1 1.270 andvar /* $NetBSD: kern_lwp.c,v 1.270 2025/04/11 16:04:43 andvar Exp $ */ 2 1.2 thorpej 3 1.2 thorpej /*- 4 1.255 ad * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020, 2023 5 1.220 ad * The NetBSD Foundation, Inc. 6 1.2 thorpej * All rights reserved. 7 1.2 thorpej * 8 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation 9 1.52 ad * by Nathan J. Williams, and Andrew Doran. 10 1.2 thorpej * 11 1.2 thorpej * Redistribution and use in source and binary forms, with or without 12 1.2 thorpej * modification, are permitted provided that the following conditions 13 1.2 thorpej * are met: 14 1.2 thorpej * 1. Redistributions of source code must retain the above copyright 15 1.2 thorpej * notice, this list of conditions and the following disclaimer. 16 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright 17 1.2 thorpej * notice, this list of conditions and the following disclaimer in the 18 1.2 thorpej * documentation and/or other materials provided with the distribution. 19 1.2 thorpej * 20 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE. 31 1.2 thorpej */ 32 1.9 lukem 33 1.52 ad /* 34 1.52 ad * Overview 35 1.52 ad * 36 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of 37 1.52 ad * execution within the kernel. The core state of an LWP is described 38 1.66 ad * by "struct lwp", also known as lwp_t. 39 1.52 ad * 40 1.52 ad * Each LWP is contained within a process (described by "struct proc"), 41 1.52 ad * Every process contains at least one LWP, but may contain more. The 42 1.52 ad * process describes attributes shared among all of its LWPs such as a 43 1.52 ad * private address space, global execution state (stopped, active, 44 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor 45 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel. 46 1.52 ad * 47 1.52 ad * Execution states 48 1.52 ad * 49 1.52 ad * At any given time, an LWP has overall state that is described by 50 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first 51 1.52 ad * set is guaranteed to represent the absolute, current state of the 52 1.52 ad * LWP: 53 1.101 rmind * 54 1.101 rmind * LSONPROC 55 1.101 rmind * 56 1.101 rmind * On processor: the LWP is executing on a CPU, either in the 57 1.101 rmind * kernel or in user space. 58 1.101 rmind * 59 1.101 rmind * LSRUN 60 1.101 rmind * 61 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be 62 1.101 rmind * chosen to run by an idle processor, or by a processor that 63 1.268 andvar * has been asked to preempt a currently running but lower 64 1.134 rmind * priority LWP. 65 1.101 rmind * 66 1.101 rmind * LSIDL 67 1.101 rmind * 68 1.238 ad * Idle: the LWP has been created but has not yet executed, or 69 1.238 ad * it has ceased executing a unit of work and is waiting to be 70 1.238 ad * started again. This state exists so that the LWP can occupy 71 1.238 ad * a slot in the process & PID table, but without having to 72 1.238 ad * worry about being touched; lookups of the LWP by ID will 73 1.238 ad * fail while in this state. The LWP will become visible for 74 1.238 ad * lookup once its state transitions further. Some special 75 1.238 ad * kernel threads also (ab)use this state to indicate that they 76 1.238 ad * are idle (soft interrupts and idle LWPs). 77 1.101 rmind * 78 1.101 rmind * LSSUSPENDED: 79 1.101 rmind * 80 1.101 rmind * Suspended: the LWP has had its execution suspended by 81 1.52 ad * another LWP in the same process using the _lwp_suspend() 82 1.52 ad * system call. User-level LWPs also enter the suspended 83 1.52 ad * state when the system is shutting down. 84 1.52 ad * 85 1.52 ad * The second set represent a "statement of intent" on behalf of the 86 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be 87 1.66 ad * sleeping or idle. It is expected to take the necessary action to 88 1.101 rmind * stop executing or become "running" again within a short timeframe. 89 1.227 ad * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 90 1.101 rmind * Importantly, it indicates that its state is tied to a CPU. 91 1.101 rmind * 92 1.101 rmind * LSZOMB: 93 1.101 rmind * 94 1.101 rmind * Dead or dying: the LWP has released most of its resources 95 1.129 ad * and is about to switch away into oblivion, or has already 96 1.66 ad * switched away. When it switches away, its few remaining 97 1.66 ad * resources can be collected. 98 1.101 rmind * 99 1.101 rmind * LSSLEEP: 100 1.101 rmind * 101 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and 102 1.101 rmind * has switched away or will switch away shortly to allow other 103 1.66 ad * LWPs to run on the CPU. 104 1.101 rmind * 105 1.101 rmind * LSSTOP: 106 1.101 rmind * 107 1.101 rmind * Stopped: the LWP has been stopped as a result of a job 108 1.101 rmind * control signal, or as a result of the ptrace() interface. 109 1.101 rmind * 110 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle 111 1.101 rmind * signals that they receive, but will not return to user space 112 1.101 rmind * until their process' state is changed away from stopped. 113 1.101 rmind * 114 1.101 rmind * Single LWPs within a process can not be set stopped 115 1.101 rmind * selectively: all actions that can stop or continue LWPs 116 1.101 rmind * occur at the process level. 117 1.101 rmind * 118 1.52 ad * State transitions 119 1.52 ad * 120 1.66 ad * Note that the LSSTOP state may only be set when returning to 121 1.66 ad * user space in userret(), or when sleeping interruptably. The 122 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting 123 1.66 ad * those states, we try to ensure that the LWPs will release all 124 1.66 ad * locks that they hold, and at a minimum try to ensure that the 125 1.66 ad * LWP can be set runnable again by a signal. 126 1.52 ad * 127 1.52 ad * LWPs may transition states in the following ways: 128 1.52 ad * 129 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN 130 1.129 ad * > SLEEP 131 1.129 ad * > STOPPED 132 1.52 ad * > SUSPENDED 133 1.52 ad * > ZOMB 134 1.129 ad * > IDL (special cases) 135 1.52 ad * 136 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN 137 1.129 ad * > SLEEP 138 1.52 ad * 139 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN 140 1.101 rmind * > RUN > SUSPENDED 141 1.101 rmind * > STOPPED > STOPPED 142 1.129 ad * > ONPROC (special cases) 143 1.52 ad * 144 1.129 ad * Some state transitions are only possible with kernel threads (eg 145 1.129 ad * ONPROC -> IDL) and happen under tightly controlled circumstances 146 1.129 ad * free of unwanted side effects. 147 1.66 ad * 148 1.114 rmind * Migration 149 1.114 rmind * 150 1.114 rmind * Migration of threads from one CPU to another could be performed 151 1.114 rmind * internally by the scheduler via sched_takecpu() or sched_catchlwp() 152 1.114 rmind * functions. The universal lwp_migrate() function should be used for 153 1.114 rmind * any other cases. Subsystems in the kernel must be aware that CPU 154 1.114 rmind * of LWP may change, while it is not locked. 155 1.114 rmind * 156 1.52 ad * Locking 157 1.52 ad * 158 1.52 ad * The majority of fields in 'struct lwp' are covered by a single, 159 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering 160 1.52 ad * each field are documented in sys/lwp.h. 161 1.52 ad * 162 1.66 ad * State transitions must be made with the LWP's general lock held, 163 1.152 rmind * and may cause the LWP's lock pointer to change. Manipulation of 164 1.66 ad * the general lock is not performed directly, but through calls to 165 1.152 rmind * lwp_lock(), lwp_unlock() and others. It should be noted that the 166 1.152 rmind * adaptive locks are not allowed to be released while the LWP's lock 167 1.152 rmind * is being held (unlike for other spin-locks). 168 1.52 ad * 169 1.52 ad * States and their associated locks: 170 1.52 ad * 171 1.270 andvar * LSIDL, LSONPROC, LSZOMB, LSSUSPENDED: 172 1.52 ad * 173 1.212 ad * Always covered by spc_lwplock, which protects LWPs not 174 1.212 ad * associated with any other sync object. This is a per-CPU 175 1.212 ad * lock and matches lwp::l_cpu. 176 1.52 ad * 177 1.212 ad * LSRUN: 178 1.52 ad * 179 1.64 yamt * Always covered by spc_mutex, which protects the run queues. 180 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu. 181 1.52 ad * 182 1.52 ad * LSSLEEP: 183 1.52 ad * 184 1.212 ad * Covered by a lock associated with the sleep queue (sometimes 185 1.221 ad * a turnstile sleep queue) that the LWP resides on. This can 186 1.221 ad * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep). 187 1.52 ad * 188 1.212 ad * LSSTOP: 189 1.101 rmind * 190 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then 191 1.66 ad * l_mutex references the sleep queue lock. If the LWP was 192 1.52 ad * runnable or on the CPU when halted, or has been removed from 193 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock. 194 1.52 ad * 195 1.52 ad * The lock order is as follows: 196 1.52 ad * 197 1.212 ad * sleepq -> turnstile -> spc_lwplock -> spc_mutex 198 1.52 ad * 199 1.243 skrll * Each process has a scheduler state lock (proc::p_lock), and a 200 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 201 1.52 ad * so on. When an LWP is to be entered into or removed from one of the 202 1.103 ad * following states, p_lock must be held and the process wide counters 203 1.52 ad * adjusted: 204 1.52 ad * 205 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 206 1.52 ad * 207 1.129 ad * (But not always for kernel threads. There are some special cases 208 1.212 ad * as mentioned above: soft interrupts, and the idle loops.) 209 1.129 ad * 210 1.52 ad * Note that an LWP is considered running or likely to run soon if in 211 1.52 ad * one of the following states. This affects the value of p_nrlwps: 212 1.52 ad * 213 1.52 ad * LSRUN, LSONPROC, LSSLEEP 214 1.52 ad * 215 1.103 ad * p_lock does not need to be held when transitioning among these 216 1.129 ad * three states, hence p_lock is rarely taken for state transitions. 217 1.52 ad */ 218 1.52 ad 219 1.9 lukem #include <sys/cdefs.h> 220 1.270 andvar __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.270 2025/04/11 16:04:43 andvar Exp $"); 221 1.8 martin 222 1.84 yamt #include "opt_ddb.h" 223 1.52 ad #include "opt_lockdebug.h" 224 1.139 darran #include "opt_dtrace.h" 225 1.2 thorpej 226 1.47 hannken #define _LWP_API_PRIVATE 227 1.47 hannken 228 1.2 thorpej #include <sys/param.h> 229 1.267 riastrad 230 1.267 riastrad #include <sys/atomic.h> 231 1.267 riastrad #include <sys/cprng.h> 232 1.64 yamt #include <sys/cpu.h> 233 1.267 riastrad #include <sys/dtrace_bsd.h> 234 1.267 riastrad #include <sys/filedesc.h> 235 1.267 riastrad #include <sys/fstrans.h> 236 1.267 riastrad #include <sys/futex.h> 237 1.267 riastrad #include <sys/intr.h> 238 1.267 riastrad #include <sys/kauth.h> 239 1.267 riastrad #include <sys/kcov.h> 240 1.267 riastrad #include <sys/kmem.h> 241 1.267 riastrad #include <sys/lockdebug.h> 242 1.267 riastrad #include <sys/lwpctl.h> 243 1.267 riastrad #include <sys/msan.h> 244 1.2 thorpej #include <sys/pool.h> 245 1.2 thorpej #include <sys/proc.h> 246 1.91 rmind #include <sys/pset.h> 247 1.267 riastrad #include <sys/psref.h> 248 1.267 riastrad #include <sys/ptrace.h> 249 1.141 darran #include <sys/sdt.h> 250 1.267 riastrad #include <sys/sleepq.h> 251 1.267 riastrad #include <sys/syncobj.h> 252 1.267 riastrad #include <sys/syscall_stats.h> 253 1.267 riastrad #include <sys/syscallargs.h> 254 1.267 riastrad #include <sys/sysctl.h> 255 1.267 riastrad #include <sys/systm.h> 256 1.267 riastrad #include <sys/uidinfo.h> 257 1.157 rmind #include <sys/xcall.h> 258 1.138 darran 259 1.2 thorpej #include <uvm/uvm_extern.h> 260 1.80 skrll #include <uvm/uvm_object.h> 261 1.2 thorpej 262 1.152 rmind static pool_cache_t lwp_cache __read_mostly; 263 1.152 rmind struct lwplist alllwp __cacheline_aligned; 264 1.41 thorpej 265 1.238 ad static int lwp_ctor(void *, void *, int); 266 1.157 rmind static void lwp_dtor(void *, void *); 267 1.157 rmind 268 1.141 darran /* DTrace proc provider probes */ 269 1.180 christos SDT_PROVIDER_DEFINE(proc); 270 1.180 christos 271 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *"); 272 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *"); 273 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *"); 274 1.141 darran 275 1.213 ad struct turnstile turnstile0 __cacheline_aligned; 276 1.147 pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 277 1.147 pooka #ifdef LWP0_CPU_INFO 278 1.147 pooka .l_cpu = LWP0_CPU_INFO, 279 1.147 pooka #endif 280 1.154 matt #ifdef LWP0_MD_INITIALIZER 281 1.154 matt .l_md = LWP0_MD_INITIALIZER, 282 1.154 matt #endif 283 1.147 pooka .l_proc = &proc0, 284 1.235 thorpej .l_lid = 0, /* we own proc0's slot in the pid table */ 285 1.147 pooka .l_flag = LW_SYSTEM, 286 1.147 pooka .l_stat = LSONPROC, 287 1.147 pooka .l_ts = &turnstile0, 288 1.147 pooka .l_syncobj = &sched_syncobj, 289 1.231 ad .l_refcnt = 0, 290 1.147 pooka .l_priority = PRI_USER + NPRI_USER - 1, 291 1.147 pooka .l_inheritedprio = -1, 292 1.147 pooka .l_class = SCHED_OTHER, 293 1.147 pooka .l_psid = PS_NONE, 294 1.147 pooka .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 295 1.147 pooka .l_name = __UNCONST("swapper"), 296 1.147 pooka .l_fd = &filedesc0, 297 1.147 pooka }; 298 1.147 pooka 299 1.249 mrg static int 300 1.249 mrg lwp_maxlwp(void) 301 1.249 mrg { 302 1.249 mrg /* Assume 1 LWP per 1MiB. */ 303 1.249 mrg uint64_t lwps_per = ctob(physmem) / (1024 * 1024); 304 1.249 mrg 305 1.249 mrg return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP); 306 1.249 mrg } 307 1.249 mrg 308 1.169 christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 309 1.169 christos 310 1.169 christos /* 311 1.169 christos * sysctl helper routine for kern.maxlwp. Ensures that the new 312 1.169 christos * values are not too low or too high. 313 1.169 christos */ 314 1.169 christos static int 315 1.169 christos sysctl_kern_maxlwp(SYSCTLFN_ARGS) 316 1.169 christos { 317 1.169 christos int error, nmaxlwp; 318 1.169 christos struct sysctlnode node; 319 1.169 christos 320 1.169 christos nmaxlwp = maxlwp; 321 1.169 christos node = *rnode; 322 1.169 christos node.sysctl_data = &nmaxlwp; 323 1.169 christos error = sysctl_lookup(SYSCTLFN_CALL(&node)); 324 1.169 christos if (error || newp == NULL) 325 1.169 christos return error; 326 1.169 christos 327 1.249 mrg if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP) 328 1.169 christos return EINVAL; 329 1.249 mrg if (nmaxlwp > lwp_maxlwp()) 330 1.169 christos return EINVAL; 331 1.169 christos maxlwp = nmaxlwp; 332 1.169 christos 333 1.169 christos return 0; 334 1.169 christos } 335 1.169 christos 336 1.169 christos static void 337 1.169 christos sysctl_kern_lwp_setup(void) 338 1.169 christos { 339 1.242 maxv sysctl_createv(NULL, 0, NULL, NULL, 340 1.169 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 341 1.169 christos CTLTYPE_INT, "maxlwp", 342 1.169 christos SYSCTL_DESCR("Maximum number of simultaneous threads"), 343 1.169 christos sysctl_kern_maxlwp, 0, NULL, 0, 344 1.169 christos CTL_KERN, CTL_CREATE, CTL_EOL); 345 1.169 christos } 346 1.169 christos 347 1.41 thorpej void 348 1.41 thorpej lwpinit(void) 349 1.41 thorpej { 350 1.41 thorpej 351 1.152 rmind LIST_INIT(&alllwp); 352 1.144 pooka lwpinit_specificdata(); 353 1.246 thorpej /* 354 1.246 thorpej * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 355 1.246 thorpej * calls will exit before memory of LWPs is returned to the pool, where 356 1.246 thorpej * KVA of LWP structure might be freed and re-used for other purposes. 357 1.246 thorpej * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 358 1.246 thorpej * callers, therefore a regular passive serialization barrier will 359 1.246 thorpej * do the job. 360 1.246 thorpej */ 361 1.246 thorpej lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 362 1.246 thorpej PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL); 363 1.169 christos 364 1.249 mrg maxlwp = lwp_maxlwp(); 365 1.169 christos sysctl_kern_lwp_setup(); 366 1.41 thorpej } 367 1.41 thorpej 368 1.147 pooka void 369 1.147 pooka lwp0_init(void) 370 1.147 pooka { 371 1.147 pooka struct lwp *l = &lwp0; 372 1.147 pooka 373 1.147 pooka KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 374 1.147 pooka 375 1.147 pooka LIST_INSERT_HEAD(&alllwp, l, l_list); 376 1.147 pooka 377 1.147 pooka callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 378 1.147 pooka callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 379 1.147 pooka cv_init(&l->l_sigcv, "sigwait"); 380 1.171 rmind cv_init(&l->l_waitcv, "vfork"); 381 1.147 pooka 382 1.263 ad l->l_cred = kauth_cred_hold(proc0.p_cred); 383 1.147 pooka 384 1.164 yamt kdtrace_thread_ctor(NULL, l); 385 1.147 pooka lwp_initspecific(l); 386 1.147 pooka 387 1.147 pooka SYSCALL_TIME_LWP_INIT(l); 388 1.147 pooka } 389 1.147 pooka 390 1.238 ad /* 391 1.238 ad * Initialize the non-zeroed portion of an lwp_t. 392 1.238 ad */ 393 1.238 ad static int 394 1.238 ad lwp_ctor(void *arg, void *obj, int flags) 395 1.238 ad { 396 1.238 ad lwp_t *l = obj; 397 1.238 ad 398 1.238 ad l->l_stat = LSIDL; 399 1.238 ad l->l_cpu = curcpu(); 400 1.238 ad l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock; 401 1.255 ad l->l_ts = kmem_alloc(sizeof(*l->l_ts), flags == PR_WAITOK ? 402 1.255 ad KM_SLEEP : KM_NOSLEEP); 403 1.238 ad 404 1.238 ad if (l->l_ts == NULL) { 405 1.238 ad return ENOMEM; 406 1.238 ad } else { 407 1.238 ad turnstile_ctor(l->l_ts); 408 1.238 ad return 0; 409 1.238 ad } 410 1.238 ad } 411 1.238 ad 412 1.157 rmind static void 413 1.245 thorpej lwp_dtor(void *arg, void *obj) 414 1.245 thorpej { 415 1.245 thorpej lwp_t *l = obj; 416 1.245 thorpej 417 1.245 thorpej /* 418 1.245 thorpej * The value of l->l_cpu must still be valid at this point. 419 1.245 thorpej */ 420 1.157 rmind KASSERT(l->l_cpu != NULL); 421 1.238 ad 422 1.238 ad /* 423 1.238 ad * We can't return turnstile0 to the pool (it didn't come from it), 424 1.238 ad * so if it comes up just drop it quietly and move on. 425 1.238 ad */ 426 1.238 ad if (l->l_ts != &turnstile0) 427 1.255 ad kmem_free(l->l_ts, sizeof(*l->l_ts)); 428 1.157 rmind } 429 1.157 rmind 430 1.52 ad /* 431 1.238 ad * Set an LWP suspended. 432 1.52 ad * 433 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the 434 1.52 ad * LWP before return. 435 1.52 ad */ 436 1.2 thorpej int 437 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t) 438 1.2 thorpej { 439 1.52 ad int error; 440 1.2 thorpej 441 1.103 ad KASSERT(mutex_owned(t->l_proc->p_lock)); 442 1.63 ad KASSERT(lwp_locked(t, NULL)); 443 1.33 chs 444 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC); 445 1.2 thorpej 446 1.52 ad /* 447 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone 448 1.52 ad * else or deadlock could occur. We won't return to userspace. 449 1.2 thorpej */ 450 1.109 rmind if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 451 1.52 ad lwp_unlock(t); 452 1.52 ad return (EDEADLK); 453 1.2 thorpej } 454 1.2 thorpej 455 1.204 kamil if ((t->l_flag & LW_DBGSUSPEND) != 0) { 456 1.204 kamil lwp_unlock(t); 457 1.204 kamil return 0; 458 1.204 kamil } 459 1.204 kamil 460 1.52 ad error = 0; 461 1.2 thorpej 462 1.52 ad switch (t->l_stat) { 463 1.52 ad case LSRUN: 464 1.52 ad case LSONPROC: 465 1.56 pavel t->l_flag |= LW_WSUSPEND; 466 1.52 ad lwp_need_userret(t); 467 1.52 ad lwp_unlock(t); 468 1.52 ad break; 469 1.2 thorpej 470 1.52 ad case LSSLEEP: 471 1.56 pavel t->l_flag |= LW_WSUSPEND; 472 1.259 ad lwp_need_userret(t); 473 1.2 thorpej 474 1.2 thorpej /* 475 1.52 ad * Kick the LWP and try to get it to the kernel boundary 476 1.52 ad * so that it will release any locks that it holds. 477 1.52 ad * setrunnable() will release the lock. 478 1.2 thorpej */ 479 1.56 pavel if ((t->l_flag & LW_SINTR) != 0) 480 1.52 ad setrunnable(t); 481 1.52 ad else 482 1.52 ad lwp_unlock(t); 483 1.52 ad break; 484 1.2 thorpej 485 1.52 ad case LSSUSPENDED: 486 1.52 ad lwp_unlock(t); 487 1.52 ad break; 488 1.17 manu 489 1.52 ad case LSSTOP: 490 1.56 pavel t->l_flag |= LW_WSUSPEND; 491 1.259 ad lwp_need_userret(t); 492 1.52 ad setrunnable(t); 493 1.52 ad break; 494 1.2 thorpej 495 1.52 ad case LSIDL: 496 1.52 ad case LSZOMB: 497 1.52 ad error = EINTR; /* It's what Solaris does..... */ 498 1.52 ad lwp_unlock(t); 499 1.52 ad break; 500 1.2 thorpej } 501 1.2 thorpej 502 1.69 rmind return (error); 503 1.2 thorpej } 504 1.2 thorpej 505 1.52 ad /* 506 1.52 ad * Restart a suspended LWP. 507 1.52 ad * 508 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the 509 1.52 ad * LWP before return. 510 1.52 ad */ 511 1.2 thorpej void 512 1.2 thorpej lwp_continue(struct lwp *l) 513 1.2 thorpej { 514 1.2 thorpej 515 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock)); 516 1.63 ad KASSERT(lwp_locked(l, NULL)); 517 1.52 ad 518 1.52 ad /* If rebooting or not suspended, then just bail out. */ 519 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) { 520 1.52 ad lwp_unlock(l); 521 1.2 thorpej return; 522 1.10 fvdl } 523 1.2 thorpej 524 1.56 pavel l->l_flag &= ~LW_WSUSPEND; 525 1.2 thorpej 526 1.204 kamil if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) { 527 1.52 ad lwp_unlock(l); 528 1.52 ad return; 529 1.2 thorpej } 530 1.2 thorpej 531 1.52 ad /* setrunnable() will release the lock. */ 532 1.52 ad setrunnable(l); 533 1.2 thorpej } 534 1.2 thorpej 535 1.52 ad /* 536 1.142 christos * Restart a stopped LWP. 537 1.142 christos * 538 1.142 christos * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 539 1.142 christos * LWP before return. 540 1.142 christos */ 541 1.142 christos void 542 1.142 christos lwp_unstop(struct lwp *l) 543 1.142 christos { 544 1.142 christos struct proc *p = l->l_proc; 545 1.167 rmind 546 1.239 ad KASSERT(mutex_owned(&proc_lock)); 547 1.142 christos KASSERT(mutex_owned(p->p_lock)); 548 1.142 christos 549 1.142 christos lwp_lock(l); 550 1.142 christos 551 1.204 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); 552 1.204 kamil 553 1.142 christos /* If not stopped, then just bail out. */ 554 1.142 christos if (l->l_stat != LSSTOP) { 555 1.142 christos lwp_unlock(l); 556 1.142 christos return; 557 1.142 christos } 558 1.142 christos 559 1.142 christos p->p_stat = SACTIVE; 560 1.142 christos p->p_sflag &= ~PS_STOPPING; 561 1.142 christos 562 1.142 christos if (!p->p_waited) 563 1.142 christos p->p_pptr->p_nstopchild--; 564 1.142 christos 565 1.142 christos if (l->l_wchan == NULL) { 566 1.142 christos /* setrunnable() will release the lock. */ 567 1.142 christos setrunnable(l); 568 1.183 christos } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) { 569 1.163 christos /* setrunnable() so we can receive the signal */ 570 1.163 christos setrunnable(l); 571 1.142 christos } else { 572 1.142 christos l->l_stat = LSSLEEP; 573 1.142 christos p->p_nrlwps++; 574 1.142 christos lwp_unlock(l); 575 1.142 christos } 576 1.142 christos } 577 1.142 christos 578 1.142 christos /* 579 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is 580 1.52 ad * non-zero, we are waiting for a specific LWP. 581 1.52 ad * 582 1.103 ad * Must be called with p->p_lock held. 583 1.52 ad */ 584 1.2 thorpej int 585 1.173 rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 586 1.2 thorpej { 587 1.173 rmind const lwpid_t curlid = l->l_lid; 588 1.173 rmind proc_t *p = l->l_proc; 589 1.223 ad lwp_t *l2, *next; 590 1.173 rmind int error; 591 1.2 thorpej 592 1.103 ad KASSERT(mutex_owned(p->p_lock)); 593 1.52 ad 594 1.52 ad p->p_nlwpwait++; 595 1.63 ad l->l_waitingfor = lid; 596 1.52 ad 597 1.52 ad for (;;) { 598 1.173 rmind int nfound; 599 1.173 rmind 600 1.52 ad /* 601 1.52 ad * Avoid a race between exit1() and sigexit(): if the 602 1.52 ad * process is dumping core, then we need to bail out: call 603 1.52 ad * into lwp_userret() where we will be suspended until the 604 1.52 ad * deed is done. 605 1.52 ad */ 606 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) { 607 1.103 ad mutex_exit(p->p_lock); 608 1.52 ad lwp_userret(l); 609 1.173 rmind KASSERT(false); 610 1.52 ad } 611 1.52 ad 612 1.52 ad /* 613 1.52 ad * First off, drain any detached LWP that is waiting to be 614 1.52 ad * reaped. 615 1.52 ad */ 616 1.261 ad if ((l2 = p->p_zomblwp) != NULL) { 617 1.52 ad p->p_zomblwp = NULL; 618 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */ 619 1.103 ad mutex_enter(p->p_lock); 620 1.261 ad continue; 621 1.52 ad } 622 1.52 ad 623 1.52 ad /* 624 1.52 ad * Now look for an LWP to collect. If the whole process is 625 1.52 ad * exiting, count detached LWPs as eligible to be collected, 626 1.52 ad * but don't drain them here. 627 1.52 ad */ 628 1.52 ad nfound = 0; 629 1.63 ad error = 0; 630 1.223 ad 631 1.223 ad /* 632 1.238 ad * If given a specific LID, go via pid_table and make sure 633 1.223 ad * it's not detached. 634 1.223 ad */ 635 1.223 ad if (lid != 0) { 636 1.235 thorpej l2 = proc_find_lwp(p, lid); 637 1.223 ad if (l2 == NULL) { 638 1.223 ad error = ESRCH; 639 1.223 ad break; 640 1.223 ad } 641 1.223 ad KASSERT(l2->l_lid == lid); 642 1.223 ad if ((l2->l_prflag & LPR_DETACHED) != 0) { 643 1.223 ad error = EINVAL; 644 1.223 ad break; 645 1.223 ad } 646 1.223 ad } else { 647 1.223 ad l2 = LIST_FIRST(&p->p_lwps); 648 1.223 ad } 649 1.223 ad for (; l2 != NULL; l2 = next) { 650 1.223 ad next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling)); 651 1.223 ad 652 1.63 ad /* 653 1.63 ad * If a specific wait and the target is waiting on 654 1.63 ad * us, then avoid deadlock. This also traps LWPs 655 1.63 ad * that try to wait on themselves. 656 1.63 ad * 657 1.63 ad * Note that this does not handle more complicated 658 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process 659 1.63 ad * can still be killed so it is not a major problem. 660 1.63 ad */ 661 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 662 1.63 ad error = EDEADLK; 663 1.63 ad break; 664 1.63 ad } 665 1.63 ad if (l2 == l) 666 1.52 ad continue; 667 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) { 668 1.63 ad nfound += exiting; 669 1.63 ad continue; 670 1.63 ad } 671 1.63 ad if (lid != 0) { 672 1.63 ad /* 673 1.63 ad * Mark this LWP as the first waiter, if there 674 1.63 ad * is no other. 675 1.63 ad */ 676 1.63 ad if (l2->l_waiter == 0) 677 1.63 ad l2->l_waiter = curlid; 678 1.63 ad } else if (l2->l_waiter != 0) { 679 1.63 ad /* 680 1.63 ad * It already has a waiter - so don't 681 1.63 ad * collect it. If the waiter doesn't 682 1.63 ad * grab it we'll get another chance 683 1.63 ad * later. 684 1.63 ad */ 685 1.63 ad nfound++; 686 1.52 ad continue; 687 1.52 ad } 688 1.52 ad nfound++; 689 1.2 thorpej 690 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */ 691 1.52 ad if (l2->l_stat != LSZOMB) 692 1.52 ad continue; 693 1.2 thorpej 694 1.63 ad /* 695 1.63 ad * We're no longer waiting. Reset the "first waiter" 696 1.63 ad * pointer on the target, in case it was us. 697 1.63 ad */ 698 1.63 ad l->l_waitingfor = 0; 699 1.63 ad l2->l_waiter = 0; 700 1.63 ad p->p_nlwpwait--; 701 1.2 thorpej if (departed) 702 1.2 thorpej *departed = l2->l_lid; 703 1.75 ad sched_lwp_collect(l2); 704 1.63 ad 705 1.63 ad /* lwp_free() releases the proc lock. */ 706 1.63 ad lwp_free(l2, false, false); 707 1.103 ad mutex_enter(p->p_lock); 708 1.52 ad return 0; 709 1.52 ad } 710 1.2 thorpej 711 1.63 ad if (error != 0) 712 1.63 ad break; 713 1.52 ad if (nfound == 0) { 714 1.52 ad error = ESRCH; 715 1.52 ad break; 716 1.52 ad } 717 1.63 ad 718 1.63 ad /* 719 1.173 rmind * Note: since the lock will be dropped, need to restart on 720 1.173 rmind * wakeup to run all LWPs again, e.g. there may be new LWPs. 721 1.63 ad */ 722 1.63 ad if (exiting) { 723 1.52 ad KASSERT(p->p_nlwps > 1); 724 1.222 ad error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1); 725 1.173 rmind break; 726 1.52 ad } 727 1.63 ad 728 1.63 ad /* 729 1.234 ad * Break out if all LWPs are in _lwp_wait(). There are 730 1.234 ad * other ways to hang the process with _lwp_wait(), but the 731 1.234 ad * sleep is interruptable so little point checking for them. 732 1.63 ad */ 733 1.234 ad if (p->p_nlwpwait == p->p_nlwps) { 734 1.52 ad error = EDEADLK; 735 1.52 ad break; 736 1.2 thorpej } 737 1.63 ad 738 1.63 ad /* 739 1.63 ad * Sit around and wait for something to happen. We'll be 740 1.63 ad * awoken if any of the conditions examined change: if an 741 1.63 ad * LWP exits, is collected, or is detached. 742 1.63 ad */ 743 1.103 ad if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 744 1.52 ad break; 745 1.2 thorpej } 746 1.2 thorpej 747 1.63 ad /* 748 1.63 ad * We didn't find any LWPs to collect, we may have received a 749 1.63 ad * signal, or some other condition has caused us to bail out. 750 1.63 ad * 751 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some 752 1.63 ad * other LWP may want it. Then, kick all the remaining waiters 753 1.63 ad * so that they can re-check for zombies and for deadlock. 754 1.63 ad */ 755 1.63 ad if (lid != 0) { 756 1.235 thorpej l2 = proc_find_lwp(p, lid); 757 1.223 ad KASSERT(l2 == NULL || l2->l_lid == lid); 758 1.223 ad 759 1.223 ad if (l2 != NULL && l2->l_waiter == curlid) 760 1.223 ad l2->l_waiter = 0; 761 1.63 ad } 762 1.52 ad p->p_nlwpwait--; 763 1.63 ad l->l_waitingfor = 0; 764 1.63 ad cv_broadcast(&p->p_lwpcv); 765 1.63 ad 766 1.52 ad return error; 767 1.2 thorpej } 768 1.2 thorpej 769 1.223 ad /* 770 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template. 771 1.52 ad * The new LWP is created in state LSIDL and must be set running, 772 1.52 ad * suspended, or stopped by the caller. 773 1.52 ad */ 774 1.2 thorpej int 775 1.134 rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 776 1.188 christos void *stack, size_t stacksize, void (*func)(void *), void *arg, 777 1.188 christos lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask, 778 1.188 christos const stack_t *sigstk) 779 1.2 thorpej { 780 1.215 ad struct lwp *l2; 781 1.2 thorpej 782 1.107 ad KASSERT(l1 == curlwp || l1->l_proc == &proc0); 783 1.107 ad 784 1.52 ad /* 785 1.215 ad * Enforce limits, excluding the first lwp and kthreads. We must 786 1.215 ad * use the process credentials here when adjusting the limit, as 787 1.215 ad * they are what's tied to the accounting entity. However for 788 1.215 ad * authorizing the action, we'll use the LWP's credentials. 789 1.169 christos */ 790 1.215 ad mutex_enter(p2->p_lock); 791 1.169 christos if (p2->p_nlwps != 0 && p2 != &proc0) { 792 1.215 ad uid_t uid = kauth_cred_getuid(p2->p_cred); 793 1.169 christos int count = chglwpcnt(uid, 1); 794 1.169 christos if (__predict_false(count > 795 1.169 christos p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 796 1.169 christos if (kauth_authorize_process(l1->l_cred, 797 1.169 christos KAUTH_PROCESS_RLIMIT, p2, 798 1.169 christos KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 799 1.169 christos &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 800 1.169 christos != 0) { 801 1.170 christos (void)chglwpcnt(uid, -1); 802 1.215 ad mutex_exit(p2->p_lock); 803 1.170 christos return EAGAIN; 804 1.169 christos } 805 1.169 christos } 806 1.169 christos } 807 1.169 christos 808 1.169 christos /* 809 1.52 ad * First off, reap any detached LWP waiting to be collected. 810 1.52 ad * We can re-use its LWP structure and turnstile. 811 1.52 ad */ 812 1.215 ad if ((l2 = p2->p_zomblwp) != NULL) { 813 1.215 ad p2->p_zomblwp = NULL; 814 1.215 ad lwp_free(l2, true, false); 815 1.215 ad /* p2 now unlocked by lwp_free() */ 816 1.238 ad KASSERT(l2->l_ts != NULL); 817 1.75 ad KASSERT(l2->l_inheritedprio == -1); 818 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 819 1.238 ad memset(&l2->l_startzero, 0, sizeof(*l2) - 820 1.238 ad offsetof(lwp_t, l_startzero)); 821 1.215 ad } else { 822 1.215 ad mutex_exit(p2->p_lock); 823 1.215 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK); 824 1.238 ad memset(&l2->l_startzero, 0, sizeof(*l2) - 825 1.238 ad offsetof(lwp_t, l_startzero)); 826 1.215 ad SLIST_INIT(&l2->l_pi_lenders); 827 1.52 ad } 828 1.2 thorpej 829 1.238 ad /* 830 1.238 ad * Because of lockless lookup via pid_table, the LWP can be locked 831 1.238 ad * and inspected briefly even after it's freed, so a few fields are 832 1.238 ad * kept stable. 833 1.238 ad */ 834 1.238 ad KASSERT(l2->l_stat == LSIDL); 835 1.238 ad KASSERT(l2->l_cpu != NULL); 836 1.238 ad KASSERT(l2->l_ts != NULL); 837 1.238 ad KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock); 838 1.238 ad 839 1.2 thorpej l2->l_proc = p2; 840 1.231 ad l2->l_refcnt = 0; 841 1.75 ad l2->l_class = sclass; 842 1.116 ad 843 1.116 ad /* 844 1.235 thorpej * Allocate a process ID for this LWP. We need to do this now 845 1.250 andvar * while we can still unwind if it fails. Because we're marked 846 1.238 ad * as LSIDL, no lookups by the ID will succeed. 847 1.235 thorpej * 848 1.235 thorpej * N.B. this will always succeed for the first LWP in a process, 849 1.235 thorpej * because proc_alloc_lwpid() will usurp the slot. Also note 850 1.235 thorpej * that l2->l_proc MUST be valid so that lookups of the proc 851 1.235 thorpej * will succeed, even if the LWP itself is not visible. 852 1.235 thorpej */ 853 1.235 thorpej if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) { 854 1.235 thorpej pool_cache_put(lwp_cache, l2); 855 1.235 thorpej return EAGAIN; 856 1.235 thorpej } 857 1.235 thorpej 858 1.257 ad /* 859 1.257 ad * If vfork(), we want the LWP to run fast and on the same CPU 860 1.257 ad * as its parent, so that it can reuse the VM context and cache 861 1.257 ad * footprint on the local CPU. 862 1.257 ad */ 863 1.257 ad l2->l_boostpri = ((flags & LWP_VFORK) ? PRI_KERNEL : PRI_USER); 864 1.257 ad l2->l_priority = l1->l_priority; 865 1.75 ad l2->l_inheritedprio = -1; 866 1.185 christos l2->l_protectprio = -1; 867 1.185 christos l2->l_auxprio = -1; 868 1.222 ad l2->l_flag = 0; 869 1.88 ad l2->l_pflag = LP_MPSAFE; 870 1.131 ad TAILQ_INIT(&l2->l_ld_locks); 871 1.197 ozaki l2->l_psrefs = 0; 872 1.208 maxv kmsan_lwp_alloc(l2); 873 1.131 ad 874 1.131 ad /* 875 1.156 pooka * For vfork, borrow parent's lwpctl context if it exists. 876 1.156 pooka * This also causes us to return via lwp_userret. 877 1.156 pooka */ 878 1.156 pooka if (flags & LWP_VFORK && l1->l_lwpctl) { 879 1.156 pooka l2->l_lwpctl = l1->l_lwpctl; 880 1.156 pooka l2->l_flag |= LW_LWPCTL; 881 1.156 pooka } 882 1.156 pooka 883 1.156 pooka /* 884 1.131 ad * If not the first LWP in the process, grab a reference to the 885 1.131 ad * descriptor table. 886 1.131 ad */ 887 1.97 ad l2->l_fd = p2->p_fd; 888 1.131 ad if (p2->p_nlwps != 0) { 889 1.131 ad KASSERT(l1->l_proc == p2); 890 1.136 rmind fd_hold(l2); 891 1.131 ad } else { 892 1.131 ad KASSERT(l1->l_proc != p2); 893 1.131 ad } 894 1.41 thorpej 895 1.56 pavel if (p2->p_flag & PK_SYSTEM) { 896 1.134 rmind /* Mark it as a system LWP. */ 897 1.56 pavel l2->l_flag |= LW_SYSTEM; 898 1.52 ad } 899 1.2 thorpej 900 1.138 darran kdtrace_thread_ctor(NULL, l2); 901 1.73 rmind lwp_initspecific(l2); 902 1.75 ad sched_lwp_fork(l1, l2); 903 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 904 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 905 1.52 ad cv_init(&l2->l_sigcv, "sigwait"); 906 1.171 rmind cv_init(&l2->l_waitcv, "vfork"); 907 1.52 ad l2->l_syncobj = &sched_syncobj; 908 1.201 ozaki PSREF_DEBUG_INIT_LWP(l2); 909 1.2 thorpej 910 1.2 thorpej if (rnewlwpp != NULL) 911 1.2 thorpej *rnewlwpp = l2; 912 1.2 thorpej 913 1.158 matt /* 914 1.158 matt * PCU state needs to be saved before calling uvm_lwp_fork() so that 915 1.158 matt * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 916 1.158 matt */ 917 1.158 matt pcu_save_all(l1); 918 1.225 dogcow #if PCU_UNIT_COUNT > 0 919 1.224 riastrad l2->l_pcu_valid = l1->l_pcu_valid; 920 1.225 dogcow #endif 921 1.158 matt 922 1.137 rmind uvm_lwp_setuarea(l2, uaddr); 923 1.190 skrll uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2); 924 1.2 thorpej 925 1.235 thorpej mutex_enter(p2->p_lock); 926 1.263 ad l2->l_cred = kauth_cred_hold(p2->p_cred); 927 1.52 ad if ((flags & LWP_DETACHED) != 0) { 928 1.52 ad l2->l_prflag = LPR_DETACHED; 929 1.52 ad p2->p_ndlwps++; 930 1.52 ad } else 931 1.52 ad l2->l_prflag = 0; 932 1.52 ad 933 1.223 ad if (l1->l_proc == p2) { 934 1.223 ad /* 935 1.223 ad * These flags are set while p_lock is held. Copy with 936 1.223 ad * p_lock held too, so the LWP doesn't sneak into the 937 1.223 ad * process without them being set. 938 1.223 ad */ 939 1.222 ad l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE)); 940 1.223 ad } else { 941 1.223 ad /* fork(): pending core/exit doesn't apply to child. */ 942 1.222 ad l2->l_flag |= (l1->l_flag & LW_WREBOOT); 943 1.223 ad } 944 1.222 ad 945 1.188 christos l2->l_sigstk = *sigstk; 946 1.188 christos l2->l_sigmask = *sigmask; 947 1.176 christos TAILQ_INIT(&l2->l_sigpend.sp_info); 948 1.52 ad sigemptyset(&l2->l_sigpend.sp_set); 949 1.174 dsl LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 950 1.2 thorpej p2->p_nlwps++; 951 1.149 yamt p2->p_nrlwps++; 952 1.2 thorpej 953 1.162 rmind KASSERT(l2->l_affinity == NULL); 954 1.162 rmind 955 1.210 ad /* Inherit the affinity mask. */ 956 1.210 ad if (l1->l_affinity) { 957 1.210 ad /* 958 1.210 ad * Note that we hold the state lock while inheriting 959 1.210 ad * the affinity to avoid race with sched_setaffinity(). 960 1.210 ad */ 961 1.210 ad lwp_lock(l1); 962 1.162 rmind if (l1->l_affinity) { 963 1.210 ad kcpuset_use(l1->l_affinity); 964 1.210 ad l2->l_affinity = l1->l_affinity; 965 1.117 christos } 966 1.210 ad lwp_unlock(l1); 967 1.91 rmind } 968 1.223 ad 969 1.259 ad /* Ensure a trip through lwp_userret() if needed. */ 970 1.259 ad if ((l2->l_flag & LW_USERRET) != 0) { 971 1.259 ad lwp_need_userret(l2); 972 1.259 ad } 973 1.259 ad 974 1.223 ad /* This marks the end of the "must be atomic" section. */ 975 1.128 rmind mutex_exit(p2->p_lock); 976 1.128 rmind 977 1.180 christos SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0); 978 1.141 darran 979 1.239 ad mutex_enter(&proc_lock); 980 1.128 rmind LIST_INSERT_HEAD(&alllwp, l2, l_list); 981 1.210 ad /* Inherit a processor-set */ 982 1.210 ad l2->l_psid = l1->l_psid; 983 1.239 ad mutex_exit(&proc_lock); 984 1.91 rmind 985 1.57 dsl SYSCALL_TIME_LWP_INIT(l2); 986 1.57 dsl 987 1.16 manu if (p2->p_emul->e_lwp_fork) 988 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2); 989 1.16 manu 990 1.2 thorpej return (0); 991 1.2 thorpej } 992 1.2 thorpej 993 1.2 thorpej /* 994 1.212 ad * Set a new LWP running. If the process is stopping, then the LWP is 995 1.212 ad * created stopped. 996 1.212 ad */ 997 1.212 ad void 998 1.212 ad lwp_start(lwp_t *l, int flags) 999 1.212 ad { 1000 1.212 ad proc_t *p = l->l_proc; 1001 1.212 ad 1002 1.212 ad mutex_enter(p->p_lock); 1003 1.212 ad lwp_lock(l); 1004 1.212 ad KASSERT(l->l_stat == LSIDL); 1005 1.212 ad if ((flags & LWP_SUSPENDED) != 0) { 1006 1.212 ad /* It'll suspend itself in lwp_userret(). */ 1007 1.212 ad l->l_flag |= LW_WSUSPEND; 1008 1.260 ad lwp_need_userret(l); 1009 1.212 ad } 1010 1.212 ad if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1011 1.212 ad KASSERT(l->l_wchan == NULL); 1012 1.212 ad l->l_stat = LSSTOP; 1013 1.212 ad p->p_nrlwps--; 1014 1.212 ad lwp_unlock(l); 1015 1.212 ad } else { 1016 1.212 ad setrunnable(l); 1017 1.212 ad /* LWP now unlocked */ 1018 1.212 ad } 1019 1.212 ad mutex_exit(p->p_lock); 1020 1.212 ad } 1021 1.212 ad 1022 1.212 ad /* 1023 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called 1024 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no 1025 1.64 yamt * previous LWP, at splsched. 1026 1.64 yamt */ 1027 1.64 yamt void 1028 1.178 matt lwp_startup(struct lwp *prev, struct lwp *new_lwp) 1029 1.64 yamt { 1030 1.227 ad kmutex_t *lock; 1031 1.218 ad 1032 1.178 matt KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev); 1033 1.218 ad KASSERT(kpreempt_disabled()); 1034 1.218 ad KASSERT(prev != NULL); 1035 1.227 ad KASSERT((prev->l_pflag & LP_RUNNING) != 0); 1036 1.218 ad KASSERT(curcpu()->ci_mtx_count == -2); 1037 1.218 ad 1038 1.227 ad /* 1039 1.247 riastrad * Immediately mark the previous LWP as no longer running and 1040 1.247 riastrad * unlock (to keep lock wait times short as possible). If a 1041 1.247 riastrad * zombie, don't touch after clearing LP_RUNNING as it could be 1042 1.247 riastrad * reaped by another CPU. Use atomic_store_release to ensure 1043 1.247 riastrad * this -- matches atomic_load_acquire in lwp_free. 1044 1.227 ad */ 1045 1.227 ad lock = prev->l_mutex; 1046 1.227 ad if (__predict_false(prev->l_stat == LSZOMB)) { 1047 1.247 riastrad atomic_store_release(&prev->l_pflag, 1048 1.247 riastrad prev->l_pflag & ~LP_RUNNING); 1049 1.247 riastrad } else { 1050 1.247 riastrad prev->l_pflag &= ~LP_RUNNING; 1051 1.227 ad } 1052 1.227 ad mutex_spin_exit(lock); 1053 1.64 yamt 1054 1.218 ad /* Correct spin mutex count after mi_switch(). */ 1055 1.218 ad curcpu()->ci_mtx_count = 0; 1056 1.141 darran 1057 1.218 ad /* Install new VM context. */ 1058 1.218 ad if (__predict_true(new_lwp->l_proc->p_vmspace)) { 1059 1.218 ad pmap_activate(new_lwp); 1060 1.64 yamt } 1061 1.218 ad 1062 1.218 ad /* We remain at IPL_SCHED from mi_switch() - reset it. */ 1063 1.181 skrll spl0(); 1064 1.161 christos 1065 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0); 1066 1.218 ad SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0); 1067 1.218 ad 1068 1.218 ad /* For kthreads, acquire kernel lock if not MPSAFE. */ 1069 1.218 ad if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) { 1070 1.178 matt KERNEL_LOCK(1, new_lwp); 1071 1.65 ad } 1072 1.64 yamt } 1073 1.64 yamt 1074 1.64 yamt /* 1075 1.65 ad * Exit an LWP. 1076 1.241 ad * 1077 1.241 ad * *** WARNING *** This can be called with (l != curlwp) in error paths. 1078 1.2 thorpej */ 1079 1.2 thorpej void 1080 1.2 thorpej lwp_exit(struct lwp *l) 1081 1.2 thorpej { 1082 1.2 thorpej struct proc *p = l->l_proc; 1083 1.52 ad struct lwp *l2; 1084 1.65 ad bool current; 1085 1.65 ad 1086 1.65 ad current = (l == curlwp); 1087 1.2 thorpej 1088 1.252 riastrad KASSERT(current || l->l_stat == LSIDL); 1089 1.252 riastrad KASSERT(current || l->l_target_cpu == NULL); 1090 1.131 ad KASSERT(p == curproc); 1091 1.2 thorpej 1092 1.180 christos SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0); 1093 1.141 darran 1094 1.220 ad /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */ 1095 1.218 ad LOCKDEBUG_BARRIER(NULL, 0); 1096 1.220 ad KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked"); 1097 1.16 manu 1098 1.2 thorpej /* 1099 1.52 ad * If we are the last live LWP in a process, we need to exit the 1100 1.52 ad * entire process. We do so with an exit status of zero, because 1101 1.52 ad * it's a "controlled" exit, and because that's what Solaris does. 1102 1.52 ad * 1103 1.52 ad * We are not quite a zombie yet, but for accounting purposes we 1104 1.52 ad * must increment the count of zombies here. 1105 1.45 thorpej * 1106 1.45 thorpej * Note: the last LWP's specificdata will be deleted here. 1107 1.2 thorpej */ 1108 1.103 ad mutex_enter(p->p_lock); 1109 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) { 1110 1.65 ad KASSERT(current == true); 1111 1.172 matt KASSERT(p != &proc0); 1112 1.184 christos exit1(l, 0, 0); 1113 1.19 jdolecek /* NOTREACHED */ 1114 1.2 thorpej } 1115 1.52 ad p->p_nzlwps++; 1116 1.233 thorpej 1117 1.233 thorpej /* 1118 1.233 thorpej * Perform any required thread cleanup. Do this early so 1119 1.235 thorpej * anyone wanting to look us up with lwp_getref_lwpid() will 1120 1.235 thorpej * fail to find us before we become a zombie. 1121 1.233 thorpej * 1122 1.233 thorpej * N.B. this will unlock p->p_lock on our behalf. 1123 1.233 thorpej */ 1124 1.233 thorpej lwp_thread_cleanup(l); 1125 1.52 ad 1126 1.52 ad if (p->p_emul->e_lwp_exit) 1127 1.52 ad (*p->p_emul->e_lwp_exit)(l); 1128 1.2 thorpej 1129 1.131 ad /* Drop filedesc reference. */ 1130 1.131 ad fd_free(); 1131 1.131 ad 1132 1.196 hannken /* Release fstrans private data. */ 1133 1.196 hannken fstrans_lwp_dtor(l); 1134 1.196 hannken 1135 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */ 1136 1.145 pooka lwp_finispecific(l); 1137 1.45 thorpej 1138 1.52 ad /* 1139 1.52 ad * Release our cached credentials. 1140 1.52 ad */ 1141 1.37 ad kauth_cred_free(l->l_cred); 1142 1.70 ad callout_destroy(&l->l_timeout_ch); 1143 1.65 ad 1144 1.65 ad /* 1145 1.198 kamil * If traced, report LWP exit event to the debugger. 1146 1.198 kamil * 1147 1.52 ad * Remove the LWP from the global list. 1148 1.151 chs * Free its LID from the PID namespace if needed. 1149 1.52 ad */ 1150 1.239 ad mutex_enter(&proc_lock); 1151 1.198 kamil 1152 1.199 kamil if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) == 1153 1.198 kamil (PSL_TRACED|PSL_TRACELWP_EXIT)) { 1154 1.198 kamil mutex_enter(p->p_lock); 1155 1.202 kamil if (ISSET(p->p_sflag, PS_WEXIT)) { 1156 1.202 kamil mutex_exit(p->p_lock); 1157 1.202 kamil /* 1158 1.202 kamil * We are exiting, bail out without informing parent 1159 1.202 kamil * about a terminating LWP as it would deadlock. 1160 1.202 kamil */ 1161 1.202 kamil } else { 1162 1.203 kamil eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid); 1163 1.239 ad mutex_enter(&proc_lock); 1164 1.202 kamil } 1165 1.198 kamil } 1166 1.198 kamil 1167 1.52 ad LIST_REMOVE(l, l_list); 1168 1.239 ad mutex_exit(&proc_lock); 1169 1.19 jdolecek 1170 1.52 ad /* 1171 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs) 1172 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached, 1173 1.52 ad * mark it waiting for collection in the proc structure. Note that 1174 1.269 andvar * before we can do that, we need to free any other dead, detached 1175 1.52 ad * LWP waiting to meet its maker. 1176 1.231 ad * 1177 1.231 ad * All conditions need to be observed upon under the same hold of 1178 1.231 ad * p_lock, because if the lock is dropped any of them can change. 1179 1.52 ad */ 1180 1.103 ad mutex_enter(p->p_lock); 1181 1.231 ad for (;;) { 1182 1.233 thorpej if (lwp_drainrefs(l)) 1183 1.231 ad continue; 1184 1.231 ad if ((l->l_prflag & LPR_DETACHED) != 0) { 1185 1.231 ad if ((l2 = p->p_zomblwp) != NULL) { 1186 1.231 ad p->p_zomblwp = NULL; 1187 1.231 ad lwp_free(l2, false, false); 1188 1.231 ad /* proc now unlocked */ 1189 1.231 ad mutex_enter(p->p_lock); 1190 1.231 ad continue; 1191 1.231 ad } 1192 1.231 ad p->p_zomblwp = l; 1193 1.52 ad } 1194 1.231 ad break; 1195 1.52 ad } 1196 1.31 yamt 1197 1.52 ad /* 1198 1.52 ad * If we find a pending signal for the process and we have been 1199 1.151 chs * asked to check for signals, then we lose: arrange to have 1200 1.52 ad * all other LWPs in the process check for signals. 1201 1.52 ad */ 1202 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 && 1203 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) { 1204 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1205 1.52 ad lwp_lock(l2); 1206 1.209 ad signotify(l2); 1207 1.52 ad lwp_unlock(l2); 1208 1.52 ad } 1209 1.31 yamt } 1210 1.31 yamt 1211 1.158 matt /* 1212 1.158 matt * Release any PCU resources before becoming a zombie. 1213 1.158 matt */ 1214 1.158 matt pcu_discard_all(l); 1215 1.158 matt 1216 1.52 ad lwp_lock(l); 1217 1.52 ad l->l_stat = LSZOMB; 1218 1.162 rmind if (l->l_name != NULL) { 1219 1.90 ad strcpy(l->l_name, "(zombie)"); 1220 1.128 rmind } 1221 1.52 ad lwp_unlock(l); 1222 1.2 thorpej p->p_nrlwps--; 1223 1.78 ad if (l->l_lwpctl != NULL) 1224 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1225 1.103 ad mutex_exit(p->p_lock); 1226 1.262 ad cv_broadcast(&p->p_lwpcv); 1227 1.52 ad 1228 1.52 ad /* 1229 1.52 ad * We can no longer block. At this point, lwp_free() may already 1230 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1231 1.52 ad * 1232 1.52 ad * Free MD LWP resources. 1233 1.52 ad */ 1234 1.52 ad cpu_lwp_free(l, 0); 1235 1.2 thorpej 1236 1.65 ad if (current) { 1237 1.218 ad /* Switch away into oblivion. */ 1238 1.218 ad lwp_lock(l); 1239 1.218 ad spc_lock(l->l_cpu); 1240 1.218 ad mi_switch(l); 1241 1.218 ad panic("lwp_exit"); 1242 1.65 ad } 1243 1.2 thorpej } 1244 1.2 thorpej 1245 1.52 ad /* 1246 1.52 ad * Free a dead LWP's remaining resources. 1247 1.52 ad * 1248 1.52 ad * XXXLWP limits. 1249 1.52 ad */ 1250 1.52 ad void 1251 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last) 1252 1.52 ad { 1253 1.52 ad struct proc *p = l->l_proc; 1254 1.100 ad struct rusage *ru; 1255 1.52 ad ksiginfoq_t kq; 1256 1.52 ad 1257 1.92 yamt KASSERT(l != curlwp); 1258 1.160 yamt KASSERT(last || mutex_owned(p->p_lock)); 1259 1.92 yamt 1260 1.177 christos /* 1261 1.177 christos * We use the process credentials instead of the lwp credentials here 1262 1.177 christos * because the lwp credentials maybe cached (just after a setuid call) 1263 1.177 christos * and we don't want pay for syncing, since the lwp is going away 1264 1.177 christos * anyway 1265 1.177 christos */ 1266 1.169 christos if (p != &proc0 && p->p_nlwps != 1) 1267 1.177 christos (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1); 1268 1.218 ad 1269 1.52 ad /* 1270 1.238 ad * In the unlikely event that the LWP is still on the CPU, 1271 1.238 ad * then spin until it has switched away. 1272 1.247 riastrad * 1273 1.247 riastrad * atomic_load_acquire matches atomic_store_release in 1274 1.247 riastrad * lwp_startup and mi_switch. 1275 1.238 ad */ 1276 1.247 riastrad while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING) 1277 1.247 riastrad != 0)) { 1278 1.238 ad SPINLOCK_BACKOFF_HOOK; 1279 1.238 ad } 1280 1.238 ad 1281 1.238 ad /* 1282 1.238 ad * Now that the LWP's known off the CPU, reset its state back to 1283 1.238 ad * LSIDL, which defeats anything that might have gotten a hold on 1284 1.238 ad * the LWP via pid_table before the ID was freed. It's important 1285 1.238 ad * to do this with both the LWP locked and p_lock held. 1286 1.238 ad * 1287 1.238 ad * Also reset the CPU and lock pointer back to curcpu(), since the 1288 1.238 ad * LWP will in all likelyhood be cached with the current CPU in 1289 1.238 ad * lwp_cache when we free it and later allocated from there again 1290 1.238 ad * (avoid incidental lock contention). 1291 1.238 ad */ 1292 1.238 ad lwp_lock(l); 1293 1.238 ad l->l_stat = LSIDL; 1294 1.238 ad l->l_cpu = curcpu(); 1295 1.238 ad lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock); 1296 1.238 ad 1297 1.238 ad /* 1298 1.223 ad * If this was not the last LWP in the process, then adjust counters 1299 1.223 ad * and unlock. This is done differently for the last LWP in exit1(). 1300 1.52 ad */ 1301 1.52 ad if (!last) { 1302 1.52 ad /* 1303 1.52 ad * Add the LWP's run time to the process' base value. 1304 1.52 ad * This needs to co-incide with coming off p_lwps. 1305 1.52 ad */ 1306 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime); 1307 1.64 yamt p->p_pctcpu += l->l_pctcpu; 1308 1.100 ad ru = &p->p_stats->p_ru; 1309 1.100 ad ruadd(ru, &l->l_ru); 1310 1.52 ad LIST_REMOVE(l, l_sibling); 1311 1.52 ad p->p_nlwps--; 1312 1.52 ad p->p_nzlwps--; 1313 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) 1314 1.52 ad p->p_ndlwps--; 1315 1.262 ad mutex_exit(p->p_lock); 1316 1.63 ad 1317 1.63 ad /* 1318 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for 1319 1.63 ad * deadlock. 1320 1.63 ad */ 1321 1.63 ad cv_broadcast(&p->p_lwpcv); 1322 1.52 ad 1323 1.238 ad /* Free the LWP ID. */ 1324 1.239 ad mutex_enter(&proc_lock); 1325 1.238 ad proc_free_lwpid(p, l->l_lid); 1326 1.239 ad mutex_exit(&proc_lock); 1327 1.63 ad } 1328 1.52 ad 1329 1.52 ad /* 1330 1.52 ad * Destroy the LWP's remaining signal information. 1331 1.52 ad */ 1332 1.52 ad ksiginfo_queue_init(&kq); 1333 1.52 ad sigclear(&l->l_sigpend, NULL, &kq); 1334 1.52 ad ksiginfo_queue_drain(&kq); 1335 1.52 ad cv_destroy(&l->l_sigcv); 1336 1.171 rmind cv_destroy(&l->l_waitcv); 1337 1.2 thorpej 1338 1.19 jdolecek /* 1339 1.162 rmind * Free lwpctl structure and affinity. 1340 1.162 rmind */ 1341 1.162 rmind if (l->l_lwpctl) { 1342 1.162 rmind lwp_ctl_free(l); 1343 1.162 rmind } 1344 1.162 rmind if (l->l_affinity) { 1345 1.162 rmind kcpuset_unuse(l->l_affinity, NULL); 1346 1.162 rmind l->l_affinity = NULL; 1347 1.162 rmind } 1348 1.162 rmind 1349 1.162 rmind /* 1350 1.238 ad * Free remaining data structures and the LWP itself unless the 1351 1.238 ad * caller wants to recycle. 1352 1.19 jdolecek */ 1353 1.90 ad if (l->l_name != NULL) 1354 1.90 ad kmem_free(l->l_name, MAXCOMLEN); 1355 1.135 rmind 1356 1.208 maxv kmsan_lwp_free(l); 1357 1.232 maxv kcov_lwp_free(l); 1358 1.52 ad cpu_lwp_free2(l); 1359 1.19 jdolecek uvm_lwp_exit(l); 1360 1.134 rmind 1361 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1362 1.75 ad KASSERT(l->l_inheritedprio == -1); 1363 1.155 matt KASSERT(l->l_blcnt == 0); 1364 1.138 darran kdtrace_thread_dtor(NULL, l); 1365 1.52 ad if (!recycle) 1366 1.87 ad pool_cache_put(lwp_cache, l); 1367 1.2 thorpej } 1368 1.2 thorpej 1369 1.2 thorpej /* 1370 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP. 1371 1.91 rmind */ 1372 1.91 rmind void 1373 1.114 rmind lwp_migrate(lwp_t *l, struct cpu_info *tci) 1374 1.91 rmind { 1375 1.114 rmind struct schedstate_percpu *tspc; 1376 1.121 rmind int lstat = l->l_stat; 1377 1.121 rmind 1378 1.91 rmind KASSERT(lwp_locked(l, NULL)); 1379 1.114 rmind KASSERT(tci != NULL); 1380 1.114 rmind 1381 1.121 rmind /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1382 1.227 ad if ((l->l_pflag & LP_RUNNING) != 0) { 1383 1.121 rmind lstat = LSONPROC; 1384 1.121 rmind } 1385 1.121 rmind 1386 1.114 rmind /* 1387 1.114 rmind * The destination CPU could be changed while previous migration 1388 1.114 rmind * was not finished. 1389 1.114 rmind */ 1390 1.121 rmind if (l->l_target_cpu != NULL) { 1391 1.114 rmind l->l_target_cpu = tci; 1392 1.114 rmind lwp_unlock(l); 1393 1.114 rmind return; 1394 1.114 rmind } 1395 1.91 rmind 1396 1.114 rmind /* Nothing to do if trying to migrate to the same CPU */ 1397 1.114 rmind if (l->l_cpu == tci) { 1398 1.91 rmind lwp_unlock(l); 1399 1.91 rmind return; 1400 1.91 rmind } 1401 1.91 rmind 1402 1.114 rmind KASSERT(l->l_target_cpu == NULL); 1403 1.114 rmind tspc = &tci->ci_schedstate; 1404 1.121 rmind switch (lstat) { 1405 1.91 rmind case LSRUN: 1406 1.134 rmind l->l_target_cpu = tci; 1407 1.134 rmind break; 1408 1.91 rmind case LSSLEEP: 1409 1.114 rmind l->l_cpu = tci; 1410 1.91 rmind break; 1411 1.212 ad case LSIDL: 1412 1.91 rmind case LSSTOP: 1413 1.91 rmind case LSSUSPENDED: 1414 1.114 rmind l->l_cpu = tci; 1415 1.114 rmind if (l->l_wchan == NULL) { 1416 1.114 rmind lwp_unlock_to(l, tspc->spc_lwplock); 1417 1.114 rmind return; 1418 1.91 rmind } 1419 1.114 rmind break; 1420 1.91 rmind case LSONPROC: 1421 1.114 rmind l->l_target_cpu = tci; 1422 1.114 rmind spc_lock(l->l_cpu); 1423 1.212 ad sched_resched_cpu(l->l_cpu, PRI_USER_RT, true); 1424 1.212 ad /* spc now unlocked */ 1425 1.91 rmind break; 1426 1.91 rmind } 1427 1.91 rmind lwp_unlock(l); 1428 1.91 rmind } 1429 1.91 rmind 1430 1.237 thorpej #define lwp_find_exclude(l) \ 1431 1.237 thorpej ((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB) 1432 1.237 thorpej 1433 1.91 rmind /* 1434 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case, 1435 1.94 rmind * the calling process and first LWP in the list will be used. 1436 1.103 ad * On success - returns proc locked. 1437 1.237 thorpej * 1438 1.237 thorpej * => pid == 0 -> look in curproc. 1439 1.237 thorpej * => pid == -1 -> match any proc. 1440 1.237 thorpej * => otherwise look up the proc. 1441 1.237 thorpej * 1442 1.237 thorpej * => lid == 0 -> first LWP in the proc 1443 1.237 thorpej * => otherwise specific LWP 1444 1.91 rmind */ 1445 1.91 rmind struct lwp * 1446 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid) 1447 1.91 rmind { 1448 1.91 rmind proc_t *p; 1449 1.91 rmind lwp_t *l; 1450 1.91 rmind 1451 1.237 thorpej /* First LWP of specified proc. */ 1452 1.237 thorpej if (lid == 0) { 1453 1.237 thorpej switch (pid) { 1454 1.237 thorpej case -1: 1455 1.237 thorpej /* No lookup keys. */ 1456 1.237 thorpej return NULL; 1457 1.237 thorpej case 0: 1458 1.237 thorpej p = curproc; 1459 1.237 thorpej mutex_enter(p->p_lock); 1460 1.237 thorpej break; 1461 1.237 thorpej default: 1462 1.239 ad mutex_enter(&proc_lock); 1463 1.237 thorpej p = proc_find(pid); 1464 1.237 thorpej if (__predict_false(p == NULL)) { 1465 1.239 ad mutex_exit(&proc_lock); 1466 1.237 thorpej return NULL; 1467 1.237 thorpej } 1468 1.237 thorpej mutex_enter(p->p_lock); 1469 1.239 ad mutex_exit(&proc_lock); 1470 1.237 thorpej break; 1471 1.237 thorpej } 1472 1.237 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1473 1.237 thorpej if (__predict_true(!lwp_find_exclude(l))) 1474 1.237 thorpej break; 1475 1.150 rmind } 1476 1.237 thorpej goto out; 1477 1.237 thorpej } 1478 1.237 thorpej 1479 1.237 thorpej l = proc_find_lwp_acquire_proc(lid, &p); 1480 1.237 thorpej if (l == NULL) 1481 1.237 thorpej return NULL; 1482 1.237 thorpej KASSERT(p != NULL); 1483 1.237 thorpej KASSERT(mutex_owned(p->p_lock)); 1484 1.237 thorpej 1485 1.237 thorpej if (__predict_false(lwp_find_exclude(l))) { 1486 1.237 thorpej l = NULL; 1487 1.237 thorpej goto out; 1488 1.150 rmind } 1489 1.237 thorpej 1490 1.237 thorpej /* Apply proc filter, if applicable. */ 1491 1.237 thorpej switch (pid) { 1492 1.237 thorpej case -1: 1493 1.237 thorpej /* Match anything. */ 1494 1.237 thorpej break; 1495 1.237 thorpej case 0: 1496 1.237 thorpej if (p != curproc) 1497 1.237 thorpej l = NULL; 1498 1.237 thorpej break; 1499 1.237 thorpej default: 1500 1.237 thorpej if (p->p_pid != pid) 1501 1.237 thorpej l = NULL; 1502 1.237 thorpej break; 1503 1.94 rmind } 1504 1.237 thorpej 1505 1.237 thorpej out: 1506 1.237 thorpej if (__predict_false(l == NULL)) { 1507 1.103 ad mutex_exit(p->p_lock); 1508 1.103 ad } 1509 1.91 rmind return l; 1510 1.91 rmind } 1511 1.91 rmind 1512 1.91 rmind /* 1513 1.168 yamt * Look up a live LWP within the specified process. 1514 1.52 ad * 1515 1.223 ad * Must be called with p->p_lock held (as it looks at the radix tree, 1516 1.223 ad * and also wants to exclude idle and zombie LWPs). 1517 1.52 ad */ 1518 1.52 ad struct lwp * 1519 1.151 chs lwp_find(struct proc *p, lwpid_t id) 1520 1.52 ad { 1521 1.52 ad struct lwp *l; 1522 1.52 ad 1523 1.103 ad KASSERT(mutex_owned(p->p_lock)); 1524 1.52 ad 1525 1.235 thorpej l = proc_find_lwp(p, id); 1526 1.223 ad KASSERT(l == NULL || l->l_lid == id); 1527 1.52 ad 1528 1.52 ad /* 1529 1.52 ad * No need to lock - all of these conditions will 1530 1.52 ad * be visible with the process level mutex held. 1531 1.52 ad */ 1532 1.237 thorpej if (__predict_false(l != NULL && lwp_find_exclude(l))) 1533 1.52 ad l = NULL; 1534 1.52 ad 1535 1.52 ad return l; 1536 1.52 ad } 1537 1.52 ad 1538 1.52 ad /* 1539 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches 1540 1.52 ad * one we specify. 1541 1.52 ad */ 1542 1.52 ad int 1543 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx) 1544 1.52 ad { 1545 1.52 ad kmutex_t *cur = l->l_mutex; 1546 1.52 ad 1547 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1548 1.52 ad } 1549 1.52 ad 1550 1.52 ad /* 1551 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held. 1552 1.52 ad */ 1553 1.211 ad kmutex_t * 1554 1.178 matt lwp_setlock(struct lwp *l, kmutex_t *mtx) 1555 1.52 ad { 1556 1.211 ad kmutex_t *oldmtx = l->l_mutex; 1557 1.52 ad 1558 1.211 ad KASSERT(mutex_owned(oldmtx)); 1559 1.52 ad 1560 1.248 riastrad atomic_store_release(&l->l_mutex, mtx); 1561 1.211 ad return oldmtx; 1562 1.52 ad } 1563 1.52 ad 1564 1.52 ad /* 1565 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1566 1.52 ad * must be held. 1567 1.52 ad */ 1568 1.52 ad void 1569 1.178 matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx) 1570 1.52 ad { 1571 1.52 ad kmutex_t *old; 1572 1.52 ad 1573 1.152 rmind KASSERT(lwp_locked(l, NULL)); 1574 1.52 ad 1575 1.52 ad old = l->l_mutex; 1576 1.248 riastrad atomic_store_release(&l->l_mutex, mtx); 1577 1.52 ad mutex_spin_exit(old); 1578 1.52 ad } 1579 1.52 ad 1580 1.60 yamt int 1581 1.60 yamt lwp_trylock(struct lwp *l) 1582 1.60 yamt { 1583 1.60 yamt kmutex_t *old; 1584 1.60 yamt 1585 1.60 yamt for (;;) { 1586 1.248 riastrad if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex))) 1587 1.60 yamt return 0; 1588 1.248 riastrad if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old)) 1589 1.60 yamt return 1; 1590 1.60 yamt mutex_spin_exit(old); 1591 1.60 yamt } 1592 1.60 yamt } 1593 1.60 yamt 1594 1.134 rmind void 1595 1.211 ad lwp_unsleep(lwp_t *l, bool unlock) 1596 1.96 ad { 1597 1.96 ad 1598 1.96 ad KASSERT(mutex_owned(l->l_mutex)); 1599 1.211 ad (*l->l_syncobj->sobj_unsleep)(l, unlock); 1600 1.96 ad } 1601 1.96 ad 1602 1.52 ad /* 1603 1.256 ad * Lock an LWP. 1604 1.256 ad */ 1605 1.256 ad void 1606 1.256 ad lwp_lock(lwp_t *l) 1607 1.256 ad { 1608 1.256 ad kmutex_t *old = atomic_load_consume(&l->l_mutex); 1609 1.256 ad 1610 1.256 ad /* 1611 1.256 ad * Note: mutex_spin_enter() will have posted a read barrier. 1612 1.256 ad * Re-test l->l_mutex. If it has changed, we need to try again. 1613 1.256 ad */ 1614 1.256 ad mutex_spin_enter(old); 1615 1.256 ad while (__predict_false(atomic_load_relaxed(&l->l_mutex) != old)) { 1616 1.256 ad mutex_spin_exit(old); 1617 1.256 ad old = atomic_load_consume(&l->l_mutex); 1618 1.256 ad mutex_spin_enter(old); 1619 1.256 ad } 1620 1.256 ad } 1621 1.256 ad 1622 1.256 ad /* 1623 1.256 ad * Unlock an LWP. 1624 1.256 ad */ 1625 1.256 ad void 1626 1.256 ad lwp_unlock(lwp_t *l) 1627 1.256 ad { 1628 1.256 ad 1629 1.256 ad mutex_spin_exit(l->l_mutex); 1630 1.256 ad } 1631 1.256 ad 1632 1.256 ad void 1633 1.256 ad lwp_changepri(lwp_t *l, pri_t pri) 1634 1.256 ad { 1635 1.256 ad 1636 1.256 ad KASSERT(mutex_owned(l->l_mutex)); 1637 1.256 ad 1638 1.256 ad if (l->l_priority == pri) 1639 1.256 ad return; 1640 1.256 ad 1641 1.256 ad (*l->l_syncobj->sobj_changepri)(l, pri); 1642 1.256 ad KASSERT(l->l_priority == pri); 1643 1.256 ad } 1644 1.256 ad 1645 1.256 ad void 1646 1.256 ad lwp_lendpri(lwp_t *l, pri_t pri) 1647 1.256 ad { 1648 1.256 ad KASSERT(mutex_owned(l->l_mutex)); 1649 1.256 ad 1650 1.256 ad (*l->l_syncobj->sobj_lendpri)(l, pri); 1651 1.256 ad KASSERT(l->l_inheritedprio == pri); 1652 1.256 ad } 1653 1.256 ad 1654 1.256 ad pri_t 1655 1.256 ad lwp_eprio(lwp_t *l) 1656 1.256 ad { 1657 1.256 ad pri_t pri = l->l_priority; 1658 1.256 ad 1659 1.256 ad KASSERT(mutex_owned(l->l_mutex)); 1660 1.256 ad 1661 1.256 ad /* 1662 1.256 ad * Timeshared/user LWPs get a temporary priority boost for blocking 1663 1.256 ad * in kernel. This is key to good interactive response on a loaded 1664 1.256 ad * system: without it, things will seem very sluggish to the user. 1665 1.256 ad * 1666 1.256 ad * The function of the boost is to get the LWP onto a CPU and 1667 1.256 ad * running quickly. Once that happens the LWP loses the priority 1668 1.256 ad * boost and could be preempted very quickly by another LWP but that 1669 1.269 andvar * won't happen often enough to be an annoyance. 1670 1.256 ad */ 1671 1.257 ad if (pri <= MAXPRI_USER && l->l_boostpri > MAXPRI_USER) 1672 1.257 ad pri = (pri >> 1) + l->l_boostpri; 1673 1.256 ad 1674 1.256 ad return MAX(l->l_auxprio, pri); 1675 1.256 ad } 1676 1.256 ad 1677 1.256 ad /* 1678 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1679 1.256 ad * set or a preemption is required. 1680 1.52 ad */ 1681 1.52 ad void 1682 1.52 ad lwp_userret(struct lwp *l) 1683 1.52 ad { 1684 1.52 ad struct proc *p; 1685 1.256 ad int sig, f; 1686 1.52 ad 1687 1.114 rmind KASSERT(l == curlwp); 1688 1.114 rmind KASSERT(l->l_stat == LSONPROC); 1689 1.52 ad p = l->l_proc; 1690 1.52 ad 1691 1.256 ad for (;;) { 1692 1.256 ad /* 1693 1.256 ad * This is the main location that user preemptions are 1694 1.256 ad * processed. 1695 1.256 ad */ 1696 1.256 ad preempt_point(); 1697 1.256 ad 1698 1.256 ad /* 1699 1.256 ad * It is safe to do this unlocked and without raised SPL, 1700 1.256 ad * since whenever a flag of interest is added to l_flag the 1701 1.256 ad * LWP will take an AST and come down this path again. If a 1702 1.256 ad * remote CPU posts the AST, it will be done with an IPI 1703 1.256 ad * (strongly synchronising). 1704 1.256 ad */ 1705 1.256 ad if ((f = atomic_load_relaxed(&l->l_flag) & LW_USERRET) == 0) { 1706 1.256 ad return; 1707 1.256 ad } 1708 1.256 ad 1709 1.52 ad /* 1710 1.265 ad * Start out with the correct credentials. 1711 1.265 ad */ 1712 1.265 ad if ((f & LW_CACHECRED) != 0) { 1713 1.265 ad kauth_cred_t oc = l->l_cred; 1714 1.265 ad mutex_enter(p->p_lock); 1715 1.265 ad l->l_cred = kauth_cred_hold(p->p_cred); 1716 1.265 ad lwp_lock(l); 1717 1.265 ad l->l_flag &= ~LW_CACHECRED; 1718 1.265 ad lwp_unlock(l); 1719 1.265 ad mutex_exit(p->p_lock); 1720 1.265 ad kauth_cred_free(oc); 1721 1.265 ad } 1722 1.265 ad 1723 1.265 ad /* 1724 1.52 ad * Process pending signals first, unless the process 1725 1.61 ad * is dumping core or exiting, where we will instead 1726 1.101 rmind * enter the LW_WSUSPEND case below. 1727 1.52 ad */ 1728 1.256 ad if ((f & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == LW_PENDSIG) { 1729 1.103 ad mutex_enter(p->p_lock); 1730 1.52 ad while ((sig = issignal(l)) != 0) 1731 1.52 ad postsig(sig); 1732 1.103 ad mutex_exit(p->p_lock); 1733 1.256 ad continue; 1734 1.52 ad } 1735 1.52 ad 1736 1.52 ad /* 1737 1.52 ad * Core-dump or suspend pending. 1738 1.52 ad * 1739 1.159 matt * In case of core dump, suspend ourselves, so that the kernel 1740 1.159 matt * stack and therefore the userland registers saved in the 1741 1.159 matt * trapframe are around for coredump() to write them out. 1742 1.159 matt * We also need to save any PCU resources that we have so that 1743 1.159 matt * they accessible for coredump(). We issue a wakeup on 1744 1.159 matt * p->p_lwpcv so that sigexit() will write the core file out 1745 1.159 matt * once all other LWPs are suspended. 1746 1.52 ad */ 1747 1.256 ad if ((f & LW_WSUSPEND) != 0) { 1748 1.159 matt pcu_save_all(l); 1749 1.103 ad mutex_enter(p->p_lock); 1750 1.52 ad p->p_nrlwps--; 1751 1.52 ad lwp_lock(l); 1752 1.52 ad l->l_stat = LSSUSPENDED; 1753 1.104 ad lwp_unlock(l); 1754 1.103 ad mutex_exit(p->p_lock); 1755 1.262 ad cv_broadcast(&p->p_lwpcv); 1756 1.104 ad lwp_lock(l); 1757 1.217 ad spc_lock(l->l_cpu); 1758 1.64 yamt mi_switch(l); 1759 1.256 ad continue; 1760 1.52 ad } 1761 1.52 ad 1762 1.256 ad /* 1763 1.256 ad * Process is exiting. The core dump and signal cases must 1764 1.256 ad * be handled first. 1765 1.256 ad */ 1766 1.256 ad if ((f & LW_WEXIT) != 0) { 1767 1.52 ad lwp_exit(l); 1768 1.52 ad KASSERT(0); 1769 1.52 ad /* NOTREACHED */ 1770 1.52 ad } 1771 1.156 pooka 1772 1.256 ad /* 1773 1.256 ad * Update lwpctl processor (for vfork child_return). 1774 1.256 ad */ 1775 1.256 ad if ((f & LW_LWPCTL) != 0) { 1776 1.156 pooka lwp_lock(l); 1777 1.156 pooka KASSERT(kpreempt_disabled()); 1778 1.156 pooka l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1779 1.156 pooka l->l_lwpctl->lc_pctr++; 1780 1.156 pooka l->l_flag &= ~LW_LWPCTL; 1781 1.156 pooka lwp_unlock(l); 1782 1.256 ad continue; 1783 1.156 pooka } 1784 1.52 ad } 1785 1.52 ad } 1786 1.52 ad 1787 1.52 ad /* 1788 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1789 1.52 ad */ 1790 1.52 ad void 1791 1.52 ad lwp_need_userret(struct lwp *l) 1792 1.52 ad { 1793 1.209 ad 1794 1.209 ad KASSERT(!cpu_intr_p()); 1795 1.259 ad KASSERT(lwp_locked(l, NULL) || l->l_stat == LSIDL); 1796 1.52 ad 1797 1.52 ad /* 1798 1.209 ad * If the LWP is in any state other than LSONPROC, we know that it 1799 1.209 ad * is executing in-kernel and will hit userret() on the way out. 1800 1.209 ad * 1801 1.209 ad * If the LWP is curlwp, then we know we'll be back out to userspace 1802 1.209 ad * soon (can't be called from a hardware interrupt here). 1803 1.209 ad * 1804 1.209 ad * Otherwise, we can't be sure what the LWP is doing, so first make 1805 1.209 ad * sure the update to l_flag will be globally visible, and then 1806 1.209 ad * force the LWP to take a trip through trap() where it will do 1807 1.209 ad * userret(). 1808 1.209 ad */ 1809 1.209 ad if (l->l_stat == LSONPROC && l != curlwp) { 1810 1.209 ad membar_producer(); 1811 1.209 ad cpu_signotify(l); 1812 1.209 ad } 1813 1.52 ad } 1814 1.52 ad 1815 1.52 ad /* 1816 1.52 ad * Add one reference to an LWP. This will prevent the LWP from 1817 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect. 1818 1.52 ad */ 1819 1.52 ad void 1820 1.52 ad lwp_addref(struct lwp *l) 1821 1.52 ad { 1822 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock)); 1823 1.237 thorpej KASSERT(l->l_stat != LSZOMB); 1824 1.237 thorpej l->l_refcnt++; 1825 1.52 ad } 1826 1.52 ad 1827 1.52 ad /* 1828 1.52 ad * Remove one reference to an LWP. If this is the last reference, 1829 1.52 ad * then we must finalize the LWP's death. 1830 1.52 ad */ 1831 1.52 ad void 1832 1.52 ad lwp_delref(struct lwp *l) 1833 1.52 ad { 1834 1.52 ad struct proc *p = l->l_proc; 1835 1.52 ad 1836 1.103 ad mutex_enter(p->p_lock); 1837 1.142 christos lwp_delref2(l); 1838 1.142 christos mutex_exit(p->p_lock); 1839 1.142 christos } 1840 1.142 christos 1841 1.142 christos /* 1842 1.142 christos * Remove one reference to an LWP. If this is the last reference, 1843 1.142 christos * then we must finalize the LWP's death. The proc mutex is held 1844 1.142 christos * on entry. 1845 1.142 christos */ 1846 1.142 christos void 1847 1.142 christos lwp_delref2(struct lwp *l) 1848 1.142 christos { 1849 1.142 christos struct proc *p = l->l_proc; 1850 1.142 christos 1851 1.142 christos KASSERT(mutex_owned(p->p_lock)); 1852 1.72 ad KASSERT(l->l_stat != LSZOMB); 1853 1.237 thorpej KASSERT(l->l_refcnt > 0); 1854 1.231 ad 1855 1.237 thorpej if (--l->l_refcnt == 0) 1856 1.76 ad cv_broadcast(&p->p_lwpcv); 1857 1.52 ad } 1858 1.52 ad 1859 1.52 ad /* 1860 1.233 thorpej * Drain all references to the current LWP. Returns true if 1861 1.233 thorpej * we blocked. 1862 1.52 ad */ 1863 1.233 thorpej bool 1864 1.52 ad lwp_drainrefs(struct lwp *l) 1865 1.52 ad { 1866 1.52 ad struct proc *p = l->l_proc; 1867 1.233 thorpej bool rv = false; 1868 1.52 ad 1869 1.103 ad KASSERT(mutex_owned(p->p_lock)); 1870 1.52 ad 1871 1.233 thorpej l->l_prflag |= LPR_DRAINING; 1872 1.233 thorpej 1873 1.237 thorpej while (l->l_refcnt > 0) { 1874 1.233 thorpej rv = true; 1875 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock); 1876 1.233 thorpej } 1877 1.233 thorpej return rv; 1878 1.37 ad } 1879 1.41 thorpej 1880 1.41 thorpej /* 1881 1.127 ad * Return true if the specified LWP is 'alive'. Only p->p_lock need 1882 1.127 ad * be held. 1883 1.127 ad */ 1884 1.127 ad bool 1885 1.127 ad lwp_alive(lwp_t *l) 1886 1.127 ad { 1887 1.127 ad 1888 1.127 ad KASSERT(mutex_owned(l->l_proc->p_lock)); 1889 1.127 ad 1890 1.127 ad switch (l->l_stat) { 1891 1.127 ad case LSSLEEP: 1892 1.127 ad case LSRUN: 1893 1.127 ad case LSONPROC: 1894 1.127 ad case LSSTOP: 1895 1.127 ad case LSSUSPENDED: 1896 1.127 ad return true; 1897 1.127 ad default: 1898 1.127 ad return false; 1899 1.127 ad } 1900 1.127 ad } 1901 1.127 ad 1902 1.127 ad /* 1903 1.127 ad * Return first live LWP in the process. 1904 1.127 ad */ 1905 1.127 ad lwp_t * 1906 1.127 ad lwp_find_first(proc_t *p) 1907 1.127 ad { 1908 1.127 ad lwp_t *l; 1909 1.127 ad 1910 1.127 ad KASSERT(mutex_owned(p->p_lock)); 1911 1.127 ad 1912 1.127 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1913 1.127 ad if (lwp_alive(l)) { 1914 1.127 ad return l; 1915 1.127 ad } 1916 1.127 ad } 1917 1.127 ad 1918 1.127 ad return NULL; 1919 1.127 ad } 1920 1.127 ad 1921 1.127 ad /* 1922 1.78 ad * Allocate a new lwpctl structure for a user LWP. 1923 1.78 ad */ 1924 1.78 ad int 1925 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr) 1926 1.78 ad { 1927 1.78 ad lcproc_t *lp; 1928 1.78 ad u_int bit, i, offset; 1929 1.78 ad struct uvm_object *uao; 1930 1.78 ad int error; 1931 1.78 ad lcpage_t *lcp; 1932 1.78 ad proc_t *p; 1933 1.78 ad lwp_t *l; 1934 1.78 ad 1935 1.78 ad l = curlwp; 1936 1.78 ad p = l->l_proc; 1937 1.78 ad 1938 1.156 pooka /* don't allow a vforked process to create lwp ctls */ 1939 1.156 pooka if (p->p_lflag & PL_PPWAIT) 1940 1.156 pooka return EBUSY; 1941 1.156 pooka 1942 1.81 ad if (l->l_lcpage != NULL) { 1943 1.81 ad lcp = l->l_lcpage; 1944 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1945 1.143 njoly return 0; 1946 1.81 ad } 1947 1.78 ad 1948 1.78 ad /* First time around, allocate header structure for the process. */ 1949 1.78 ad if ((lp = p->p_lwpctl) == NULL) { 1950 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1951 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1952 1.78 ad lp->lp_uao = NULL; 1953 1.78 ad TAILQ_INIT(&lp->lp_pages); 1954 1.103 ad mutex_enter(p->p_lock); 1955 1.78 ad if (p->p_lwpctl == NULL) { 1956 1.78 ad p->p_lwpctl = lp; 1957 1.103 ad mutex_exit(p->p_lock); 1958 1.78 ad } else { 1959 1.103 ad mutex_exit(p->p_lock); 1960 1.78 ad mutex_destroy(&lp->lp_lock); 1961 1.78 ad kmem_free(lp, sizeof(*lp)); 1962 1.78 ad lp = p->p_lwpctl; 1963 1.78 ad } 1964 1.78 ad } 1965 1.78 ad 1966 1.78 ad /* 1967 1.78 ad * Set up an anonymous memory region to hold the shared pages. 1968 1.78 ad * Map them into the process' address space. The user vmspace 1969 1.78 ad * gets the first reference on the UAO. 1970 1.78 ad */ 1971 1.78 ad mutex_enter(&lp->lp_lock); 1972 1.78 ad if (lp->lp_uao == NULL) { 1973 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1974 1.78 ad lp->lp_cur = 0; 1975 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ; 1976 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1977 1.182 martin (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ, 1978 1.182 martin p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1979 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1980 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1981 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1982 1.78 ad if (error != 0) { 1983 1.78 ad uao_detach(lp->lp_uao); 1984 1.78 ad lp->lp_uao = NULL; 1985 1.78 ad mutex_exit(&lp->lp_lock); 1986 1.78 ad return error; 1987 1.78 ad } 1988 1.78 ad } 1989 1.78 ad 1990 1.78 ad /* Get a free block and allocate for this LWP. */ 1991 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1992 1.78 ad if (lcp->lcp_nfree != 0) 1993 1.78 ad break; 1994 1.78 ad } 1995 1.78 ad if (lcp == NULL) { 1996 1.78 ad /* Nothing available - try to set up a free page. */ 1997 1.78 ad if (lp->lp_cur == lp->lp_max) { 1998 1.78 ad mutex_exit(&lp->lp_lock); 1999 1.78 ad return ENOMEM; 2000 1.78 ad } 2001 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 2002 1.189 chs 2003 1.78 ad /* 2004 1.78 ad * Wire the next page down in kernel space. Since this 2005 1.78 ad * is a new mapping, we must add a reference. 2006 1.78 ad */ 2007 1.78 ad uao = lp->lp_uao; 2008 1.78 ad (*uao->pgops->pgo_reference)(uao); 2009 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map); 2010 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 2011 1.78 ad uao, lp->lp_cur, PAGE_SIZE, 2012 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 2013 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 2014 1.78 ad if (error != 0) { 2015 1.78 ad mutex_exit(&lp->lp_lock); 2016 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ); 2017 1.78 ad (*uao->pgops->pgo_detach)(uao); 2018 1.78 ad return error; 2019 1.78 ad } 2020 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 2021 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 2022 1.89 yamt if (error != 0) { 2023 1.89 yamt mutex_exit(&lp->lp_lock); 2024 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr, 2025 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE); 2026 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ); 2027 1.89 yamt return error; 2028 1.89 yamt } 2029 1.78 ad /* Prepare the page descriptor and link into the list. */ 2030 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 2031 1.78 ad lp->lp_cur += PAGE_SIZE; 2032 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE; 2033 1.78 ad lcp->lcp_rotor = 0; 2034 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 2035 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 2036 1.78 ad } 2037 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 2038 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES) 2039 1.78 ad i = 0; 2040 1.78 ad } 2041 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1; 2042 1.193 kamil lcp->lcp_bitmap[i] ^= (1U << bit); 2043 1.78 ad lcp->lcp_rotor = i; 2044 1.78 ad lcp->lcp_nfree--; 2045 1.78 ad l->l_lcpage = lcp; 2046 1.78 ad offset = (i << 5) + bit; 2047 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 2048 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 2049 1.78 ad mutex_exit(&lp->lp_lock); 2050 1.78 ad 2051 1.107 ad KPREEMPT_DISABLE(l); 2052 1.195 skrll l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu()); 2053 1.107 ad KPREEMPT_ENABLE(l); 2054 1.78 ad 2055 1.78 ad return 0; 2056 1.78 ad } 2057 1.78 ad 2058 1.78 ad /* 2059 1.78 ad * Free an lwpctl structure back to the per-process list. 2060 1.78 ad */ 2061 1.78 ad void 2062 1.78 ad lwp_ctl_free(lwp_t *l) 2063 1.78 ad { 2064 1.156 pooka struct proc *p = l->l_proc; 2065 1.78 ad lcproc_t *lp; 2066 1.78 ad lcpage_t *lcp; 2067 1.78 ad u_int map, offset; 2068 1.78 ad 2069 1.156 pooka /* don't free a lwp context we borrowed for vfork */ 2070 1.156 pooka if (p->p_lflag & PL_PPWAIT) { 2071 1.156 pooka l->l_lwpctl = NULL; 2072 1.156 pooka return; 2073 1.156 pooka } 2074 1.156 pooka 2075 1.156 pooka lp = p->p_lwpctl; 2076 1.78 ad KASSERT(lp != NULL); 2077 1.78 ad 2078 1.78 ad lcp = l->l_lcpage; 2079 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 2080 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE); 2081 1.78 ad 2082 1.78 ad mutex_enter(&lp->lp_lock); 2083 1.78 ad lcp->lcp_nfree++; 2084 1.78 ad map = offset >> 5; 2085 1.194 kamil lcp->lcp_bitmap[map] |= (1U << (offset & 31)); 2086 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 2087 1.78 ad lcp->lcp_rotor = map; 2088 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 2089 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 2090 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 2091 1.78 ad } 2092 1.78 ad mutex_exit(&lp->lp_lock); 2093 1.78 ad } 2094 1.78 ad 2095 1.78 ad /* 2096 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely 2097 1.78 ad * called by the last LWP in the process. 2098 1.78 ad */ 2099 1.78 ad void 2100 1.78 ad lwp_ctl_exit(void) 2101 1.78 ad { 2102 1.78 ad lcpage_t *lcp, *next; 2103 1.78 ad lcproc_t *lp; 2104 1.78 ad proc_t *p; 2105 1.78 ad lwp_t *l; 2106 1.78 ad 2107 1.78 ad l = curlwp; 2108 1.78 ad l->l_lwpctl = NULL; 2109 1.95 ad l->l_lcpage = NULL; 2110 1.78 ad p = l->l_proc; 2111 1.78 ad lp = p->p_lwpctl; 2112 1.78 ad 2113 1.78 ad KASSERT(lp != NULL); 2114 1.78 ad KASSERT(p->p_nlwps == 1); 2115 1.78 ad 2116 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 2117 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain); 2118 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr, 2119 1.78 ad lcp->lcp_kaddr + PAGE_SIZE); 2120 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ); 2121 1.78 ad } 2122 1.78 ad 2123 1.78 ad if (lp->lp_uao != NULL) { 2124 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 2125 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ); 2126 1.78 ad } 2127 1.78 ad 2128 1.78 ad mutex_destroy(&lp->lp_lock); 2129 1.78 ad kmem_free(lp, sizeof(*lp)); 2130 1.78 ad p->p_lwpctl = NULL; 2131 1.78 ad } 2132 1.84 yamt 2133 1.130 ad /* 2134 1.130 ad * Return the current LWP's "preemption counter". Used to detect 2135 1.130 ad * preemption across operations that can tolerate preemption without 2136 1.130 ad * crashing, but which may generate incorrect results if preempted. 2137 1.264 riastrad * 2138 1.264 riastrad * We do arithmetic in unsigned long to avoid undefined behaviour in 2139 1.264 riastrad * the event of arithmetic overflow on LP32, and issue __insn_barrier() 2140 1.264 riastrad * on both sides so this can safely be used to detect changes to the 2141 1.264 riastrad * preemption counter in loops around other memory accesses even in the 2142 1.264 riastrad * event of whole-program optimization (e.g., gcc -flto). 2143 1.130 ad */ 2144 1.258 ad long 2145 1.130 ad lwp_pctr(void) 2146 1.130 ad { 2147 1.264 riastrad unsigned long pctr; 2148 1.130 ad 2149 1.264 riastrad __insn_barrier(); 2150 1.264 riastrad pctr = curlwp->l_ru.ru_nvcsw; 2151 1.264 riastrad pctr += curlwp->l_ru.ru_nivcsw; 2152 1.264 riastrad __insn_barrier(); 2153 1.264 riastrad return pctr; 2154 1.130 ad } 2155 1.130 ad 2156 1.151 chs /* 2157 1.151 chs * Set an LWP's private data pointer. 2158 1.151 chs */ 2159 1.151 chs int 2160 1.151 chs lwp_setprivate(struct lwp *l, void *ptr) 2161 1.151 chs { 2162 1.151 chs int error = 0; 2163 1.151 chs 2164 1.151 chs l->l_private = ptr; 2165 1.151 chs #ifdef __HAVE_CPU_LWP_SETPRIVATE 2166 1.151 chs error = cpu_lwp_setprivate(l, ptr); 2167 1.151 chs #endif 2168 1.151 chs return error; 2169 1.151 chs } 2170 1.151 chs 2171 1.233 thorpej /* 2172 1.233 thorpej * Perform any thread-related cleanup on LWP exit. 2173 1.233 thorpej * N.B. l->l_proc->p_lock must be HELD on entry but will 2174 1.233 thorpej * be released before returning! 2175 1.233 thorpej */ 2176 1.233 thorpej void 2177 1.233 thorpej lwp_thread_cleanup(struct lwp *l) 2178 1.233 thorpej { 2179 1.233 thorpej 2180 1.233 thorpej KASSERT(mutex_owned(l->l_proc->p_lock)); 2181 1.235 thorpej mutex_exit(l->l_proc->p_lock); 2182 1.236 thorpej 2183 1.236 thorpej /* 2184 1.236 thorpej * If the LWP has robust futexes, release them all 2185 1.236 thorpej * now. 2186 1.236 thorpej */ 2187 1.236 thorpej if (__predict_false(l->l_robust_head != 0)) { 2188 1.244 thorpej futex_release_all_lwp(l); 2189 1.236 thorpej } 2190 1.233 thorpej } 2191 1.233 thorpej 2192 1.84 yamt #if defined(DDB) 2193 1.153 rmind #include <machine/pcb.h> 2194 1.153 rmind 2195 1.84 yamt void 2196 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2197 1.84 yamt { 2198 1.84 yamt lwp_t *l; 2199 1.84 yamt 2200 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) { 2201 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 2202 1.84 yamt 2203 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) { 2204 1.84 yamt continue; 2205 1.84 yamt } 2206 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n", 2207 1.84 yamt (void *)addr, (void *)stack, 2208 1.84 yamt (size_t)(addr - stack), l); 2209 1.84 yamt } 2210 1.84 yamt } 2211 1.84 yamt #endif /* defined(DDB) */ 2212