 if ((void *)alp >= start && (void *)alp < end) {
1222 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1223 alp, alp->lock_holder, alp->lock_file,
1224 alp->lock_line);
1225 SLOCK_DEBUGGER();
1226 }
1227 }
1228 SLOCK_LIST_UNLOCK();
1229 splx(s);
1230 }
1231
1232 /*
1233 * We must be holding exactly one lock: the sched_lock.
1234 */
1235
1236 void
1237 simple_lock_switchcheck(void)
1238 {
1239
1240 simple_lock_only_held(&sched_lock, "switching");
1241 }
1242
1243 void
1244 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1245 {
1246 struct simplelock *alp;
1247 cpuid_t cpu_id = cpu_number();
1248 int s;
1249
1250 if (lp) {
1251 LOCK_ASSERT(simple_lock_held(lp));
1252 }
1253 s = spllock();
1254 SLOCK_LIST_LOCK();
1255 TAILQ_FOREACH(alp, &simplelock_list, list) {
1256 if (alp == lp)
1257 continue;
1258 if (alp->lock_holder == cpu_id)
1259 break;
1260 }
1261 SLOCK_LIST_UNLOCK();
1262 splx(s);
1263
1264 if (alp != NULL) {
1265 lock_printf("\n%s with held simple_lock %p "
1266 "CPU %lu %s:%d\n",
1267 where, alp, alp->lock_holder, alp->lock_file,
1268 alp->lock_line);
1269 SLOCK_TRACE();
1270 SLOCK_DEBUGGER();
1271 }
1272 }
1273 #endif /* LOCKDEBUG */ /* } */
1274
1275 #if defined(MULTIPROCESSOR)
1276 /*
1277 * Functions for manipulating the kernel_lock. We put them here
1278 * so that they show up in profiles.
1279 */
1280
1281 struct lock kernel_lock;
1282
1283 void
1284 _kernel_lock_init(void)
1285 {
1286
1287 spinlockinit(&kernel_lock, "klock", 0);
1288 }
1289
1290 /*
1291 * Acquire/release the kernel lock. Intended for use in the scheduler
1292 * and the lower half of the kernel.
1293 */
1294 void
1295 _kernel_lock(int flag)
1296 {
1297
1298 SCHED_ASSERT_UNLOCKED();
1299 spinlockmgr(&kernel_lock, flag, 0);
1300 }
1301
1302 void
1303 _kernel_unlock(void)
1304 {
1305
1306 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1307 }
1308
1309 /*
1310 * Acquire/release the kernel_lock on behalf of a process. Intended for
1311 * use in the top half of the kernel.
1312 */
1313 void
1314 _kernel_proc_lock(struct proc *p)
1315 {
1316
1317 SCHED_ASSERT_UNLOCKED();
1318 spinlockmgr(&kernel_lock, LK_EXCLUSIVE, 0);
1319 p->p_flag |= P_BIGLOCK;
1320 }
1321
1322 void
1323 _kernel_proc_unlock(struct proc *p)
1324 {
1325
1326 p->p_flag &= ~P_BIGLOCK;
1327 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1328 }
1329 #endif /* MULTIPROCESSOR */
1330