kern_lock.c revision 1.78 1 /* $NetBSD: kern_lock.c,v 1.78 2004/05/25 14:54:57 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.78 2004/05/25 14:54:57 hannken Exp $");
80
81 #include "opt_multiprocessor.h"
82 #include "opt_lockdebug.h"
83 #include "opt_ddb.h"
84
85 #include <sys/param.h>
86 #include <sys/proc.h>
87 #include <sys/lock.h>
88 #include <sys/systm.h>
89 #include <machine/cpu.h>
90
91 #if defined(LOCKDEBUG)
92 #include <sys/syslog.h>
93 /*
94 * note that stdarg.h and the ansi style va_start macro is used for both
95 * ansi and traditional c compiles.
96 * XXX: this requires that stdarg.h define: va_alist and va_dcl
97 */
98 #include <machine/stdarg.h>
99
100 void lock_printf(const char *fmt, ...)
101 __attribute__((__format__(__printf__,1,2)));
102
103 static int acquire(__volatile struct lock **, int *, int, int, int);
104
105 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
106
107 #ifdef DDB
108 #include <ddb/ddbvar.h>
109 #include <machine/db_machdep.h>
110 #include <ddb/db_command.h>
111 #include <ddb/db_interface.h>
112 #endif
113 #endif
114
115 /*
116 * Locking primitives implementation.
117 * Locks provide shared/exclusive synchronization.
118 */
119
120 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
121 #if defined(MULTIPROCESSOR) /* { */
122 #define COUNT_CPU(cpu_id, x) \
123 curcpu()->ci_spin_locks += (x)
124 #else
125 u_long spin_locks;
126 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
127 #endif /* MULTIPROCESSOR */ /* } */
128
129 #define COUNT(lkp, l, cpu_id, x) \
130 do { \
131 if ((lkp)->lk_flags & LK_SPIN) \
132 COUNT_CPU((cpu_id), (x)); \
133 else \
134 (l)->l_locks += (x); \
135 } while (/*CONSTCOND*/0)
136 #else
137 #define COUNT(lkp, p, cpu_id, x)
138 #define COUNT_CPU(cpu_id, x)
139 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
140
141 #ifndef SPINLOCK_SPIN_HOOK /* from <machine/lock.h> */
142 #define SPINLOCK_SPIN_HOOK /* nothing */
143 #endif
144
145 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
146 do { \
147 if ((flags) & LK_SPIN) \
148 s = spllock(); \
149 simple_lock(&(lkp)->lk_interlock); \
150 } while (/*CONSTCOND*/ 0)
151
152 #define INTERLOCK_RELEASE(lkp, flags, s) \
153 do { \
154 simple_unlock(&(lkp)->lk_interlock); \
155 if ((flags) & LK_SPIN) \
156 splx(s); \
157 } while (/*CONSTCOND*/ 0)
158
159 #ifdef DDB /* { */
160 #ifdef MULTIPROCESSOR
161 int simple_lock_debugger = 1; /* more serious on MP */
162 #else
163 int simple_lock_debugger = 0;
164 #endif
165 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
166 #define SLOCK_TRACE() \
167 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
168 TRUE, 65535, "", lock_printf);
169 #else
170 #define SLOCK_DEBUGGER() /* nothing */
171 #define SLOCK_TRACE() /* nothing */
172 #endif /* } */
173
174 #if defined(LOCKDEBUG)
175 #if defined(DDB)
176 #define SPINLOCK_SPINCHECK_DEBUGGER Debugger()
177 #else
178 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
179 #endif
180
181 #define SPINLOCK_SPINCHECK_DECL \
182 /* 32-bits of count -- wrap constitutes a "spinout" */ \
183 uint32_t __spinc = 0
184
185 #define SPINLOCK_SPINCHECK \
186 do { \
187 if (++__spinc == 0) { \
188 lock_printf("LK_SPIN spinout, excl %d, share %d\n", \
189 lkp->lk_exclusivecount, lkp->lk_sharecount); \
190 if (lkp->lk_exclusivecount) \
191 lock_printf("held by CPU %lu\n", \
192 (u_long) lkp->lk_cpu); \
193 if (lkp->lk_lock_file) \
194 lock_printf("last locked at %s:%d\n", \
195 lkp->lk_lock_file, lkp->lk_lock_line); \
196 if (lkp->lk_unlock_file) \
197 lock_printf("last unlocked at %s:%d\n", \
198 lkp->lk_unlock_file, lkp->lk_unlock_line); \
199 SLOCK_TRACE(); \
200 SPINLOCK_SPINCHECK_DEBUGGER; \
201 } \
202 } while (/*CONSTCOND*/ 0)
203 #else
204 #define SPINLOCK_SPINCHECK_DECL /* nothing */
205 #define SPINLOCK_SPINCHECK /* nothing */
206 #endif /* LOCKDEBUG && DDB */
207
208 /*
209 * Acquire a resource.
210 */
211 static int
212 acquire(__volatile struct lock **lkpp, int *s, int extflags,
213 int drain, int wanted)
214 {
215 int error;
216 __volatile struct lock *lkp = *lkpp;
217
218 KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
219
220 if (extflags & LK_SPIN) {
221 int interlocked;
222
223 SPINLOCK_SPINCHECK_DECL;
224
225 if (!drain) {
226 lkp->lk_waitcount++;
227 lkp->lk_flags |= LK_WAIT_NONZERO;
228 }
229 for (interlocked = 1;;) {
230 SPINLOCK_SPINCHECK;
231 if ((lkp->lk_flags & wanted) != 0) {
232 if (interlocked) {
233 INTERLOCK_RELEASE(lkp, LK_SPIN, *s);
234 interlocked = 0;
235 }
236 SPINLOCK_SPIN_HOOK;
237 } else if (interlocked) {
238 break;
239 } else {
240 INTERLOCK_ACQUIRE(lkp, LK_SPIN, *s);
241 interlocked = 1;
242 }
243 }
244 if (!drain) {
245 lkp->lk_waitcount--;
246 if (lkp->lk_waitcount == 0)
247 lkp->lk_flags &= ~LK_WAIT_NONZERO;
248 }
249 KASSERT((lkp->lk_flags & wanted) == 0);
250 error = 0; /* sanity */
251 } else {
252 for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
253 if (drain)
254 lkp->lk_flags |= LK_WAITDRAIN;
255 else {
256 lkp->lk_waitcount++;
257 lkp->lk_flags |= LK_WAIT_NONZERO;
258 }
259 /* XXX Cast away volatile. */
260 error = ltsleep(drain ?
261 (void *)&lkp->lk_flags :
262 (void *)lkp, lkp->lk_prio,
263 lkp->lk_wmesg, lkp->lk_timo, &lkp->lk_interlock);
264 if (!drain) {
265 lkp->lk_waitcount--;
266 if (lkp->lk_waitcount == 0)
267 lkp->lk_flags &= ~LK_WAIT_NONZERO;
268 }
269 if (error)
270 break;
271 if (extflags & LK_SLEEPFAIL) {
272 error = ENOLCK;
273 break;
274 }
275 if (lkp->lk_newlock != NULL) {
276 simple_lock(&lkp->lk_newlock->lk_interlock);
277 simple_unlock(&lkp->lk_interlock);
278 if (lkp->lk_waitcount == 0)
279 wakeup((void *)&lkp->lk_newlock);
280 *lkpp = lkp = lkp->lk_newlock;
281 }
282 }
283 }
284
285 return error;
286 }
287
288 #define SETHOLDER(lkp, pid, lid, cpu_id) \
289 do { \
290 if ((lkp)->lk_flags & LK_SPIN) \
291 (lkp)->lk_cpu = cpu_id; \
292 else { \
293 (lkp)->lk_lockholder = pid; \
294 (lkp)->lk_locklwp = lid; \
295 } \
296 } while (/*CONSTCOND*/0)
297
298 #define WEHOLDIT(lkp, pid, lid, cpu_id) \
299 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
300 ((lkp)->lk_cpu == (cpu_id)) : \
301 ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
302
303 #define WAKEUP_WAITER(lkp) \
304 do { \
305 if (((lkp)->lk_flags & (LK_SPIN | LK_WAIT_NONZERO)) == \
306 LK_WAIT_NONZERO) { \
307 /* XXX Cast away volatile. */ \
308 wakeup((void *)(lkp)); \
309 } \
310 } while (/*CONSTCOND*/0)
311
312 #if defined(LOCKDEBUG) /* { */
313 #if defined(MULTIPROCESSOR) /* { */
314 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
315
316 #define SPINLOCK_LIST_LOCK() \
317 __cpu_simple_lock(&spinlock_list_slock.lock_data)
318
319 #define SPINLOCK_LIST_UNLOCK() \
320 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
321 #else
322 #define SPINLOCK_LIST_LOCK() /* nothing */
323
324 #define SPINLOCK_LIST_UNLOCK() /* nothing */
325 #endif /* MULTIPROCESSOR */ /* } */
326
327 TAILQ_HEAD(, lock) spinlock_list =
328 TAILQ_HEAD_INITIALIZER(spinlock_list);
329
330 #define HAVEIT(lkp) \
331 do { \
332 if ((lkp)->lk_flags & LK_SPIN) { \
333 int s = spllock(); \
334 SPINLOCK_LIST_LOCK(); \
335 /* XXX Cast away volatile. */ \
336 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
337 lk_list); \
338 SPINLOCK_LIST_UNLOCK(); \
339 splx(s); \
340 } \
341 } while (/*CONSTCOND*/0)
342
343 #define DONTHAVEIT(lkp) \
344 do { \
345 if ((lkp)->lk_flags & LK_SPIN) { \
346 int s = spllock(); \
347 SPINLOCK_LIST_LOCK(); \
348 /* XXX Cast away volatile. */ \
349 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
350 lk_list); \
351 SPINLOCK_LIST_UNLOCK(); \
352 splx(s); \
353 } \
354 } while (/*CONSTCOND*/0)
355 #else
356 #define HAVEIT(lkp) /* nothing */
357
358 #define DONTHAVEIT(lkp) /* nothing */
359 #endif /* LOCKDEBUG */ /* } */
360
361 #if defined(LOCKDEBUG)
362 /*
363 * Lock debug printing routine; can be configured to print to console
364 * or log to syslog.
365 */
366 void
367 lock_printf(const char *fmt, ...)
368 {
369 char b[150];
370 va_list ap;
371
372 va_start(ap, fmt);
373 if (lock_debug_syslog)
374 vlog(LOG_DEBUG, fmt, ap);
375 else {
376 vsnprintf(b, sizeof(b), fmt, ap);
377 printf_nolog("%s", b);
378 }
379 va_end(ap);
380 }
381 #endif /* LOCKDEBUG */
382
383 /*
384 * Transfer any waiting processes from one lock to another.
385 */
386 void
387 transferlockers(struct lock *from, struct lock *to)
388 {
389
390 KASSERT(from != to);
391 KASSERT((from->lk_flags & LK_WAITDRAIN) == 0);
392 if (from->lk_waitcount == 0)
393 return;
394 from->lk_newlock = to;
395 wakeup((void *)from);
396 tsleep((void *)&from->lk_newlock, from->lk_prio, "lkxfer", 0);
397 from->lk_newlock = NULL;
398 from->lk_flags &= ~(LK_WANT_EXCL | LK_WANT_UPGRADE);
399 KASSERT(from->lk_waitcount == 0);
400 }
401
402
403 /*
404 * Initialize a lock; required before use.
405 */
406 void
407 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
408 {
409
410 memset(lkp, 0, sizeof(struct lock));
411 simple_lock_init(&lkp->lk_interlock);
412 lkp->lk_flags = flags & LK_EXTFLG_MASK;
413 if (flags & LK_SPIN)
414 lkp->lk_cpu = LK_NOCPU;
415 else {
416 lkp->lk_lockholder = LK_NOPROC;
417 lkp->lk_newlock = NULL;
418 lkp->lk_prio = prio;
419 lkp->lk_timo = timo;
420 }
421 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
422 #if defined(LOCKDEBUG)
423 lkp->lk_lock_file = NULL;
424 lkp->lk_unlock_file = NULL;
425 #endif
426 }
427
428 /*
429 * Determine the status of a lock.
430 */
431 int
432 lockstatus(struct lock *lkp)
433 {
434 int s = 0; /* XXX: gcc */
435 int lock_type = 0;
436 struct lwp *l = curlwp; /* XXX */
437 pid_t pid;
438 lwpid_t lid;
439 cpuid_t cpu_id;
440
441 if ((lkp->lk_flags & LK_SPIN) || l == NULL) {
442 cpu_id = cpu_number();
443 pid = LK_KERNPROC;
444 lid = 0;
445 } else {
446 cpu_id = LK_NOCPU;
447 pid = l->l_proc->p_pid;
448 lid = l->l_lid;
449 }
450
451 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
452 if (lkp->lk_exclusivecount != 0) {
453 if (WEHOLDIT(lkp, pid, lid, cpu_id))
454 lock_type = LK_EXCLUSIVE;
455 else
456 lock_type = LK_EXCLOTHER;
457 } else if (lkp->lk_sharecount != 0)
458 lock_type = LK_SHARED;
459 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
460 return (lock_type);
461 }
462
463 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
464 /*
465 * Make sure no spin locks are held by a CPU that is about
466 * to context switch.
467 */
468 void
469 spinlock_switchcheck(void)
470 {
471 u_long cnt;
472 int s;
473
474 s = spllock();
475 #if defined(MULTIPROCESSOR)
476 cnt = curcpu()->ci_spin_locks;
477 #else
478 cnt = spin_locks;
479 #endif
480 splx(s);
481
482 if (cnt != 0)
483 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
484 (u_long) cpu_number(), cnt);
485 }
486 #endif /* LOCKDEBUG || DIAGNOSTIC */
487
488 /*
489 * Locks and IPLs (interrupt priority levels):
490 *
491 * Locks which may be taken from interrupt context must be handled
492 * very carefully; you must spl to the highest IPL where the lock
493 * is needed before acquiring the lock.
494 *
495 * It is also important to avoid deadlock, since certain (very high
496 * priority) interrupts are often needed to keep the system as a whole
497 * from deadlocking, and must not be blocked while you are spinning
498 * waiting for a lower-priority lock.
499 *
500 * In addition, the lock-debugging hooks themselves need to use locks!
501 *
502 * A raw __cpu_simple_lock may be used from interrupts are long as it
503 * is acquired and held at a single IPL.
504 *
505 * A simple_lock (which is a __cpu_simple_lock wrapped with some
506 * debugging hooks) may be used at or below spllock(), which is
507 * typically at or just below splhigh() (i.e. blocks everything
508 * but certain machine-dependent extremely high priority interrupts).
509 *
510 * spinlockmgr spinlocks should be used at or below splsched().
511 *
512 * Some platforms may have interrupts of higher priority than splsched(),
513 * including hard serial interrupts, inter-processor interrupts, and
514 * kernel debugger traps.
515 */
516
517 /*
518 * XXX XXX kludge around another kludge..
519 *
520 * vfs_shutdown() may be called from interrupt context, either as a result
521 * of a panic, or from the debugger. It proceeds to call
522 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
523 *
524 * We would like to make an attempt to sync the filesystems in this case, so
525 * if this happens, we treat attempts to acquire locks specially.
526 * All locks are acquired on behalf of proc0.
527 *
528 * If we've already paniced, we don't block waiting for locks, but
529 * just barge right ahead since we're already going down in flames.
530 */
531
532 /*
533 * Set, change, or release a lock.
534 *
535 * Shared requests increment the shared count. Exclusive requests set the
536 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
537 * accepted shared locks and shared-to-exclusive upgrades to go away.
538 */
539 int
540 #if defined(LOCKDEBUG)
541 _lockmgr(__volatile struct lock *lkp, u_int flags,
542 struct simplelock *interlkp, const char *file, int line)
543 #else
544 lockmgr(__volatile struct lock *lkp, u_int flags,
545 struct simplelock *interlkp)
546 #endif
547 {
548 int error;
549 pid_t pid;
550 lwpid_t lid;
551 int extflags;
552 cpuid_t cpu_id;
553 struct lwp *l = curlwp;
554 int lock_shutdown_noblock = 0;
555 int s = 0;
556
557 error = 0;
558
559 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
560 if (flags & LK_INTERLOCK)
561 simple_unlock(interlkp);
562 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
563
564 #ifdef DIAGNOSTIC /* { */
565 /*
566 * Don't allow spins on sleep locks and don't allow sleeps
567 * on spin locks.
568 */
569 if ((flags ^ lkp->lk_flags) & LK_SPIN)
570 panic("lockmgr: sleep/spin mismatch");
571 #endif /* } */
572
573 if (extflags & LK_SPIN) {
574 pid = LK_KERNPROC;
575 lid = 0;
576 } else {
577 if (l == NULL) {
578 if (!doing_shutdown) {
579 panic("lockmgr: no context");
580 } else {
581 l = &lwp0;
582 if (panicstr && (!(flags & LK_NOWAIT))) {
583 flags |= LK_NOWAIT;
584 lock_shutdown_noblock = 1;
585 }
586 }
587 }
588 lid = l->l_lid;
589 pid = l->l_proc->p_pid;
590 }
591 cpu_id = cpu_number();
592
593 /*
594 * Once a lock has drained, the LK_DRAINING flag is set and an
595 * exclusive lock is returned. The only valid operation thereafter
596 * is a single release of that exclusive lock. This final release
597 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
598 * further requests of any sort will result in a panic. The bits
599 * selected for these two flags are chosen so that they will be set
600 * in memory that is freed (freed memory is filled with 0xdeadbeef).
601 * The final release is permitted to give a new lease on life to
602 * the lock by specifying LK_REENABLE.
603 */
604 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
605 #ifdef DIAGNOSTIC /* { */
606 if (lkp->lk_flags & LK_DRAINED)
607 panic("lockmgr: using decommissioned lock");
608 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
609 WEHOLDIT(lkp, pid, lid, cpu_id) == 0)
610 panic("lockmgr: non-release on draining lock: %d",
611 flags & LK_TYPE_MASK);
612 #endif /* DIAGNOSTIC */ /* } */
613 lkp->lk_flags &= ~LK_DRAINING;
614 if ((flags & LK_REENABLE) == 0)
615 lkp->lk_flags |= LK_DRAINED;
616 }
617
618 switch (flags & LK_TYPE_MASK) {
619
620 case LK_SHARED:
621 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0) {
622 /*
623 * If just polling, check to see if we will block.
624 */
625 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
626 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
627 error = EBUSY;
628 break;
629 }
630 /*
631 * Wait for exclusive locks and upgrades to clear.
632 */
633 error = acquire(&lkp, &s, extflags, 0,
634 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE);
635 if (error)
636 break;
637 lkp->lk_sharecount++;
638 lkp->lk_flags |= LK_SHARE_NONZERO;
639 COUNT(lkp, l, cpu_id, 1);
640 break;
641 }
642 /*
643 * We hold an exclusive lock, so downgrade it to shared.
644 * An alternative would be to fail with EDEADLK.
645 */
646 lkp->lk_sharecount++;
647 lkp->lk_flags |= LK_SHARE_NONZERO;
648 COUNT(lkp, l, cpu_id, 1);
649 /* fall into downgrade */
650
651 case LK_DOWNGRADE:
652 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0 ||
653 lkp->lk_exclusivecount == 0)
654 panic("lockmgr: not holding exclusive lock");
655 lkp->lk_sharecount += lkp->lk_exclusivecount;
656 lkp->lk_flags |= LK_SHARE_NONZERO;
657 lkp->lk_exclusivecount = 0;
658 lkp->lk_recurselevel = 0;
659 lkp->lk_flags &= ~LK_HAVE_EXCL;
660 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
661 #if defined(LOCKDEBUG)
662 lkp->lk_unlock_file = file;
663 lkp->lk_unlock_line = line;
664 #endif
665 DONTHAVEIT(lkp);
666 WAKEUP_WAITER(lkp);
667 break;
668
669 case LK_EXCLUPGRADE:
670 /*
671 * If another process is ahead of us to get an upgrade,
672 * then we want to fail rather than have an intervening
673 * exclusive access.
674 */
675 if (lkp->lk_flags & LK_WANT_UPGRADE) {
676 lkp->lk_sharecount--;
677 if (lkp->lk_sharecount == 0)
678 lkp->lk_flags &= ~LK_SHARE_NONZERO;
679 COUNT(lkp, l, cpu_id, -1);
680 error = EBUSY;
681 break;
682 }
683 /* fall into normal upgrade */
684
685 case LK_UPGRADE:
686 /*
687 * Upgrade a shared lock to an exclusive one. If another
688 * shared lock has already requested an upgrade to an
689 * exclusive lock, our shared lock is released and an
690 * exclusive lock is requested (which will be granted
691 * after the upgrade). If we return an error, the file
692 * will always be unlocked.
693 */
694 if (WEHOLDIT(lkp, pid, lid, cpu_id) || lkp->lk_sharecount <= 0)
695 panic("lockmgr: upgrade exclusive lock");
696 lkp->lk_sharecount--;
697 if (lkp->lk_sharecount == 0)
698 lkp->lk_flags &= ~LK_SHARE_NONZERO;
699 COUNT(lkp, l, cpu_id, -1);
700 /*
701 * If we are just polling, check to see if we will block.
702 */
703 if ((extflags & LK_NOWAIT) &&
704 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
705 lkp->lk_sharecount > 1)) {
706 error = EBUSY;
707 break;
708 }
709 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
710 /*
711 * We are first shared lock to request an upgrade, so
712 * request upgrade and wait for the shared count to
713 * drop to zero, then take exclusive lock.
714 */
715 lkp->lk_flags |= LK_WANT_UPGRADE;
716 error = acquire(&lkp, &s, extflags, 0, LK_SHARE_NONZERO);
717 lkp->lk_flags &= ~LK_WANT_UPGRADE;
718 if (error)
719 break;
720 lkp->lk_flags |= LK_HAVE_EXCL;
721 SETHOLDER(lkp, pid, lid, cpu_id);
722 #if defined(LOCKDEBUG)
723 lkp->lk_lock_file = file;
724 lkp->lk_lock_line = line;
725 #endif
726 HAVEIT(lkp);
727 if (lkp->lk_exclusivecount != 0)
728 panic("lockmgr: non-zero exclusive count");
729 lkp->lk_exclusivecount = 1;
730 if (extflags & LK_SETRECURSE)
731 lkp->lk_recurselevel = 1;
732 COUNT(lkp, l, cpu_id, 1);
733 break;
734 }
735 /*
736 * Someone else has requested upgrade. Release our shared
737 * lock, awaken upgrade requestor if we are the last shared
738 * lock, then request an exclusive lock.
739 */
740 if (lkp->lk_sharecount == 0)
741 WAKEUP_WAITER(lkp);
742 /* fall into exclusive request */
743
744 case LK_EXCLUSIVE:
745 if (WEHOLDIT(lkp, pid, lid, cpu_id)) {
746 /*
747 * Recursive lock.
748 */
749 if ((extflags & LK_CANRECURSE) == 0 &&
750 lkp->lk_recurselevel == 0) {
751 if (extflags & LK_RECURSEFAIL) {
752 error = EDEADLK;
753 break;
754 } else
755 panic("lockmgr: locking against myself");
756 }
757 lkp->lk_exclusivecount++;
758 if (extflags & LK_SETRECURSE &&
759 lkp->lk_recurselevel == 0)
760 lkp->lk_recurselevel = lkp->lk_exclusivecount;
761 COUNT(lkp, l, cpu_id, 1);
762 break;
763 }
764 /*
765 * If we are just polling, check to see if we will sleep.
766 */
767 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
768 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
769 LK_SHARE_NONZERO))) {
770 error = EBUSY;
771 break;
772 }
773 /*
774 * Try to acquire the want_exclusive flag.
775 */
776 error = acquire(&lkp, &s, extflags, 0,
777 LK_HAVE_EXCL | LK_WANT_EXCL);
778 if (error)
779 break;
780 lkp->lk_flags |= LK_WANT_EXCL;
781 /*
782 * Wait for shared locks and upgrades to finish.
783 */
784 error = acquire(&lkp, &s, extflags, 0,
785 LK_WANT_UPGRADE | LK_SHARE_NONZERO);
786 lkp->lk_flags &= ~LK_WANT_EXCL;
787 if (error)
788 break;
789 lkp->lk_flags |= LK_HAVE_EXCL;
790 SETHOLDER(lkp, pid, lid, cpu_id);
791 #if defined(LOCKDEBUG)
792 lkp->lk_lock_file = file;
793 lkp->lk_lock_line = line;
794 #endif
795 HAVEIT(lkp);
796 if (lkp->lk_exclusivecount != 0)
797 panic("lockmgr: non-zero exclusive count");
798 lkp->lk_exclusivecount = 1;
799 if (extflags & LK_SETRECURSE)
800 lkp->lk_recurselevel = 1;
801 COUNT(lkp, l, cpu_id, 1);
802 break;
803
804 case LK_RELEASE:
805 if (lkp->lk_exclusivecount != 0) {
806 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0) {
807 if (lkp->lk_flags & LK_SPIN) {
808 panic("lockmgr: processor %lu, not "
809 "exclusive lock holder %lu "
810 "unlocking", cpu_id, lkp->lk_cpu);
811 } else {
812 panic("lockmgr: pid %d, not "
813 "exclusive lock holder %d "
814 "unlocking", pid,
815 lkp->lk_lockholder);
816 }
817 }
818 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
819 lkp->lk_recurselevel = 0;
820 lkp->lk_exclusivecount--;
821 COUNT(lkp, l, cpu_id, -1);
822 if (lkp->lk_exclusivecount == 0) {
823 lkp->lk_flags &= ~LK_HAVE_EXCL;
824 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
825 #if defined(LOCKDEBUG)
826 lkp->lk_unlock_file = file;
827 lkp->lk_unlock_line = line;
828 #endif
829 DONTHAVEIT(lkp);
830 }
831 } else if (lkp->lk_sharecount != 0) {
832 lkp->lk_sharecount--;
833 if (lkp->lk_sharecount == 0)
834 lkp->lk_flags &= ~LK_SHARE_NONZERO;
835 COUNT(lkp, l, cpu_id, -1);
836 }
837 #ifdef DIAGNOSTIC
838 else
839 panic("lockmgr: release of unlocked lock!");
840 #endif
841 WAKEUP_WAITER(lkp);
842 break;
843
844 case LK_DRAIN:
845 /*
846 * Check that we do not already hold the lock, as it can
847 * never drain if we do. Unfortunately, we have no way to
848 * check for holding a shared lock, but at least we can
849 * check for an exclusive one.
850 */
851 if (WEHOLDIT(lkp, pid, lid, cpu_id))
852 panic("lockmgr: draining against myself");
853 /*
854 * If we are just polling, check to see if we will sleep.
855 */
856 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
857 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
858 LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
859 error = EBUSY;
860 break;
861 }
862 error = acquire(&lkp, &s, extflags, 1,
863 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
864 LK_SHARE_NONZERO | LK_WAIT_NONZERO);
865 if (error)
866 break;
867 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
868 SETHOLDER(lkp, pid, lid, cpu_id);
869 #if defined(LOCKDEBUG)
870 lkp->lk_lock_file = file;
871 lkp->lk_lock_line = line;
872 #endif
873 HAVEIT(lkp);
874 lkp->lk_exclusivecount = 1;
875 /* XXX unlikely that we'd want this */
876 if (extflags & LK_SETRECURSE)
877 lkp->lk_recurselevel = 1;
878 COUNT(lkp, l, cpu_id, 1);
879 break;
880
881 default:
882 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
883 panic("lockmgr: unknown locktype request %d",
884 flags & LK_TYPE_MASK);
885 /* NOTREACHED */
886 }
887 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
888 ((lkp->lk_flags &
889 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
890 LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
891 lkp->lk_flags &= ~LK_WAITDRAIN;
892 wakeup((void *)&lkp->lk_flags);
893 }
894 /*
895 * Note that this panic will be a recursive panic, since
896 * we only set lock_shutdown_noblock above if panicstr != NULL.
897 */
898 if (error && lock_shutdown_noblock)
899 panic("lockmgr: deadlock (see previous panic)");
900
901 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
902 return (error);
903 }
904
905 /*
906 * For a recursive spinlock held one or more times by the current CPU,
907 * release all N locks, and return N.
908 * Intended for use in mi_switch() shortly before context switching.
909 */
910
911 int
912 #if defined(LOCKDEBUG)
913 _spinlock_release_all(__volatile struct lock *lkp, const char *file, int line)
914 #else
915 spinlock_release_all(__volatile struct lock *lkp)
916 #endif
917 {
918 int s, count;
919 cpuid_t cpu_id;
920
921 KASSERT(lkp->lk_flags & LK_SPIN);
922
923 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
924
925 cpu_id = cpu_number();
926 count = lkp->lk_exclusivecount;
927
928 if (count != 0) {
929 #ifdef DIAGNOSTIC
930 if (WEHOLDIT(lkp, 0, 0, cpu_id) == 0) {
931 panic("spinlock_release_all: processor %lu, not "
932 "exclusive lock holder %lu "
933 "unlocking", (long)cpu_id, lkp->lk_cpu);
934 }
935 #endif
936 lkp->lk_recurselevel = 0;
937 lkp->lk_exclusivecount = 0;
938 COUNT_CPU(cpu_id, -count);
939 lkp->lk_flags &= ~LK_HAVE_EXCL;
940 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
941 #if defined(LOCKDEBUG)
942 lkp->lk_unlock_file = file;
943 lkp->lk_unlock_line = line;
944 #endif
945 DONTHAVEIT(lkp);
946 }
947 #ifdef DIAGNOSTIC
948 else if (lkp->lk_sharecount != 0)
949 panic("spinlock_release_all: release of shared lock!");
950 else
951 panic("spinlock_release_all: release of unlocked lock!");
952 #endif
953 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
954
955 return (count);
956 }
957
958 /*
959 * For a recursive spinlock held one or more times by the current CPU,
960 * release all N locks, and return N.
961 * Intended for use in mi_switch() right after resuming execution.
962 */
963
964 void
965 #if defined(LOCKDEBUG)
966 _spinlock_acquire_count(__volatile struct lock *lkp, int count,
967 const char *file, int line)
968 #else
969 spinlock_acquire_count(__volatile struct lock *lkp, int count)
970 #endif
971 {
972 int s, error;
973 cpuid_t cpu_id;
974
975 KASSERT(lkp->lk_flags & LK_SPIN);
976
977 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
978
979 cpu_id = cpu_number();
980
981 #ifdef DIAGNOSTIC
982 if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_id))
983 panic("spinlock_acquire_count: processor %lu already holds lock", (long)cpu_id);
984 #endif
985 /*
986 * Try to acquire the want_exclusive flag.
987 */
988 error = acquire(&lkp, &s, LK_SPIN, 0, LK_HAVE_EXCL | LK_WANT_EXCL);
989 lkp->lk_flags |= LK_WANT_EXCL;
990 /*
991 * Wait for shared locks and upgrades to finish.
992 */
993 error = acquire(&lkp, &s, LK_SPIN, 0,
994 LK_SHARE_NONZERO | LK_WANT_UPGRADE);
995 lkp->lk_flags &= ~LK_WANT_EXCL;
996 lkp->lk_flags |= LK_HAVE_EXCL;
997 SETHOLDER(lkp, LK_NOPROC, 0, cpu_id);
998 #if defined(LOCKDEBUG)
999 lkp->lk_lock_file = file;
1000 lkp->lk_lock_line = line;
1001 #endif
1002 HAVEIT(lkp);
1003 if (lkp->lk_exclusivecount != 0)
1004 panic("lockmgr: non-zero exclusive count");
1005 lkp->lk_exclusivecount = count;
1006 lkp->lk_recurselevel = 1;
1007 COUNT_CPU(cpu_id, count);
1008
1009 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
1010 }
1011
1012
1013
1014 /*
1015 * Print out information about state of a lock. Used by VOP_PRINT
1016 * routines to display ststus about contained locks.
1017 */
1018 void
1019 lockmgr_printinfo(__volatile struct lock *lkp)
1020 {
1021
1022 if (lkp->lk_sharecount)
1023 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
1024 lkp->lk_sharecount);
1025 else if (lkp->lk_flags & LK_HAVE_EXCL) {
1026 printf(" lock type %s: EXCL (count %d) by ",
1027 lkp->lk_wmesg, lkp->lk_exclusivecount);
1028 if (lkp->lk_flags & LK_SPIN)
1029 printf("processor %lu", lkp->lk_cpu);
1030 else
1031 printf("pid %d.%d", lkp->lk_lockholder,
1032 lkp->lk_locklwp);
1033 } else
1034 printf(" not locked");
1035 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
1036 printf(" with %d pending", lkp->lk_waitcount);
1037 }
1038
1039 #if defined(LOCKDEBUG) /* { */
1040 TAILQ_HEAD(, simplelock) simplelock_list =
1041 TAILQ_HEAD_INITIALIZER(simplelock_list);
1042
1043 #if defined(MULTIPROCESSOR) /* { */
1044 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
1045
1046 #define SLOCK_LIST_LOCK() \
1047 __cpu_simple_lock(&simplelock_list_slock.lock_data)
1048
1049 #define SLOCK_LIST_UNLOCK() \
1050 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
1051
1052 #define SLOCK_COUNT(x) \
1053 curcpu()->ci_simple_locks += (x)
1054 #else
1055 u_long simple_locks;
1056
1057 #define SLOCK_LIST_LOCK() /* nothing */
1058
1059 #define SLOCK_LIST_UNLOCK() /* nothing */
1060
1061 #define SLOCK_COUNT(x) simple_locks += (x)
1062 #endif /* MULTIPROCESSOR */ /* } */
1063
1064 #ifdef MULTIPROCESSOR
1065 #define SLOCK_MP() lock_printf("on CPU %ld\n", \
1066 (u_long) cpu_number())
1067 #else
1068 #define SLOCK_MP() /* nothing */
1069 #endif
1070
1071 #define SLOCK_WHERE(str, alp, id, l) \
1072 do { \
1073 lock_printf("\n"); \
1074 lock_printf(str); \
1075 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
1076 SLOCK_MP(); \
1077 if ((alp)->lock_file != NULL) \
1078 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
1079 (alp)->lock_line); \
1080 if ((alp)->unlock_file != NULL) \
1081 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1082 (alp)->unlock_line); \
1083 SLOCK_TRACE() \
1084 SLOCK_DEBUGGER(); \
1085 } while (/*CONSTCOND*/0)
1086
1087 /*
1088 * Simple lock functions so that the debugger can see from whence
1089 * they are being called.
1090 */
1091 void
1092 simple_lock_init(struct simplelock *alp)
1093 {
1094
1095 #if defined(MULTIPROCESSOR) /* { */
1096 __cpu_simple_lock_init(&alp->lock_data);
1097 #else
1098 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1099 #endif /* } */
1100 alp->lock_file = NULL;
1101 alp->lock_line = 0;
1102 alp->unlock_file = NULL;
1103 alp->unlock_line = 0;
1104 alp->lock_holder = LK_NOCPU;
1105 }
1106
1107 void
1108 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
1109 {
1110 cpuid_t cpu_id = cpu_number();
1111 int s;
1112
1113 s = spllock();
1114
1115 /*
1116 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1117 * don't take any action, and just fall into the normal spin case.
1118 */
1119 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1120 #if defined(MULTIPROCESSOR) /* { */
1121 if (alp->lock_holder == cpu_id) {
1122 SLOCK_WHERE("simple_lock: locking against myself\n",
1123 alp, id, l);
1124 goto out;
1125 }
1126 #else
1127 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1128 goto out;
1129 #endif /* MULTIPROCESSOR */ /* } */
1130 }
1131
1132 #if defined(MULTIPROCESSOR) /* { */
1133 /* Acquire the lock before modifying any fields. */
1134 splx(s);
1135 __cpu_simple_lock(&alp->lock_data);
1136 s = spllock();
1137 #else
1138 alp->lock_data = __SIMPLELOCK_LOCKED;
1139 #endif /* } */
1140
1141 if (alp->lock_holder != LK_NOCPU) {
1142 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1143 alp, id, l);
1144 }
1145 alp->lock_file = id;
1146 alp->lock_line = l;
1147 alp->lock_holder = cpu_id;
1148
1149 SLOCK_LIST_LOCK();
1150 /* XXX Cast away volatile */
1151 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1152 SLOCK_LIST_UNLOCK();
1153
1154 SLOCK_COUNT(1);
1155
1156 out:
1157 splx(s);
1158 }
1159
1160 int
1161 _simple_lock_held(__volatile struct simplelock *alp)
1162 {
1163 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1164 cpuid_t cpu_id = cpu_number();
1165 #endif
1166 int s, locked = 0;
1167
1168 s = spllock();
1169
1170 #if defined(MULTIPROCESSOR)
1171 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1172 locked = (alp->lock_holder == cpu_id);
1173 else
1174 __cpu_simple_unlock(&alp->lock_data);
1175 #else
1176 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1177 locked = 1;
1178 KASSERT(alp->lock_holder == cpu_id);
1179 }
1180 #endif
1181
1182 splx(s);
1183
1184 return (locked);
1185 }
1186
1187 int
1188 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
1189 {
1190 cpuid_t cpu_id = cpu_number();
1191 int s, rv = 0;
1192
1193 s = spllock();
1194
1195 /*
1196 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1197 * don't take any action.
1198 */
1199 #if defined(MULTIPROCESSOR) /* { */
1200 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1201 if (alp->lock_holder == cpu_id)
1202 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1203 alp, id, l);
1204 goto out;
1205 }
1206 #else
1207 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1208 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1209 goto out;
1210 }
1211 alp->lock_data = __SIMPLELOCK_LOCKED;
1212 #endif /* MULTIPROCESSOR */ /* } */
1213
1214 /*
1215 * At this point, we have acquired the lock.
1216 */
1217
1218 rv = 1;
1219
1220 alp->lock_file = id;
1221 alp->lock_line = l;
1222 alp->lock_holder = cpu_id;
1223
1224 SLOCK_LIST_LOCK();
1225 /* XXX Cast away volatile. */
1226 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1227 SLOCK_LIST_UNLOCK();
1228
1229 SLOCK_COUNT(1);
1230
1231 out:
1232 splx(s);
1233 return (rv);
1234 }
1235
1236 void
1237 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
1238 {
1239 int s;
1240
1241 s = spllock();
1242
1243 /*
1244 * MULTIPROCESSOR case: This is `safe' because we think we hold
1245 * the lock, and if we don't, we don't take any action.
1246 */
1247 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1248 SLOCK_WHERE("simple_unlock: lock not held\n",
1249 alp, id, l);
1250 goto out;
1251 }
1252
1253 SLOCK_LIST_LOCK();
1254 TAILQ_REMOVE(&simplelock_list, alp, list);
1255 SLOCK_LIST_UNLOCK();
1256
1257 SLOCK_COUNT(-1);
1258
1259 alp->list.tqe_next = NULL; /* sanity */
1260 alp->list.tqe_prev = NULL; /* sanity */
1261
1262 alp->unlock_file = id;
1263 alp->unlock_line = l;
1264
1265 #if defined(MULTIPROCESSOR) /* { */
1266 alp->lock_holder = LK_NOCPU;
1267 /* Now that we've modified all fields, release the lock. */
1268 __cpu_simple_unlock(&alp->lock_data);
1269 #else
1270 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1271 KASSERT(alp->lock_holder == cpu_number());
1272 alp->lock_holder = LK_NOCPU;
1273 #endif /* } */
1274
1275 out:
1276 splx(s);
1277 }
1278
1279 void
1280 simple_lock_dump(void)
1281 {
1282 struct simplelock *alp;
1283 int s;
1284
1285 s = spllock();
1286 SLOCK_LIST_LOCK();
1287 lock_printf("all simple locks:\n");
1288 TAILQ_FOREACH(alp, &simplelock_list, list) {
1289 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1290 alp->lock_file, alp->lock_line);
1291 }
1292 SLOCK_LIST_UNLOCK();
1293 splx(s);
1294 }
1295
1296 void
1297 simple_lock_freecheck(void *start, void *end)
1298 {
1299 struct simplelock *alp;
1300 int s;
1301
1302 s = spllock();
1303 SLOCK_LIST_LOCK();
1304 TAILQ_FOREACH(alp, &simplelock_list, list) {
1305 if ((void *)alp >= start && (void *)alp < end) {
1306 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1307 alp, alp->lock_holder, alp->lock_file,
1308 alp->lock_line);
1309 SLOCK_DEBUGGER();
1310 }
1311 }
1312 SLOCK_LIST_UNLOCK();
1313 splx(s);
1314 }
1315
1316 /*
1317 * We must be holding exactly one lock: the sched_lock.
1318 */
1319
1320 void
1321 simple_lock_switchcheck(void)
1322 {
1323
1324 simple_lock_only_held(&sched_lock, "switching");
1325 }
1326
1327 void
1328 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1329 {
1330 struct simplelock *alp;
1331 cpuid_t cpu_id = cpu_number();
1332 int s;
1333
1334 if (lp) {
1335 LOCK_ASSERT(simple_lock_held(lp));
1336 }
1337 s = spllock();
1338 SLOCK_LIST_LOCK();
1339 TAILQ_FOREACH(alp, &simplelock_list, list) {
1340 if (alp == lp)
1341 continue;
1342 if (alp->lock_holder == cpu_id)
1343 break;
1344 }
1345 SLOCK_LIST_UNLOCK();
1346 splx(s);
1347
1348 if (alp != NULL) {
1349 lock_printf("\n%s with held simple_lock %p "
1350 "CPU %lu %s:%d\n",
1351 where, alp, alp->lock_holder, alp->lock_file,
1352 alp->lock_line);
1353 SLOCK_TRACE();
1354 SLOCK_DEBUGGER();
1355 }
1356 }
1357 #endif /* LOCKDEBUG */ /* } */
1358
1359 #if defined(MULTIPROCESSOR)
1360 /*
1361 * Functions for manipulating the kernel_lock. We put them here
1362 * so that they show up in profiles.
1363 */
1364
1365 struct lock kernel_lock;
1366
1367 void
1368 _kernel_lock_init(void)
1369 {
1370
1371 spinlockinit(&kernel_lock, "klock", 0);
1372 }
1373
1374 /*
1375 * Acquire/release the kernel lock. Intended for use in the scheduler
1376 * and the lower half of the kernel.
1377 */
1378 void
1379 _kernel_lock(int flag)
1380 {
1381
1382 SCHED_ASSERT_UNLOCKED();
1383 spinlockmgr(&kernel_lock, flag, 0);
1384 }
1385
1386 void
1387 _kernel_unlock(void)
1388 {
1389
1390 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1391 }
1392
1393 /*
1394 * Acquire/release the kernel_lock on behalf of a process. Intended for
1395 * use in the top half of the kernel.
1396 */
1397 void
1398 _kernel_proc_lock(struct lwp *l)
1399 {
1400
1401 SCHED_ASSERT_UNLOCKED();
1402 spinlockmgr(&kernel_lock, LK_EXCLUSIVE, 0);
1403 }
1404
1405 void
1406 _kernel_proc_unlock(struct lwp *l)
1407 {
1408
1409 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1410 }
1411
1412 int
1413 _kernel_lock_release_all()
1414 {
1415 int hold_count;
1416
1417 if (lockstatus(&kernel_lock) == LK_EXCLUSIVE)
1418 hold_count = spinlock_release_all(&kernel_lock);
1419 else
1420 hold_count = 0;
1421
1422 return hold_count;
1423 }
1424
1425 void
1426 _kernel_lock_acquire_count(int hold_count)
1427 {
1428
1429 if (hold_count != 0)
1430 spinlock_acquire_count(&kernel_lock, hold_count);
1431 }
1432 #endif /* MULTIPROCESSOR */
1433