kern_lock.c revision 1.77 1 /* $NetBSD: kern_lock.c,v 1.77 2004/05/18 11:59:11 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.77 2004/05/18 11:59:11 yamt Exp $");
80
81 #include "opt_multiprocessor.h"
82 #include "opt_lockdebug.h"
83 #include "opt_ddb.h"
84
85 #include <sys/param.h>
86 #include <sys/proc.h>
87 #include <sys/lock.h>
88 #include <sys/systm.h>
89 #include <machine/cpu.h>
90
91 #if defined(LOCKDEBUG)
92 #include <sys/syslog.h>
93 /*
94 * note that stdarg.h and the ansi style va_start macro is used for both
95 * ansi and traditional c compiles.
96 * XXX: this requires that stdarg.h define: va_alist and va_dcl
97 */
98 #include <machine/stdarg.h>
99
100 void lock_printf(const char *fmt, ...)
101 __attribute__((__format__(__printf__,1,2)));
102
103 static int acquire(__volatile struct lock *, int *, int, int, int);
104
105 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
106
107 #ifdef DDB
108 #include <ddb/ddbvar.h>
109 #include <machine/db_machdep.h>
110 #include <ddb/db_command.h>
111 #include <ddb/db_interface.h>
112 #endif
113 #endif
114
115 /*
116 * Locking primitives implementation.
117 * Locks provide shared/exclusive synchronization.
118 */
119
120 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
121 #if defined(MULTIPROCESSOR) /* { */
122 #define COUNT_CPU(cpu_id, x) \
123 curcpu()->ci_spin_locks += (x)
124 #else
125 u_long spin_locks;
126 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
127 #endif /* MULTIPROCESSOR */ /* } */
128
129 #define COUNT(lkp, l, cpu_id, x) \
130 do { \
131 if ((lkp)->lk_flags & LK_SPIN) \
132 COUNT_CPU((cpu_id), (x)); \
133 else \
134 (l)->l_locks += (x); \
135 } while (/*CONSTCOND*/0)
136 #else
137 #define COUNT(lkp, p, cpu_id, x)
138 #define COUNT_CPU(cpu_id, x)
139 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
140
141 #ifndef SPINLOCK_SPIN_HOOK /* from <machine/lock.h> */
142 #define SPINLOCK_SPIN_HOOK /* nothing */
143 #endif
144
145 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
146 do { \
147 if ((flags) & LK_SPIN) \
148 s = spllock(); \
149 simple_lock(&(lkp)->lk_interlock); \
150 } while (/*CONSTCOND*/ 0)
151
152 #define INTERLOCK_RELEASE(lkp, flags, s) \
153 do { \
154 simple_unlock(&(lkp)->lk_interlock); \
155 if ((flags) & LK_SPIN) \
156 splx(s); \
157 } while (/*CONSTCOND*/ 0)
158
159 #ifdef DDB /* { */
160 #ifdef MULTIPROCESSOR
161 int simple_lock_debugger = 1; /* more serious on MP */
162 #else
163 int simple_lock_debugger = 0;
164 #endif
165 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
166 #define SLOCK_TRACE() \
167 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
168 TRUE, 65535, "", lock_printf);
169 #else
170 #define SLOCK_DEBUGGER() /* nothing */
171 #define SLOCK_TRACE() /* nothing */
172 #endif /* } */
173
174 #if defined(LOCKDEBUG)
175 #if defined(DDB)
176 #define SPINLOCK_SPINCHECK_DEBUGGER Debugger()
177 #else
178 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
179 #endif
180
181 #define SPINLOCK_SPINCHECK_DECL \
182 /* 32-bits of count -- wrap constitutes a "spinout" */ \
183 uint32_t __spinc = 0
184
185 #define SPINLOCK_SPINCHECK \
186 do { \
187 if (++__spinc == 0) { \
188 lock_printf("LK_SPIN spinout, excl %d, share %d\n", \
189 lkp->lk_exclusivecount, lkp->lk_sharecount); \
190 if (lkp->lk_exclusivecount) \
191 lock_printf("held by CPU %lu\n", \
192 (u_long) lkp->lk_cpu); \
193 if (lkp->lk_lock_file) \
194 lock_printf("last locked at %s:%d\n", \
195 lkp->lk_lock_file, lkp->lk_lock_line); \
196 if (lkp->lk_unlock_file) \
197 lock_printf("last unlocked at %s:%d\n", \
198 lkp->lk_unlock_file, lkp->lk_unlock_line); \
199 SLOCK_TRACE(); \
200 SPINLOCK_SPINCHECK_DEBUGGER; \
201 } \
202 } while (/*CONSTCOND*/ 0)
203 #else
204 #define SPINLOCK_SPINCHECK_DECL /* nothing */
205 #define SPINLOCK_SPINCHECK /* nothing */
206 #endif /* LOCKDEBUG && DDB */
207
208 /*
209 * Acquire a resource.
210 */
211 static int
212 acquire(__volatile struct lock *lkp, int *s, int extflags,
213 int drain, int wanted)
214 {
215 int error;
216
217 KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
218
219 if (extflags & LK_SPIN) {
220 int interlocked;
221
222 SPINLOCK_SPINCHECK_DECL;
223
224 if (!drain) {
225 lkp->lk_waitcount++;
226 lkp->lk_flags |= LK_WAIT_NONZERO;
227 }
228 for (interlocked = 1;;) {
229 SPINLOCK_SPINCHECK;
230 if ((lkp->lk_flags & wanted) != 0) {
231 if (interlocked) {
232 INTERLOCK_RELEASE(lkp, LK_SPIN, *s);
233 interlocked = 0;
234 }
235 SPINLOCK_SPIN_HOOK;
236 } else if (interlocked) {
237 break;
238 } else {
239 INTERLOCK_ACQUIRE(lkp, LK_SPIN, *s);
240 interlocked = 1;
241 }
242 }
243 if (!drain) {
244 lkp->lk_waitcount--;
245 if (lkp->lk_waitcount == 0)
246 lkp->lk_flags &= ~LK_WAIT_NONZERO;
247 }
248 KASSERT((lkp->lk_flags & wanted) == 0);
249 error = 0; /* sanity */
250 } else {
251 for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
252 if (drain)
253 lkp->lk_flags |= LK_WAITDRAIN;
254 else {
255 lkp->lk_waitcount++;
256 lkp->lk_flags |= LK_WAIT_NONZERO;
257 }
258 /* XXX Cast away volatile. */
259 error = ltsleep(drain ?
260 (void *)&lkp->lk_flags :
261 (void *)lkp, lkp->lk_prio,
262 lkp->lk_wmesg, lkp->lk_timo, &lkp->lk_interlock);
263 if (!drain) {
264 lkp->lk_waitcount--;
265 if (lkp->lk_waitcount == 0)
266 lkp->lk_flags &= ~LK_WAIT_NONZERO;
267 }
268 if (error)
269 break;
270 if (extflags & LK_SLEEPFAIL) {
271 error = ENOLCK;
272 break;
273 }
274 }
275 }
276
277 return error;
278 }
279
280 #define SETHOLDER(lkp, pid, lid, cpu_id) \
281 do { \
282 if ((lkp)->lk_flags & LK_SPIN) \
283 (lkp)->lk_cpu = cpu_id; \
284 else { \
285 (lkp)->lk_lockholder = pid; \
286 (lkp)->lk_locklwp = lid; \
287 } \
288 } while (/*CONSTCOND*/0)
289
290 #define WEHOLDIT(lkp, pid, lid, cpu_id) \
291 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
292 ((lkp)->lk_cpu == (cpu_id)) : \
293 ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
294
295 #define WAKEUP_WAITER(lkp) \
296 do { \
297 if (((lkp)->lk_flags & (LK_SPIN | LK_WAIT_NONZERO)) == \
298 LK_WAIT_NONZERO) { \
299 /* XXX Cast away volatile. */ \
300 wakeup((void *)(lkp)); \
301 } \
302 } while (/*CONSTCOND*/0)
303
304 #if defined(LOCKDEBUG) /* { */
305 #if defined(MULTIPROCESSOR) /* { */
306 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
307
308 #define SPINLOCK_LIST_LOCK() \
309 __cpu_simple_lock(&spinlock_list_slock.lock_data)
310
311 #define SPINLOCK_LIST_UNLOCK() \
312 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
313 #else
314 #define SPINLOCK_LIST_LOCK() /* nothing */
315
316 #define SPINLOCK_LIST_UNLOCK() /* nothing */
317 #endif /* MULTIPROCESSOR */ /* } */
318
319 TAILQ_HEAD(, lock) spinlock_list =
320 TAILQ_HEAD_INITIALIZER(spinlock_list);
321
322 #define HAVEIT(lkp) \
323 do { \
324 if ((lkp)->lk_flags & LK_SPIN) { \
325 int s = spllock(); \
326 SPINLOCK_LIST_LOCK(); \
327 /* XXX Cast away volatile. */ \
328 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
329 lk_list); \
330 SPINLOCK_LIST_UNLOCK(); \
331 splx(s); \
332 } \
333 } while (/*CONSTCOND*/0)
334
335 #define DONTHAVEIT(lkp) \
336 do { \
337 if ((lkp)->lk_flags & LK_SPIN) { \
338 int s = spllock(); \
339 SPINLOCK_LIST_LOCK(); \
340 /* XXX Cast away volatile. */ \
341 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
342 lk_list); \
343 SPINLOCK_LIST_UNLOCK(); \
344 splx(s); \
345 } \
346 } while (/*CONSTCOND*/0)
347 #else
348 #define HAVEIT(lkp) /* nothing */
349
350 #define DONTHAVEIT(lkp) /* nothing */
351 #endif /* LOCKDEBUG */ /* } */
352
353 #if defined(LOCKDEBUG)
354 /*
355 * Lock debug printing routine; can be configured to print to console
356 * or log to syslog.
357 */
358 void
359 lock_printf(const char *fmt, ...)
360 {
361 char b[150];
362 va_list ap;
363
364 va_start(ap, fmt);
365 if (lock_debug_syslog)
366 vlog(LOG_DEBUG, fmt, ap);
367 else {
368 vsnprintf(b, sizeof(b), fmt, ap);
369 printf_nolog("%s", b);
370 }
371 va_end(ap);
372 }
373 #endif /* LOCKDEBUG */
374
375 /*
376 * Initialize a lock; required before use.
377 */
378 void
379 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
380 {
381
382 memset(lkp, 0, sizeof(struct lock));
383 simple_lock_init(&lkp->lk_interlock);
384 lkp->lk_flags = flags & LK_EXTFLG_MASK;
385 if (flags & LK_SPIN)
386 lkp->lk_cpu = LK_NOCPU;
387 else {
388 lkp->lk_lockholder = LK_NOPROC;
389 lkp->lk_prio = prio;
390 lkp->lk_timo = timo;
391 }
392 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
393 #if defined(LOCKDEBUG)
394 lkp->lk_lock_file = NULL;
395 lkp->lk_unlock_file = NULL;
396 #endif
397 }
398
399 /*
400 * Determine the status of a lock.
401 */
402 int
403 lockstatus(struct lock *lkp)
404 {
405 int s = 0; /* XXX: gcc */
406 int lock_type = 0;
407 struct lwp *l = curlwp; /* XXX */
408 pid_t pid;
409 lwpid_t lid;
410 cpuid_t cpu_id;
411
412 if ((lkp->lk_flags & LK_SPIN) || l == NULL) {
413 cpu_id = cpu_number();
414 pid = LK_KERNPROC;
415 lid = 0;
416 } else {
417 cpu_id = LK_NOCPU;
418 pid = l->l_proc->p_pid;
419 lid = l->l_lid;
420 }
421
422 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
423 if (lkp->lk_exclusivecount != 0) {
424 if (WEHOLDIT(lkp, pid, lid, cpu_id))
425 lock_type = LK_EXCLUSIVE;
426 else
427 lock_type = LK_EXCLOTHER;
428 } else if (lkp->lk_sharecount != 0)
429 lock_type = LK_SHARED;
430 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
431 return (lock_type);
432 }
433
434 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
435 /*
436 * Make sure no spin locks are held by a CPU that is about
437 * to context switch.
438 */
439 void
440 spinlock_switchcheck(void)
441 {
442 u_long cnt;
443 int s;
444
445 s = spllock();
446 #if defined(MULTIPROCESSOR)
447 cnt = curcpu()->ci_spin_locks;
448 #else
449 cnt = spin_locks;
450 #endif
451 splx(s);
452
453 if (cnt != 0)
454 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
455 (u_long) cpu_number(), cnt);
456 }
457 #endif /* LOCKDEBUG || DIAGNOSTIC */
458
459 /*
460 * Locks and IPLs (interrupt priority levels):
461 *
462 * Locks which may be taken from interrupt context must be handled
463 * very carefully; you must spl to the highest IPL where the lock
464 * is needed before acquiring the lock.
465 *
466 * It is also important to avoid deadlock, since certain (very high
467 * priority) interrupts are often needed to keep the system as a whole
468 * from deadlocking, and must not be blocked while you are spinning
469 * waiting for a lower-priority lock.
470 *
471 * In addition, the lock-debugging hooks themselves need to use locks!
472 *
473 * A raw __cpu_simple_lock may be used from interrupts are long as it
474 * is acquired and held at a single IPL.
475 *
476 * A simple_lock (which is a __cpu_simple_lock wrapped with some
477 * debugging hooks) may be used at or below spllock(), which is
478 * typically at or just below splhigh() (i.e. blocks everything
479 * but certain machine-dependent extremely high priority interrupts).
480 *
481 * spinlockmgr spinlocks should be used at or below splsched().
482 *
483 * Some platforms may have interrupts of higher priority than splsched(),
484 * including hard serial interrupts, inter-processor interrupts, and
485 * kernel debugger traps.
486 */
487
488 /*
489 * XXX XXX kludge around another kludge..
490 *
491 * vfs_shutdown() may be called from interrupt context, either as a result
492 * of a panic, or from the debugger. It proceeds to call
493 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
494 *
495 * We would like to make an attempt to sync the filesystems in this case, so
496 * if this happens, we treat attempts to acquire locks specially.
497 * All locks are acquired on behalf of proc0.
498 *
499 * If we've already paniced, we don't block waiting for locks, but
500 * just barge right ahead since we're already going down in flames.
501 */
502
503 /*
504 * Set, change, or release a lock.
505 *
506 * Shared requests increment the shared count. Exclusive requests set the
507 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
508 * accepted shared locks and shared-to-exclusive upgrades to go away.
509 */
510 int
511 #if defined(LOCKDEBUG)
512 _lockmgr(__volatile struct lock *lkp, u_int flags,
513 struct simplelock *interlkp, const char *file, int line)
514 #else
515 lockmgr(__volatile struct lock *lkp, u_int flags,
516 struct simplelock *interlkp)
517 #endif
518 {
519 int error;
520 pid_t pid;
521 lwpid_t lid;
522 int extflags;
523 cpuid_t cpu_id;
524 struct lwp *l = curlwp;
525 int lock_shutdown_noblock = 0;
526 int s = 0;
527
528 error = 0;
529
530 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
531 if (flags & LK_INTERLOCK)
532 simple_unlock(interlkp);
533 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
534
535 #ifdef DIAGNOSTIC /* { */
536 /*
537 * Don't allow spins on sleep locks and don't allow sleeps
538 * on spin locks.
539 */
540 if ((flags ^ lkp->lk_flags) & LK_SPIN)
541 panic("lockmgr: sleep/spin mismatch");
542 #endif /* } */
543
544 if (extflags & LK_SPIN) {
545 pid = LK_KERNPROC;
546 lid = 0;
547 } else {
548 if (l == NULL) {
549 if (!doing_shutdown) {
550 panic("lockmgr: no context");
551 } else {
552 l = &lwp0;
553 if (panicstr && (!(flags & LK_NOWAIT))) {
554 flags |= LK_NOWAIT;
555 lock_shutdown_noblock = 1;
556 }
557 }
558 }
559 lid = l->l_lid;
560 pid = l->l_proc->p_pid;
561 }
562 cpu_id = cpu_number();
563
564 /*
565 * Once a lock has drained, the LK_DRAINING flag is set and an
566 * exclusive lock is returned. The only valid operation thereafter
567 * is a single release of that exclusive lock. This final release
568 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
569 * further requests of any sort will result in a panic. The bits
570 * selected for these two flags are chosen so that they will be set
571 * in memory that is freed (freed memory is filled with 0xdeadbeef).
572 * The final release is permitted to give a new lease on life to
573 * the lock by specifying LK_REENABLE.
574 */
575 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
576 #ifdef DIAGNOSTIC /* { */
577 if (lkp->lk_flags & LK_DRAINED)
578 panic("lockmgr: using decommissioned lock");
579 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
580 WEHOLDIT(lkp, pid, lid, cpu_id) == 0)
581 panic("lockmgr: non-release on draining lock: %d",
582 flags & LK_TYPE_MASK);
583 #endif /* DIAGNOSTIC */ /* } */
584 lkp->lk_flags &= ~LK_DRAINING;
585 if ((flags & LK_REENABLE) == 0)
586 lkp->lk_flags |= LK_DRAINED;
587 }
588
589 switch (flags & LK_TYPE_MASK) {
590
591 case LK_SHARED:
592 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0) {
593 /*
594 * If just polling, check to see if we will block.
595 */
596 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
597 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
598 error = EBUSY;
599 break;
600 }
601 /*
602 * Wait for exclusive locks and upgrades to clear.
603 */
604 error = acquire(lkp, &s, extflags, 0,
605 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE);
606 if (error)
607 break;
608 lkp->lk_sharecount++;
609 lkp->lk_flags |= LK_SHARE_NONZERO;
610 COUNT(lkp, l, cpu_id, 1);
611 break;
612 }
613 /*
614 * We hold an exclusive lock, so downgrade it to shared.
615 * An alternative would be to fail with EDEADLK.
616 */
617 lkp->lk_sharecount++;
618 lkp->lk_flags |= LK_SHARE_NONZERO;
619 COUNT(lkp, l, cpu_id, 1);
620 /* fall into downgrade */
621
622 case LK_DOWNGRADE:
623 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0 ||
624 lkp->lk_exclusivecount == 0)
625 panic("lockmgr: not holding exclusive lock");
626 lkp->lk_sharecount += lkp->lk_exclusivecount;
627 lkp->lk_flags |= LK_SHARE_NONZERO;
628 lkp->lk_exclusivecount = 0;
629 lkp->lk_recurselevel = 0;
630 lkp->lk_flags &= ~LK_HAVE_EXCL;
631 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
632 #if defined(LOCKDEBUG)
633 lkp->lk_unlock_file = file;
634 lkp->lk_unlock_line = line;
635 #endif
636 DONTHAVEIT(lkp);
637 WAKEUP_WAITER(lkp);
638 break;
639
640 case LK_EXCLUPGRADE:
641 /*
642 * If another process is ahead of us to get an upgrade,
643 * then we want to fail rather than have an intervening
644 * exclusive access.
645 */
646 if (lkp->lk_flags & LK_WANT_UPGRADE) {
647 lkp->lk_sharecount--;
648 if (lkp->lk_sharecount == 0)
649 lkp->lk_flags &= ~LK_SHARE_NONZERO;
650 COUNT(lkp, l, cpu_id, -1);
651 error = EBUSY;
652 break;
653 }
654 /* fall into normal upgrade */
655
656 case LK_UPGRADE:
657 /*
658 * Upgrade a shared lock to an exclusive one. If another
659 * shared lock has already requested an upgrade to an
660 * exclusive lock, our shared lock is released and an
661 * exclusive lock is requested (which will be granted
662 * after the upgrade). If we return an error, the file
663 * will always be unlocked.
664 */
665 if (WEHOLDIT(lkp, pid, lid, cpu_id) || lkp->lk_sharecount <= 0)
666 panic("lockmgr: upgrade exclusive lock");
667 lkp->lk_sharecount--;
668 if (lkp->lk_sharecount == 0)
669 lkp->lk_flags &= ~LK_SHARE_NONZERO;
670 COUNT(lkp, l, cpu_id, -1);
671 /*
672 * If we are just polling, check to see if we will block.
673 */
674 if ((extflags & LK_NOWAIT) &&
675 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
676 lkp->lk_sharecount > 1)) {
677 error = EBUSY;
678 break;
679 }
680 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
681 /*
682 * We are first shared lock to request an upgrade, so
683 * request upgrade and wait for the shared count to
684 * drop to zero, then take exclusive lock.
685 */
686 lkp->lk_flags |= LK_WANT_UPGRADE;
687 error = acquire(lkp, &s, extflags, 0, LK_SHARE_NONZERO);
688 lkp->lk_flags &= ~LK_WANT_UPGRADE;
689 if (error)
690 break;
691 lkp->lk_flags |= LK_HAVE_EXCL;
692 SETHOLDER(lkp, pid, lid, cpu_id);
693 #if defined(LOCKDEBUG)
694 lkp->lk_lock_file = file;
695 lkp->lk_lock_line = line;
696 #endif
697 HAVEIT(lkp);
698 if (lkp->lk_exclusivecount != 0)
699 panic("lockmgr: non-zero exclusive count");
700 lkp->lk_exclusivecount = 1;
701 if (extflags & LK_SETRECURSE)
702 lkp->lk_recurselevel = 1;
703 COUNT(lkp, l, cpu_id, 1);
704 break;
705 }
706 /*
707 * Someone else has requested upgrade. Release our shared
708 * lock, awaken upgrade requestor if we are the last shared
709 * lock, then request an exclusive lock.
710 */
711 if (lkp->lk_sharecount == 0)
712 WAKEUP_WAITER(lkp);
713 /* fall into exclusive request */
714
715 case LK_EXCLUSIVE:
716 if (WEHOLDIT(lkp, pid, lid, cpu_id)) {
717 /*
718 * Recursive lock.
719 */
720 if ((extflags & LK_CANRECURSE) == 0 &&
721 lkp->lk_recurselevel == 0) {
722 if (extflags & LK_RECURSEFAIL) {
723 error = EDEADLK;
724 break;
725 } else
726 panic("lockmgr: locking against myself");
727 }
728 lkp->lk_exclusivecount++;
729 if (extflags & LK_SETRECURSE &&
730 lkp->lk_recurselevel == 0)
731 lkp->lk_recurselevel = lkp->lk_exclusivecount;
732 COUNT(lkp, l, cpu_id, 1);
733 break;
734 }
735 /*
736 * If we are just polling, check to see if we will sleep.
737 */
738 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
739 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
740 LK_SHARE_NONZERO))) {
741 error = EBUSY;
742 break;
743 }
744 /*
745 * Try to acquire the want_exclusive flag.
746 */
747 error = acquire(lkp, &s, extflags, 0,
748 LK_HAVE_EXCL | LK_WANT_EXCL);
749 if (error)
750 break;
751 lkp->lk_flags |= LK_WANT_EXCL;
752 /*
753 * Wait for shared locks and upgrades to finish.
754 */
755 error = acquire(lkp, &s, extflags, 0,
756 LK_WANT_UPGRADE | LK_SHARE_NONZERO);
757 lkp->lk_flags &= ~LK_WANT_EXCL;
758 if (error)
759 break;
760 lkp->lk_flags |= LK_HAVE_EXCL;
761 SETHOLDER(lkp, pid, lid, cpu_id);
762 #if defined(LOCKDEBUG)
763 lkp->lk_lock_file = file;
764 lkp->lk_lock_line = line;
765 #endif
766 HAVEIT(lkp);
767 if (lkp->lk_exclusivecount != 0)
768 panic("lockmgr: non-zero exclusive count");
769 lkp->lk_exclusivecount = 1;
770 if (extflags & LK_SETRECURSE)
771 lkp->lk_recurselevel = 1;
772 COUNT(lkp, l, cpu_id, 1);
773 break;
774
775 case LK_RELEASE:
776 if (lkp->lk_exclusivecount != 0) {
777 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0) {
778 if (lkp->lk_flags & LK_SPIN) {
779 panic("lockmgr: processor %lu, not "
780 "exclusive lock holder %lu "
781 "unlocking", cpu_id, lkp->lk_cpu);
782 } else {
783 panic("lockmgr: pid %d, not "
784 "exclusive lock holder %d "
785 "unlocking", pid,
786 lkp->lk_lockholder);
787 }
788 }
789 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
790 lkp->lk_recurselevel = 0;
791 lkp->lk_exclusivecount--;
792 COUNT(lkp, l, cpu_id, -1);
793 if (lkp->lk_exclusivecount == 0) {
794 lkp->lk_flags &= ~LK_HAVE_EXCL;
795 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
796 #if defined(LOCKDEBUG)
797 lkp->lk_unlock_file = file;
798 lkp->lk_unlock_line = line;
799 #endif
800 DONTHAVEIT(lkp);
801 }
802 } else if (lkp->lk_sharecount != 0) {
803 lkp->lk_sharecount--;
804 if (lkp->lk_sharecount == 0)
805 lkp->lk_flags &= ~LK_SHARE_NONZERO;
806 COUNT(lkp, l, cpu_id, -1);
807 }
808 #ifdef DIAGNOSTIC
809 else
810 panic("lockmgr: release of unlocked lock!");
811 #endif
812 WAKEUP_WAITER(lkp);
813 break;
814
815 case LK_DRAIN:
816 /*
817 * Check that we do not already hold the lock, as it can
818 * never drain if we do. Unfortunately, we have no way to
819 * check for holding a shared lock, but at least we can
820 * check for an exclusive one.
821 */
822 if (WEHOLDIT(lkp, pid, lid, cpu_id))
823 panic("lockmgr: draining against myself");
824 /*
825 * If we are just polling, check to see if we will sleep.
826 */
827 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
828 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
829 LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
830 error = EBUSY;
831 break;
832 }
833 error = acquire(lkp, &s, extflags, 1,
834 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
835 LK_SHARE_NONZERO | LK_WAIT_NONZERO);
836 if (error)
837 break;
838 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
839 SETHOLDER(lkp, pid, lid, cpu_id);
840 #if defined(LOCKDEBUG)
841 lkp->lk_lock_file = file;
842 lkp->lk_lock_line = line;
843 #endif
844 HAVEIT(lkp);
845 lkp->lk_exclusivecount = 1;
846 /* XXX unlikely that we'd want this */
847 if (extflags & LK_SETRECURSE)
848 lkp->lk_recurselevel = 1;
849 COUNT(lkp, l, cpu_id, 1);
850 break;
851
852 default:
853 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
854 panic("lockmgr: unknown locktype request %d",
855 flags & LK_TYPE_MASK);
856 /* NOTREACHED */
857 }
858 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
859 ((lkp->lk_flags &
860 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
861 LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
862 lkp->lk_flags &= ~LK_WAITDRAIN;
863 wakeup((void *)&lkp->lk_flags);
864 }
865 /*
866 * Note that this panic will be a recursive panic, since
867 * we only set lock_shutdown_noblock above if panicstr != NULL.
868 */
869 if (error && lock_shutdown_noblock)
870 panic("lockmgr: deadlock (see previous panic)");
871
872 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
873 return (error);
874 }
875
876 /*
877 * For a recursive spinlock held one or more times by the current CPU,
878 * release all N locks, and return N.
879 * Intended for use in mi_switch() shortly before context switching.
880 */
881
882 int
883 #if defined(LOCKDEBUG)
884 _spinlock_release_all(__volatile struct lock *lkp, const char *file, int line)
885 #else
886 spinlock_release_all(__volatile struct lock *lkp)
887 #endif
888 {
889 int s, count;
890 cpuid_t cpu_id;
891
892 KASSERT(lkp->lk_flags & LK_SPIN);
893
894 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
895
896 cpu_id = cpu_number();
897 count = lkp->lk_exclusivecount;
898
899 if (count != 0) {
900 #ifdef DIAGNOSTIC
901 if (WEHOLDIT(lkp, 0, 0, cpu_id) == 0) {
902 panic("spinlock_release_all: processor %lu, not "
903 "exclusive lock holder %lu "
904 "unlocking", (long)cpu_id, lkp->lk_cpu);
905 }
906 #endif
907 lkp->lk_recurselevel = 0;
908 lkp->lk_exclusivecount = 0;
909 COUNT_CPU(cpu_id, -count);
910 lkp->lk_flags &= ~LK_HAVE_EXCL;
911 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
912 #if defined(LOCKDEBUG)
913 lkp->lk_unlock_file = file;
914 lkp->lk_unlock_line = line;
915 #endif
916 DONTHAVEIT(lkp);
917 }
918 #ifdef DIAGNOSTIC
919 else if (lkp->lk_sharecount != 0)
920 panic("spinlock_release_all: release of shared lock!");
921 else
922 panic("spinlock_release_all: release of unlocked lock!");
923 #endif
924 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
925
926 return (count);
927 }
928
929 /*
930 * For a recursive spinlock held one or more times by the current CPU,
931 * release all N locks, and return N.
932 * Intended for use in mi_switch() right after resuming execution.
933 */
934
935 void
936 #if defined(LOCKDEBUG)
937 _spinlock_acquire_count(__volatile struct lock *lkp, int count,
938 const char *file, int line)
939 #else
940 spinlock_acquire_count(__volatile struct lock *lkp, int count)
941 #endif
942 {
943 int s, error;
944 cpuid_t cpu_id;
945
946 KASSERT(lkp->lk_flags & LK_SPIN);
947
948 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
949
950 cpu_id = cpu_number();
951
952 #ifdef DIAGNOSTIC
953 if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_id))
954 panic("spinlock_acquire_count: processor %lu already holds lock", (long)cpu_id);
955 #endif
956 /*
957 * Try to acquire the want_exclusive flag.
958 */
959 error = acquire(lkp, &s, LK_SPIN, 0, LK_HAVE_EXCL | LK_WANT_EXCL);
960 lkp->lk_flags |= LK_WANT_EXCL;
961 /*
962 * Wait for shared locks and upgrades to finish.
963 */
964 error = acquire(lkp, &s, LK_SPIN, 0,
965 LK_SHARE_NONZERO | LK_WANT_UPGRADE);
966 lkp->lk_flags &= ~LK_WANT_EXCL;
967 lkp->lk_flags |= LK_HAVE_EXCL;
968 SETHOLDER(lkp, LK_NOPROC, 0, cpu_id);
969 #if defined(LOCKDEBUG)
970 lkp->lk_lock_file = file;
971 lkp->lk_lock_line = line;
972 #endif
973 HAVEIT(lkp);
974 if (lkp->lk_exclusivecount != 0)
975 panic("lockmgr: non-zero exclusive count");
976 lkp->lk_exclusivecount = count;
977 lkp->lk_recurselevel = 1;
978 COUNT_CPU(cpu_id, count);
979
980 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
981 }
982
983
984
985 /*
986 * Print out information about state of a lock. Used by VOP_PRINT
987 * routines to display ststus about contained locks.
988 */
989 void
990 lockmgr_printinfo(__volatile struct lock *lkp)
991 {
992
993 if (lkp->lk_sharecount)
994 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
995 lkp->lk_sharecount);
996 else if (lkp->lk_flags & LK_HAVE_EXCL) {
997 printf(" lock type %s: EXCL (count %d) by ",
998 lkp->lk_wmesg, lkp->lk_exclusivecount);
999 if (lkp->lk_flags & LK_SPIN)
1000 printf("processor %lu", lkp->lk_cpu);
1001 else
1002 printf("pid %d.%d", lkp->lk_lockholder,
1003 lkp->lk_locklwp);
1004 } else
1005 printf(" not locked");
1006 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
1007 printf(" with %d pending", lkp->lk_waitcount);
1008 }
1009
1010 #if defined(LOCKDEBUG) /* { */
1011 TAILQ_HEAD(, simplelock) simplelock_list =
1012 TAILQ_HEAD_INITIALIZER(simplelock_list);
1013
1014 #if defined(MULTIPROCESSOR) /* { */
1015 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
1016
1017 #define SLOCK_LIST_LOCK() \
1018 __cpu_simple_lock(&simplelock_list_slock.lock_data)
1019
1020 #define SLOCK_LIST_UNLOCK() \
1021 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
1022
1023 #define SLOCK_COUNT(x) \
1024 curcpu()->ci_simple_locks += (x)
1025 #else
1026 u_long simple_locks;
1027
1028 #define SLOCK_LIST_LOCK() /* nothing */
1029
1030 #define SLOCK_LIST_UNLOCK() /* nothing */
1031
1032 #define SLOCK_COUNT(x) simple_locks += (x)
1033 #endif /* MULTIPROCESSOR */ /* } */
1034
1035 #ifdef MULTIPROCESSOR
1036 #define SLOCK_MP() lock_printf("on CPU %ld\n", \
1037 (u_long) cpu_number())
1038 #else
1039 #define SLOCK_MP() /* nothing */
1040 #endif
1041
1042 #define SLOCK_WHERE(str, alp, id, l) \
1043 do { \
1044 lock_printf("\n"); \
1045 lock_printf(str); \
1046 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
1047 SLOCK_MP(); \
1048 if ((alp)->lock_file != NULL) \
1049 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
1050 (alp)->lock_line); \
1051 if ((alp)->unlock_file != NULL) \
1052 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1053 (alp)->unlock_line); \
1054 SLOCK_TRACE() \
1055 SLOCK_DEBUGGER(); \
1056 } while (/*CONSTCOND*/0)
1057
1058 /*
1059 * Simple lock functions so that the debugger can see from whence
1060 * they are being called.
1061 */
1062 void
1063 simple_lock_init(struct simplelock *alp)
1064 {
1065
1066 #if defined(MULTIPROCESSOR) /* { */
1067 __cpu_simple_lock_init(&alp->lock_data);
1068 #else
1069 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1070 #endif /* } */
1071 alp->lock_file = NULL;
1072 alp->lock_line = 0;
1073 alp->unlock_file = NULL;
1074 alp->unlock_line = 0;
1075 alp->lock_holder = LK_NOCPU;
1076 }
1077
1078 void
1079 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
1080 {
1081 cpuid_t cpu_id = cpu_number();
1082 int s;
1083
1084 s = spllock();
1085
1086 /*
1087 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1088 * don't take any action, and just fall into the normal spin case.
1089 */
1090 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1091 #if defined(MULTIPROCESSOR) /* { */
1092 if (alp->lock_holder == cpu_id) {
1093 SLOCK_WHERE("simple_lock: locking against myself\n",
1094 alp, id, l);
1095 goto out;
1096 }
1097 #else
1098 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1099 goto out;
1100 #endif /* MULTIPROCESSOR */ /* } */
1101 }
1102
1103 #if defined(MULTIPROCESSOR) /* { */
1104 /* Acquire the lock before modifying any fields. */
1105 splx(s);
1106 __cpu_simple_lock(&alp->lock_data);
1107 s = spllock();
1108 #else
1109 alp->lock_data = __SIMPLELOCK_LOCKED;
1110 #endif /* } */
1111
1112 if (alp->lock_holder != LK_NOCPU) {
1113 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1114 alp, id, l);
1115 }
1116 alp->lock_file = id;
1117 alp->lock_line = l;
1118 alp->lock_holder = cpu_id;
1119
1120 SLOCK_LIST_LOCK();
1121 /* XXX Cast away volatile */
1122 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1123 SLOCK_LIST_UNLOCK();
1124
1125 SLOCK_COUNT(1);
1126
1127 out:
1128 splx(s);
1129 }
1130
1131 int
1132 _simple_lock_held(__volatile struct simplelock *alp)
1133 {
1134 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1135 cpuid_t cpu_id = cpu_number();
1136 #endif
1137 int s, locked = 0;
1138
1139 s = spllock();
1140
1141 #if defined(MULTIPROCESSOR)
1142 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1143 locked = (alp->lock_holder == cpu_id);
1144 else
1145 __cpu_simple_unlock(&alp->lock_data);
1146 #else
1147 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1148 locked = 1;
1149 KASSERT(alp->lock_holder == cpu_id);
1150 }
1151 #endif
1152
1153 splx(s);
1154
1155 return (locked);
1156 }
1157
1158 int
1159 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
1160 {
1161 cpuid_t cpu_id = cpu_number();
1162 int s, rv = 0;
1163
1164 s = spllock();
1165
1166 /*
1167 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1168 * don't take any action.
1169 */
1170 #if defined(MULTIPROCESSOR) /* { */
1171 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1172 if (alp->lock_holder == cpu_id)
1173 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1174 alp, id, l);
1175 goto out;
1176 }
1177 #else
1178 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1179 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1180 goto out;
1181 }
1182 alp->lock_data = __SIMPLELOCK_LOCKED;
1183 #endif /* MULTIPROCESSOR */ /* } */
1184
1185 /*
1186 * At this point, we have acquired the lock.
1187 */
1188
1189 rv = 1;
1190
1191 alp->lock_file = id;
1192 alp->lock_line = l;
1193 alp->lock_holder = cpu_id;
1194
1195 SLOCK_LIST_LOCK();
1196 /* XXX Cast away volatile. */
1197 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1198 SLOCK_LIST_UNLOCK();
1199
1200 SLOCK_COUNT(1);
1201
1202 out:
1203 splx(s);
1204 return (rv);
1205 }
1206
1207 void
1208 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
1209 {
1210 int s;
1211
1212 s = spllock();
1213
1214 /*
1215 * MULTIPROCESSOR case: This is `safe' because we think we hold
1216 * the lock, and if we don't, we don't take any action.
1217 */
1218 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1219 SLOCK_WHERE("simple_unlock: lock not held\n",
1220 alp, id, l);
1221 goto out;
1222 }
1223
1224 SLOCK_LIST_LOCK();
1225 TAILQ_REMOVE(&simplelock_list, alp, list);
1226 SLOCK_LIST_UNLOCK();
1227
1228 SLOCK_COUNT(-1);
1229
1230 alp->list.tqe_next = NULL; /* sanity */
1231 alp->list.tqe_prev = NULL; /* sanity */
1232
1233 alp->unlock_file = id;
1234 alp->unlock_line = l;
1235
1236 #if defined(MULTIPROCESSOR) /* { */
1237 alp->lock_holder = LK_NOCPU;
1238 /* Now that we've modified all fields, release the lock. */
1239 __cpu_simple_unlock(&alp->lock_data);
1240 #else
1241 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1242 KASSERT(alp->lock_holder == cpu_number());
1243 alp->lock_holder = LK_NOCPU;
1244 #endif /* } */
1245
1246 out:
1247 splx(s);
1248 }
1249
1250 void
1251 simple_lock_dump(void)
1252 {
1253 struct simplelock *alp;
1254 int s;
1255
1256 s = spllock();
1257 SLOCK_LIST_LOCK();
1258 lock_printf("all simple locks:\n");
1259 TAILQ_FOREACH(alp, &simplelock_list, list) {
1260 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1261 alp->lock_file, alp->lock_line);
1262 }
1263 SLOCK_LIST_UNLOCK();
1264 splx(s);
1265 }
1266
1267 void
1268 simple_lock_freecheck(void *start, void *end)
1269 {
1270 struct simplelock *alp;
1271 int s;
1272
1273 s = spllock();
1274 SLOCK_LIST_LOCK();
1275 TAILQ_FOREACH(alp, &simplelock_list, list) {
1276 if ((void *)alp >= start && (void *)alp < end) {
1277 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1278 alp, alp->lock_holder, alp->lock_file,
1279 alp->lock_line);
1280 SLOCK_DEBUGGER();
1281 }
1282 }
1283 SLOCK_LIST_UNLOCK();
1284 splx(s);
1285 }
1286
1287 /*
1288 * We must be holding exactly one lock: the sched_lock.
1289 */
1290
1291 void
1292 simple_lock_switchcheck(void)
1293 {
1294
1295 simple_lock_only_held(&sched_lock, "switching");
1296 }
1297
1298 void
1299 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1300 {
1301 struct simplelock *alp;
1302 cpuid_t cpu_id = cpu_number();
1303 int s;
1304
1305 if (lp) {
1306 LOCK_ASSERT(simple_lock_held(lp));
1307 }
1308 s = spllock();
1309 SLOCK_LIST_LOCK();
1310 TAILQ_FOREACH(alp, &simplelock_list, list) {
1311 if (alp == lp)
1312 continue;
1313 if (alp->lock_holder == cpu_id)
1314 break;
1315 }
1316 SLOCK_LIST_UNLOCK();
1317 splx(s);
1318
1319 if (alp != NULL) {
1320 lock_printf("\n%s with held simple_lock %p "
1321 "CPU %lu %s:%d\n",
1322 where, alp, alp->lock_holder, alp->lock_file,
1323 alp->lock_line);
1324 SLOCK_TRACE();
1325 SLOCK_DEBUGGER();
1326 }
1327 }
1328 #endif /* LOCKDEBUG */ /* } */
1329
1330 #if defined(MULTIPROCESSOR)
1331 /*
1332 * Functions for manipulating the kernel_lock. We put them here
1333 * so that they show up in profiles.
1334 */
1335
1336 struct lock kernel_lock;
1337
1338 void
1339 _kernel_lock_init(void)
1340 {
1341
1342 spinlockinit(&kernel_lock, "klock", 0);
1343 }
1344
1345 /*
1346 * Acquire/release the kernel lock. Intended for use in the scheduler
1347 * and the lower half of the kernel.
1348 */
1349 void
1350 _kernel_lock(int flag)
1351 {
1352
1353 SCHED_ASSERT_UNLOCKED();
1354 spinlockmgr(&kernel_lock, flag, 0);
1355 }
1356
1357 void
1358 _kernel_unlock(void)
1359 {
1360
1361 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1362 }
1363
1364 /*
1365 * Acquire/release the kernel_lock on behalf of a process. Intended for
1366 * use in the top half of the kernel.
1367 */
1368 void
1369 _kernel_proc_lock(struct lwp *l)
1370 {
1371
1372 SCHED_ASSERT_UNLOCKED();
1373 spinlockmgr(&kernel_lock, LK_EXCLUSIVE, 0);
1374 }
1375
1376 void
1377 _kernel_proc_unlock(struct lwp *l)
1378 {
1379
1380 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1381 }
1382
1383 int
1384 _kernel_lock_release_all()
1385 {
1386 int hold_count;
1387
1388 if (lockstatus(&kernel_lock) == LK_EXCLUSIVE)
1389 hold_count = spinlock_release_all(&kernel_lock);
1390 else
1391 hold_count = 0;
1392
1393 return hold_count;
1394 }
1395
1396 void
1397 _kernel_lock_acquire_count(int hold_count)
1398 {
1399
1400 if (hold_count != 0)
1401 spinlock_acquire_count(&kernel_lock, hold_count);
1402 }
1403 #endif /* MULTIPROCESSOR */
1404