kern_lock.c revision 1.72 1 /* $NetBSD: kern_lock.c,v 1.72 2003/08/07 16:31:46 agc Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.72 2003/08/07 16:31:46 agc Exp $");
80
81 #include "opt_multiprocessor.h"
82 #include "opt_lockdebug.h"
83 #include "opt_ddb.h"
84
85 #include <sys/param.h>
86 #include <sys/proc.h>
87 #include <sys/lock.h>
88 #include <sys/systm.h>
89 #include <machine/cpu.h>
90
91 #if defined(LOCKDEBUG)
92 #include <sys/syslog.h>
93 /*
94 * note that stdarg.h and the ansi style va_start macro is used for both
95 * ansi and traditional c compiles.
96 * XXX: this requires that stdarg.h define: va_alist and va_dcl
97 */
98 #include <machine/stdarg.h>
99
100 void lock_printf(const char *fmt, ...)
101 __attribute__((__format__(__printf__,1,2)));
102
103 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
104
105 #ifdef DDB
106 #include <ddb/ddbvar.h>
107 #include <machine/db_machdep.h>
108 #include <ddb/db_command.h>
109 #include <ddb/db_interface.h>
110 #endif
111 #endif
112
113 /*
114 * Locking primitives implementation.
115 * Locks provide shared/exclusive synchronization.
116 */
117
118 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
119 #if defined(MULTIPROCESSOR) /* { */
120 #define COUNT_CPU(cpu_id, x) \
121 curcpu()->ci_spin_locks += (x)
122 #else
123 u_long spin_locks;
124 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
125 #endif /* MULTIPROCESSOR */ /* } */
126
127 #define COUNT(lkp, l, cpu_id, x) \
128 do { \
129 if ((lkp)->lk_flags & LK_SPIN) \
130 COUNT_CPU((cpu_id), (x)); \
131 else \
132 (l)->l_locks += (x); \
133 } while (/*CONSTCOND*/0)
134 #else
135 #define COUNT(lkp, p, cpu_id, x)
136 #define COUNT_CPU(cpu_id, x)
137 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
138
139 #ifndef SPINLOCK_SPIN_HOOK /* from <machine/lock.h> */
140 #define SPINLOCK_SPIN_HOOK /* nothing */
141 #endif
142
143 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
144 do { \
145 if ((flags) & LK_SPIN) \
146 s = spllock(); \
147 simple_lock(&(lkp)->lk_interlock); \
148 } while (/*CONSTCOND*/ 0)
149
150 #define INTERLOCK_RELEASE(lkp, flags, s) \
151 do { \
152 simple_unlock(&(lkp)->lk_interlock); \
153 if ((flags) & LK_SPIN) \
154 splx(s); \
155 } while (/*CONSTCOND*/ 0)
156
157 #ifdef DDB /* { */
158 #ifdef MULTIPROCESSOR
159 int simple_lock_debugger = 1; /* more serious on MP */
160 #else
161 int simple_lock_debugger = 0;
162 #endif
163 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
164 #define SLOCK_TRACE() \
165 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
166 TRUE, 65535, "", lock_printf);
167 #else
168 #define SLOCK_DEBUGGER() /* nothing */
169 #define SLOCK_TRACE() /* nothing */
170 #endif /* } */
171
172 #if defined(LOCKDEBUG)
173 #if defined(DDB)
174 #define SPINLOCK_SPINCHECK_DEBUGGER Debugger()
175 #else
176 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
177 #endif
178
179 #define SPINLOCK_SPINCHECK_DECL \
180 /* 32-bits of count -- wrap constitutes a "spinout" */ \
181 uint32_t __spinc = 0
182
183 #define SPINLOCK_SPINCHECK \
184 do { \
185 if (++__spinc == 0) { \
186 lock_printf("LK_SPIN spinout, excl %d, share %d\n", \
187 lkp->lk_exclusivecount, lkp->lk_sharecount); \
188 if (lkp->lk_exclusivecount) \
189 lock_printf("held by CPU %lu\n", \
190 (u_long) lkp->lk_cpu); \
191 if (lkp->lk_lock_file) \
192 lock_printf("last locked at %s:%d\n", \
193 lkp->lk_lock_file, lkp->lk_lock_line); \
194 if (lkp->lk_unlock_file) \
195 lock_printf("last unlocked at %s:%d\n", \
196 lkp->lk_unlock_file, lkp->lk_unlock_line); \
197 SLOCK_TRACE(); \
198 SPINLOCK_SPINCHECK_DEBUGGER; \
199 } \
200 } while (/*CONSTCOND*/ 0)
201 #else
202 #define SPINLOCK_SPINCHECK_DECL /* nothing */
203 #define SPINLOCK_SPINCHECK /* nothing */
204 #endif /* LOCKDEBUG && DDB */
205
206 /*
207 * Acquire a resource.
208 */
209 #define ACQUIRE(lkp, error, extflags, drain, wanted) \
210 if ((extflags) & LK_SPIN) { \
211 int interlocked; \
212 SPINLOCK_SPINCHECK_DECL; \
213 \
214 if ((drain) == 0) \
215 (lkp)->lk_waitcount++; \
216 for (interlocked = 1;;) { \
217 SPINLOCK_SPINCHECK; \
218 if (wanted) { \
219 if (interlocked) { \
220 INTERLOCK_RELEASE((lkp), \
221 LK_SPIN, s); \
222 interlocked = 0; \
223 } \
224 SPINLOCK_SPIN_HOOK; \
225 } else if (interlocked) { \
226 break; \
227 } else { \
228 INTERLOCK_ACQUIRE((lkp), LK_SPIN, s); \
229 interlocked = 1; \
230 } \
231 } \
232 if ((drain) == 0) \
233 (lkp)->lk_waitcount--; \
234 KASSERT((wanted) == 0); \
235 error = 0; /* sanity */ \
236 } else { \
237 for (error = 0; wanted; ) { \
238 if ((drain)) \
239 (lkp)->lk_flags |= LK_WAITDRAIN; \
240 else \
241 (lkp)->lk_waitcount++; \
242 /* XXX Cast away volatile. */ \
243 error = ltsleep((drain) ? \
244 (void *)&(lkp)->lk_flags : \
245 (void *)(lkp), (lkp)->lk_prio, \
246 (lkp)->lk_wmesg, (lkp)->lk_timo, \
247 &(lkp)->lk_interlock); \
248 if ((drain) == 0) \
249 (lkp)->lk_waitcount--; \
250 if (error) \
251 break; \
252 if ((extflags) & LK_SLEEPFAIL) { \
253 error = ENOLCK; \
254 break; \
255 } \
256 } \
257 }
258
259 #define SETHOLDER(lkp, pid, lid, cpu_id) \
260 do { \
261 if ((lkp)->lk_flags & LK_SPIN) \
262 (lkp)->lk_cpu = cpu_id; \
263 else { \
264 (lkp)->lk_lockholder = pid; \
265 (lkp)->lk_locklwp = lid; \
266 } \
267 } while (/*CONSTCOND*/0)
268
269 #define WEHOLDIT(lkp, pid, lid, cpu_id) \
270 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
271 ((lkp)->lk_cpu == (cpu_id)) : \
272 ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
273
274 #define WAKEUP_WAITER(lkp) \
275 do { \
276 if (((lkp)->lk_flags & LK_SPIN) == 0 && (lkp)->lk_waitcount) { \
277 /* XXX Cast away volatile. */ \
278 wakeup((void *)(lkp)); \
279 } \
280 } while (/*CONSTCOND*/0)
281
282 #if defined(LOCKDEBUG) /* { */
283 #if defined(MULTIPROCESSOR) /* { */
284 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
285
286 #define SPINLOCK_LIST_LOCK() \
287 __cpu_simple_lock(&spinlock_list_slock.lock_data)
288
289 #define SPINLOCK_LIST_UNLOCK() \
290 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
291 #else
292 #define SPINLOCK_LIST_LOCK() /* nothing */
293
294 #define SPINLOCK_LIST_UNLOCK() /* nothing */
295 #endif /* MULTIPROCESSOR */ /* } */
296
297 TAILQ_HEAD(, lock) spinlock_list =
298 TAILQ_HEAD_INITIALIZER(spinlock_list);
299
300 #define HAVEIT(lkp) \
301 do { \
302 if ((lkp)->lk_flags & LK_SPIN) { \
303 int s = spllock(); \
304 SPINLOCK_LIST_LOCK(); \
305 /* XXX Cast away volatile. */ \
306 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
307 lk_list); \
308 SPINLOCK_LIST_UNLOCK(); \
309 splx(s); \
310 } \
311 } while (/*CONSTCOND*/0)
312
313 #define DONTHAVEIT(lkp) \
314 do { \
315 if ((lkp)->lk_flags & LK_SPIN) { \
316 int s = spllock(); \
317 SPINLOCK_LIST_LOCK(); \
318 /* XXX Cast away volatile. */ \
319 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
320 lk_list); \
321 SPINLOCK_LIST_UNLOCK(); \
322 splx(s); \
323 } \
324 } while (/*CONSTCOND*/0)
325 #else
326 #define HAVEIT(lkp) /* nothing */
327
328 #define DONTHAVEIT(lkp) /* nothing */
329 #endif /* LOCKDEBUG */ /* } */
330
331 #if defined(LOCKDEBUG)
332 /*
333 * Lock debug printing routine; can be configured to print to console
334 * or log to syslog.
335 */
336 void
337 lock_printf(const char *fmt, ...)
338 {
339 char b[150];
340 va_list ap;
341
342 va_start(ap, fmt);
343 if (lock_debug_syslog)
344 vlog(LOG_DEBUG, fmt, ap);
345 else {
346 vsnprintf(b, sizeof(b), fmt, ap);
347 printf_nolog("%s", b);
348 }
349 va_end(ap);
350 }
351 #endif /* LOCKDEBUG */
352
353 /*
354 * Initialize a lock; required before use.
355 */
356 void
357 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
358 {
359
360 memset(lkp, 0, sizeof(struct lock));
361 simple_lock_init(&lkp->lk_interlock);
362 lkp->lk_flags = flags & LK_EXTFLG_MASK;
363 if (flags & LK_SPIN)
364 lkp->lk_cpu = LK_NOCPU;
365 else {
366 lkp->lk_lockholder = LK_NOPROC;
367 lkp->lk_prio = prio;
368 lkp->lk_timo = timo;
369 }
370 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
371 #if defined(LOCKDEBUG)
372 lkp->lk_lock_file = NULL;
373 lkp->lk_unlock_file = NULL;
374 #endif
375 }
376
377 /*
378 * Determine the status of a lock.
379 */
380 int
381 lockstatus(struct lock *lkp)
382 {
383 int s = 0, lock_type = 0;
384
385 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
386 if (lkp->lk_exclusivecount != 0)
387 lock_type = LK_EXCLUSIVE;
388 else if (lkp->lk_sharecount != 0)
389 lock_type = LK_SHARED;
390 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
391 return (lock_type);
392 }
393
394 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
395 /*
396 * Make sure no spin locks are held by a CPU that is about
397 * to context switch.
398 */
399 void
400 spinlock_switchcheck(void)
401 {
402 u_long cnt;
403 int s;
404
405 s = spllock();
406 #if defined(MULTIPROCESSOR)
407 cnt = curcpu()->ci_spin_locks;
408 #else
409 cnt = spin_locks;
410 #endif
411 splx(s);
412
413 if (cnt != 0)
414 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
415 (u_long) cpu_number(), cnt);
416 }
417 #endif /* LOCKDEBUG || DIAGNOSTIC */
418
419 /*
420 * Locks and IPLs (interrupt priority levels):
421 *
422 * Locks which may be taken from interrupt context must be handled
423 * very carefully; you must spl to the highest IPL where the lock
424 * is needed before acquiring the lock.
425 *
426 * It is also important to avoid deadlock, since certain (very high
427 * priority) interrupts are often needed to keep the system as a whole
428 * from deadlocking, and must not be blocked while you are spinning
429 * waiting for a lower-priority lock.
430 *
431 * In addition, the lock-debugging hooks themselves need to use locks!
432 *
433 * A raw __cpu_simple_lock may be used from interrupts are long as it
434 * is acquired and held at a single IPL.
435 *
436 * A simple_lock (which is a __cpu_simple_lock wrapped with some
437 * debugging hooks) may be used at or below spllock(), which is
438 * typically at or just below splhigh() (i.e. blocks everything
439 * but certain machine-dependent extremely high priority interrupts).
440 *
441 * spinlockmgr spinlocks should be used at or below splsched().
442 *
443 * Some platforms may have interrupts of higher priority than splsched(),
444 * including hard serial interrupts, inter-processor interrupts, and
445 * kernel debugger traps.
446 */
447
448 /*
449 * XXX XXX kludge around another kludge..
450 *
451 * vfs_shutdown() may be called from interrupt context, either as a result
452 * of a panic, or from the debugger. It proceeds to call
453 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
454 *
455 * We would like to make an attempt to sync the filesystems in this case, so
456 * if this happens, we treat attempts to acquire locks specially.
457 * All locks are acquired on behalf of proc0.
458 *
459 * If we've already paniced, we don't block waiting for locks, but
460 * just barge right ahead since we're already going down in flames.
461 */
462
463 /*
464 * Set, change, or release a lock.
465 *
466 * Shared requests increment the shared count. Exclusive requests set the
467 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
468 * accepted shared locks and shared-to-exclusive upgrades to go away.
469 */
470 int
471 #if defined(LOCKDEBUG)
472 _lockmgr(__volatile struct lock *lkp, u_int flags,
473 struct simplelock *interlkp, const char *file, int line)
474 #else
475 lockmgr(__volatile struct lock *lkp, u_int flags,
476 struct simplelock *interlkp)
477 #endif
478 {
479 int error;
480 pid_t pid;
481 lwpid_t lid;
482 int extflags;
483 cpuid_t cpu_id;
484 struct lwp *l = curlwp;
485 int lock_shutdown_noblock = 0;
486 int s = 0;
487
488 error = 0;
489
490 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
491 if (flags & LK_INTERLOCK)
492 simple_unlock(interlkp);
493 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
494
495 #ifdef DIAGNOSTIC /* { */
496 /*
497 * Don't allow spins on sleep locks and don't allow sleeps
498 * on spin locks.
499 */
500 if ((flags ^ lkp->lk_flags) & LK_SPIN)
501 panic("lockmgr: sleep/spin mismatch");
502 #endif /* } */
503
504 if (extflags & LK_SPIN) {
505 pid = LK_KERNPROC;
506 lid = 0;
507 } else {
508 if (l == NULL) {
509 if (!doing_shutdown) {
510 panic("lockmgr: no context");
511 } else {
512 l = &lwp0;
513 if (panicstr && (!(flags & LK_NOWAIT))) {
514 flags |= LK_NOWAIT;
515 lock_shutdown_noblock = 1;
516 }
517 }
518 }
519 lid = l->l_lid;
520 pid = l->l_proc->p_pid;
521 }
522 cpu_id = cpu_number();
523
524 /*
525 * Once a lock has drained, the LK_DRAINING flag is set and an
526 * exclusive lock is returned. The only valid operation thereafter
527 * is a single release of that exclusive lock. This final release
528 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
529 * further requests of any sort will result in a panic. The bits
530 * selected for these two flags are chosen so that they will be set
531 * in memory that is freed (freed memory is filled with 0xdeadbeef).
532 * The final release is permitted to give a new lease on life to
533 * the lock by specifying LK_REENABLE.
534 */
535 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
536 #ifdef DIAGNOSTIC /* { */
537 if (lkp->lk_flags & LK_DRAINED)
538 panic("lockmgr: using decommissioned lock");
539 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
540 WEHOLDIT(lkp, pid, lid, cpu_id) == 0)
541 panic("lockmgr: non-release on draining lock: %d",
542 flags & LK_TYPE_MASK);
543 #endif /* DIAGNOSTIC */ /* } */
544 lkp->lk_flags &= ~LK_DRAINING;
545 if ((flags & LK_REENABLE) == 0)
546 lkp->lk_flags |= LK_DRAINED;
547 }
548
549 switch (flags & LK_TYPE_MASK) {
550
551 case LK_SHARED:
552 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0) {
553 /*
554 * If just polling, check to see if we will block.
555 */
556 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
557 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
558 error = EBUSY;
559 break;
560 }
561 /*
562 * Wait for exclusive locks and upgrades to clear.
563 */
564 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
565 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE));
566 if (error)
567 break;
568 lkp->lk_sharecount++;
569 COUNT(lkp, l, cpu_id, 1);
570 break;
571 }
572 /*
573 * We hold an exclusive lock, so downgrade it to shared.
574 * An alternative would be to fail with EDEADLK.
575 */
576 lkp->lk_sharecount++;
577 COUNT(lkp, l, cpu_id, 1);
578 /* fall into downgrade */
579
580 case LK_DOWNGRADE:
581 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0 ||
582 lkp->lk_exclusivecount == 0)
583 panic("lockmgr: not holding exclusive lock");
584 lkp->lk_sharecount += lkp->lk_exclusivecount;
585 lkp->lk_exclusivecount = 0;
586 lkp->lk_recurselevel = 0;
587 lkp->lk_flags &= ~LK_HAVE_EXCL;
588 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
589 #if defined(LOCKDEBUG)
590 lkp->lk_unlock_file = file;
591 lkp->lk_unlock_line = line;
592 #endif
593 DONTHAVEIT(lkp);
594 WAKEUP_WAITER(lkp);
595 break;
596
597 case LK_EXCLUPGRADE:
598 /*
599 * If another process is ahead of us to get an upgrade,
600 * then we want to fail rather than have an intervening
601 * exclusive access.
602 */
603 if (lkp->lk_flags & LK_WANT_UPGRADE) {
604 lkp->lk_sharecount--;
605 COUNT(lkp, l, cpu_id, -1);
606 error = EBUSY;
607 break;
608 }
609 /* fall into normal upgrade */
610
611 case LK_UPGRADE:
612 /*
613 * Upgrade a shared lock to an exclusive one. If another
614 * shared lock has already requested an upgrade to an
615 * exclusive lock, our shared lock is released and an
616 * exclusive lock is requested (which will be granted
617 * after the upgrade). If we return an error, the file
618 * will always be unlocked.
619 */
620 if (WEHOLDIT(lkp, pid, lid, cpu_id) || lkp->lk_sharecount <= 0)
621 panic("lockmgr: upgrade exclusive lock");
622 lkp->lk_sharecount--;
623 COUNT(lkp, l, cpu_id, -1);
624 /*
625 * If we are just polling, check to see if we will block.
626 */
627 if ((extflags & LK_NOWAIT) &&
628 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
629 lkp->lk_sharecount > 1)) {
630 error = EBUSY;
631 break;
632 }
633 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
634 /*
635 * We are first shared lock to request an upgrade, so
636 * request upgrade and wait for the shared count to
637 * drop to zero, then take exclusive lock.
638 */
639 lkp->lk_flags |= LK_WANT_UPGRADE;
640 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount);
641 lkp->lk_flags &= ~LK_WANT_UPGRADE;
642 if (error)
643 break;
644 lkp->lk_flags |= LK_HAVE_EXCL;
645 SETHOLDER(lkp, pid, lid, cpu_id);
646 #if defined(LOCKDEBUG)
647 lkp->lk_lock_file = file;
648 lkp->lk_lock_line = line;
649 #endif
650 HAVEIT(lkp);
651 if (lkp->lk_exclusivecount != 0)
652 panic("lockmgr: non-zero exclusive count");
653 lkp->lk_exclusivecount = 1;
654 if (extflags & LK_SETRECURSE)
655 lkp->lk_recurselevel = 1;
656 COUNT(lkp, l, cpu_id, 1);
657 break;
658 }
659 /*
660 * Someone else has requested upgrade. Release our shared
661 * lock, awaken upgrade requestor if we are the last shared
662 * lock, then request an exclusive lock.
663 */
664 if (lkp->lk_sharecount == 0)
665 WAKEUP_WAITER(lkp);
666 /* fall into exclusive request */
667
668 case LK_EXCLUSIVE:
669 if (WEHOLDIT(lkp, pid, lid, cpu_id)) {
670 /*
671 * Recursive lock.
672 */
673 if ((extflags & LK_CANRECURSE) == 0 &&
674 lkp->lk_recurselevel == 0) {
675 if (extflags & LK_RECURSEFAIL) {
676 error = EDEADLK;
677 break;
678 } else
679 panic("lockmgr: locking against myself");
680 }
681 lkp->lk_exclusivecount++;
682 if (extflags & LK_SETRECURSE &&
683 lkp->lk_recurselevel == 0)
684 lkp->lk_recurselevel = lkp->lk_exclusivecount;
685 COUNT(lkp, l, cpu_id, 1);
686 break;
687 }
688 /*
689 * If we are just polling, check to see if we will sleep.
690 */
691 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
692 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
693 lkp->lk_sharecount != 0)) {
694 error = EBUSY;
695 break;
696 }
697 /*
698 * Try to acquire the want_exclusive flag.
699 */
700 ACQUIRE(lkp, error, extflags, 0, lkp->lk_flags &
701 (LK_HAVE_EXCL | LK_WANT_EXCL));
702 if (error)
703 break;
704 lkp->lk_flags |= LK_WANT_EXCL;
705 /*
706 * Wait for shared locks and upgrades to finish.
707 */
708 ACQUIRE(lkp, error, extflags, 0, lkp->lk_sharecount != 0 ||
709 (lkp->lk_flags & LK_WANT_UPGRADE));
710 lkp->lk_flags &= ~LK_WANT_EXCL;
711 if (error)
712 break;
713 lkp->lk_flags |= LK_HAVE_EXCL;
714 SETHOLDER(lkp, pid, lid, cpu_id);
715 #if defined(LOCKDEBUG)
716 lkp->lk_lock_file = file;
717 lkp->lk_lock_line = line;
718 #endif
719 HAVEIT(lkp);
720 if (lkp->lk_exclusivecount != 0)
721 panic("lockmgr: non-zero exclusive count");
722 lkp->lk_exclusivecount = 1;
723 if (extflags & LK_SETRECURSE)
724 lkp->lk_recurselevel = 1;
725 COUNT(lkp, l, cpu_id, 1);
726 break;
727
728 case LK_RELEASE:
729 if (lkp->lk_exclusivecount != 0) {
730 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0) {
731 if (lkp->lk_flags & LK_SPIN) {
732 panic("lockmgr: processor %lu, not "
733 "exclusive lock holder %lu "
734 "unlocking", cpu_id, lkp->lk_cpu);
735 } else {
736 panic("lockmgr: pid %d, not "
737 "exclusive lock holder %d "
738 "unlocking", pid,
739 lkp->lk_lockholder);
740 }
741 }
742 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
743 lkp->lk_recurselevel = 0;
744 lkp->lk_exclusivecount--;
745 COUNT(lkp, l, cpu_id, -1);
746 if (lkp->lk_exclusivecount == 0) {
747 lkp->lk_flags &= ~LK_HAVE_EXCL;
748 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
749 #if defined(LOCKDEBUG)
750 lkp->lk_unlock_file = file;
751 lkp->lk_unlock_line = line;
752 #endif
753 DONTHAVEIT(lkp);
754 }
755 } else if (lkp->lk_sharecount != 0) {
756 lkp->lk_sharecount--;
757 COUNT(lkp, l, cpu_id, -1);
758 }
759 #ifdef DIAGNOSTIC
760 else
761 panic("lockmgr: release of unlocked lock!");
762 #endif
763 WAKEUP_WAITER(lkp);
764 break;
765
766 case LK_DRAIN:
767 /*
768 * Check that we do not already hold the lock, as it can
769 * never drain if we do. Unfortunately, we have no way to
770 * check for holding a shared lock, but at least we can
771 * check for an exclusive one.
772 */
773 if (WEHOLDIT(lkp, pid, lid, cpu_id))
774 panic("lockmgr: draining against myself");
775 /*
776 * If we are just polling, check to see if we will sleep.
777 */
778 if ((extflags & LK_NOWAIT) && ((lkp->lk_flags &
779 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
780 lkp->lk_sharecount != 0 || lkp->lk_waitcount != 0)) {
781 error = EBUSY;
782 break;
783 }
784 ACQUIRE(lkp, error, extflags, 1,
785 ((lkp->lk_flags &
786 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) ||
787 lkp->lk_sharecount != 0 ||
788 lkp->lk_waitcount != 0));
789 if (error)
790 break;
791 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
792 SETHOLDER(lkp, pid, lid, cpu_id);
793 #if defined(LOCKDEBUG)
794 lkp->lk_lock_file = file;
795 lkp->lk_lock_line = line;
796 #endif
797 HAVEIT(lkp);
798 lkp->lk_exclusivecount = 1;
799 /* XXX unlikely that we'd want this */
800 if (extflags & LK_SETRECURSE)
801 lkp->lk_recurselevel = 1;
802 COUNT(lkp, l, cpu_id, 1);
803 break;
804
805 default:
806 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
807 panic("lockmgr: unknown locktype request %d",
808 flags & LK_TYPE_MASK);
809 /* NOTREACHED */
810 }
811 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
812 ((lkp->lk_flags &
813 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE)) == 0 &&
814 lkp->lk_sharecount == 0 && lkp->lk_waitcount == 0)) {
815 lkp->lk_flags &= ~LK_WAITDRAIN;
816 wakeup((void *)&lkp->lk_flags);
817 }
818 /*
819 * Note that this panic will be a recursive panic, since
820 * we only set lock_shutdown_noblock above if panicstr != NULL.
821 */
822 if (error && lock_shutdown_noblock)
823 panic("lockmgr: deadlock (see previous panic)");
824
825 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
826 return (error);
827 }
828
829 /*
830 * For a recursive spinlock held one or more times by the current CPU,
831 * release all N locks, and return N.
832 * Intended for use in mi_switch() shortly before context switching.
833 */
834
835 int
836 #if defined(LOCKDEBUG)
837 _spinlock_release_all(__volatile struct lock *lkp, const char *file, int line)
838 #else
839 spinlock_release_all(__volatile struct lock *lkp)
840 #endif
841 {
842 int s, count;
843 cpuid_t cpu_id;
844
845 KASSERT(lkp->lk_flags & LK_SPIN);
846
847 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
848
849 cpu_id = cpu_number();
850 count = lkp->lk_exclusivecount;
851
852 if (count != 0) {
853 #ifdef DIAGNOSTIC
854 if (WEHOLDIT(lkp, 0, 0, cpu_id) == 0) {
855 panic("spinlock_release_all: processor %lu, not "
856 "exclusive lock holder %lu "
857 "unlocking", (long)cpu_id, lkp->lk_cpu);
858 }
859 #endif
860 lkp->lk_recurselevel = 0;
861 lkp->lk_exclusivecount = 0;
862 COUNT_CPU(cpu_id, -count);
863 lkp->lk_flags &= ~LK_HAVE_EXCL;
864 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
865 #if defined(LOCKDEBUG)
866 lkp->lk_unlock_file = file;
867 lkp->lk_unlock_line = line;
868 #endif
869 DONTHAVEIT(lkp);
870 }
871 #ifdef DIAGNOSTIC
872 else if (lkp->lk_sharecount != 0)
873 panic("spinlock_release_all: release of shared lock!");
874 else
875 panic("spinlock_release_all: release of unlocked lock!");
876 #endif
877 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
878
879 return (count);
880 }
881
882 /*
883 * For a recursive spinlock held one or more times by the current CPU,
884 * release all N locks, and return N.
885 * Intended for use in mi_switch() right after resuming execution.
886 */
887
888 void
889 #if defined(LOCKDEBUG)
890 _spinlock_acquire_count(__volatile struct lock *lkp, int count,
891 const char *file, int line)
892 #else
893 spinlock_acquire_count(__volatile struct lock *lkp, int count)
894 #endif
895 {
896 int s, error;
897 cpuid_t cpu_id;
898
899 KASSERT(lkp->lk_flags & LK_SPIN);
900
901 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
902
903 cpu_id = cpu_number();
904
905 #ifdef DIAGNOSTIC
906 if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_id))
907 panic("spinlock_acquire_count: processor %lu already holds lock", (long)cpu_id);
908 #endif
909 /*
910 * Try to acquire the want_exclusive flag.
911 */
912 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_flags &
913 (LK_HAVE_EXCL | LK_WANT_EXCL));
914 lkp->lk_flags |= LK_WANT_EXCL;
915 /*
916 * Wait for shared locks and upgrades to finish.
917 */
918 ACQUIRE(lkp, error, LK_SPIN, 0, lkp->lk_sharecount != 0 ||
919 (lkp->lk_flags & LK_WANT_UPGRADE));
920 lkp->lk_flags &= ~LK_WANT_EXCL;
921 lkp->lk_flags |= LK_HAVE_EXCL;
922 SETHOLDER(lkp, LK_NOPROC, 0, cpu_id);
923 #if defined(LOCKDEBUG)
924 lkp->lk_lock_file = file;
925 lkp->lk_lock_line = line;
926 #endif
927 HAVEIT(lkp);
928 if (lkp->lk_exclusivecount != 0)
929 panic("lockmgr: non-zero exclusive count");
930 lkp->lk_exclusivecount = count;
931 lkp->lk_recurselevel = 1;
932 COUNT_CPU(cpu_id, count);
933
934 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
935 }
936
937
938
939 /*
940 * Print out information about state of a lock. Used by VOP_PRINT
941 * routines to display ststus about contained locks.
942 */
943 void
944 lockmgr_printinfo(__volatile struct lock *lkp)
945 {
946
947 if (lkp->lk_sharecount)
948 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
949 lkp->lk_sharecount);
950 else if (lkp->lk_flags & LK_HAVE_EXCL) {
951 printf(" lock type %s: EXCL (count %d) by ",
952 lkp->lk_wmesg, lkp->lk_exclusivecount);
953 if (lkp->lk_flags & LK_SPIN)
954 printf("processor %lu", lkp->lk_cpu);
955 else
956 printf("pid %d.%d", lkp->lk_lockholder,
957 lkp->lk_locklwp);
958 } else
959 printf(" not locked");
960 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
961 printf(" with %d pending", lkp->lk_waitcount);
962 }
963
964 #if defined(LOCKDEBUG) /* { */
965 TAILQ_HEAD(, simplelock) simplelock_list =
966 TAILQ_HEAD_INITIALIZER(simplelock_list);
967
968 #if defined(MULTIPROCESSOR) /* { */
969 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
970
971 #define SLOCK_LIST_LOCK() \
972 __cpu_simple_lock(&simplelock_list_slock.lock_data)
973
974 #define SLOCK_LIST_UNLOCK() \
975 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
976
977 #define SLOCK_COUNT(x) \
978 curcpu()->ci_simple_locks += (x)
979 #else
980 u_long simple_locks;
981
982 #define SLOCK_LIST_LOCK() /* nothing */
983
984 #define SLOCK_LIST_UNLOCK() /* nothing */
985
986 #define SLOCK_COUNT(x) simple_locks += (x)
987 #endif /* MULTIPROCESSOR */ /* } */
988
989 #ifdef MULTIPROCESSOR
990 #define SLOCK_MP() lock_printf("on cpu %ld\n", \
991 (u_long) cpu_number())
992 #else
993 #define SLOCK_MP() /* nothing */
994 #endif
995
996 #define SLOCK_WHERE(str, alp, id, l) \
997 do { \
998 lock_printf("\n"); \
999 lock_printf(str); \
1000 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
1001 SLOCK_MP(); \
1002 if ((alp)->lock_file != NULL) \
1003 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
1004 (alp)->lock_line); \
1005 if ((alp)->unlock_file != NULL) \
1006 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1007 (alp)->unlock_line); \
1008 SLOCK_TRACE() \
1009 SLOCK_DEBUGGER(); \
1010 } while (/*CONSTCOND*/0)
1011
1012 /*
1013 * Simple lock functions so that the debugger can see from whence
1014 * they are being called.
1015 */
1016 void
1017 simple_lock_init(struct simplelock *alp)
1018 {
1019
1020 #if defined(MULTIPROCESSOR) /* { */
1021 __cpu_simple_lock_init(&alp->lock_data);
1022 #else
1023 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1024 #endif /* } */
1025 alp->lock_file = NULL;
1026 alp->lock_line = 0;
1027 alp->unlock_file = NULL;
1028 alp->unlock_line = 0;
1029 alp->lock_holder = LK_NOCPU;
1030 }
1031
1032 void
1033 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
1034 {
1035 cpuid_t cpu_id = cpu_number();
1036 int s;
1037
1038 s = spllock();
1039
1040 /*
1041 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1042 * don't take any action, and just fall into the normal spin case.
1043 */
1044 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1045 #if defined(MULTIPROCESSOR) /* { */
1046 if (alp->lock_holder == cpu_id) {
1047 SLOCK_WHERE("simple_lock: locking against myself\n",
1048 alp, id, l);
1049 goto out;
1050 }
1051 #else
1052 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1053 goto out;
1054 #endif /* MULTIPROCESSOR */ /* } */
1055 }
1056
1057 #if defined(MULTIPROCESSOR) /* { */
1058 /* Acquire the lock before modifying any fields. */
1059 splx(s);
1060 __cpu_simple_lock(&alp->lock_data);
1061 s = spllock();
1062 #else
1063 alp->lock_data = __SIMPLELOCK_LOCKED;
1064 #endif /* } */
1065
1066 if (alp->lock_holder != LK_NOCPU) {
1067 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1068 alp, id, l);
1069 }
1070 alp->lock_file = id;
1071 alp->lock_line = l;
1072 alp->lock_holder = cpu_id;
1073
1074 SLOCK_LIST_LOCK();
1075 /* XXX Cast away volatile */
1076 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1077 SLOCK_LIST_UNLOCK();
1078
1079 SLOCK_COUNT(1);
1080
1081 out:
1082 splx(s);
1083 }
1084
1085 int
1086 _simple_lock_held(__volatile struct simplelock *alp)
1087 {
1088 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1089 cpuid_t cpu_id = cpu_number();
1090 #endif
1091 int s, locked = 0;
1092
1093 s = spllock();
1094
1095 #if defined(MULTIPROCESSOR)
1096 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1097 locked = (alp->lock_holder == cpu_id);
1098 else
1099 __cpu_simple_unlock(&alp->lock_data);
1100 #else
1101 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1102 locked = 1;
1103 KASSERT(alp->lock_holder == cpu_id);
1104 }
1105 #endif
1106
1107 splx(s);
1108
1109 return (locked);
1110 }
1111
1112 int
1113 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
1114 {
1115 cpuid_t cpu_id = cpu_number();
1116 int s, rv = 0;
1117
1118 s = spllock();
1119
1120 /*
1121 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1122 * don't take any action.
1123 */
1124 #if defined(MULTIPROCESSOR) /* { */
1125 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1126 if (alp->lock_holder == cpu_id)
1127 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1128 alp, id, l);
1129 goto out;
1130 }
1131 #else
1132 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1133 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1134 goto out;
1135 }
1136 alp->lock_data = __SIMPLELOCK_LOCKED;
1137 #endif /* MULTIPROCESSOR */ /* } */
1138
1139 /*
1140 * At this point, we have acquired the lock.
1141 */
1142
1143 rv = 1;
1144
1145 alp->lock_file = id;
1146 alp->lock_line = l;
1147 alp->lock_holder = cpu_id;
1148
1149 SLOCK_LIST_LOCK();
1150 /* XXX Cast away volatile. */
1151 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1152 SLOCK_LIST_UNLOCK();
1153
1154 SLOCK_COUNT(1);
1155
1156 out:
1157 splx(s);
1158 return (rv);
1159 }
1160
1161 void
1162 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
1163 {
1164 int s;
1165
1166 s = spllock();
1167
1168 /*
1169 * MULTIPROCESSOR case: This is `safe' because we think we hold
1170 * the lock, and if we don't, we don't take any action.
1171 */
1172 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1173 SLOCK_WHERE("simple_unlock: lock not held\n",
1174 alp, id, l);
1175 goto out;
1176 }
1177
1178 SLOCK_LIST_LOCK();
1179 TAILQ_REMOVE(&simplelock_list, alp, list);
1180 SLOCK_LIST_UNLOCK();
1181
1182 SLOCK_COUNT(-1);
1183
1184 alp->list.tqe_next = NULL; /* sanity */
1185 alp->list.tqe_prev = NULL; /* sanity */
1186
1187 alp->unlock_file = id;
1188 alp->unlock_line = l;
1189
1190 #if defined(MULTIPROCESSOR) /* { */
1191 alp->lock_holder = LK_NOCPU;
1192 /* Now that we've modified all fields, release the lock. */
1193 __cpu_simple_unlock(&alp->lock_data);
1194 #else
1195 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1196 KASSERT(alp->lock_holder == cpu_number());
1197 alp->lock_holder = LK_NOCPU;
1198 #endif /* } */
1199
1200 out:
1201 splx(s);
1202 }
1203
1204 void
1205 simple_lock_dump(void)
1206 {
1207 struct simplelock *alp;
1208 int s;
1209
1210 s = spllock();
1211 SLOCK_LIST_LOCK();
1212 lock_printf("all simple locks:\n");
1213 TAILQ_FOREACH(alp, &simplelock_list, list) {
1214 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1215 alp->lock_file, alp->lock_line);
1216 }
1217 SLOCK_LIST_UNLOCK();
1218 splx(s);
1219 }
1220
1221 void
1222 simple_lock_freecheck(void *start, void *end)
1223 {
1224 struct simplelock *alp;
1225 int s;
1226
1227 s = spllock();
1228 SLOCK_LIST_LOCK();
1229 TAILQ_FOREACH(alp, &simplelock_list, list) {
1230 if ((void *)alp >= start && (void *)alp < end) {
1231 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1232 alp, alp->lock_holder, alp->lock_file,
1233 alp->lock_line);
1234 SLOCK_DEBUGGER();
1235 }
1236 }
1237 SLOCK_LIST_UNLOCK();
1238 splx(s);
1239 }
1240
1241 /*
1242 * We must be holding exactly one lock: the sched_lock.
1243 */
1244
1245 void
1246 simple_lock_switchcheck(void)
1247 {
1248
1249 simple_lock_only_held(&sched_lock, "switching");
1250 }
1251
1252 void
1253 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1254 {
1255 struct simplelock *alp;
1256 cpuid_t cpu_id = cpu_number();
1257 int s;
1258
1259 if (lp) {
1260 LOCK_ASSERT(simple_lock_held(lp));
1261 }
1262 s = spllock();
1263 SLOCK_LIST_LOCK();
1264 TAILQ_FOREACH(alp, &simplelock_list, list) {
1265 if (alp == lp)
1266 continue;
1267 if (alp->lock_holder == cpu_id)
1268 break;
1269 }
1270 SLOCK_LIST_UNLOCK();
1271 splx(s);
1272
1273 if (alp != NULL) {
1274 lock_printf("\n%s with held simple_lock %p "
1275 "CPU %lu %s:%d\n",
1276 where, alp, alp->lock_holder, alp->lock_file,
1277 alp->lock_line);
1278 SLOCK_TRACE();
1279 SLOCK_DEBUGGER();
1280 }
1281 }
1282 #endif /* LOCKDEBUG */ /* } */
1283
1284 #if defined(MULTIPROCESSOR)
1285 /*
1286 * Functions for manipulating the kernel_lock. We put them here
1287 * so that they show up in profiles.
1288 */
1289
1290 struct lock kernel_lock;
1291
1292 void
1293 _kernel_lock_init(void)
1294 {
1295
1296 spinlockinit(&kernel_lock, "klock", 0);
1297 }
1298
1299 /*
1300 * Acquire/release the kernel lock. Intended for use in the scheduler
1301 * and the lower half of the kernel.
1302 */
1303 void
1304 _kernel_lock(int flag)
1305 {
1306
1307 SCHED_ASSERT_UNLOCKED();
1308 spinlockmgr(&kernel_lock, flag, 0);
1309 }
1310
1311 void
1312 _kernel_unlock(void)
1313 {
1314
1315 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1316 }
1317
1318 /*
1319 * Acquire/release the kernel_lock on behalf of a process. Intended for
1320 * use in the top half of the kernel.
1321 */
1322 void
1323 _kernel_proc_lock(struct lwp *l)
1324 {
1325
1326 SCHED_ASSERT_UNLOCKED();
1327 spinlockmgr(&kernel_lock, LK_EXCLUSIVE, 0);
1328 l->l_flag |= L_BIGLOCK;
1329 }
1330
1331 void
1332 _kernel_proc_unlock(struct lwp *l)
1333 {
1334
1335 l->l_flag &= ~L_BIGLOCK;
1336 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1337 }
1338 #endif /* MULTIPROCESSOR */
1339