kern_lock.c revision 1.99.2.3 1 /* $NetBSD: kern_lock.c,v 1.99.2.3 2006/10/24 19:21:40 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.99.2.3 2006/10/24 19:21:40 ad Exp $");
80
81 #include "opt_multiprocessor.h"
82 #include "opt_ddb.h"
83
84 #define __MUTEX_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/lock.h>
89 #include <sys/systm.h>
90 #include <sys/lockdebug.h>
91
92 #include <machine/cpu.h>
93
94 #include <dev/lockstat.h>
95
96 #if defined(LOCKDEBUG)
97 #include <sys/syslog.h>
98 /*
99 * note that stdarg.h and the ansi style va_start macro is used for both
100 * ansi and traditional c compiles.
101 * XXX: this requires that stdarg.h define: va_alist and va_dcl
102 */
103 #include <machine/stdarg.h>
104
105 void lock_printf(const char *fmt, ...)
106 __attribute__((__format__(__printf__,1,2)));
107
108 static int acquire(volatile struct lock **, int *, int, int, int, uintptr_t);
109
110 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
111
112 #ifdef DDB
113 #include <ddb/ddbvar.h>
114 #include <machine/db_machdep.h>
115 #include <ddb/db_command.h>
116 #include <ddb/db_interface.h>
117 #endif
118 #endif /* defined(LOCKDEBUG) */
119
120 #if defined(MULTIPROCESSOR)
121 /*
122 * IPL_BIGLOCK: block IPLs which need to grab kernel_mutex.
123 * XXX IPL_VM or IPL_AUDIO should be enough.
124 */
125 #if !defined(__HAVE_SPLBIGLOCK)
126 #define IPL_BIGLOCK IPL_CLOCK
127 #endif
128 kmutex_t kernel_mutex;
129 #endif
130
131 /*
132 * Locking primitives implementation.
133 * Locks provide shared/exclusive synchronization.
134 */
135
136 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
137 #if defined(MULTIPROCESSOR) /* { */
138 #define COUNT_CPU(cpu_id, x) \
139 curcpu()->ci_spin_locks += (x)
140 #else
141 u_long spin_locks;
142 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
143 #endif /* MULTIPROCESSOR */ /* } */
144
145 #define COUNT(lkp, l, cpu_id, x) \
146 do { \
147 if ((lkp)->lk_flags & LK_SPIN) \
148 COUNT_CPU((cpu_id), (x)); \
149 else \
150 (l)->l_locks += (x); \
151 } while (/*CONSTCOND*/0)
152 #else
153 #define COUNT(lkp, p, cpu_id, x)
154 #define COUNT_CPU(cpu_id, x)
155 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
156
157 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
158 do { \
159 if ((flags) & LK_SPIN) \
160 s = spllock(); \
161 simple_lock(&(lkp)->lk_interlock); \
162 } while (/*CONSTCOND*/ 0)
163
164 #define INTERLOCK_RELEASE(lkp, flags, s) \
165 do { \
166 simple_unlock(&(lkp)->lk_interlock); \
167 if ((flags) & LK_SPIN) \
168 splx(s); \
169 } while (/*CONSTCOND*/ 0)
170
171 #ifdef DDB /* { */
172 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
173 int simple_lock_debugger = 1; /* more serious on MP */
174 #else
175 int simple_lock_debugger = 0;
176 #endif
177 #define SLOCK_DEBUGGER() if (simple_lock_debugger && db_onpanic) Debugger()
178 #define SLOCK_TRACE() \
179 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
180 TRUE, 65535, "", lock_printf);
181 #else
182 #define SLOCK_DEBUGGER() /* nothing */
183 #define SLOCK_TRACE() /* nothing */
184 #endif /* } */
185
186 #if defined(LOCKDEBUG)
187 #if defined(DDB)
188 #define SPINLOCK_SPINCHECK_DEBUGGER if (db_onpanic) Debugger()
189 #else
190 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
191 #endif
192
193 #define SPINLOCK_SPINCHECK_DECL \
194 /* 32-bits of count -- wrap constitutes a "spinout" */ \
195 uint32_t __spinc = 0
196
197 #define SPINLOCK_SPINCHECK \
198 do { \
199 if (++__spinc == 0) { \
200 lock_printf("LK_SPIN spinout, excl %d, share %d\n", \
201 lkp->lk_exclusivecount, lkp->lk_sharecount); \
202 if (lkp->lk_exclusivecount) \
203 lock_printf("held by CPU %lu\n", \
204 (u_long) lkp->lk_cpu); \
205 if (lkp->lk_lock_file) \
206 lock_printf("last locked at %s:%d\n", \
207 lkp->lk_lock_file, lkp->lk_lock_line); \
208 if (lkp->lk_unlock_file) \
209 lock_printf("last unlocked at %s:%d\n", \
210 lkp->lk_unlock_file, lkp->lk_unlock_line); \
211 SLOCK_TRACE(); \
212 SPINLOCK_SPINCHECK_DEBUGGER; \
213 } \
214 } while (/*CONSTCOND*/ 0)
215 #else
216 #define SPINLOCK_SPINCHECK_DECL /* nothing */
217 #define SPINLOCK_SPINCHECK /* nothing */
218 #endif /* LOCKDEBUG && DDB */
219
220 #define RETURN_ADDRESS ((uintptr_t)__builtin_return_address(0))
221
222 /*
223 * Acquire a resource.
224 */
225 static int
226 acquire(volatile struct lock **lkpp, int *s, int extflags,
227 int drain, int wanted, uintptr_t ra)
228 {
229 int error;
230 volatile struct lock *lkp = *lkpp;
231 LOCKSTAT_TIMER(slptime);
232
233 KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
234
235 if (extflags & LK_SPIN) {
236 int interlocked;
237
238 SPINLOCK_SPINCHECK_DECL;
239
240 if (!drain) {
241 lkp->lk_waitcount++;
242 lkp->lk_flags |= LK_WAIT_NONZERO;
243 }
244 for (interlocked = 1;;) {
245 SPINLOCK_SPINCHECK;
246 if ((lkp->lk_flags & wanted) != 0) {
247 if (interlocked) {
248 INTERLOCK_RELEASE(lkp, LK_SPIN, *s);
249 interlocked = 0;
250 }
251 SPINLOCK_SPIN_HOOK;
252 } else if (interlocked) {
253 break;
254 } else {
255 INTERLOCK_ACQUIRE(lkp, LK_SPIN, *s);
256 interlocked = 1;
257 }
258 }
259 if (!drain) {
260 lkp->lk_waitcount--;
261 if (lkp->lk_waitcount == 0)
262 lkp->lk_flags &= ~LK_WAIT_NONZERO;
263 }
264 KASSERT((lkp->lk_flags & wanted) == 0);
265 error = 0; /* sanity */
266 } else {
267 for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
268 if (drain)
269 lkp->lk_flags |= LK_WAITDRAIN;
270 else {
271 lkp->lk_waitcount++;
272 lkp->lk_flags |= LK_WAIT_NONZERO;
273 }
274 /* XXX Cast away volatile. */
275 LOCKSTAT_START_TIMER(slptime);
276 error = ltsleep(drain ?
277 (volatile const void *)&lkp->lk_flags :
278 (volatile const void *)lkp, lkp->lk_prio,
279 lkp->lk_wmesg, lkp->lk_timo, &lkp->lk_interlock);
280 LOCKSTAT_STOP_TIMER(slptime);
281 LOCKSTAT_EVENT_RA((void *)(uintptr_t)lkp,
282 LB_LOCKMGR | LB_SLEEP, 1, slptime, ra);
283 if (!drain) {
284 lkp->lk_waitcount--;
285 if (lkp->lk_waitcount == 0)
286 lkp->lk_flags &= ~LK_WAIT_NONZERO;
287 }
288 if (error)
289 break;
290 if (extflags & LK_SLEEPFAIL) {
291 error = ENOLCK;
292 break;
293 }
294 if (lkp->lk_newlock != NULL) {
295 simple_lock(&lkp->lk_newlock->lk_interlock);
296 simple_unlock(&lkp->lk_interlock);
297 if (lkp->lk_waitcount == 0)
298 wakeup(&lkp->lk_newlock);
299 *lkpp = lkp = lkp->lk_newlock;
300 }
301 }
302 }
303
304 return error;
305 }
306
307 #define SETHOLDER(lkp, pid, lid, cpu_id) \
308 do { \
309 if ((lkp)->lk_flags & LK_SPIN) \
310 (lkp)->lk_cpu = cpu_id; \
311 else { \
312 (lkp)->lk_lockholder = pid; \
313 (lkp)->lk_locklwp = lid; \
314 } \
315 } while (/*CONSTCOND*/0)
316
317 #define WEHOLDIT(lkp, pid, lid, cpu_id) \
318 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
319 ((lkp)->lk_cpu == (cpu_id)) : \
320 ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
321
322 #define WAKEUP_WAITER(lkp) \
323 do { \
324 if (((lkp)->lk_flags & (LK_SPIN | LK_WAIT_NONZERO)) == \
325 LK_WAIT_NONZERO) { \
326 wakeup((lkp)); \
327 } \
328 } while (/*CONSTCOND*/0)
329
330 #if defined(LOCKDEBUG) /* { */
331 #if defined(MULTIPROCESSOR) /* { */
332 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
333
334 #define SPINLOCK_LIST_LOCK() \
335 __cpu_simple_lock(&spinlock_list_slock.lock_data)
336
337 #define SPINLOCK_LIST_UNLOCK() \
338 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
339 #else
340 #define SPINLOCK_LIST_LOCK() /* nothing */
341
342 #define SPINLOCK_LIST_UNLOCK() /* nothing */
343 #endif /* MULTIPROCESSOR */ /* } */
344
345 _TAILQ_HEAD(, struct lock, volatile) spinlock_list =
346 TAILQ_HEAD_INITIALIZER(spinlock_list);
347
348 #define HAVEIT(lkp) \
349 do { \
350 if ((lkp)->lk_flags & LK_SPIN) { \
351 int sp = spllock(); \
352 SPINLOCK_LIST_LOCK(); \
353 TAILQ_INSERT_TAIL(&spinlock_list, (lkp), lk_list); \
354 SPINLOCK_LIST_UNLOCK(); \
355 splx(sp); \
356 } \
357 } while (/*CONSTCOND*/0)
358
359 #define DONTHAVEIT(lkp) \
360 do { \
361 if ((lkp)->lk_flags & LK_SPIN) { \
362 int sp = spllock(); \
363 SPINLOCK_LIST_LOCK(); \
364 TAILQ_REMOVE(&spinlock_list, (lkp), lk_list); \
365 SPINLOCK_LIST_UNLOCK(); \
366 splx(sp); \
367 } \
368 } while (/*CONSTCOND*/0)
369 #else
370 #define HAVEIT(lkp) /* nothing */
371
372 #define DONTHAVEIT(lkp) /* nothing */
373 #endif /* LOCKDEBUG */ /* } */
374
375 #if defined(LOCKDEBUG)
376 /*
377 * Lock debug printing routine; can be configured to print to console
378 * or log to syslog.
379 */
380 void
381 lock_printf(const char *fmt, ...)
382 {
383 char b[150];
384 va_list ap;
385
386 va_start(ap, fmt);
387 if (lock_debug_syslog)
388 vlog(LOG_DEBUG, fmt, ap);
389 else {
390 vsnprintf(b, sizeof(b), fmt, ap);
391 printf_nolog("%s", b);
392 }
393 va_end(ap);
394 }
395 #endif /* LOCKDEBUG */
396
397 /*
398 * Transfer any waiting processes from one lock to another.
399 */
400 void
401 transferlockers(struct lock *from, struct lock *to)
402 {
403
404 KASSERT(from != to);
405 KASSERT((from->lk_flags & LK_WAITDRAIN) == 0);
406 if (from->lk_waitcount == 0)
407 return;
408 from->lk_newlock = to;
409 wakeup((void *)from);
410 tsleep((void *)&from->lk_newlock, from->lk_prio, "lkxfer", 0);
411 from->lk_newlock = NULL;
412 from->lk_flags &= ~(LK_WANT_EXCL | LK_WANT_UPGRADE);
413 KASSERT(from->lk_waitcount == 0);
414 }
415
416
417 /*
418 * Initialize a lock; required before use.
419 */
420 void
421 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
422 {
423
424 memset(lkp, 0, sizeof(struct lock));
425 simple_lock_init(&lkp->lk_interlock);
426 lkp->lk_flags = flags & LK_EXTFLG_MASK;
427 if (flags & LK_SPIN)
428 lkp->lk_cpu = LK_NOCPU;
429 else {
430 lkp->lk_lockholder = LK_NOPROC;
431 lkp->lk_newlock = NULL;
432 lkp->lk_prio = prio;
433 lkp->lk_timo = timo;
434 }
435 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
436 #if defined(LOCKDEBUG)
437 lkp->lk_lock_file = NULL;
438 lkp->lk_unlock_file = NULL;
439 #endif
440 }
441
442 /*
443 * Determine the status of a lock.
444 */
445 int
446 lockstatus(struct lock *lkp)
447 {
448 int s = 0; /* XXX: gcc */
449 int lock_type = 0;
450 struct lwp *l = curlwp; /* XXX */
451 pid_t pid;
452 lwpid_t lid;
453 cpuid_t cpu_num;
454
455 if ((lkp->lk_flags & LK_SPIN) || l == NULL) {
456 cpu_num = cpu_number();
457 pid = LK_KERNPROC;
458 lid = 0;
459 } else {
460 cpu_num = LK_NOCPU;
461 pid = l->l_proc->p_pid;
462 lid = l->l_lid;
463 }
464
465 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
466 if (lkp->lk_exclusivecount != 0) {
467 if (WEHOLDIT(lkp, pid, lid, cpu_num))
468 lock_type = LK_EXCLUSIVE;
469 else
470 lock_type = LK_EXCLOTHER;
471 } else if (lkp->lk_sharecount != 0)
472 lock_type = LK_SHARED;
473 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
474 return (lock_type);
475 }
476
477 #if defined(LOCKDEBUG)
478 /*
479 * Make sure no spin locks are held by a CPU that is about
480 * to context switch.
481 */
482 void
483 spinlock_switchcheck(void)
484 {
485 u_long cnt;
486 int s;
487
488 s = spllock();
489 #if defined(MULTIPROCESSOR)
490 cnt = curcpu()->ci_spin_locks;
491 #else
492 cnt = spin_locks;
493 #endif
494 splx(s);
495
496 if (cnt != 0)
497 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
498 (u_long) cpu_number(), cnt);
499 }
500 #endif /* LOCKDEBUG */
501
502 /*
503 * Locks and IPLs (interrupt priority levels):
504 *
505 * Locks which may be taken from interrupt context must be handled
506 * very carefully; you must spl to the highest IPL where the lock
507 * is needed before acquiring the lock.
508 *
509 * It is also important to avoid deadlock, since certain (very high
510 * priority) interrupts are often needed to keep the system as a whole
511 * from deadlocking, and must not be blocked while you are spinning
512 * waiting for a lower-priority lock.
513 *
514 * In addition, the lock-debugging hooks themselves need to use locks!
515 *
516 * A raw __cpu_simple_lock may be used from interrupts are long as it
517 * is acquired and held at a single IPL.
518 *
519 * A simple_lock (which is a __cpu_simple_lock wrapped with some
520 * debugging hooks) may be used at or below spllock(), which is
521 * typically at or just below splhigh() (i.e. blocks everything
522 * but certain machine-dependent extremely high priority interrupts).
523 *
524 * spinlockmgr spinlocks should be used at or below splsched().
525 *
526 * Some platforms may have interrupts of higher priority than splsched(),
527 * including hard serial interrupts, inter-processor interrupts, and
528 * kernel debugger traps.
529 */
530
531 /*
532 * XXX XXX kludge around another kludge..
533 *
534 * vfs_shutdown() may be called from interrupt context, either as a result
535 * of a panic, or from the debugger. It proceeds to call
536 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
537 *
538 * We would like to make an attempt to sync the filesystems in this case, so
539 * if this happens, we treat attempts to acquire locks specially.
540 * All locks are acquired on behalf of proc0.
541 *
542 * If we've already paniced, we don't block waiting for locks, but
543 * just barge right ahead since we're already going down in flames.
544 */
545
546 /*
547 * Set, change, or release a lock.
548 *
549 * Shared requests increment the shared count. Exclusive requests set the
550 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
551 * accepted shared locks and shared-to-exclusive upgrades to go away.
552 */
553 int
554 #if defined(LOCKDEBUG)
555 _lockmgr(volatile struct lock *lkp, u_int flags,
556 struct simplelock *interlkp, const char *file, int line)
557 #else
558 lockmgr(volatile struct lock *lkp, u_int flags,
559 struct simplelock *interlkp)
560 #endif
561 {
562 int error;
563 pid_t pid;
564 lwpid_t lid;
565 int extflags;
566 cpuid_t cpu_num;
567 struct lwp *l = curlwp;
568 int lock_shutdown_noblock = 0;
569 int s = 0;
570
571 error = 0;
572
573 /* LK_RETRY is for vn_lock, not for lockmgr. */
574 KASSERT((flags & LK_RETRY) == 0);
575
576 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
577 if (flags & LK_INTERLOCK)
578 simple_unlock(interlkp);
579 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
580
581 #ifdef DIAGNOSTIC /* { */
582 /*
583 * Don't allow spins on sleep locks and don't allow sleeps
584 * on spin locks.
585 */
586 if ((flags ^ lkp->lk_flags) & LK_SPIN)
587 panic("lockmgr: sleep/spin mismatch");
588 #endif /* } */
589
590 if (extflags & LK_SPIN) {
591 pid = LK_KERNPROC;
592 lid = 0;
593 } else {
594 if (l == NULL) {
595 if (!doing_shutdown) {
596 panic("lockmgr: no context");
597 } else {
598 l = &lwp0;
599 if (panicstr && (!(flags & LK_NOWAIT))) {
600 flags |= LK_NOWAIT;
601 lock_shutdown_noblock = 1;
602 }
603 }
604 }
605 lid = l->l_lid;
606 pid = l->l_proc->p_pid;
607 }
608 cpu_num = cpu_number();
609
610 /*
611 * Once a lock has drained, the LK_DRAINING flag is set and an
612 * exclusive lock is returned. The only valid operation thereafter
613 * is a single release of that exclusive lock. This final release
614 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
615 * further requests of any sort will result in a panic. The bits
616 * selected for these two flags are chosen so that they will be set
617 * in memory that is freed (freed memory is filled with 0xdeadbeef).
618 * The final release is permitted to give a new lease on life to
619 * the lock by specifying LK_REENABLE.
620 */
621 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
622 #ifdef DIAGNOSTIC /* { */
623 if (lkp->lk_flags & LK_DRAINED)
624 panic("lockmgr: using decommissioned lock");
625 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
626 WEHOLDIT(lkp, pid, lid, cpu_num) == 0)
627 panic("lockmgr: non-release on draining lock: %d",
628 flags & LK_TYPE_MASK);
629 #endif /* DIAGNOSTIC */ /* } */
630 lkp->lk_flags &= ~LK_DRAINING;
631 if ((flags & LK_REENABLE) == 0)
632 lkp->lk_flags |= LK_DRAINED;
633 }
634
635 switch (flags & LK_TYPE_MASK) {
636
637 case LK_SHARED:
638 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
639 /*
640 * If just polling, check to see if we will block.
641 */
642 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
643 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
644 error = EBUSY;
645 break;
646 }
647 /*
648 * Wait for exclusive locks and upgrades to clear.
649 */
650 error = acquire(&lkp, &s, extflags, 0,
651 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE,
652 RETURN_ADDRESS);
653 if (error)
654 break;
655 lkp->lk_sharecount++;
656 lkp->lk_flags |= LK_SHARE_NONZERO;
657 COUNT(lkp, l, cpu_num, 1);
658 break;
659 }
660 /*
661 * We hold an exclusive lock, so downgrade it to shared.
662 * An alternative would be to fail with EDEADLK.
663 */
664 lkp->lk_sharecount++;
665 lkp->lk_flags |= LK_SHARE_NONZERO;
666 COUNT(lkp, l, cpu_num, 1);
667 /* fall into downgrade */
668
669 case LK_DOWNGRADE:
670 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0 ||
671 lkp->lk_exclusivecount == 0)
672 panic("lockmgr: not holding exclusive lock");
673 lkp->lk_sharecount += lkp->lk_exclusivecount;
674 lkp->lk_flags |= LK_SHARE_NONZERO;
675 lkp->lk_exclusivecount = 0;
676 lkp->lk_recurselevel = 0;
677 lkp->lk_flags &= ~LK_HAVE_EXCL;
678 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
679 #if defined(LOCKDEBUG)
680 lkp->lk_unlock_file = file;
681 lkp->lk_unlock_line = line;
682 #endif
683 DONTHAVEIT(lkp);
684 WAKEUP_WAITER(lkp);
685 break;
686
687 case LK_EXCLUPGRADE:
688 /*
689 * If another process is ahead of us to get an upgrade,
690 * then we want to fail rather than have an intervening
691 * exclusive access.
692 */
693 if (lkp->lk_flags & LK_WANT_UPGRADE) {
694 lkp->lk_sharecount--;
695 if (lkp->lk_sharecount == 0)
696 lkp->lk_flags &= ~LK_SHARE_NONZERO;
697 COUNT(lkp, l, cpu_num, -1);
698 error = EBUSY;
699 break;
700 }
701 /* fall into normal upgrade */
702
703 case LK_UPGRADE:
704 /*
705 * Upgrade a shared lock to an exclusive one. If another
706 * shared lock has already requested an upgrade to an
707 * exclusive lock, our shared lock is released and an
708 * exclusive lock is requested (which will be granted
709 * after the upgrade). If we return an error, the file
710 * will always be unlocked.
711 */
712 if (WEHOLDIT(lkp, pid, lid, cpu_num) || lkp->lk_sharecount <= 0)
713 panic("lockmgr: upgrade exclusive lock");
714 lkp->lk_sharecount--;
715 if (lkp->lk_sharecount == 0)
716 lkp->lk_flags &= ~LK_SHARE_NONZERO;
717 COUNT(lkp, l, cpu_num, -1);
718 /*
719 * If we are just polling, check to see if we will block.
720 */
721 if ((extflags & LK_NOWAIT) &&
722 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
723 lkp->lk_sharecount > 1)) {
724 error = EBUSY;
725 break;
726 }
727 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
728 /*
729 * We are first shared lock to request an upgrade, so
730 * request upgrade and wait for the shared count to
731 * drop to zero, then take exclusive lock.
732 */
733 lkp->lk_flags |= LK_WANT_UPGRADE;
734 error = acquire(&lkp, &s, extflags, 0, LK_SHARE_NONZERO,
735 RETURN_ADDRESS);
736 lkp->lk_flags &= ~LK_WANT_UPGRADE;
737 if (error) {
738 WAKEUP_WAITER(lkp);
739 break;
740 }
741 lkp->lk_flags |= LK_HAVE_EXCL;
742 SETHOLDER(lkp, pid, lid, cpu_num);
743 #if defined(LOCKDEBUG)
744 lkp->lk_lock_file = file;
745 lkp->lk_lock_line = line;
746 #endif
747 HAVEIT(lkp);
748 if (lkp->lk_exclusivecount != 0)
749 panic("lockmgr: non-zero exclusive count");
750 lkp->lk_exclusivecount = 1;
751 if (extflags & LK_SETRECURSE)
752 lkp->lk_recurselevel = 1;
753 COUNT(lkp, l, cpu_num, 1);
754 break;
755 }
756 /*
757 * Someone else has requested upgrade. Release our shared
758 * lock, awaken upgrade requestor if we are the last shared
759 * lock, then request an exclusive lock.
760 */
761 if (lkp->lk_sharecount == 0)
762 WAKEUP_WAITER(lkp);
763 /* fall into exclusive request */
764
765 case LK_EXCLUSIVE:
766 if (WEHOLDIT(lkp, pid, lid, cpu_num)) {
767 /*
768 * Recursive lock.
769 */
770 if ((extflags & LK_CANRECURSE) == 0 &&
771 lkp->lk_recurselevel == 0) {
772 if (extflags & LK_RECURSEFAIL) {
773 error = EDEADLK;
774 break;
775 } else
776 panic("lockmgr: locking against myself");
777 }
778 lkp->lk_exclusivecount++;
779 if (extflags & LK_SETRECURSE &&
780 lkp->lk_recurselevel == 0)
781 lkp->lk_recurselevel = lkp->lk_exclusivecount;
782 COUNT(lkp, l, cpu_num, 1);
783 break;
784 }
785 /*
786 * If we are just polling, check to see if we will sleep.
787 */
788 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
789 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
790 LK_SHARE_NONZERO))) {
791 error = EBUSY;
792 break;
793 }
794 /*
795 * Try to acquire the want_exclusive flag.
796 */
797 error = acquire(&lkp, &s, extflags, 0,
798 LK_HAVE_EXCL | LK_WANT_EXCL, RETURN_ADDRESS);
799 if (error)
800 break;
801 lkp->lk_flags |= LK_WANT_EXCL;
802 /*
803 * Wait for shared locks and upgrades to finish.
804 */
805 error = acquire(&lkp, &s, extflags, 0,
806 LK_HAVE_EXCL | LK_WANT_UPGRADE | LK_SHARE_NONZERO,
807 RETURN_ADDRESS);
808 lkp->lk_flags &= ~LK_WANT_EXCL;
809 if (error) {
810 WAKEUP_WAITER(lkp);
811 break;
812 }
813 lkp->lk_flags |= LK_HAVE_EXCL;
814 SETHOLDER(lkp, pid, lid, cpu_num);
815 #if defined(LOCKDEBUG)
816 lkp->lk_lock_file = file;
817 lkp->lk_lock_line = line;
818 #endif
819 HAVEIT(lkp);
820 if (lkp->lk_exclusivecount != 0)
821 panic("lockmgr: non-zero exclusive count");
822 lkp->lk_exclusivecount = 1;
823 if (extflags & LK_SETRECURSE)
824 lkp->lk_recurselevel = 1;
825 COUNT(lkp, l, cpu_num, 1);
826 break;
827
828 case LK_RELEASE:
829 if (lkp->lk_exclusivecount != 0) {
830 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
831 if (lkp->lk_flags & LK_SPIN) {
832 panic("lockmgr: processor %lu, not "
833 "exclusive lock holder %lu "
834 "unlocking", cpu_num, lkp->lk_cpu);
835 } else {
836 panic("lockmgr: pid %d, not "
837 "exclusive lock holder %d "
838 "unlocking", pid,
839 lkp->lk_lockholder);
840 }
841 }
842 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
843 lkp->lk_recurselevel = 0;
844 lkp->lk_exclusivecount--;
845 COUNT(lkp, l, cpu_num, -1);
846 if (lkp->lk_exclusivecount == 0) {
847 lkp->lk_flags &= ~LK_HAVE_EXCL;
848 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
849 #if defined(LOCKDEBUG)
850 lkp->lk_unlock_file = file;
851 lkp->lk_unlock_line = line;
852 #endif
853 DONTHAVEIT(lkp);
854 }
855 } else if (lkp->lk_sharecount != 0) {
856 lkp->lk_sharecount--;
857 if (lkp->lk_sharecount == 0)
858 lkp->lk_flags &= ~LK_SHARE_NONZERO;
859 COUNT(lkp, l, cpu_num, -1);
860 }
861 #ifdef DIAGNOSTIC
862 else
863 panic("lockmgr: release of unlocked lock!");
864 #endif
865 WAKEUP_WAITER(lkp);
866 break;
867
868 case LK_DRAIN:
869 /*
870 * Check that we do not already hold the lock, as it can
871 * never drain if we do. Unfortunately, we have no way to
872 * check for holding a shared lock, but at least we can
873 * check for an exclusive one.
874 */
875 if (WEHOLDIT(lkp, pid, lid, cpu_num))
876 panic("lockmgr: draining against myself");
877 /*
878 * If we are just polling, check to see if we will sleep.
879 */
880 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
881 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
882 LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
883 error = EBUSY;
884 break;
885 }
886 error = acquire(&lkp, &s, extflags, 1,
887 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
888 LK_SHARE_NONZERO | LK_WAIT_NONZERO,
889 RETURN_ADDRESS);
890 if (error)
891 break;
892 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
893 SETHOLDER(lkp, pid, lid, cpu_num);
894 #if defined(LOCKDEBUG)
895 lkp->lk_lock_file = file;
896 lkp->lk_lock_line = line;
897 #endif
898 HAVEIT(lkp);
899 lkp->lk_exclusivecount = 1;
900 /* XXX unlikely that we'd want this */
901 if (extflags & LK_SETRECURSE)
902 lkp->lk_recurselevel = 1;
903 COUNT(lkp, l, cpu_num, 1);
904 break;
905
906 default:
907 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
908 panic("lockmgr: unknown locktype request %d",
909 flags & LK_TYPE_MASK);
910 /* NOTREACHED */
911 }
912 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
913 ((lkp->lk_flags &
914 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
915 LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
916 lkp->lk_flags &= ~LK_WAITDRAIN;
917 wakeup(&lkp->lk_flags);
918 }
919 /*
920 * Note that this panic will be a recursive panic, since
921 * we only set lock_shutdown_noblock above if panicstr != NULL.
922 */
923 if (error && lock_shutdown_noblock)
924 panic("lockmgr: deadlock (see previous panic)");
925
926 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
927 return (error);
928 }
929
930 /*
931 * For a recursive spinlock held one or more times by the current CPU,
932 * release all N locks, and return N.
933 * Intended for use in mi_switch() shortly before context switching.
934 */
935
936 int
937 #if defined(LOCKDEBUG)
938 _spinlock_release_all(volatile struct lock *lkp, const char *file, int line)
939 #else
940 spinlock_release_all(volatile struct lock *lkp)
941 #endif
942 {
943 int s, count;
944 cpuid_t cpu_num;
945
946 KASSERT(lkp->lk_flags & LK_SPIN);
947
948 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
949
950 cpu_num = cpu_number();
951 count = lkp->lk_exclusivecount;
952
953 if (count != 0) {
954 #ifdef DIAGNOSTIC
955 if (WEHOLDIT(lkp, 0, 0, cpu_num) == 0) {
956 panic("spinlock_release_all: processor %lu, not "
957 "exclusive lock holder %lu "
958 "unlocking", (long)cpu_num, lkp->lk_cpu);
959 }
960 #endif
961 lkp->lk_recurselevel = 0;
962 lkp->lk_exclusivecount = 0;
963 COUNT_CPU(cpu_num, -count);
964 lkp->lk_flags &= ~LK_HAVE_EXCL;
965 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
966 #if defined(LOCKDEBUG)
967 lkp->lk_unlock_file = file;
968 lkp->lk_unlock_line = line;
969 #endif
970 DONTHAVEIT(lkp);
971 }
972 #ifdef DIAGNOSTIC
973 else if (lkp->lk_sharecount != 0)
974 panic("spinlock_release_all: release of shared lock!");
975 else
976 panic("spinlock_release_all: release of unlocked lock!");
977 #endif
978 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
979
980 return (count);
981 }
982
983 /*
984 * For a recursive spinlock held one or more times by the current CPU,
985 * release all N locks, and return N.
986 * Intended for use in mi_switch() right after resuming execution.
987 */
988
989 void
990 #if defined(LOCKDEBUG)
991 _spinlock_acquire_count(volatile struct lock *lkp, int count,
992 const char *file, int line)
993 #else
994 spinlock_acquire_count(volatile struct lock *lkp, int count)
995 #endif
996 {
997 int s, error;
998 cpuid_t cpu_num;
999
1000 KASSERT(lkp->lk_flags & LK_SPIN);
1001
1002 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
1003
1004 cpu_num = cpu_number();
1005
1006 #ifdef DIAGNOSTIC
1007 if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_num))
1008 panic("spinlock_acquire_count: processor %lu already holds lock", (long)cpu_num);
1009 #endif
1010 /*
1011 * Try to acquire the want_exclusive flag.
1012 */
1013 error = acquire(&lkp, &s, LK_SPIN, 0, LK_HAVE_EXCL | LK_WANT_EXCL,
1014 RETURN_ADDRESS);
1015 lkp->lk_flags |= LK_WANT_EXCL;
1016 /*
1017 * Wait for shared locks and upgrades to finish.
1018 */
1019 error = acquire(&lkp, &s, LK_SPIN, 0,
1020 LK_HAVE_EXCL | LK_SHARE_NONZERO | LK_WANT_UPGRADE,
1021 RETURN_ADDRESS);
1022 lkp->lk_flags &= ~LK_WANT_EXCL;
1023 lkp->lk_flags |= LK_HAVE_EXCL;
1024 SETHOLDER(lkp, LK_NOPROC, 0, cpu_num);
1025 #if defined(LOCKDEBUG)
1026 lkp->lk_lock_file = file;
1027 lkp->lk_lock_line = line;
1028 #endif
1029 HAVEIT(lkp);
1030 if (lkp->lk_exclusivecount != 0)
1031 panic("lockmgr: non-zero exclusive count");
1032 lkp->lk_exclusivecount = count;
1033 lkp->lk_recurselevel = 1;
1034 COUNT_CPU(cpu_num, count);
1035
1036 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
1037 }
1038
1039
1040
1041 /*
1042 * Print out information about state of a lock. Used by VOP_PRINT
1043 * routines to display ststus about contained locks.
1044 */
1045 void
1046 lockmgr_printinfo(volatile struct lock *lkp)
1047 {
1048
1049 if (lkp->lk_sharecount)
1050 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
1051 lkp->lk_sharecount);
1052 else if (lkp->lk_flags & LK_HAVE_EXCL) {
1053 printf(" lock type %s: EXCL (count %d) by ",
1054 lkp->lk_wmesg, lkp->lk_exclusivecount);
1055 if (lkp->lk_flags & LK_SPIN)
1056 printf("processor %lu", lkp->lk_cpu);
1057 else
1058 printf("pid %d.%d", lkp->lk_lockholder,
1059 lkp->lk_locklwp);
1060 } else
1061 printf(" not locked");
1062 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
1063 printf(" with %d pending", lkp->lk_waitcount);
1064 }
1065
1066 #if defined(LOCKDEBUG) /* { */
1067 _TAILQ_HEAD(, struct simplelock, volatile) simplelock_list =
1068 TAILQ_HEAD_INITIALIZER(simplelock_list);
1069
1070 #if defined(MULTIPROCESSOR) /* { */
1071 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
1072
1073 #define SLOCK_LIST_LOCK() \
1074 __cpu_simple_lock(&simplelock_list_slock.lock_data)
1075
1076 #define SLOCK_LIST_UNLOCK() \
1077 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
1078
1079 #define SLOCK_COUNT(x) \
1080 curcpu()->ci_simple_locks += (x)
1081 #else
1082 u_long simple_locks;
1083
1084 #define SLOCK_LIST_LOCK() /* nothing */
1085
1086 #define SLOCK_LIST_UNLOCK() /* nothing */
1087
1088 #define SLOCK_COUNT(x) simple_locks += (x)
1089 #endif /* MULTIPROCESSOR */ /* } */
1090
1091 #ifdef MULTIPROCESSOR
1092 #define SLOCK_MP() lock_printf("on CPU %ld\n", \
1093 (u_long) cpu_number())
1094 #else
1095 #define SLOCK_MP() /* nothing */
1096 #endif
1097
1098 #define SLOCK_WHERE(str, alp, id, l) \
1099 do { \
1100 lock_printf("\n"); \
1101 lock_printf(str); \
1102 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
1103 SLOCK_MP(); \
1104 if ((alp)->lock_file != NULL) \
1105 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
1106 (alp)->lock_line); \
1107 if ((alp)->unlock_file != NULL) \
1108 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1109 (alp)->unlock_line); \
1110 SLOCK_TRACE() \
1111 SLOCK_DEBUGGER(); \
1112 } while (/*CONSTCOND*/0)
1113
1114 /*
1115 * Simple lock functions so that the debugger can see from whence
1116 * they are being called.
1117 */
1118 void
1119 simple_lock_init(volatile struct simplelock *alp)
1120 {
1121
1122 #if defined(MULTIPROCESSOR) /* { */
1123 __cpu_simple_lock_init(&alp->lock_data);
1124 #else
1125 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1126 #endif /* } */
1127 alp->lock_file = NULL;
1128 alp->lock_line = 0;
1129 alp->unlock_file = NULL;
1130 alp->unlock_line = 0;
1131 alp->lock_holder = LK_NOCPU;
1132 }
1133
1134 void
1135 _simple_lock(volatile struct simplelock *alp, const char *id, int l)
1136 {
1137 cpuid_t cpu_num = cpu_number();
1138 int s;
1139
1140 s = spllock();
1141
1142 /*
1143 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1144 * don't take any action, and just fall into the normal spin case.
1145 */
1146 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1147 #if defined(MULTIPROCESSOR) /* { */
1148 if (alp->lock_holder == cpu_num) {
1149 SLOCK_WHERE("simple_lock: locking against myself\n",
1150 alp, id, l);
1151 goto out;
1152 }
1153 #else
1154 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1155 goto out;
1156 #endif /* MULTIPROCESSOR */ /* } */
1157 }
1158
1159 #if defined(MULTIPROCESSOR) /* { */
1160 /* Acquire the lock before modifying any fields. */
1161 splx(s);
1162 __cpu_simple_lock(&alp->lock_data);
1163 s = spllock();
1164 #else
1165 alp->lock_data = __SIMPLELOCK_LOCKED;
1166 #endif /* } */
1167
1168 if (alp->lock_holder != LK_NOCPU) {
1169 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1170 alp, id, l);
1171 }
1172 alp->lock_file = id;
1173 alp->lock_line = l;
1174 alp->lock_holder = cpu_num;
1175
1176 SLOCK_LIST_LOCK();
1177 TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
1178 SLOCK_LIST_UNLOCK();
1179
1180 SLOCK_COUNT(1);
1181
1182 out:
1183 splx(s);
1184 }
1185
1186 int
1187 _simple_lock_held(volatile struct simplelock *alp)
1188 {
1189 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1190 cpuid_t cpu_num = cpu_number();
1191 #endif
1192 int s, locked = 0;
1193
1194 s = spllock();
1195
1196 #if defined(MULTIPROCESSOR)
1197 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1198 locked = (alp->lock_holder == cpu_num);
1199 else
1200 __cpu_simple_unlock(&alp->lock_data);
1201 #else
1202 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1203 locked = 1;
1204 KASSERT(alp->lock_holder == cpu_num);
1205 }
1206 #endif
1207
1208 splx(s);
1209
1210 return (locked);
1211 }
1212
1213 int
1214 _simple_lock_try(volatile struct simplelock *alp, const char *id, int l)
1215 {
1216 cpuid_t cpu_num = cpu_number();
1217 int s, rv = 0;
1218
1219 s = spllock();
1220
1221 /*
1222 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1223 * don't take any action.
1224 */
1225 #if defined(MULTIPROCESSOR) /* { */
1226 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1227 if (alp->lock_holder == cpu_num)
1228 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1229 alp, id, l);
1230 goto out;
1231 }
1232 #else
1233 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1234 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1235 goto out;
1236 }
1237 alp->lock_data = __SIMPLELOCK_LOCKED;
1238 #endif /* MULTIPROCESSOR */ /* } */
1239
1240 /*
1241 * At this point, we have acquired the lock.
1242 */
1243
1244 rv = 1;
1245
1246 alp->lock_file = id;
1247 alp->lock_line = l;
1248 alp->lock_holder = cpu_num;
1249
1250 SLOCK_LIST_LOCK();
1251 TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
1252 SLOCK_LIST_UNLOCK();
1253
1254 SLOCK_COUNT(1);
1255
1256 out:
1257 splx(s);
1258 return (rv);
1259 }
1260
1261 void
1262 _simple_unlock(volatile struct simplelock *alp, const char *id, int l)
1263 {
1264 int s;
1265
1266 s = spllock();
1267
1268 /*
1269 * MULTIPROCESSOR case: This is `safe' because we think we hold
1270 * the lock, and if we don't, we don't take any action.
1271 */
1272 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1273 SLOCK_WHERE("simple_unlock: lock not held\n",
1274 alp, id, l);
1275 goto out;
1276 }
1277
1278 SLOCK_LIST_LOCK();
1279 TAILQ_REMOVE(&simplelock_list, alp, list);
1280 SLOCK_LIST_UNLOCK();
1281
1282 SLOCK_COUNT(-1);
1283
1284 alp->list.tqe_next = NULL; /* sanity */
1285 alp->list.tqe_prev = NULL; /* sanity */
1286
1287 alp->unlock_file = id;
1288 alp->unlock_line = l;
1289
1290 #if defined(MULTIPROCESSOR) /* { */
1291 alp->lock_holder = LK_NOCPU;
1292 /* Now that we've modified all fields, release the lock. */
1293 __cpu_simple_unlock(&alp->lock_data);
1294 #else
1295 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1296 KASSERT(alp->lock_holder == cpu_number());
1297 alp->lock_holder = LK_NOCPU;
1298 #endif /* } */
1299
1300 out:
1301 splx(s);
1302 }
1303
1304 void
1305 simple_lock_dump(void)
1306 {
1307 volatile struct simplelock *alp;
1308 int s;
1309
1310 s = spllock();
1311 SLOCK_LIST_LOCK();
1312 lock_printf("all simple locks:\n");
1313 TAILQ_FOREACH(alp, &simplelock_list, list) {
1314 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1315 alp->lock_file, alp->lock_line);
1316 }
1317 SLOCK_LIST_UNLOCK();
1318 splx(s);
1319 }
1320
1321 void
1322 simple_lock_freecheck(void *start, void *end)
1323 {
1324 volatile struct simplelock *alp;
1325 int s;
1326
1327 s = spllock();
1328 SLOCK_LIST_LOCK();
1329 TAILQ_FOREACH(alp, &simplelock_list, list) {
1330 if ((volatile void *)alp >= start &&
1331 (volatile void *)alp < end) {
1332 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1333 alp, alp->lock_holder, alp->lock_file,
1334 alp->lock_line);
1335 SLOCK_DEBUGGER();
1336 }
1337 }
1338 SLOCK_LIST_UNLOCK();
1339 splx(s);
1340 }
1341
1342 /*
1343 * We must be holding exactly one lock: the sched_lock.
1344 */
1345
1346 void
1347 simple_lock_switchcheck(void)
1348 {
1349
1350 simple_lock_only_held(NULL, "switching");
1351 }
1352
1353 /*
1354 * Drop into the debugger if lp isn't the only lock held.
1355 * lp may be NULL.
1356 */
1357 void
1358 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1359 {
1360 volatile struct simplelock *alp;
1361 cpuid_t cpu_num = cpu_number();
1362 int s;
1363
1364 if (lp) {
1365 LOCK_ASSERT(simple_lock_held(lp));
1366 }
1367 s = spllock();
1368 SLOCK_LIST_LOCK();
1369 TAILQ_FOREACH(alp, &simplelock_list, list) {
1370 if (alp == lp)
1371 continue;
1372 if (alp->lock_holder == cpu_num)
1373 break;
1374 }
1375 SLOCK_LIST_UNLOCK();
1376 splx(s);
1377
1378 if (alp != NULL) {
1379 lock_printf("\n%s with held simple_lock %p "
1380 "CPU %lu %s:%d\n",
1381 where, alp, alp->lock_holder, alp->lock_file,
1382 alp->lock_line);
1383 SLOCK_TRACE();
1384 SLOCK_DEBUGGER();
1385 }
1386 }
1387
1388 /*
1389 * Set to 1 by simple_lock_assert_*().
1390 * Can be cleared from ddb to avoid a panic.
1391 */
1392 int slock_assert_will_panic;
1393
1394 /*
1395 * If the lock isn't held, print a traceback, optionally drop into the
1396 * debugger, then panic.
1397 * The panic can be avoided by clearing slock_assert_with_panic from the
1398 * debugger.
1399 */
1400 void
1401 _simple_lock_assert_locked(volatile struct simplelock *alp,
1402 const char *lockname, const char *id, int l)
1403 {
1404 if (simple_lock_held(alp) == 0) {
1405 slock_assert_will_panic = 1;
1406 lock_printf("%s lock not held\n", lockname);
1407 SLOCK_WHERE("lock not held", alp, id, l);
1408 if (slock_assert_will_panic)
1409 panic("%s: not locked", lockname);
1410 }
1411 }
1412
1413 void
1414 _simple_lock_assert_unlocked(volatile struct simplelock *alp,
1415 const char *lockname, const char *id, int l)
1416 {
1417 if (simple_lock_held(alp)) {
1418 slock_assert_will_panic = 1;
1419 lock_printf("%s lock held\n", lockname);
1420 SLOCK_WHERE("lock held", alp, id, l);
1421 if (slock_assert_will_panic)
1422 panic("%s: locked", lockname);
1423 }
1424 }
1425
1426 void
1427 assert_sleepable(struct simplelock *interlock, const char *msg)
1428 {
1429
1430 if (curlwp == NULL) {
1431 panic("assert_sleepable: NULL curlwp");
1432 }
1433 simple_lock_only_held(interlock, msg);
1434 }
1435
1436 #endif /* LOCKDEBUG */ /* } */
1437
1438 #if defined(MULTIPROCESSOR)
1439 /*
1440 * Functions for manipulating the kernel_lock. We put them here
1441 * so that they show up in profiles.
1442 */
1443
1444
1445 void
1446 _kernel_lock_init(void)
1447 {
1448
1449 mutex_init(&kernel_mutex, MUTEX_SPIN, IPL_BIGLOCK);
1450 }
1451
1452 /*
1453 * Acquire/release the kernel lock. Intended for use in the scheduler
1454 * and the lower half of the kernel.
1455 */
1456 void
1457 _kernel_lock(int flag)
1458 {
1459 struct cpu_info *ci = curcpu();
1460
1461 if (ci->ci_data.cpu_biglock_count > 0) {
1462 LOCK_ASSERT(mutex_owned(&kernel_mutex));
1463 ci->ci_data.cpu_biglock_count++;
1464 } else {
1465 mutex_enter(&kernel_mutex);
1466 ci->ci_data.cpu_biglock_count++;
1467 splx(mutex_getspl(&kernel_mutex));
1468 }
1469 }
1470
1471 void
1472 _kernel_unlock(void)
1473 {
1474 struct cpu_info *ci = curcpu();
1475 int s;
1476
1477 KASSERT(ci->ci_data.cpu_biglock_count > 0);
1478
1479 s = splraiseipl(kernel_mutex.mtx_minspl);
1480 if ((--ci->ci_data.cpu_biglock_count) == 0) {
1481 mutex_setspl(&kernel_mutex, s);
1482 mutex_exit(&kernel_mutex);
1483 } else
1484 splx(s);
1485 }
1486
1487 /*
1488 * Acquire/release the kernel_lock on behalf of a process. Intended for
1489 * use in the top half of the kernel.
1490 */
1491 void
1492 _kernel_proc_lock(struct lwp *l)
1493 {
1494
1495 LOCKDEBUG_BARRIER(&kernel_mutex, 0);
1496 _kernel_lock(0);
1497 }
1498
1499 void
1500 _kernel_proc_unlock(struct lwp *l)
1501 {
1502
1503 _kernel_unlock();
1504 }
1505
1506 int
1507 _kernel_lock_release_all()
1508 {
1509 struct cpu_info *ci = curcpu();
1510 int hold_count;
1511
1512 hold_count = ci->ci_data.cpu_biglock_count;
1513
1514 if (hold_count) {
1515 mutex_setspl(&kernel_mutex, splraiseipl(kernel_mutex.mtx_minspl));
1516 ci->ci_data.cpu_biglock_count = 0;
1517 mutex_exit(&kernel_mutex);
1518 }
1519
1520 return hold_count;
1521 }
1522
1523 void
1524 _kernel_lock_acquire_count(int hold_count)
1525 {
1526
1527 KASSERT(curcpu()->ci_data.cpu_biglock_count == 0);
1528
1529 if (hold_count != 0) {
1530 struct cpu_info *ci = curcpu();
1531
1532 mutex_enter(&kernel_mutex);
1533 ci->ci_data.cpu_biglock_count = hold_count;
1534 splx(mutex_getspl(&kernel_mutex));
1535 }
1536 }
1537 #if defined(DEBUG)
1538 void
1539 _kernel_lock_assert_locked()
1540 {
1541
1542 LOCK_ASSERT(mutex_owned(&kernel_mutex));
1543 }
1544 #endif
1545
1546 int
1547 lock_owner_onproc(uintptr_t owner)
1548 {
1549 CPU_INFO_ITERATOR cii;
1550 struct cpu_info *ci;
1551
1552 for (CPU_INFO_FOREACH(cii, ci))
1553 if (owner == (uintptr_t)ci || owner == (uintptr_t)ci->ci_curlwp)
1554 return (1);
1555
1556 return (0);
1557 }
1558
1559 #else /* MULTIPROCESSOR */
1560
1561 int
1562 lock_owner_onproc(uintptr_t owner)
1563 {
1564
1565 return 0;
1566 }
1567
1568 #endif /* MULTIPROCESSOR */
1569