kern_lock.c revision 1.99.2.2 1 /* $NetBSD: kern_lock.c,v 1.99.2.2 2006/10/20 20:02:34 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.99.2.2 2006/10/20 20:02:34 ad Exp $");
80
81 #include "opt_multiprocessor.h"
82 #include "opt_lockdebug.h"
83 #include "opt_ddb.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/proc.h>
89 #include <sys/lock.h>
90 #include <sys/systm.h>
91 #include <machine/cpu.h>
92
93 #include <dev/lockstat.h>
94
95 #if defined(LOCKDEBUG)
96 #include <sys/syslog.h>
97 /*
98 * note that stdarg.h and the ansi style va_start macro is used for both
99 * ansi and traditional c compiles.
100 * XXX: this requires that stdarg.h define: va_alist and va_dcl
101 */
102 #include <machine/stdarg.h>
103
104 void lock_printf(const char *fmt, ...)
105 __attribute__((__format__(__printf__,1,2)));
106
107 static int acquire(volatile struct lock **, int *, int, int, int, uintptr_t);
108
109 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
110
111 #ifdef DDB
112 #include <ddb/ddbvar.h>
113 #include <machine/db_machdep.h>
114 #include <ddb/db_command.h>
115 #include <ddb/db_interface.h>
116 #endif
117 #endif /* defined(LOCKDEBUG) */
118
119 #if defined(MULTIPROCESSOR)
120 /*
121 * IPL_BIGLOCK: block IPLs which need to grab kernel_mutex.
122 * XXX IPL_VM or IPL_AUDIO should be enough.
123 */
124 #if !defined(__HAVE_SPLBIGLOCK)
125 #define IPL_BIGLOCK IPL_CLOCK
126 #endif
127 kmutex_t kernel_mutex;
128 #endif
129
130 /*
131 * Locking primitives implementation.
132 * Locks provide shared/exclusive synchronization.
133 */
134
135 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
136 #if defined(MULTIPROCESSOR) /* { */
137 #define COUNT_CPU(cpu_id, x) \
138 curcpu()->ci_spin_locks += (x)
139 #else
140 u_long spin_locks;
141 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
142 #endif /* MULTIPROCESSOR */ /* } */
143
144 #define COUNT(lkp, l, cpu_id, x) \
145 do { \
146 if ((lkp)->lk_flags & LK_SPIN) \
147 COUNT_CPU((cpu_id), (x)); \
148 else \
149 (l)->l_locks += (x); \
150 } while (/*CONSTCOND*/0)
151 #else
152 #define COUNT(lkp, p, cpu_id, x)
153 #define COUNT_CPU(cpu_id, x)
154 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
155
156 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
157 do { \
158 if ((flags) & LK_SPIN) \
159 s = spllock(); \
160 simple_lock(&(lkp)->lk_interlock); \
161 } while (/*CONSTCOND*/ 0)
162
163 #define INTERLOCK_RELEASE(lkp, flags, s) \
164 do { \
165 simple_unlock(&(lkp)->lk_interlock); \
166 if ((flags) & LK_SPIN) \
167 splx(s); \
168 } while (/*CONSTCOND*/ 0)
169
170 #ifdef DDB /* { */
171 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
172 int simple_lock_debugger = 1; /* more serious on MP */
173 #else
174 int simple_lock_debugger = 0;
175 #endif
176 #define SLOCK_DEBUGGER() if (simple_lock_debugger && db_onpanic) Debugger()
177 #define SLOCK_TRACE() \
178 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
179 TRUE, 65535, "", lock_printf);
180 #else
181 #define SLOCK_DEBUGGER() /* nothing */
182 #define SLOCK_TRACE() /* nothing */
183 #endif /* } */
184
185 #if defined(LOCKDEBUG)
186 #if defined(DDB)
187 #define SPINLOCK_SPINCHECK_DEBUGGER if (db_onpanic) Debugger()
188 #else
189 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
190 #endif
191
192 #define SPINLOCK_SPINCHECK_DECL \
193 /* 32-bits of count -- wrap constitutes a "spinout" */ \
194 uint32_t __spinc = 0
195
196 #define SPINLOCK_SPINCHECK \
197 do { \
198 if (++__spinc == 0) { \
199 lock_printf("LK_SPIN spinout, excl %d, share %d\n", \
200 lkp->lk_exclusivecount, lkp->lk_sharecount); \
201 if (lkp->lk_exclusivecount) \
202 lock_printf("held by CPU %lu\n", \
203 (u_long) lkp->lk_cpu); \
204 if (lkp->lk_lock_file) \
205 lock_printf("last locked at %s:%d\n", \
206 lkp->lk_lock_file, lkp->lk_lock_line); \
207 if (lkp->lk_unlock_file) \
208 lock_printf("last unlocked at %s:%d\n", \
209 lkp->lk_unlock_file, lkp->lk_unlock_line); \
210 SLOCK_TRACE(); \
211 SPINLOCK_SPINCHECK_DEBUGGER; \
212 } \
213 } while (/*CONSTCOND*/ 0)
214 #else
215 #define SPINLOCK_SPINCHECK_DECL /* nothing */
216 #define SPINLOCK_SPINCHECK /* nothing */
217 #endif /* LOCKDEBUG && DDB */
218
219 #define RETURN_ADDRESS ((uintptr_t)__builtin_return_address(0))
220
221 /*
222 * Acquire a resource.
223 */
224 static int
225 acquire(volatile struct lock **lkpp, int *s, int extflags,
226 int drain, int wanted, uintptr_t ra)
227 {
228 int error;
229 volatile struct lock *lkp = *lkpp;
230 LOCKSTAT_TIMER(slptime);
231
232 KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
233
234 if (extflags & LK_SPIN) {
235 int interlocked;
236
237 SPINLOCK_SPINCHECK_DECL;
238
239 if (!drain) {
240 lkp->lk_waitcount++;
241 lkp->lk_flags |= LK_WAIT_NONZERO;
242 }
243 for (interlocked = 1;;) {
244 SPINLOCK_SPINCHECK;
245 if ((lkp->lk_flags & wanted) != 0) {
246 if (interlocked) {
247 INTERLOCK_RELEASE(lkp, LK_SPIN, *s);
248 interlocked = 0;
249 }
250 SPINLOCK_SPIN_HOOK;
251 } else if (interlocked) {
252 break;
253 } else {
254 INTERLOCK_ACQUIRE(lkp, LK_SPIN, *s);
255 interlocked = 1;
256 }
257 }
258 if (!drain) {
259 lkp->lk_waitcount--;
260 if (lkp->lk_waitcount == 0)
261 lkp->lk_flags &= ~LK_WAIT_NONZERO;
262 }
263 KASSERT((lkp->lk_flags & wanted) == 0);
264 error = 0; /* sanity */
265 } else {
266 for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
267 if (drain)
268 lkp->lk_flags |= LK_WAITDRAIN;
269 else {
270 lkp->lk_waitcount++;
271 lkp->lk_flags |= LK_WAIT_NONZERO;
272 }
273 /* XXX Cast away volatile. */
274 LOCKSTAT_START_TIMER(slptime);
275 error = ltsleep(drain ?
276 (volatile const void *)&lkp->lk_flags :
277 (volatile const void *)lkp, lkp->lk_prio,
278 lkp->lk_wmesg, lkp->lk_timo, &lkp->lk_interlock);
279 LOCKSTAT_STOP_TIMER(slptime);
280 LOCKSTAT_EVENT_RA((void *)(uintptr_t)lkp,
281 LB_LOCKMGR | LB_SLEEP, 1, slptime, ra);
282 if (!drain) {
283 lkp->lk_waitcount--;
284 if (lkp->lk_waitcount == 0)
285 lkp->lk_flags &= ~LK_WAIT_NONZERO;
286 }
287 if (error)
288 break;
289 if (extflags & LK_SLEEPFAIL) {
290 error = ENOLCK;
291 break;
292 }
293 if (lkp->lk_newlock != NULL) {
294 simple_lock(&lkp->lk_newlock->lk_interlock);
295 simple_unlock(&lkp->lk_interlock);
296 if (lkp->lk_waitcount == 0)
297 wakeup(&lkp->lk_newlock);
298 *lkpp = lkp = lkp->lk_newlock;
299 }
300 }
301 }
302
303 return error;
304 }
305
306 #define SETHOLDER(lkp, pid, lid, cpu_id) \
307 do { \
308 if ((lkp)->lk_flags & LK_SPIN) \
309 (lkp)->lk_cpu = cpu_id; \
310 else { \
311 (lkp)->lk_lockholder = pid; \
312 (lkp)->lk_locklwp = lid; \
313 } \
314 } while (/*CONSTCOND*/0)
315
316 #define WEHOLDIT(lkp, pid, lid, cpu_id) \
317 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
318 ((lkp)->lk_cpu == (cpu_id)) : \
319 ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
320
321 #define WAKEUP_WAITER(lkp) \
322 do { \
323 if (((lkp)->lk_flags & (LK_SPIN | LK_WAIT_NONZERO)) == \
324 LK_WAIT_NONZERO) { \
325 wakeup((lkp)); \
326 } \
327 } while (/*CONSTCOND*/0)
328
329 #if defined(LOCKDEBUG) /* { */
330 #if defined(MULTIPROCESSOR) /* { */
331 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
332
333 #define SPINLOCK_LIST_LOCK() \
334 __cpu_simple_lock(&spinlock_list_slock.lock_data)
335
336 #define SPINLOCK_LIST_UNLOCK() \
337 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
338 #else
339 #define SPINLOCK_LIST_LOCK() /* nothing */
340
341 #define SPINLOCK_LIST_UNLOCK() /* nothing */
342 #endif /* MULTIPROCESSOR */ /* } */
343
344 _TAILQ_HEAD(, struct lock, volatile) spinlock_list =
345 TAILQ_HEAD_INITIALIZER(spinlock_list);
346
347 #define HAVEIT(lkp) \
348 do { \
349 if ((lkp)->lk_flags & LK_SPIN) { \
350 int sp = spllock(); \
351 SPINLOCK_LIST_LOCK(); \
352 TAILQ_INSERT_TAIL(&spinlock_list, (lkp), lk_list); \
353 SPINLOCK_LIST_UNLOCK(); \
354 splx(sp); \
355 } \
356 } while (/*CONSTCOND*/0)
357
358 #define DONTHAVEIT(lkp) \
359 do { \
360 if ((lkp)->lk_flags & LK_SPIN) { \
361 int sp = spllock(); \
362 SPINLOCK_LIST_LOCK(); \
363 TAILQ_REMOVE(&spinlock_list, (lkp), lk_list); \
364 SPINLOCK_LIST_UNLOCK(); \
365 splx(sp); \
366 } \
367 } while (/*CONSTCOND*/0)
368 #else
369 #define HAVEIT(lkp) /* nothing */
370
371 #define DONTHAVEIT(lkp) /* nothing */
372 #endif /* LOCKDEBUG */ /* } */
373
374 #if defined(LOCKDEBUG)
375 /*
376 * Lock debug printing routine; can be configured to print to console
377 * or log to syslog.
378 */
379 void
380 lock_printf(const char *fmt, ...)
381 {
382 char b[150];
383 va_list ap;
384
385 va_start(ap, fmt);
386 if (lock_debug_syslog)
387 vlog(LOG_DEBUG, fmt, ap);
388 else {
389 vsnprintf(b, sizeof(b), fmt, ap);
390 printf_nolog("%s", b);
391 }
392 va_end(ap);
393 }
394 #endif /* LOCKDEBUG */
395
396 /*
397 * Transfer any waiting processes from one lock to another.
398 */
399 void
400 transferlockers(struct lock *from, struct lock *to)
401 {
402
403 KASSERT(from != to);
404 KASSERT((from->lk_flags & LK_WAITDRAIN) == 0);
405 if (from->lk_waitcount == 0)
406 return;
407 from->lk_newlock = to;
408 wakeup((void *)from);
409 tsleep((void *)&from->lk_newlock, from->lk_prio, "lkxfer", 0);
410 from->lk_newlock = NULL;
411 from->lk_flags &= ~(LK_WANT_EXCL | LK_WANT_UPGRADE);
412 KASSERT(from->lk_waitcount == 0);
413 }
414
415
416 /*
417 * Initialize a lock; required before use.
418 */
419 void
420 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
421 {
422
423 memset(lkp, 0, sizeof(struct lock));
424 simple_lock_init(&lkp->lk_interlock);
425 lkp->lk_flags = flags & LK_EXTFLG_MASK;
426 if (flags & LK_SPIN)
427 lkp->lk_cpu = LK_NOCPU;
428 else {
429 lkp->lk_lockholder = LK_NOPROC;
430 lkp->lk_newlock = NULL;
431 lkp->lk_prio = prio;
432 lkp->lk_timo = timo;
433 }
434 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
435 #if defined(LOCKDEBUG)
436 lkp->lk_lock_file = NULL;
437 lkp->lk_unlock_file = NULL;
438 #endif
439 }
440
441 /*
442 * Determine the status of a lock.
443 */
444 int
445 lockstatus(struct lock *lkp)
446 {
447 int s = 0; /* XXX: gcc */
448 int lock_type = 0;
449 struct lwp *l = curlwp; /* XXX */
450 pid_t pid;
451 lwpid_t lid;
452 cpuid_t cpu_num;
453
454 if ((lkp->lk_flags & LK_SPIN) || l == NULL) {
455 cpu_num = cpu_number();
456 pid = LK_KERNPROC;
457 lid = 0;
458 } else {
459 cpu_num = LK_NOCPU;
460 pid = l->l_proc->p_pid;
461 lid = l->l_lid;
462 }
463
464 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
465 if (lkp->lk_exclusivecount != 0) {
466 if (WEHOLDIT(lkp, pid, lid, cpu_num))
467 lock_type = LK_EXCLUSIVE;
468 else
469 lock_type = LK_EXCLOTHER;
470 } else if (lkp->lk_sharecount != 0)
471 lock_type = LK_SHARED;
472 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
473 return (lock_type);
474 }
475
476 #if defined(LOCKDEBUG)
477 /*
478 * Make sure no spin locks are held by a CPU that is about
479 * to context switch.
480 */
481 void
482 spinlock_switchcheck(void)
483 {
484 u_long cnt;
485 int s;
486
487 s = spllock();
488 #if defined(MULTIPROCESSOR)
489 cnt = curcpu()->ci_spin_locks;
490 #else
491 cnt = spin_locks;
492 #endif
493 splx(s);
494
495 if (cnt != 0)
496 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
497 (u_long) cpu_number(), cnt);
498 }
499 #endif /* LOCKDEBUG */
500
501 /*
502 * Locks and IPLs (interrupt priority levels):
503 *
504 * Locks which may be taken from interrupt context must be handled
505 * very carefully; you must spl to the highest IPL where the lock
506 * is needed before acquiring the lock.
507 *
508 * It is also important to avoid deadlock, since certain (very high
509 * priority) interrupts are often needed to keep the system as a whole
510 * from deadlocking, and must not be blocked while you are spinning
511 * waiting for a lower-priority lock.
512 *
513 * In addition, the lock-debugging hooks themselves need to use locks!
514 *
515 * A raw __cpu_simple_lock may be used from interrupts are long as it
516 * is acquired and held at a single IPL.
517 *
518 * A simple_lock (which is a __cpu_simple_lock wrapped with some
519 * debugging hooks) may be used at or below spllock(), which is
520 * typically at or just below splhigh() (i.e. blocks everything
521 * but certain machine-dependent extremely high priority interrupts).
522 *
523 * spinlockmgr spinlocks should be used at or below splsched().
524 *
525 * Some platforms may have interrupts of higher priority than splsched(),
526 * including hard serial interrupts, inter-processor interrupts, and
527 * kernel debugger traps.
528 */
529
530 /*
531 * XXX XXX kludge around another kludge..
532 *
533 * vfs_shutdown() may be called from interrupt context, either as a result
534 * of a panic, or from the debugger. It proceeds to call
535 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
536 *
537 * We would like to make an attempt to sync the filesystems in this case, so
538 * if this happens, we treat attempts to acquire locks specially.
539 * All locks are acquired on behalf of proc0.
540 *
541 * If we've already paniced, we don't block waiting for locks, but
542 * just barge right ahead since we're already going down in flames.
543 */
544
545 /*
546 * Set, change, or release a lock.
547 *
548 * Shared requests increment the shared count. Exclusive requests set the
549 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
550 * accepted shared locks and shared-to-exclusive upgrades to go away.
551 */
552 int
553 #if defined(LOCKDEBUG)
554 _lockmgr(volatile struct lock *lkp, u_int flags,
555 struct simplelock *interlkp, const char *file, int line)
556 #else
557 lockmgr(volatile struct lock *lkp, u_int flags,
558 struct simplelock *interlkp)
559 #endif
560 {
561 int error;
562 pid_t pid;
563 lwpid_t lid;
564 int extflags;
565 cpuid_t cpu_num;
566 struct lwp *l = curlwp;
567 int lock_shutdown_noblock = 0;
568 int s = 0;
569
570 error = 0;
571
572 /* LK_RETRY is for vn_lock, not for lockmgr. */
573 KASSERT((flags & LK_RETRY) == 0);
574
575 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
576 if (flags & LK_INTERLOCK)
577 simple_unlock(interlkp);
578 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
579
580 #ifdef DIAGNOSTIC /* { */
581 /*
582 * Don't allow spins on sleep locks and don't allow sleeps
583 * on spin locks.
584 */
585 if ((flags ^ lkp->lk_flags) & LK_SPIN)
586 panic("lockmgr: sleep/spin mismatch");
587 #endif /* } */
588
589 if (extflags & LK_SPIN) {
590 pid = LK_KERNPROC;
591 lid = 0;
592 } else {
593 if (l == NULL) {
594 if (!doing_shutdown) {
595 panic("lockmgr: no context");
596 } else {
597 l = &lwp0;
598 if (panicstr && (!(flags & LK_NOWAIT))) {
599 flags |= LK_NOWAIT;
600 lock_shutdown_noblock = 1;
601 }
602 }
603 }
604 lid = l->l_lid;
605 pid = l->l_proc->p_pid;
606 }
607 cpu_num = cpu_number();
608
609 /*
610 * Once a lock has drained, the LK_DRAINING flag is set and an
611 * exclusive lock is returned. The only valid operation thereafter
612 * is a single release of that exclusive lock. This final release
613 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
614 * further requests of any sort will result in a panic. The bits
615 * selected for these two flags are chosen so that they will be set
616 * in memory that is freed (freed memory is filled with 0xdeadbeef).
617 * The final release is permitted to give a new lease on life to
618 * the lock by specifying LK_REENABLE.
619 */
620 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
621 #ifdef DIAGNOSTIC /* { */
622 if (lkp->lk_flags & LK_DRAINED)
623 panic("lockmgr: using decommissioned lock");
624 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
625 WEHOLDIT(lkp, pid, lid, cpu_num) == 0)
626 panic("lockmgr: non-release on draining lock: %d",
627 flags & LK_TYPE_MASK);
628 #endif /* DIAGNOSTIC */ /* } */
629 lkp->lk_flags &= ~LK_DRAINING;
630 if ((flags & LK_REENABLE) == 0)
631 lkp->lk_flags |= LK_DRAINED;
632 }
633
634 switch (flags & LK_TYPE_MASK) {
635
636 case LK_SHARED:
637 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
638 /*
639 * If just polling, check to see if we will block.
640 */
641 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
642 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
643 error = EBUSY;
644 break;
645 }
646 /*
647 * Wait for exclusive locks and upgrades to clear.
648 */
649 error = acquire(&lkp, &s, extflags, 0,
650 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE,
651 RETURN_ADDRESS);
652 if (error)
653 break;
654 lkp->lk_sharecount++;
655 lkp->lk_flags |= LK_SHARE_NONZERO;
656 COUNT(lkp, l, cpu_num, 1);
657 break;
658 }
659 /*
660 * We hold an exclusive lock, so downgrade it to shared.
661 * An alternative would be to fail with EDEADLK.
662 */
663 lkp->lk_sharecount++;
664 lkp->lk_flags |= LK_SHARE_NONZERO;
665 COUNT(lkp, l, cpu_num, 1);
666 /* fall into downgrade */
667
668 case LK_DOWNGRADE:
669 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0 ||
670 lkp->lk_exclusivecount == 0)
671 panic("lockmgr: not holding exclusive lock");
672 lkp->lk_sharecount += lkp->lk_exclusivecount;
673 lkp->lk_flags |= LK_SHARE_NONZERO;
674 lkp->lk_exclusivecount = 0;
675 lkp->lk_recurselevel = 0;
676 lkp->lk_flags &= ~LK_HAVE_EXCL;
677 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
678 #if defined(LOCKDEBUG)
679 lkp->lk_unlock_file = file;
680 lkp->lk_unlock_line = line;
681 #endif
682 DONTHAVEIT(lkp);
683 WAKEUP_WAITER(lkp);
684 break;
685
686 case LK_EXCLUPGRADE:
687 /*
688 * If another process is ahead of us to get an upgrade,
689 * then we want to fail rather than have an intervening
690 * exclusive access.
691 */
692 if (lkp->lk_flags & LK_WANT_UPGRADE) {
693 lkp->lk_sharecount--;
694 if (lkp->lk_sharecount == 0)
695 lkp->lk_flags &= ~LK_SHARE_NONZERO;
696 COUNT(lkp, l, cpu_num, -1);
697 error = EBUSY;
698 break;
699 }
700 /* fall into normal upgrade */
701
702 case LK_UPGRADE:
703 /*
704 * Upgrade a shared lock to an exclusive one. If another
705 * shared lock has already requested an upgrade to an
706 * exclusive lock, our shared lock is released and an
707 * exclusive lock is requested (which will be granted
708 * after the upgrade). If we return an error, the file
709 * will always be unlocked.
710 */
711 if (WEHOLDIT(lkp, pid, lid, cpu_num) || lkp->lk_sharecount <= 0)
712 panic("lockmgr: upgrade exclusive lock");
713 lkp->lk_sharecount--;
714 if (lkp->lk_sharecount == 0)
715 lkp->lk_flags &= ~LK_SHARE_NONZERO;
716 COUNT(lkp, l, cpu_num, -1);
717 /*
718 * If we are just polling, check to see if we will block.
719 */
720 if ((extflags & LK_NOWAIT) &&
721 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
722 lkp->lk_sharecount > 1)) {
723 error = EBUSY;
724 break;
725 }
726 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
727 /*
728 * We are first shared lock to request an upgrade, so
729 * request upgrade and wait for the shared count to
730 * drop to zero, then take exclusive lock.
731 */
732 lkp->lk_flags |= LK_WANT_UPGRADE;
733 error = acquire(&lkp, &s, extflags, 0, LK_SHARE_NONZERO,
734 RETURN_ADDRESS);
735 lkp->lk_flags &= ~LK_WANT_UPGRADE;
736 if (error) {
737 WAKEUP_WAITER(lkp);
738 break;
739 }
740 lkp->lk_flags |= LK_HAVE_EXCL;
741 SETHOLDER(lkp, pid, lid, cpu_num);
742 #if defined(LOCKDEBUG)
743 lkp->lk_lock_file = file;
744 lkp->lk_lock_line = line;
745 #endif
746 HAVEIT(lkp);
747 if (lkp->lk_exclusivecount != 0)
748 panic("lockmgr: non-zero exclusive count");
749 lkp->lk_exclusivecount = 1;
750 if (extflags & LK_SETRECURSE)
751 lkp->lk_recurselevel = 1;
752 COUNT(lkp, l, cpu_num, 1);
753 break;
754 }
755 /*
756 * Someone else has requested upgrade. Release our shared
757 * lock, awaken upgrade requestor if we are the last shared
758 * lock, then request an exclusive lock.
759 */
760 if (lkp->lk_sharecount == 0)
761 WAKEUP_WAITER(lkp);
762 /* fall into exclusive request */
763
764 case LK_EXCLUSIVE:
765 if (WEHOLDIT(lkp, pid, lid, cpu_num)) {
766 /*
767 * Recursive lock.
768 */
769 if ((extflags & LK_CANRECURSE) == 0 &&
770 lkp->lk_recurselevel == 0) {
771 if (extflags & LK_RECURSEFAIL) {
772 error = EDEADLK;
773 break;
774 } else
775 panic("lockmgr: locking against myself");
776 }
777 lkp->lk_exclusivecount++;
778 if (extflags & LK_SETRECURSE &&
779 lkp->lk_recurselevel == 0)
780 lkp->lk_recurselevel = lkp->lk_exclusivecount;
781 COUNT(lkp, l, cpu_num, 1);
782 break;
783 }
784 /*
785 * If we are just polling, check to see if we will sleep.
786 */
787 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
788 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
789 LK_SHARE_NONZERO))) {
790 error = EBUSY;
791 break;
792 }
793 /*
794 * Try to acquire the want_exclusive flag.
795 */
796 error = acquire(&lkp, &s, extflags, 0,
797 LK_HAVE_EXCL | LK_WANT_EXCL, RETURN_ADDRESS);
798 if (error)
799 break;
800 lkp->lk_flags |= LK_WANT_EXCL;
801 /*
802 * Wait for shared locks and upgrades to finish.
803 */
804 error = acquire(&lkp, &s, extflags, 0,
805 LK_HAVE_EXCL | LK_WANT_UPGRADE | LK_SHARE_NONZERO,
806 RETURN_ADDRESS);
807 lkp->lk_flags &= ~LK_WANT_EXCL;
808 if (error) {
809 WAKEUP_WAITER(lkp);
810 break;
811 }
812 lkp->lk_flags |= LK_HAVE_EXCL;
813 SETHOLDER(lkp, pid, lid, cpu_num);
814 #if defined(LOCKDEBUG)
815 lkp->lk_lock_file = file;
816 lkp->lk_lock_line = line;
817 #endif
818 HAVEIT(lkp);
819 if (lkp->lk_exclusivecount != 0)
820 panic("lockmgr: non-zero exclusive count");
821 lkp->lk_exclusivecount = 1;
822 if (extflags & LK_SETRECURSE)
823 lkp->lk_recurselevel = 1;
824 COUNT(lkp, l, cpu_num, 1);
825 break;
826
827 case LK_RELEASE:
828 if (lkp->lk_exclusivecount != 0) {
829 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
830 if (lkp->lk_flags & LK_SPIN) {
831 panic("lockmgr: processor %lu, not "
832 "exclusive lock holder %lu "
833 "unlocking", cpu_num, lkp->lk_cpu);
834 } else {
835 panic("lockmgr: pid %d, not "
836 "exclusive lock holder %d "
837 "unlocking", pid,
838 lkp->lk_lockholder);
839 }
840 }
841 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
842 lkp->lk_recurselevel = 0;
843 lkp->lk_exclusivecount--;
844 COUNT(lkp, l, cpu_num, -1);
845 if (lkp->lk_exclusivecount == 0) {
846 lkp->lk_flags &= ~LK_HAVE_EXCL;
847 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
848 #if defined(LOCKDEBUG)
849 lkp->lk_unlock_file = file;
850 lkp->lk_unlock_line = line;
851 #endif
852 DONTHAVEIT(lkp);
853 }
854 } else if (lkp->lk_sharecount != 0) {
855 lkp->lk_sharecount--;
856 if (lkp->lk_sharecount == 0)
857 lkp->lk_flags &= ~LK_SHARE_NONZERO;
858 COUNT(lkp, l, cpu_num, -1);
859 }
860 #ifdef DIAGNOSTIC
861 else
862 panic("lockmgr: release of unlocked lock!");
863 #endif
864 WAKEUP_WAITER(lkp);
865 break;
866
867 case LK_DRAIN:
868 /*
869 * Check that we do not already hold the lock, as it can
870 * never drain if we do. Unfortunately, we have no way to
871 * check for holding a shared lock, but at least we can
872 * check for an exclusive one.
873 */
874 if (WEHOLDIT(lkp, pid, lid, cpu_num))
875 panic("lockmgr: draining against myself");
876 /*
877 * If we are just polling, check to see if we will sleep.
878 */
879 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
880 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
881 LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
882 error = EBUSY;
883 break;
884 }
885 error = acquire(&lkp, &s, extflags, 1,
886 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
887 LK_SHARE_NONZERO | LK_WAIT_NONZERO,
888 RETURN_ADDRESS);
889 if (error)
890 break;
891 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
892 SETHOLDER(lkp, pid, lid, cpu_num);
893 #if defined(LOCKDEBUG)
894 lkp->lk_lock_file = file;
895 lkp->lk_lock_line = line;
896 #endif
897 HAVEIT(lkp);
898 lkp->lk_exclusivecount = 1;
899 /* XXX unlikely that we'd want this */
900 if (extflags & LK_SETRECURSE)
901 lkp->lk_recurselevel = 1;
902 COUNT(lkp, l, cpu_num, 1);
903 break;
904
905 default:
906 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
907 panic("lockmgr: unknown locktype request %d",
908 flags & LK_TYPE_MASK);
909 /* NOTREACHED */
910 }
911 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
912 ((lkp->lk_flags &
913 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
914 LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
915 lkp->lk_flags &= ~LK_WAITDRAIN;
916 wakeup(&lkp->lk_flags);
917 }
918 /*
919 * Note that this panic will be a recursive panic, since
920 * we only set lock_shutdown_noblock above if panicstr != NULL.
921 */
922 if (error && lock_shutdown_noblock)
923 panic("lockmgr: deadlock (see previous panic)");
924
925 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
926 return (error);
927 }
928
929 /*
930 * For a recursive spinlock held one or more times by the current CPU,
931 * release all N locks, and return N.
932 * Intended for use in mi_switch() shortly before context switching.
933 */
934
935 int
936 #if defined(LOCKDEBUG)
937 _spinlock_release_all(volatile struct lock *lkp, const char *file, int line)
938 #else
939 spinlock_release_all(volatile struct lock *lkp)
940 #endif
941 {
942 int s, count;
943 cpuid_t cpu_num;
944
945 KASSERT(lkp->lk_flags & LK_SPIN);
946
947 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
948
949 cpu_num = cpu_number();
950 count = lkp->lk_exclusivecount;
951
952 if (count != 0) {
953 #ifdef DIAGNOSTIC
954 if (WEHOLDIT(lkp, 0, 0, cpu_num) == 0) {
955 panic("spinlock_release_all: processor %lu, not "
956 "exclusive lock holder %lu "
957 "unlocking", (long)cpu_num, lkp->lk_cpu);
958 }
959 #endif
960 lkp->lk_recurselevel = 0;
961 lkp->lk_exclusivecount = 0;
962 COUNT_CPU(cpu_num, -count);
963 lkp->lk_flags &= ~LK_HAVE_EXCL;
964 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
965 #if defined(LOCKDEBUG)
966 lkp->lk_unlock_file = file;
967 lkp->lk_unlock_line = line;
968 #endif
969 DONTHAVEIT(lkp);
970 }
971 #ifdef DIAGNOSTIC
972 else if (lkp->lk_sharecount != 0)
973 panic("spinlock_release_all: release of shared lock!");
974 else
975 panic("spinlock_release_all: release of unlocked lock!");
976 #endif
977 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
978
979 return (count);
980 }
981
982 /*
983 * For a recursive spinlock held one or more times by the current CPU,
984 * release all N locks, and return N.
985 * Intended for use in mi_switch() right after resuming execution.
986 */
987
988 void
989 #if defined(LOCKDEBUG)
990 _spinlock_acquire_count(volatile struct lock *lkp, int count,
991 const char *file, int line)
992 #else
993 spinlock_acquire_count(volatile struct lock *lkp, int count)
994 #endif
995 {
996 int s, error;
997 cpuid_t cpu_num;
998
999 KASSERT(lkp->lk_flags & LK_SPIN);
1000
1001 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
1002
1003 cpu_num = cpu_number();
1004
1005 #ifdef DIAGNOSTIC
1006 if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_num))
1007 panic("spinlock_acquire_count: processor %lu already holds lock", (long)cpu_num);
1008 #endif
1009 /*
1010 * Try to acquire the want_exclusive flag.
1011 */
1012 error = acquire(&lkp, &s, LK_SPIN, 0, LK_HAVE_EXCL | LK_WANT_EXCL,
1013 RETURN_ADDRESS);
1014 lkp->lk_flags |= LK_WANT_EXCL;
1015 /*
1016 * Wait for shared locks and upgrades to finish.
1017 */
1018 error = acquire(&lkp, &s, LK_SPIN, 0,
1019 LK_HAVE_EXCL | LK_SHARE_NONZERO | LK_WANT_UPGRADE,
1020 RETURN_ADDRESS);
1021 lkp->lk_flags &= ~LK_WANT_EXCL;
1022 lkp->lk_flags |= LK_HAVE_EXCL;
1023 SETHOLDER(lkp, LK_NOPROC, 0, cpu_num);
1024 #if defined(LOCKDEBUG)
1025 lkp->lk_lock_file = file;
1026 lkp->lk_lock_line = line;
1027 #endif
1028 HAVEIT(lkp);
1029 if (lkp->lk_exclusivecount != 0)
1030 panic("lockmgr: non-zero exclusive count");
1031 lkp->lk_exclusivecount = count;
1032 lkp->lk_recurselevel = 1;
1033 COUNT_CPU(cpu_num, count);
1034
1035 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
1036 }
1037
1038
1039
1040 /*
1041 * Print out information about state of a lock. Used by VOP_PRINT
1042 * routines to display ststus about contained locks.
1043 */
1044 void
1045 lockmgr_printinfo(volatile struct lock *lkp)
1046 {
1047
1048 if (lkp->lk_sharecount)
1049 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
1050 lkp->lk_sharecount);
1051 else if (lkp->lk_flags & LK_HAVE_EXCL) {
1052 printf(" lock type %s: EXCL (count %d) by ",
1053 lkp->lk_wmesg, lkp->lk_exclusivecount);
1054 if (lkp->lk_flags & LK_SPIN)
1055 printf("processor %lu", lkp->lk_cpu);
1056 else
1057 printf("pid %d.%d", lkp->lk_lockholder,
1058 lkp->lk_locklwp);
1059 } else
1060 printf(" not locked");
1061 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
1062 printf(" with %d pending", lkp->lk_waitcount);
1063 }
1064
1065 #if defined(LOCKDEBUG) /* { */
1066 _TAILQ_HEAD(, struct simplelock, volatile) simplelock_list =
1067 TAILQ_HEAD_INITIALIZER(simplelock_list);
1068
1069 #if defined(MULTIPROCESSOR) /* { */
1070 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
1071
1072 #define SLOCK_LIST_LOCK() \
1073 __cpu_simple_lock(&simplelock_list_slock.lock_data)
1074
1075 #define SLOCK_LIST_UNLOCK() \
1076 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
1077
1078 #define SLOCK_COUNT(x) \
1079 curcpu()->ci_simple_locks += (x)
1080 #else
1081 u_long simple_locks;
1082
1083 #define SLOCK_LIST_LOCK() /* nothing */
1084
1085 #define SLOCK_LIST_UNLOCK() /* nothing */
1086
1087 #define SLOCK_COUNT(x) simple_locks += (x)
1088 #endif /* MULTIPROCESSOR */ /* } */
1089
1090 #ifdef MULTIPROCESSOR
1091 #define SLOCK_MP() lock_printf("on CPU %ld\n", \
1092 (u_long) cpu_number())
1093 #else
1094 #define SLOCK_MP() /* nothing */
1095 #endif
1096
1097 #define SLOCK_WHERE(str, alp, id, l) \
1098 do { \
1099 lock_printf("\n"); \
1100 lock_printf(str); \
1101 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
1102 SLOCK_MP(); \
1103 if ((alp)->lock_file != NULL) \
1104 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
1105 (alp)->lock_line); \
1106 if ((alp)->unlock_file != NULL) \
1107 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1108 (alp)->unlock_line); \
1109 SLOCK_TRACE() \
1110 SLOCK_DEBUGGER(); \
1111 } while (/*CONSTCOND*/0)
1112
1113 /*
1114 * Simple lock functions so that the debugger can see from whence
1115 * they are being called.
1116 */
1117 void
1118 simple_lock_init(volatile struct simplelock *alp)
1119 {
1120
1121 #if defined(MULTIPROCESSOR) /* { */
1122 __cpu_simple_lock_init(&alp->lock_data);
1123 #else
1124 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1125 #endif /* } */
1126 alp->lock_file = NULL;
1127 alp->lock_line = 0;
1128 alp->unlock_file = NULL;
1129 alp->unlock_line = 0;
1130 alp->lock_holder = LK_NOCPU;
1131 }
1132
1133 void
1134 _simple_lock(volatile struct simplelock *alp, const char *id, int l)
1135 {
1136 cpuid_t cpu_num = cpu_number();
1137 int s;
1138
1139 s = spllock();
1140
1141 /*
1142 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1143 * don't take any action, and just fall into the normal spin case.
1144 */
1145 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1146 #if defined(MULTIPROCESSOR) /* { */
1147 if (alp->lock_holder == cpu_num) {
1148 SLOCK_WHERE("simple_lock: locking against myself\n",
1149 alp, id, l);
1150 goto out;
1151 }
1152 #else
1153 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1154 goto out;
1155 #endif /* MULTIPROCESSOR */ /* } */
1156 }
1157
1158 #if defined(MULTIPROCESSOR) /* { */
1159 /* Acquire the lock before modifying any fields. */
1160 splx(s);
1161 __cpu_simple_lock(&alp->lock_data);
1162 s = spllock();
1163 #else
1164 alp->lock_data = __SIMPLELOCK_LOCKED;
1165 #endif /* } */
1166
1167 if (alp->lock_holder != LK_NOCPU) {
1168 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1169 alp, id, l);
1170 }
1171 alp->lock_file = id;
1172 alp->lock_line = l;
1173 alp->lock_holder = cpu_num;
1174
1175 SLOCK_LIST_LOCK();
1176 TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
1177 SLOCK_LIST_UNLOCK();
1178
1179 SLOCK_COUNT(1);
1180
1181 out:
1182 splx(s);
1183 }
1184
1185 int
1186 _simple_lock_held(volatile struct simplelock *alp)
1187 {
1188 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1189 cpuid_t cpu_num = cpu_number();
1190 #endif
1191 int s, locked = 0;
1192
1193 s = spllock();
1194
1195 #if defined(MULTIPROCESSOR)
1196 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1197 locked = (alp->lock_holder == cpu_num);
1198 else
1199 __cpu_simple_unlock(&alp->lock_data);
1200 #else
1201 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1202 locked = 1;
1203 KASSERT(alp->lock_holder == cpu_num);
1204 }
1205 #endif
1206
1207 splx(s);
1208
1209 return (locked);
1210 }
1211
1212 int
1213 _simple_lock_try(volatile struct simplelock *alp, const char *id, int l)
1214 {
1215 cpuid_t cpu_num = cpu_number();
1216 int s, rv = 0;
1217
1218 s = spllock();
1219
1220 /*
1221 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1222 * don't take any action.
1223 */
1224 #if defined(MULTIPROCESSOR) /* { */
1225 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1226 if (alp->lock_holder == cpu_num)
1227 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1228 alp, id, l);
1229 goto out;
1230 }
1231 #else
1232 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1233 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1234 goto out;
1235 }
1236 alp->lock_data = __SIMPLELOCK_LOCKED;
1237 #endif /* MULTIPROCESSOR */ /* } */
1238
1239 /*
1240 * At this point, we have acquired the lock.
1241 */
1242
1243 rv = 1;
1244
1245 alp->lock_file = id;
1246 alp->lock_line = l;
1247 alp->lock_holder = cpu_num;
1248
1249 SLOCK_LIST_LOCK();
1250 TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
1251 SLOCK_LIST_UNLOCK();
1252
1253 SLOCK_COUNT(1);
1254
1255 out:
1256 splx(s);
1257 return (rv);
1258 }
1259
1260 void
1261 _simple_unlock(volatile struct simplelock *alp, const char *id, int l)
1262 {
1263 int s;
1264
1265 s = spllock();
1266
1267 /*
1268 * MULTIPROCESSOR case: This is `safe' because we think we hold
1269 * the lock, and if we don't, we don't take any action.
1270 */
1271 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1272 SLOCK_WHERE("simple_unlock: lock not held\n",
1273 alp, id, l);
1274 goto out;
1275 }
1276
1277 SLOCK_LIST_LOCK();
1278 TAILQ_REMOVE(&simplelock_list, alp, list);
1279 SLOCK_LIST_UNLOCK();
1280
1281 SLOCK_COUNT(-1);
1282
1283 alp->list.tqe_next = NULL; /* sanity */
1284 alp->list.tqe_prev = NULL; /* sanity */
1285
1286 alp->unlock_file = id;
1287 alp->unlock_line = l;
1288
1289 #if defined(MULTIPROCESSOR) /* { */
1290 alp->lock_holder = LK_NOCPU;
1291 /* Now that we've modified all fields, release the lock. */
1292 __cpu_simple_unlock(&alp->lock_data);
1293 #else
1294 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1295 KASSERT(alp->lock_holder == cpu_number());
1296 alp->lock_holder = LK_NOCPU;
1297 #endif /* } */
1298
1299 out:
1300 splx(s);
1301 }
1302
1303 void
1304 simple_lock_dump(void)
1305 {
1306 volatile struct simplelock *alp;
1307 int s;
1308
1309 s = spllock();
1310 SLOCK_LIST_LOCK();
1311 lock_printf("all simple locks:\n");
1312 TAILQ_FOREACH(alp, &simplelock_list, list) {
1313 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1314 alp->lock_file, alp->lock_line);
1315 }
1316 SLOCK_LIST_UNLOCK();
1317 splx(s);
1318 }
1319
1320 void
1321 simple_lock_freecheck(void *start, void *end)
1322 {
1323 volatile struct simplelock *alp;
1324 int s;
1325
1326 s = spllock();
1327 SLOCK_LIST_LOCK();
1328 TAILQ_FOREACH(alp, &simplelock_list, list) {
1329 if ((volatile void *)alp >= start &&
1330 (volatile void *)alp < end) {
1331 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1332 alp, alp->lock_holder, alp->lock_file,
1333 alp->lock_line);
1334 SLOCK_DEBUGGER();
1335 }
1336 }
1337 SLOCK_LIST_UNLOCK();
1338 splx(s);
1339 }
1340
1341 /*
1342 * We must be holding exactly one lock: the sched_lock.
1343 */
1344
1345 void
1346 simple_lock_switchcheck(void)
1347 {
1348
1349 simple_lock_only_held(NULL, "switching");
1350 }
1351
1352 /*
1353 * Drop into the debugger if lp isn't the only lock held.
1354 * lp may be NULL.
1355 */
1356 void
1357 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1358 {
1359 volatile struct simplelock *alp;
1360 cpuid_t cpu_num = cpu_number();
1361 int s;
1362
1363 if (lp) {
1364 LOCK_ASSERT(simple_lock_held(lp));
1365 }
1366 s = spllock();
1367 SLOCK_LIST_LOCK();
1368 TAILQ_FOREACH(alp, &simplelock_list, list) {
1369 if (alp == lp)
1370 continue;
1371 if (alp->lock_holder == cpu_num)
1372 break;
1373 }
1374 SLOCK_LIST_UNLOCK();
1375 splx(s);
1376
1377 if (alp != NULL) {
1378 lock_printf("\n%s with held simple_lock %p "
1379 "CPU %lu %s:%d\n",
1380 where, alp, alp->lock_holder, alp->lock_file,
1381 alp->lock_line);
1382 SLOCK_TRACE();
1383 SLOCK_DEBUGGER();
1384 }
1385 }
1386
1387 /*
1388 * Set to 1 by simple_lock_assert_*().
1389 * Can be cleared from ddb to avoid a panic.
1390 */
1391 int slock_assert_will_panic;
1392
1393 /*
1394 * If the lock isn't held, print a traceback, optionally drop into the
1395 * debugger, then panic.
1396 * The panic can be avoided by clearing slock_assert_with_panic from the
1397 * debugger.
1398 */
1399 void
1400 _simple_lock_assert_locked(volatile struct simplelock *alp,
1401 const char *lockname, const char *id, int l)
1402 {
1403 if (simple_lock_held(alp) == 0) {
1404 slock_assert_will_panic = 1;
1405 lock_printf("%s lock not held\n", lockname);
1406 SLOCK_WHERE("lock not held", alp, id, l);
1407 if (slock_assert_will_panic)
1408 panic("%s: not locked", lockname);
1409 }
1410 }
1411
1412 void
1413 _simple_lock_assert_unlocked(volatile struct simplelock *alp,
1414 const char *lockname, const char *id, int l)
1415 {
1416 if (simple_lock_held(alp)) {
1417 slock_assert_will_panic = 1;
1418 lock_printf("%s lock held\n", lockname);
1419 SLOCK_WHERE("lock held", alp, id, l);
1420 if (slock_assert_will_panic)
1421 panic("%s: locked", lockname);
1422 }
1423 }
1424
1425 void
1426 assert_sleepable(struct simplelock *interlock, const char *msg)
1427 {
1428
1429 if (curlwp == NULL) {
1430 panic("assert_sleepable: NULL curlwp");
1431 }
1432 simple_lock_only_held(interlock, msg);
1433 }
1434
1435 #endif /* LOCKDEBUG */ /* } */
1436
1437 #if defined(MULTIPROCESSOR)
1438 /*
1439 * Functions for manipulating the kernel_lock. We put them here
1440 * so that they show up in profiles.
1441 */
1442
1443
1444 void
1445 _kernel_lock_init(void)
1446 {
1447
1448 mutex_init(&kernel_mutex, MUTEX_SPIN, IPL_BIGLOCK);
1449 }
1450
1451 /*
1452 * Acquire/release the kernel lock. Intended for use in the scheduler
1453 * and the lower half of the kernel.
1454 */
1455 void
1456 _kernel_lock(int flag)
1457 {
1458 struct cpu_info *ci = curcpu();
1459
1460 if (ci->ci_data.cpu_biglock_count > 0) {
1461 LOCK_ASSERT(mutex_owned(&kernel_mutex));
1462 ci->ci_data.cpu_biglock_count++;
1463 } else {
1464 mutex_enter(&kernel_mutex);
1465 ci->ci_data.cpu_biglock_count++;
1466 splx(mutex_getspl(&kernel_mutex));
1467 }
1468 }
1469
1470 void
1471 _kernel_unlock(void)
1472 {
1473 struct cpu_info *ci = curcpu();
1474 int s;
1475
1476 KASSERT(ci->ci_data.cpu_biglock_count > 0);
1477
1478 s = splraiseipl(kernel_mutex.mtx_minspl);
1479 if ((--ci->ci_data.cpu_biglock_count) == 0) {
1480 mutex_setspl(&kernel_mutex, s);
1481 mutex_exit(&kernel_mutex);
1482 } else
1483 splx(s);
1484 }
1485
1486 /*
1487 * Acquire/release the kernel_lock on behalf of a process. Intended for
1488 * use in the top half of the kernel.
1489 */
1490 void
1491 _kernel_proc_lock(struct lwp *l)
1492 {
1493
1494 _kernel_lock(0);
1495 }
1496
1497 void
1498 _kernel_proc_unlock(struct lwp *l)
1499 {
1500
1501 _kernel_unlock();
1502 }
1503
1504 int
1505 _kernel_lock_release_all()
1506 {
1507 struct cpu_info *ci = curcpu();
1508 int hold_count;
1509
1510 hold_count = ci->ci_data.cpu_biglock_count;
1511
1512 if (hold_count) {
1513 mutex_setspl(&kernel_mutex, splraiseipl(kernel_mutex.mtx_minspl));
1514 ci->ci_data.cpu_biglock_count = 0;
1515 mutex_exit(&kernel_mutex);
1516 }
1517
1518 return hold_count;
1519 }
1520
1521 void
1522 _kernel_lock_acquire_count(int hold_count)
1523 {
1524
1525 KASSERT(curcpu()->ci_data.cpu_biglock_count == 0);
1526
1527 if (hold_count != 0) {
1528 struct cpu_info *ci = curcpu();
1529
1530 mutex_enter(&kernel_mutex);
1531 ci->ci_data.cpu_biglock_count = hold_count;
1532 splx(mutex_getspl(&kernel_mutex));
1533 }
1534 }
1535 #if defined(DEBUG)
1536 void
1537 _kernel_lock_assert_locked()
1538 {
1539
1540 LOCK_ASSERT(mutex_owned(&kernel_mutex));
1541 }
1542 #endif
1543
1544 int
1545 lock_owner_onproc(uintptr_t owner)
1546 {
1547 CPU_INFO_ITERATOR cii;
1548 struct cpu_info *ci;
1549
1550 for (CPU_INFO_FOREACH(cii, ci))
1551 if (owner == (uintptr_t)ci || owner == (uintptr_t)ci->ci_curlwp)
1552 return (1);
1553
1554 return (0);
1555 }
1556
1557 #else /* MULTIPROCESSOR */
1558
1559 int
1560 lock_owner_onproc(uintptr_t owner)
1561 {
1562
1563 return 0;
1564 }
1565
1566 #endif /* MULTIPROCESSOR */
1567