kern_lock.c revision 1.84 1 /* $NetBSD: kern_lock.c,v 1.84 2004/10/23 21:27:34 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.84 2004/10/23 21:27:34 yamt Exp $");
80
81 #include "opt_multiprocessor.h"
82 #include "opt_lockdebug.h"
83 #include "opt_ddb.h"
84
85 #include <sys/param.h>
86 #include <sys/proc.h>
87 #include <sys/lock.h>
88 #include <sys/systm.h>
89 #include <machine/cpu.h>
90
91 #if defined(LOCKDEBUG)
92 #include <sys/syslog.h>
93 /*
94 * note that stdarg.h and the ansi style va_start macro is used for both
95 * ansi and traditional c compiles.
96 * XXX: this requires that stdarg.h define: va_alist and va_dcl
97 */
98 #include <machine/stdarg.h>
99
100 void lock_printf(const char *fmt, ...)
101 __attribute__((__format__(__printf__,1,2)));
102
103 static int acquire(__volatile struct lock **, int *, int, int, int);
104
105 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
106
107 #ifdef DDB
108 #include <ddb/ddbvar.h>
109 #include <machine/db_machdep.h>
110 #include <ddb/db_command.h>
111 #include <ddb/db_interface.h>
112 #endif
113 #endif
114
115 /*
116 * Locking primitives implementation.
117 * Locks provide shared/exclusive synchronization.
118 */
119
120 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
121 #if defined(MULTIPROCESSOR) /* { */
122 #define COUNT_CPU(cpu_id, x) \
123 curcpu()->ci_spin_locks += (x)
124 #else
125 u_long spin_locks;
126 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
127 #endif /* MULTIPROCESSOR */ /* } */
128
129 #define COUNT(lkp, l, cpu_id, x) \
130 do { \
131 if ((lkp)->lk_flags & LK_SPIN) \
132 COUNT_CPU((cpu_id), (x)); \
133 else \
134 (l)->l_locks += (x); \
135 } while (/*CONSTCOND*/0)
136 #else
137 #define COUNT(lkp, p, cpu_id, x)
138 #define COUNT_CPU(cpu_id, x)
139 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
140
141 #ifndef SPINLOCK_SPIN_HOOK /* from <machine/lock.h> */
142 #define SPINLOCK_SPIN_HOOK /* nothing */
143 #endif
144
145 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
146 do { \
147 if ((flags) & LK_SPIN) \
148 s = spllock(); \
149 simple_lock(&(lkp)->lk_interlock); \
150 } while (/*CONSTCOND*/ 0)
151
152 #define INTERLOCK_RELEASE(lkp, flags, s) \
153 do { \
154 simple_unlock(&(lkp)->lk_interlock); \
155 if ((flags) & LK_SPIN) \
156 splx(s); \
157 } while (/*CONSTCOND*/ 0)
158
159 #ifdef DDB /* { */
160 #ifdef MULTIPROCESSOR
161 int simple_lock_debugger = 1; /* more serious on MP */
162 #else
163 int simple_lock_debugger = 0;
164 #endif
165 #define SLOCK_DEBUGGER() if (simple_lock_debugger) Debugger()
166 #define SLOCK_TRACE() \
167 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
168 TRUE, 65535, "", lock_printf);
169 #else
170 #define SLOCK_DEBUGGER() /* nothing */
171 #define SLOCK_TRACE() /* nothing */
172 #endif /* } */
173
174 #if defined(LOCKDEBUG)
175 #if defined(DDB)
176 #define SPINLOCK_SPINCHECK_DEBUGGER Debugger()
177 #else
178 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
179 #endif
180
181 #define SPINLOCK_SPINCHECK_DECL \
182 /* 32-bits of count -- wrap constitutes a "spinout" */ \
183 uint32_t __spinc = 0
184
185 #define SPINLOCK_SPINCHECK \
186 do { \
187 if (++__spinc == 0) { \
188 lock_printf("LK_SPIN spinout, excl %d, share %d\n", \
189 lkp->lk_exclusivecount, lkp->lk_sharecount); \
190 if (lkp->lk_exclusivecount) \
191 lock_printf("held by CPU %lu\n", \
192 (u_long) lkp->lk_cpu); \
193 if (lkp->lk_lock_file) \
194 lock_printf("last locked at %s:%d\n", \
195 lkp->lk_lock_file, lkp->lk_lock_line); \
196 if (lkp->lk_unlock_file) \
197 lock_printf("last unlocked at %s:%d\n", \
198 lkp->lk_unlock_file, lkp->lk_unlock_line); \
199 SLOCK_TRACE(); \
200 SPINLOCK_SPINCHECK_DEBUGGER; \
201 } \
202 } while (/*CONSTCOND*/ 0)
203 #else
204 #define SPINLOCK_SPINCHECK_DECL /* nothing */
205 #define SPINLOCK_SPINCHECK /* nothing */
206 #endif /* LOCKDEBUG && DDB */
207
208 /*
209 * Acquire a resource.
210 */
211 static int
212 acquire(__volatile struct lock **lkpp, int *s, int extflags,
213 int drain, int wanted)
214 {
215 int error;
216 __volatile struct lock *lkp = *lkpp;
217
218 KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
219
220 if (extflags & LK_SPIN) {
221 int interlocked;
222
223 SPINLOCK_SPINCHECK_DECL;
224
225 if (!drain) {
226 lkp->lk_waitcount++;
227 lkp->lk_flags |= LK_WAIT_NONZERO;
228 }
229 for (interlocked = 1;;) {
230 SPINLOCK_SPINCHECK;
231 if ((lkp->lk_flags & wanted) != 0) {
232 if (interlocked) {
233 INTERLOCK_RELEASE(lkp, LK_SPIN, *s);
234 interlocked = 0;
235 }
236 SPINLOCK_SPIN_HOOK;
237 } else if (interlocked) {
238 break;
239 } else {
240 INTERLOCK_ACQUIRE(lkp, LK_SPIN, *s);
241 interlocked = 1;
242 }
243 }
244 if (!drain) {
245 lkp->lk_waitcount--;
246 if (lkp->lk_waitcount == 0)
247 lkp->lk_flags &= ~LK_WAIT_NONZERO;
248 }
249 KASSERT((lkp->lk_flags & wanted) == 0);
250 error = 0; /* sanity */
251 } else {
252 for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
253 if (drain)
254 lkp->lk_flags |= LK_WAITDRAIN;
255 else {
256 lkp->lk_waitcount++;
257 lkp->lk_flags |= LK_WAIT_NONZERO;
258 }
259 /* XXX Cast away volatile. */
260 error = ltsleep(drain ?
261 (void *)&lkp->lk_flags :
262 (void *)lkp, lkp->lk_prio,
263 lkp->lk_wmesg, lkp->lk_timo, &lkp->lk_interlock);
264 if (!drain) {
265 lkp->lk_waitcount--;
266 if (lkp->lk_waitcount == 0)
267 lkp->lk_flags &= ~LK_WAIT_NONZERO;
268 }
269 if (error)
270 break;
271 if (extflags & LK_SLEEPFAIL) {
272 error = ENOLCK;
273 break;
274 }
275 if (lkp->lk_newlock != NULL) {
276 simple_lock(&lkp->lk_newlock->lk_interlock);
277 simple_unlock(&lkp->lk_interlock);
278 if (lkp->lk_waitcount == 0)
279 wakeup((void *)&lkp->lk_newlock);
280 *lkpp = lkp = lkp->lk_newlock;
281 }
282 }
283 }
284
285 return error;
286 }
287
288 #define SETHOLDER(lkp, pid, lid, cpu_id) \
289 do { \
290 if ((lkp)->lk_flags & LK_SPIN) \
291 (lkp)->lk_cpu = cpu_id; \
292 else { \
293 (lkp)->lk_lockholder = pid; \
294 (lkp)->lk_locklwp = lid; \
295 } \
296 } while (/*CONSTCOND*/0)
297
298 #define WEHOLDIT(lkp, pid, lid, cpu_id) \
299 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
300 ((lkp)->lk_cpu == (cpu_id)) : \
301 ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
302
303 #define WAKEUP_WAITER(lkp) \
304 do { \
305 if (((lkp)->lk_flags & (LK_SPIN | LK_WAIT_NONZERO)) == \
306 LK_WAIT_NONZERO) { \
307 /* XXX Cast away volatile. */ \
308 wakeup((void *)(lkp)); \
309 } \
310 } while (/*CONSTCOND*/0)
311
312 #if defined(LOCKDEBUG) /* { */
313 #if defined(MULTIPROCESSOR) /* { */
314 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
315
316 #define SPINLOCK_LIST_LOCK() \
317 __cpu_simple_lock(&spinlock_list_slock.lock_data)
318
319 #define SPINLOCK_LIST_UNLOCK() \
320 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
321 #else
322 #define SPINLOCK_LIST_LOCK() /* nothing */
323
324 #define SPINLOCK_LIST_UNLOCK() /* nothing */
325 #endif /* MULTIPROCESSOR */ /* } */
326
327 TAILQ_HEAD(, lock) spinlock_list =
328 TAILQ_HEAD_INITIALIZER(spinlock_list);
329
330 #define HAVEIT(lkp) \
331 do { \
332 if ((lkp)->lk_flags & LK_SPIN) { \
333 int s = spllock(); \
334 SPINLOCK_LIST_LOCK(); \
335 /* XXX Cast away volatile. */ \
336 TAILQ_INSERT_TAIL(&spinlock_list, (struct lock *)(lkp), \
337 lk_list); \
338 SPINLOCK_LIST_UNLOCK(); \
339 splx(s); \
340 } \
341 } while (/*CONSTCOND*/0)
342
343 #define DONTHAVEIT(lkp) \
344 do { \
345 if ((lkp)->lk_flags & LK_SPIN) { \
346 int s = spllock(); \
347 SPINLOCK_LIST_LOCK(); \
348 /* XXX Cast away volatile. */ \
349 TAILQ_REMOVE(&spinlock_list, (struct lock *)(lkp), \
350 lk_list); \
351 SPINLOCK_LIST_UNLOCK(); \
352 splx(s); \
353 } \
354 } while (/*CONSTCOND*/0)
355 #else
356 #define HAVEIT(lkp) /* nothing */
357
358 #define DONTHAVEIT(lkp) /* nothing */
359 #endif /* LOCKDEBUG */ /* } */
360
361 #if defined(LOCKDEBUG)
362 /*
363 * Lock debug printing routine; can be configured to print to console
364 * or log to syslog.
365 */
366 void
367 lock_printf(const char *fmt, ...)
368 {
369 char b[150];
370 va_list ap;
371
372 va_start(ap, fmt);
373 if (lock_debug_syslog)
374 vlog(LOG_DEBUG, fmt, ap);
375 else {
376 vsnprintf(b, sizeof(b), fmt, ap);
377 printf_nolog("%s", b);
378 }
379 va_end(ap);
380 }
381 #endif /* LOCKDEBUG */
382
383 /*
384 * Transfer any waiting processes from one lock to another.
385 */
386 void
387 transferlockers(struct lock *from, struct lock *to)
388 {
389
390 KASSERT(from != to);
391 KASSERT((from->lk_flags & LK_WAITDRAIN) == 0);
392 if (from->lk_waitcount == 0)
393 return;
394 from->lk_newlock = to;
395 wakeup((void *)from);
396 tsleep((void *)&from->lk_newlock, from->lk_prio, "lkxfer", 0);
397 from->lk_newlock = NULL;
398 from->lk_flags &= ~(LK_WANT_EXCL | LK_WANT_UPGRADE);
399 KASSERT(from->lk_waitcount == 0);
400 }
401
402
403 /*
404 * Initialize a lock; required before use.
405 */
406 void
407 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
408 {
409
410 memset(lkp, 0, sizeof(struct lock));
411 simple_lock_init(&lkp->lk_interlock);
412 lkp->lk_flags = flags & LK_EXTFLG_MASK;
413 if (flags & LK_SPIN)
414 lkp->lk_cpu = LK_NOCPU;
415 else {
416 lkp->lk_lockholder = LK_NOPROC;
417 lkp->lk_newlock = NULL;
418 lkp->lk_prio = prio;
419 lkp->lk_timo = timo;
420 }
421 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
422 #if defined(LOCKDEBUG)
423 lkp->lk_lock_file = NULL;
424 lkp->lk_unlock_file = NULL;
425 #endif
426 }
427
428 /*
429 * Determine the status of a lock.
430 */
431 int
432 lockstatus(struct lock *lkp)
433 {
434 int s = 0; /* XXX: gcc */
435 int lock_type = 0;
436 struct lwp *l = curlwp; /* XXX */
437 pid_t pid;
438 lwpid_t lid;
439 cpuid_t cpu_id;
440
441 if ((lkp->lk_flags & LK_SPIN) || l == NULL) {
442 cpu_id = cpu_number();
443 pid = LK_KERNPROC;
444 lid = 0;
445 } else {
446 cpu_id = LK_NOCPU;
447 pid = l->l_proc->p_pid;
448 lid = l->l_lid;
449 }
450
451 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
452 if (lkp->lk_exclusivecount != 0) {
453 if (WEHOLDIT(lkp, pid, lid, cpu_id))
454 lock_type = LK_EXCLUSIVE;
455 else
456 lock_type = LK_EXCLOTHER;
457 } else if (lkp->lk_sharecount != 0)
458 lock_type = LK_SHARED;
459 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
460 return (lock_type);
461 }
462
463 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
464 /*
465 * Make sure no spin locks are held by a CPU that is about
466 * to context switch.
467 */
468 void
469 spinlock_switchcheck(void)
470 {
471 u_long cnt;
472 int s;
473
474 s = spllock();
475 #if defined(MULTIPROCESSOR)
476 cnt = curcpu()->ci_spin_locks;
477 #else
478 cnt = spin_locks;
479 #endif
480 splx(s);
481
482 if (cnt != 0)
483 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
484 (u_long) cpu_number(), cnt);
485 }
486 #endif /* LOCKDEBUG || DIAGNOSTIC */
487
488 /*
489 * Locks and IPLs (interrupt priority levels):
490 *
491 * Locks which may be taken from interrupt context must be handled
492 * very carefully; you must spl to the highest IPL where the lock
493 * is needed before acquiring the lock.
494 *
495 * It is also important to avoid deadlock, since certain (very high
496 * priority) interrupts are often needed to keep the system as a whole
497 * from deadlocking, and must not be blocked while you are spinning
498 * waiting for a lower-priority lock.
499 *
500 * In addition, the lock-debugging hooks themselves need to use locks!
501 *
502 * A raw __cpu_simple_lock may be used from interrupts are long as it
503 * is acquired and held at a single IPL.
504 *
505 * A simple_lock (which is a __cpu_simple_lock wrapped with some
506 * debugging hooks) may be used at or below spllock(), which is
507 * typically at or just below splhigh() (i.e. blocks everything
508 * but certain machine-dependent extremely high priority interrupts).
509 *
510 * spinlockmgr spinlocks should be used at or below splsched().
511 *
512 * Some platforms may have interrupts of higher priority than splsched(),
513 * including hard serial interrupts, inter-processor interrupts, and
514 * kernel debugger traps.
515 */
516
517 /*
518 * XXX XXX kludge around another kludge..
519 *
520 * vfs_shutdown() may be called from interrupt context, either as a result
521 * of a panic, or from the debugger. It proceeds to call
522 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
523 *
524 * We would like to make an attempt to sync the filesystems in this case, so
525 * if this happens, we treat attempts to acquire locks specially.
526 * All locks are acquired on behalf of proc0.
527 *
528 * If we've already paniced, we don't block waiting for locks, but
529 * just barge right ahead since we're already going down in flames.
530 */
531
532 /*
533 * Set, change, or release a lock.
534 *
535 * Shared requests increment the shared count. Exclusive requests set the
536 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
537 * accepted shared locks and shared-to-exclusive upgrades to go away.
538 */
539 int
540 #if defined(LOCKDEBUG)
541 _lockmgr(__volatile struct lock *lkp, u_int flags,
542 struct simplelock *interlkp, const char *file, int line)
543 #else
544 lockmgr(__volatile struct lock *lkp, u_int flags,
545 struct simplelock *interlkp)
546 #endif
547 {
548 int error;
549 pid_t pid;
550 lwpid_t lid;
551 int extflags;
552 cpuid_t cpu_id;
553 struct lwp *l = curlwp;
554 int lock_shutdown_noblock = 0;
555 int s = 0;
556
557 error = 0;
558
559 /* LK_RETRY is for vn_lock, not for lockmgr. */
560 KASSERT((flags & LK_RETRY) == 0);
561
562 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
563 if (flags & LK_INTERLOCK)
564 simple_unlock(interlkp);
565 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
566
567 #ifdef DIAGNOSTIC /* { */
568 /*
569 * Don't allow spins on sleep locks and don't allow sleeps
570 * on spin locks.
571 */
572 if ((flags ^ lkp->lk_flags) & LK_SPIN)
573 panic("lockmgr: sleep/spin mismatch");
574 #endif /* } */
575
576 if (extflags & LK_SPIN) {
577 pid = LK_KERNPROC;
578 lid = 0;
579 } else {
580 if (l == NULL) {
581 if (!doing_shutdown) {
582 panic("lockmgr: no context");
583 } else {
584 l = &lwp0;
585 if (panicstr && (!(flags & LK_NOWAIT))) {
586 flags |= LK_NOWAIT;
587 lock_shutdown_noblock = 1;
588 }
589 }
590 }
591 lid = l->l_lid;
592 pid = l->l_proc->p_pid;
593 }
594 cpu_id = cpu_number();
595
596 /*
597 * Once a lock has drained, the LK_DRAINING flag is set and an
598 * exclusive lock is returned. The only valid operation thereafter
599 * is a single release of that exclusive lock. This final release
600 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
601 * further requests of any sort will result in a panic. The bits
602 * selected for these two flags are chosen so that they will be set
603 * in memory that is freed (freed memory is filled with 0xdeadbeef).
604 * The final release is permitted to give a new lease on life to
605 * the lock by specifying LK_REENABLE.
606 */
607 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
608 #ifdef DIAGNOSTIC /* { */
609 if (lkp->lk_flags & LK_DRAINED)
610 panic("lockmgr: using decommissioned lock");
611 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
612 WEHOLDIT(lkp, pid, lid, cpu_id) == 0)
613 panic("lockmgr: non-release on draining lock: %d",
614 flags & LK_TYPE_MASK);
615 #endif /* DIAGNOSTIC */ /* } */
616 lkp->lk_flags &= ~LK_DRAINING;
617 if ((flags & LK_REENABLE) == 0)
618 lkp->lk_flags |= LK_DRAINED;
619 }
620
621 switch (flags & LK_TYPE_MASK) {
622
623 case LK_SHARED:
624 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0) {
625 /*
626 * If just polling, check to see if we will block.
627 */
628 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
629 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
630 error = EBUSY;
631 break;
632 }
633 /*
634 * Wait for exclusive locks and upgrades to clear.
635 */
636 error = acquire(&lkp, &s, extflags, 0,
637 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE);
638 if (error)
639 break;
640 lkp->lk_sharecount++;
641 lkp->lk_flags |= LK_SHARE_NONZERO;
642 COUNT(lkp, l, cpu_id, 1);
643 break;
644 }
645 /*
646 * We hold an exclusive lock, so downgrade it to shared.
647 * An alternative would be to fail with EDEADLK.
648 */
649 lkp->lk_sharecount++;
650 lkp->lk_flags |= LK_SHARE_NONZERO;
651 COUNT(lkp, l, cpu_id, 1);
652 /* fall into downgrade */
653
654 case LK_DOWNGRADE:
655 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0 ||
656 lkp->lk_exclusivecount == 0)
657 panic("lockmgr: not holding exclusive lock");
658 lkp->lk_sharecount += lkp->lk_exclusivecount;
659 lkp->lk_flags |= LK_SHARE_NONZERO;
660 lkp->lk_exclusivecount = 0;
661 lkp->lk_recurselevel = 0;
662 lkp->lk_flags &= ~LK_HAVE_EXCL;
663 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
664 #if defined(LOCKDEBUG)
665 lkp->lk_unlock_file = file;
666 lkp->lk_unlock_line = line;
667 #endif
668 DONTHAVEIT(lkp);
669 WAKEUP_WAITER(lkp);
670 break;
671
672 case LK_EXCLUPGRADE:
673 /*
674 * If another process is ahead of us to get an upgrade,
675 * then we want to fail rather than have an intervening
676 * exclusive access.
677 */
678 if (lkp->lk_flags & LK_WANT_UPGRADE) {
679 lkp->lk_sharecount--;
680 if (lkp->lk_sharecount == 0)
681 lkp->lk_flags &= ~LK_SHARE_NONZERO;
682 COUNT(lkp, l, cpu_id, -1);
683 error = EBUSY;
684 break;
685 }
686 /* fall into normal upgrade */
687
688 case LK_UPGRADE:
689 /*
690 * Upgrade a shared lock to an exclusive one. If another
691 * shared lock has already requested an upgrade to an
692 * exclusive lock, our shared lock is released and an
693 * exclusive lock is requested (which will be granted
694 * after the upgrade). If we return an error, the file
695 * will always be unlocked.
696 */
697 if (WEHOLDIT(lkp, pid, lid, cpu_id) || lkp->lk_sharecount <= 0)
698 panic("lockmgr: upgrade exclusive lock");
699 lkp->lk_sharecount--;
700 if (lkp->lk_sharecount == 0)
701 lkp->lk_flags &= ~LK_SHARE_NONZERO;
702 COUNT(lkp, l, cpu_id, -1);
703 /*
704 * If we are just polling, check to see if we will block.
705 */
706 if ((extflags & LK_NOWAIT) &&
707 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
708 lkp->lk_sharecount > 1)) {
709 error = EBUSY;
710 break;
711 }
712 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
713 /*
714 * We are first shared lock to request an upgrade, so
715 * request upgrade and wait for the shared count to
716 * drop to zero, then take exclusive lock.
717 */
718 lkp->lk_flags |= LK_WANT_UPGRADE;
719 error = acquire(&lkp, &s, extflags, 0, LK_SHARE_NONZERO);
720 lkp->lk_flags &= ~LK_WANT_UPGRADE;
721 if (error) {
722 WAKEUP_WAITER(lkp);
723 break;
724 }
725 lkp->lk_flags |= LK_HAVE_EXCL;
726 SETHOLDER(lkp, pid, lid, cpu_id);
727 #if defined(LOCKDEBUG)
728 lkp->lk_lock_file = file;
729 lkp->lk_lock_line = line;
730 #endif
731 HAVEIT(lkp);
732 if (lkp->lk_exclusivecount != 0)
733 panic("lockmgr: non-zero exclusive count");
734 lkp->lk_exclusivecount = 1;
735 if (extflags & LK_SETRECURSE)
736 lkp->lk_recurselevel = 1;
737 COUNT(lkp, l, cpu_id, 1);
738 break;
739 }
740 /*
741 * Someone else has requested upgrade. Release our shared
742 * lock, awaken upgrade requestor if we are the last shared
743 * lock, then request an exclusive lock.
744 */
745 if (lkp->lk_sharecount == 0)
746 WAKEUP_WAITER(lkp);
747 /* fall into exclusive request */
748
749 case LK_EXCLUSIVE:
750 if (WEHOLDIT(lkp, pid, lid, cpu_id)) {
751 /*
752 * Recursive lock.
753 */
754 if ((extflags & LK_CANRECURSE) == 0 &&
755 lkp->lk_recurselevel == 0) {
756 if (extflags & LK_RECURSEFAIL) {
757 error = EDEADLK;
758 break;
759 } else
760 panic("lockmgr: locking against myself");
761 }
762 lkp->lk_exclusivecount++;
763 if (extflags & LK_SETRECURSE &&
764 lkp->lk_recurselevel == 0)
765 lkp->lk_recurselevel = lkp->lk_exclusivecount;
766 COUNT(lkp, l, cpu_id, 1);
767 break;
768 }
769 /*
770 * If we are just polling, check to see if we will sleep.
771 */
772 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
773 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
774 LK_SHARE_NONZERO))) {
775 error = EBUSY;
776 break;
777 }
778 /*
779 * Try to acquire the want_exclusive flag.
780 */
781 error = acquire(&lkp, &s, extflags, 0,
782 LK_HAVE_EXCL | LK_WANT_EXCL);
783 if (error)
784 break;
785 lkp->lk_flags |= LK_WANT_EXCL;
786 /*
787 * Wait for shared locks and upgrades to finish.
788 */
789 error = acquire(&lkp, &s, extflags, 0,
790 LK_HAVE_EXCL | LK_WANT_UPGRADE | LK_SHARE_NONZERO);
791 lkp->lk_flags &= ~LK_WANT_EXCL;
792 if (error) {
793 WAKEUP_WAITER(lkp);
794 break;
795 }
796 lkp->lk_flags |= LK_HAVE_EXCL;
797 SETHOLDER(lkp, pid, lid, cpu_id);
798 #if defined(LOCKDEBUG)
799 lkp->lk_lock_file = file;
800 lkp->lk_lock_line = line;
801 #endif
802 HAVEIT(lkp);
803 if (lkp->lk_exclusivecount != 0)
804 panic("lockmgr: non-zero exclusive count");
805 lkp->lk_exclusivecount = 1;
806 if (extflags & LK_SETRECURSE)
807 lkp->lk_recurselevel = 1;
808 COUNT(lkp, l, cpu_id, 1);
809 break;
810
811 case LK_RELEASE:
812 if (lkp->lk_exclusivecount != 0) {
813 if (WEHOLDIT(lkp, pid, lid, cpu_id) == 0) {
814 if (lkp->lk_flags & LK_SPIN) {
815 panic("lockmgr: processor %lu, not "
816 "exclusive lock holder %lu "
817 "unlocking", cpu_id, lkp->lk_cpu);
818 } else {
819 panic("lockmgr: pid %d, not "
820 "exclusive lock holder %d "
821 "unlocking", pid,
822 lkp->lk_lockholder);
823 }
824 }
825 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
826 lkp->lk_recurselevel = 0;
827 lkp->lk_exclusivecount--;
828 COUNT(lkp, l, cpu_id, -1);
829 if (lkp->lk_exclusivecount == 0) {
830 lkp->lk_flags &= ~LK_HAVE_EXCL;
831 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
832 #if defined(LOCKDEBUG)
833 lkp->lk_unlock_file = file;
834 lkp->lk_unlock_line = line;
835 #endif
836 DONTHAVEIT(lkp);
837 }
838 } else if (lkp->lk_sharecount != 0) {
839 lkp->lk_sharecount--;
840 if (lkp->lk_sharecount == 0)
841 lkp->lk_flags &= ~LK_SHARE_NONZERO;
842 COUNT(lkp, l, cpu_id, -1);
843 }
844 #ifdef DIAGNOSTIC
845 else
846 panic("lockmgr: release of unlocked lock!");
847 #endif
848 WAKEUP_WAITER(lkp);
849 break;
850
851 case LK_DRAIN:
852 /*
853 * Check that we do not already hold the lock, as it can
854 * never drain if we do. Unfortunately, we have no way to
855 * check for holding a shared lock, but at least we can
856 * check for an exclusive one.
857 */
858 if (WEHOLDIT(lkp, pid, lid, cpu_id))
859 panic("lockmgr: draining against myself");
860 /*
861 * If we are just polling, check to see if we will sleep.
862 */
863 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
864 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
865 LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
866 error = EBUSY;
867 break;
868 }
869 error = acquire(&lkp, &s, extflags, 1,
870 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
871 LK_SHARE_NONZERO | LK_WAIT_NONZERO);
872 if (error)
873 break;
874 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
875 SETHOLDER(lkp, pid, lid, cpu_id);
876 #if defined(LOCKDEBUG)
877 lkp->lk_lock_file = file;
878 lkp->lk_lock_line = line;
879 #endif
880 HAVEIT(lkp);
881 lkp->lk_exclusivecount = 1;
882 /* XXX unlikely that we'd want this */
883 if (extflags & LK_SETRECURSE)
884 lkp->lk_recurselevel = 1;
885 COUNT(lkp, l, cpu_id, 1);
886 break;
887
888 default:
889 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
890 panic("lockmgr: unknown locktype request %d",
891 flags & LK_TYPE_MASK);
892 /* NOTREACHED */
893 }
894 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
895 ((lkp->lk_flags &
896 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
897 LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
898 lkp->lk_flags &= ~LK_WAITDRAIN;
899 wakeup((void *)&lkp->lk_flags);
900 }
901 /*
902 * Note that this panic will be a recursive panic, since
903 * we only set lock_shutdown_noblock above if panicstr != NULL.
904 */
905 if (error && lock_shutdown_noblock)
906 panic("lockmgr: deadlock (see previous panic)");
907
908 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
909 return (error);
910 }
911
912 /*
913 * For a recursive spinlock held one or more times by the current CPU,
914 * release all N locks, and return N.
915 * Intended for use in mi_switch() shortly before context switching.
916 */
917
918 int
919 #if defined(LOCKDEBUG)
920 _spinlock_release_all(__volatile struct lock *lkp, const char *file, int line)
921 #else
922 spinlock_release_all(__volatile struct lock *lkp)
923 #endif
924 {
925 int s, count;
926 cpuid_t cpu_id;
927
928 KASSERT(lkp->lk_flags & LK_SPIN);
929
930 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
931
932 cpu_id = cpu_number();
933 count = lkp->lk_exclusivecount;
934
935 if (count != 0) {
936 #ifdef DIAGNOSTIC
937 if (WEHOLDIT(lkp, 0, 0, cpu_id) == 0) {
938 panic("spinlock_release_all: processor %lu, not "
939 "exclusive lock holder %lu "
940 "unlocking", (long)cpu_id, lkp->lk_cpu);
941 }
942 #endif
943 lkp->lk_recurselevel = 0;
944 lkp->lk_exclusivecount = 0;
945 COUNT_CPU(cpu_id, -count);
946 lkp->lk_flags &= ~LK_HAVE_EXCL;
947 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
948 #if defined(LOCKDEBUG)
949 lkp->lk_unlock_file = file;
950 lkp->lk_unlock_line = line;
951 #endif
952 DONTHAVEIT(lkp);
953 }
954 #ifdef DIAGNOSTIC
955 else if (lkp->lk_sharecount != 0)
956 panic("spinlock_release_all: release of shared lock!");
957 else
958 panic("spinlock_release_all: release of unlocked lock!");
959 #endif
960 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
961
962 return (count);
963 }
964
965 /*
966 * For a recursive spinlock held one or more times by the current CPU,
967 * release all N locks, and return N.
968 * Intended for use in mi_switch() right after resuming execution.
969 */
970
971 void
972 #if defined(LOCKDEBUG)
973 _spinlock_acquire_count(__volatile struct lock *lkp, int count,
974 const char *file, int line)
975 #else
976 spinlock_acquire_count(__volatile struct lock *lkp, int count)
977 #endif
978 {
979 int s, error;
980 cpuid_t cpu_id;
981
982 KASSERT(lkp->lk_flags & LK_SPIN);
983
984 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
985
986 cpu_id = cpu_number();
987
988 #ifdef DIAGNOSTIC
989 if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_id))
990 panic("spinlock_acquire_count: processor %lu already holds lock", (long)cpu_id);
991 #endif
992 /*
993 * Try to acquire the want_exclusive flag.
994 */
995 error = acquire(&lkp, &s, LK_SPIN, 0, LK_HAVE_EXCL | LK_WANT_EXCL);
996 lkp->lk_flags |= LK_WANT_EXCL;
997 /*
998 * Wait for shared locks and upgrades to finish.
999 */
1000 error = acquire(&lkp, &s, LK_SPIN, 0,
1001 LK_HAVE_EXCL | LK_SHARE_NONZERO | LK_WANT_UPGRADE);
1002 lkp->lk_flags &= ~LK_WANT_EXCL;
1003 lkp->lk_flags |= LK_HAVE_EXCL;
1004 SETHOLDER(lkp, LK_NOPROC, 0, cpu_id);
1005 #if defined(LOCKDEBUG)
1006 lkp->lk_lock_file = file;
1007 lkp->lk_lock_line = line;
1008 #endif
1009 HAVEIT(lkp);
1010 if (lkp->lk_exclusivecount != 0)
1011 panic("lockmgr: non-zero exclusive count");
1012 lkp->lk_exclusivecount = count;
1013 lkp->lk_recurselevel = 1;
1014 COUNT_CPU(cpu_id, count);
1015
1016 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
1017 }
1018
1019
1020
1021 /*
1022 * Print out information about state of a lock. Used by VOP_PRINT
1023 * routines to display ststus about contained locks.
1024 */
1025 void
1026 lockmgr_printinfo(__volatile struct lock *lkp)
1027 {
1028
1029 if (lkp->lk_sharecount)
1030 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
1031 lkp->lk_sharecount);
1032 else if (lkp->lk_flags & LK_HAVE_EXCL) {
1033 printf(" lock type %s: EXCL (count %d) by ",
1034 lkp->lk_wmesg, lkp->lk_exclusivecount);
1035 if (lkp->lk_flags & LK_SPIN)
1036 printf("processor %lu", lkp->lk_cpu);
1037 else
1038 printf("pid %d.%d", lkp->lk_lockholder,
1039 lkp->lk_locklwp);
1040 } else
1041 printf(" not locked");
1042 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
1043 printf(" with %d pending", lkp->lk_waitcount);
1044 }
1045
1046 #if defined(LOCKDEBUG) /* { */
1047 TAILQ_HEAD(, simplelock) simplelock_list =
1048 TAILQ_HEAD_INITIALIZER(simplelock_list);
1049
1050 #if defined(MULTIPROCESSOR) /* { */
1051 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
1052
1053 #define SLOCK_LIST_LOCK() \
1054 __cpu_simple_lock(&simplelock_list_slock.lock_data)
1055
1056 #define SLOCK_LIST_UNLOCK() \
1057 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
1058
1059 #define SLOCK_COUNT(x) \
1060 curcpu()->ci_simple_locks += (x)
1061 #else
1062 u_long simple_locks;
1063
1064 #define SLOCK_LIST_LOCK() /* nothing */
1065
1066 #define SLOCK_LIST_UNLOCK() /* nothing */
1067
1068 #define SLOCK_COUNT(x) simple_locks += (x)
1069 #endif /* MULTIPROCESSOR */ /* } */
1070
1071 #ifdef MULTIPROCESSOR
1072 #define SLOCK_MP() lock_printf("on CPU %ld\n", \
1073 (u_long) cpu_number())
1074 #else
1075 #define SLOCK_MP() /* nothing */
1076 #endif
1077
1078 #define SLOCK_WHERE(str, alp, id, l) \
1079 do { \
1080 lock_printf("\n"); \
1081 lock_printf(str); \
1082 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
1083 SLOCK_MP(); \
1084 if ((alp)->lock_file != NULL) \
1085 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
1086 (alp)->lock_line); \
1087 if ((alp)->unlock_file != NULL) \
1088 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1089 (alp)->unlock_line); \
1090 SLOCK_TRACE() \
1091 SLOCK_DEBUGGER(); \
1092 } while (/*CONSTCOND*/0)
1093
1094 /*
1095 * Simple lock functions so that the debugger can see from whence
1096 * they are being called.
1097 */
1098 void
1099 simple_lock_init(struct simplelock *alp)
1100 {
1101
1102 #if defined(MULTIPROCESSOR) /* { */
1103 __cpu_simple_lock_init(&alp->lock_data);
1104 #else
1105 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1106 #endif /* } */
1107 alp->lock_file = NULL;
1108 alp->lock_line = 0;
1109 alp->unlock_file = NULL;
1110 alp->unlock_line = 0;
1111 alp->lock_holder = LK_NOCPU;
1112 }
1113
1114 void
1115 _simple_lock(__volatile struct simplelock *alp, const char *id, int l)
1116 {
1117 cpuid_t cpu_id = cpu_number();
1118 int s;
1119
1120 s = spllock();
1121
1122 /*
1123 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1124 * don't take any action, and just fall into the normal spin case.
1125 */
1126 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1127 #if defined(MULTIPROCESSOR) /* { */
1128 if (alp->lock_holder == cpu_id) {
1129 SLOCK_WHERE("simple_lock: locking against myself\n",
1130 alp, id, l);
1131 goto out;
1132 }
1133 #else
1134 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1135 goto out;
1136 #endif /* MULTIPROCESSOR */ /* } */
1137 }
1138
1139 #if defined(MULTIPROCESSOR) /* { */
1140 /* Acquire the lock before modifying any fields. */
1141 splx(s);
1142 __cpu_simple_lock(&alp->lock_data);
1143 s = spllock();
1144 #else
1145 alp->lock_data = __SIMPLELOCK_LOCKED;
1146 #endif /* } */
1147
1148 if (alp->lock_holder != LK_NOCPU) {
1149 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1150 alp, id, l);
1151 }
1152 alp->lock_file = id;
1153 alp->lock_line = l;
1154 alp->lock_holder = cpu_id;
1155
1156 SLOCK_LIST_LOCK();
1157 /* XXX Cast away volatile */
1158 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1159 SLOCK_LIST_UNLOCK();
1160
1161 SLOCK_COUNT(1);
1162
1163 out:
1164 splx(s);
1165 }
1166
1167 int
1168 _simple_lock_held(__volatile struct simplelock *alp)
1169 {
1170 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1171 cpuid_t cpu_id = cpu_number();
1172 #endif
1173 int s, locked = 0;
1174
1175 s = spllock();
1176
1177 #if defined(MULTIPROCESSOR)
1178 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1179 locked = (alp->lock_holder == cpu_id);
1180 else
1181 __cpu_simple_unlock(&alp->lock_data);
1182 #else
1183 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1184 locked = 1;
1185 KASSERT(alp->lock_holder == cpu_id);
1186 }
1187 #endif
1188
1189 splx(s);
1190
1191 return (locked);
1192 }
1193
1194 int
1195 _simple_lock_try(__volatile struct simplelock *alp, const char *id, int l)
1196 {
1197 cpuid_t cpu_id = cpu_number();
1198 int s, rv = 0;
1199
1200 s = spllock();
1201
1202 /*
1203 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1204 * don't take any action.
1205 */
1206 #if defined(MULTIPROCESSOR) /* { */
1207 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1208 if (alp->lock_holder == cpu_id)
1209 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1210 alp, id, l);
1211 goto out;
1212 }
1213 #else
1214 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1215 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1216 goto out;
1217 }
1218 alp->lock_data = __SIMPLELOCK_LOCKED;
1219 #endif /* MULTIPROCESSOR */ /* } */
1220
1221 /*
1222 * At this point, we have acquired the lock.
1223 */
1224
1225 rv = 1;
1226
1227 alp->lock_file = id;
1228 alp->lock_line = l;
1229 alp->lock_holder = cpu_id;
1230
1231 SLOCK_LIST_LOCK();
1232 /* XXX Cast away volatile. */
1233 TAILQ_INSERT_TAIL(&simplelock_list, (struct simplelock *)alp, list);
1234 SLOCK_LIST_UNLOCK();
1235
1236 SLOCK_COUNT(1);
1237
1238 out:
1239 splx(s);
1240 return (rv);
1241 }
1242
1243 void
1244 _simple_unlock(__volatile struct simplelock *alp, const char *id, int l)
1245 {
1246 int s;
1247
1248 s = spllock();
1249
1250 /*
1251 * MULTIPROCESSOR case: This is `safe' because we think we hold
1252 * the lock, and if we don't, we don't take any action.
1253 */
1254 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1255 SLOCK_WHERE("simple_unlock: lock not held\n",
1256 alp, id, l);
1257 goto out;
1258 }
1259
1260 SLOCK_LIST_LOCK();
1261 TAILQ_REMOVE(&simplelock_list, alp, list);
1262 SLOCK_LIST_UNLOCK();
1263
1264 SLOCK_COUNT(-1);
1265
1266 alp->list.tqe_next = NULL; /* sanity */
1267 alp->list.tqe_prev = NULL; /* sanity */
1268
1269 alp->unlock_file = id;
1270 alp->unlock_line = l;
1271
1272 #if defined(MULTIPROCESSOR) /* { */
1273 alp->lock_holder = LK_NOCPU;
1274 /* Now that we've modified all fields, release the lock. */
1275 __cpu_simple_unlock(&alp->lock_data);
1276 #else
1277 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1278 KASSERT(alp->lock_holder == cpu_number());
1279 alp->lock_holder = LK_NOCPU;
1280 #endif /* } */
1281
1282 out:
1283 splx(s);
1284 }
1285
1286 void
1287 simple_lock_dump(void)
1288 {
1289 struct simplelock *alp;
1290 int s;
1291
1292 s = spllock();
1293 SLOCK_LIST_LOCK();
1294 lock_printf("all simple locks:\n");
1295 TAILQ_FOREACH(alp, &simplelock_list, list) {
1296 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1297 alp->lock_file, alp->lock_line);
1298 }
1299 SLOCK_LIST_UNLOCK();
1300 splx(s);
1301 }
1302
1303 void
1304 simple_lock_freecheck(void *start, void *end)
1305 {
1306 struct simplelock *alp;
1307 int s;
1308
1309 s = spllock();
1310 SLOCK_LIST_LOCK();
1311 TAILQ_FOREACH(alp, &simplelock_list, list) {
1312 if ((void *)alp >= start && (void *)alp < end) {
1313 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1314 alp, alp->lock_holder, alp->lock_file,
1315 alp->lock_line);
1316 SLOCK_DEBUGGER();
1317 }
1318 }
1319 SLOCK_LIST_UNLOCK();
1320 splx(s);
1321 }
1322
1323 /*
1324 * We must be holding exactly one lock: the sched_lock.
1325 */
1326
1327 void
1328 simple_lock_switchcheck(void)
1329 {
1330
1331 simple_lock_only_held(&sched_lock, "switching");
1332 }
1333
1334 void
1335 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1336 {
1337 struct simplelock *alp;
1338 cpuid_t cpu_id = cpu_number();
1339 int s;
1340
1341 if (lp) {
1342 LOCK_ASSERT(simple_lock_held(lp));
1343 }
1344 s = spllock();
1345 SLOCK_LIST_LOCK();
1346 TAILQ_FOREACH(alp, &simplelock_list, list) {
1347 if (alp == lp)
1348 continue;
1349 if (alp->lock_holder == cpu_id)
1350 break;
1351 }
1352 SLOCK_LIST_UNLOCK();
1353 splx(s);
1354
1355 if (alp != NULL) {
1356 lock_printf("\n%s with held simple_lock %p "
1357 "CPU %lu %s:%d\n",
1358 where, alp, alp->lock_holder, alp->lock_file,
1359 alp->lock_line);
1360 SLOCK_TRACE();
1361 SLOCK_DEBUGGER();
1362 }
1363 }
1364 #endif /* LOCKDEBUG */ /* } */
1365
1366 #if defined(MULTIPROCESSOR)
1367 /*
1368 * Functions for manipulating the kernel_lock. We put them here
1369 * so that they show up in profiles.
1370 */
1371
1372 struct lock kernel_lock;
1373
1374 void
1375 _kernel_lock_init(void)
1376 {
1377
1378 spinlockinit(&kernel_lock, "klock", 0);
1379 }
1380
1381 /*
1382 * Acquire/release the kernel lock. Intended for use in the scheduler
1383 * and the lower half of the kernel.
1384 */
1385 void
1386 _kernel_lock(int flag)
1387 {
1388
1389 SCHED_ASSERT_UNLOCKED();
1390 spinlockmgr(&kernel_lock, flag, 0);
1391 }
1392
1393 void
1394 _kernel_unlock(void)
1395 {
1396
1397 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1398 }
1399
1400 /*
1401 * Acquire/release the kernel_lock on behalf of a process. Intended for
1402 * use in the top half of the kernel.
1403 */
1404 void
1405 _kernel_proc_lock(struct lwp *l)
1406 {
1407
1408 SCHED_ASSERT_UNLOCKED();
1409 spinlockmgr(&kernel_lock, LK_EXCLUSIVE, 0);
1410 }
1411
1412 void
1413 _kernel_proc_unlock(struct lwp *l)
1414 {
1415
1416 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
1417 }
1418
1419 int
1420 _kernel_lock_release_all()
1421 {
1422 int hold_count;
1423
1424 if (lockstatus(&kernel_lock) == LK_EXCLUSIVE)
1425 hold_count = spinlock_release_all(&kernel_lock);
1426 else
1427 hold_count = 0;
1428
1429 return hold_count;
1430 }
1431
1432 void
1433 _kernel_lock_acquire_count(int hold_count)
1434 {
1435
1436 if (hold_count != 0)
1437 spinlock_acquire_count(&kernel_lock, hold_count);
1438 }
1439 #if defined(DEBUG)
1440 void
1441 _kernel_lock_assert_locked()
1442 {
1443
1444 KDASSERT(lockstatus(&kernel_lock) == LK_EXCLUSIVE);
1445 }
1446 #endif
1447 #endif /* MULTIPROCESSOR */
1448