kern_lwp.c revision 1.101.2.1 1 1.101.2.1 yamt /* $NetBSD: kern_lwp.c,v 1.101.2.1 2008/05/18 12:35:08 yamt Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.95 ad * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.9 lukem
32 1.52 ad /*
33 1.52 ad * Overview
34 1.52 ad *
35 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of
36 1.52 ad * execution within the kernel. The core state of an LWP is described
37 1.66 ad * by "struct lwp", also known as lwp_t.
38 1.52 ad *
39 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
40 1.52 ad * Every process contains at least one LWP, but may contain more. The
41 1.52 ad * process describes attributes shared among all of its LWPs such as a
42 1.52 ad * private address space, global execution state (stopped, active,
43 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
44 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel.
45 1.52 ad *
46 1.52 ad * Execution states
47 1.52 ad *
48 1.52 ad * At any given time, an LWP has overall state that is described by
49 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
50 1.52 ad * set is guaranteed to represent the absolute, current state of the
51 1.52 ad * LWP:
52 1.101 rmind *
53 1.101 rmind * LSONPROC
54 1.101 rmind *
55 1.101 rmind * On processor: the LWP is executing on a CPU, either in the
56 1.101 rmind * kernel or in user space.
57 1.101 rmind *
58 1.101 rmind * LSRUN
59 1.101 rmind *
60 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be
61 1.101 rmind * chosen to run by an idle processor, or by a processor that
62 1.101 rmind * has been asked to preempt a currently runnning but lower
63 1.101 rmind * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 1.52 ad * then the LWP is not on a run queue, but may be soon.
65 1.101 rmind *
66 1.101 rmind * LSIDL
67 1.101 rmind *
68 1.101 rmind * Idle: the LWP has been created but has not yet executed,
69 1.66 ad * or it has ceased executing a unit of work and is waiting
70 1.66 ad * to be started again.
71 1.101 rmind *
72 1.101 rmind * LSSUSPENDED:
73 1.101 rmind *
74 1.101 rmind * Suspended: the LWP has had its execution suspended by
75 1.52 ad * another LWP in the same process using the _lwp_suspend()
76 1.52 ad * system call. User-level LWPs also enter the suspended
77 1.52 ad * state when the system is shutting down.
78 1.52 ad *
79 1.52 ad * The second set represent a "statement of intent" on behalf of the
80 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
81 1.66 ad * sleeping or idle. It is expected to take the necessary action to
82 1.101 rmind * stop executing or become "running" again within a short timeframe.
83 1.66 ad * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
84 1.101 rmind * Importantly, it indicates that its state is tied to a CPU.
85 1.101 rmind *
86 1.101 rmind * LSZOMB:
87 1.101 rmind *
88 1.101 rmind * Dead or dying: the LWP has released most of its resources
89 1.101 rmind * and is: a) about to switch away into oblivion b) has already
90 1.66 ad * switched away. When it switches away, its few remaining
91 1.66 ad * resources can be collected.
92 1.101 rmind *
93 1.101 rmind * LSSLEEP:
94 1.101 rmind *
95 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and
96 1.101 rmind * has switched away or will switch away shortly to allow other
97 1.66 ad * LWPs to run on the CPU.
98 1.101 rmind *
99 1.101 rmind * LSSTOP:
100 1.101 rmind *
101 1.101 rmind * Stopped: the LWP has been stopped as a result of a job
102 1.101 rmind * control signal, or as a result of the ptrace() interface.
103 1.101 rmind *
104 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle
105 1.101 rmind * signals that they receive, but will not return to user space
106 1.101 rmind * until their process' state is changed away from stopped.
107 1.101 rmind *
108 1.101 rmind * Single LWPs within a process can not be set stopped
109 1.101 rmind * selectively: all actions that can stop or continue LWPs
110 1.101 rmind * occur at the process level.
111 1.101 rmind *
112 1.52 ad * State transitions
113 1.52 ad *
114 1.66 ad * Note that the LSSTOP state may only be set when returning to
115 1.66 ad * user space in userret(), or when sleeping interruptably. The
116 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting
117 1.66 ad * those states, we try to ensure that the LWPs will release all
118 1.66 ad * locks that they hold, and at a minimum try to ensure that the
119 1.66 ad * LWP can be set runnable again by a signal.
120 1.52 ad *
121 1.52 ad * LWPs may transition states in the following ways:
122 1.52 ad *
123 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
124 1.101 rmind * > STOPPED > SLEEP
125 1.101 rmind * > SUSPENDED > STOPPED
126 1.52 ad * > SUSPENDED
127 1.52 ad * > ZOMB
128 1.52 ad *
129 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
130 1.52 ad * > SLEEP > SLEEP
131 1.52 ad *
132 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
133 1.101 rmind * > RUN > SUSPENDED
134 1.101 rmind * > STOPPED > STOPPED
135 1.52 ad * > SUSPENDED
136 1.52 ad *
137 1.66 ad * Other state transitions are possible with kernel threads (eg
138 1.66 ad * ONPROC -> IDL), but only happen under tightly controlled
139 1.66 ad * circumstances the side effects are understood.
140 1.66 ad *
141 1.52 ad * Locking
142 1.52 ad *
143 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
144 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering
145 1.52 ad * each field are documented in sys/lwp.h.
146 1.52 ad *
147 1.66 ad * State transitions must be made with the LWP's general lock held,
148 1.101 rmind * and may cause the LWP's lock pointer to change. Manipulation of
149 1.66 ad * the general lock is not performed directly, but through calls to
150 1.66 ad * lwp_lock(), lwp_relock() and similar.
151 1.52 ad *
152 1.52 ad * States and their associated locks:
153 1.52 ad *
154 1.74 rmind * LSONPROC, LSZOMB:
155 1.52 ad *
156 1.64 yamt * Always covered by spc_lwplock, which protects running LWPs.
157 1.64 yamt * This is a per-CPU lock.
158 1.52 ad *
159 1.74 rmind * LSIDL, LSRUN:
160 1.52 ad *
161 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
162 1.101 rmind * This is a per-CPU lock.
163 1.52 ad *
164 1.52 ad * LSSLEEP:
165 1.52 ad *
166 1.66 ad * Covered by a lock associated with the sleep queue that the
167 1.52 ad * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
168 1.52 ad *
169 1.52 ad * LSSTOP, LSSUSPENDED:
170 1.101 rmind *
171 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
172 1.66 ad * l_mutex references the sleep queue lock. If the LWP was
173 1.52 ad * runnable or on the CPU when halted, or has been removed from
174 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock.
175 1.52 ad *
176 1.52 ad * The lock order is as follows:
177 1.52 ad *
178 1.64 yamt * spc::spc_lwplock ->
179 1.64 yamt * sleepq_t::sq_mutex ->
180 1.64 yamt * tschain_t::tc_mutex ->
181 1.64 yamt * spc::spc_mutex
182 1.52 ad *
183 1.101.2.1 yamt * Each process has an scheduler state lock (proc::p_lock), and a
184 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
185 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
186 1.101.2.1 yamt * following states, p_lock must be held and the process wide counters
187 1.52 ad * adjusted:
188 1.52 ad *
189 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
190 1.52 ad *
191 1.52 ad * Note that an LWP is considered running or likely to run soon if in
192 1.52 ad * one of the following states. This affects the value of p_nrlwps:
193 1.52 ad *
194 1.52 ad * LSRUN, LSONPROC, LSSLEEP
195 1.52 ad *
196 1.101.2.1 yamt * p_lock does not need to be held when transitioning among these
197 1.52 ad * three states.
198 1.52 ad */
199 1.52 ad
200 1.9 lukem #include <sys/cdefs.h>
201 1.101.2.1 yamt __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.101.2.1 2008/05/18 12:35:08 yamt Exp $");
202 1.8 martin
203 1.84 yamt #include "opt_ddb.h"
204 1.8 martin #include "opt_multiprocessor.h"
205 1.52 ad #include "opt_lockdebug.h"
206 1.2 thorpej
207 1.47 hannken #define _LWP_API_PRIVATE
208 1.47 hannken
209 1.2 thorpej #include <sys/param.h>
210 1.2 thorpej #include <sys/systm.h>
211 1.64 yamt #include <sys/cpu.h>
212 1.2 thorpej #include <sys/pool.h>
213 1.2 thorpej #include <sys/proc.h>
214 1.2 thorpej #include <sys/syscallargs.h>
215 1.57 dsl #include <sys/syscall_stats.h>
216 1.37 ad #include <sys/kauth.h>
217 1.52 ad #include <sys/sleepq.h>
218 1.85 yamt #include <sys/user.h>
219 1.52 ad #include <sys/lockdebug.h>
220 1.52 ad #include <sys/kmem.h>
221 1.91 rmind #include <sys/pset.h>
222 1.75 ad #include <sys/intr.h>
223 1.78 ad #include <sys/lwpctl.h>
224 1.81 ad #include <sys/atomic.h>
225 1.2 thorpej
226 1.2 thorpej #include <uvm/uvm_extern.h>
227 1.80 skrll #include <uvm/uvm_object.h>
228 1.2 thorpej
229 1.77 matt struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
230 1.52 ad
231 1.41 thorpej POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
232 1.62 ad &pool_allocator_nointr, IPL_NONE);
233 1.41 thorpej
234 1.87 ad static pool_cache_t lwp_cache;
235 1.41 thorpej static specificdata_domain_t lwp_specificdata_domain;
236 1.41 thorpej
237 1.41 thorpej void
238 1.41 thorpej lwpinit(void)
239 1.41 thorpej {
240 1.41 thorpej
241 1.41 thorpej lwp_specificdata_domain = specificdata_domain_create();
242 1.41 thorpej KASSERT(lwp_specificdata_domain != NULL);
243 1.52 ad lwp_sys_init();
244 1.87 ad lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
245 1.87 ad "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
246 1.41 thorpej }
247 1.41 thorpej
248 1.52 ad /*
249 1.52 ad * Set an suspended.
250 1.52 ad *
251 1.101.2.1 yamt * Must be called with p_lock held, and the LWP locked. Will unlock the
252 1.52 ad * LWP before return.
253 1.52 ad */
254 1.2 thorpej int
255 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
256 1.2 thorpej {
257 1.52 ad int error;
258 1.2 thorpej
259 1.101.2.1 yamt KASSERT(mutex_owned(t->l_proc->p_lock));
260 1.63 ad KASSERT(lwp_locked(t, NULL));
261 1.33 chs
262 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
263 1.2 thorpej
264 1.52 ad /*
265 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
266 1.52 ad * else or deadlock could occur. We won't return to userspace.
267 1.2 thorpej */
268 1.101.2.1 yamt if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
269 1.52 ad lwp_unlock(t);
270 1.52 ad return (EDEADLK);
271 1.2 thorpej }
272 1.2 thorpej
273 1.52 ad error = 0;
274 1.2 thorpej
275 1.52 ad switch (t->l_stat) {
276 1.52 ad case LSRUN:
277 1.52 ad case LSONPROC:
278 1.56 pavel t->l_flag |= LW_WSUSPEND;
279 1.52 ad lwp_need_userret(t);
280 1.52 ad lwp_unlock(t);
281 1.52 ad break;
282 1.2 thorpej
283 1.52 ad case LSSLEEP:
284 1.56 pavel t->l_flag |= LW_WSUSPEND;
285 1.2 thorpej
286 1.2 thorpej /*
287 1.52 ad * Kick the LWP and try to get it to the kernel boundary
288 1.52 ad * so that it will release any locks that it holds.
289 1.52 ad * setrunnable() will release the lock.
290 1.2 thorpej */
291 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
292 1.52 ad setrunnable(t);
293 1.52 ad else
294 1.52 ad lwp_unlock(t);
295 1.52 ad break;
296 1.2 thorpej
297 1.52 ad case LSSUSPENDED:
298 1.52 ad lwp_unlock(t);
299 1.52 ad break;
300 1.17 manu
301 1.52 ad case LSSTOP:
302 1.56 pavel t->l_flag |= LW_WSUSPEND;
303 1.52 ad setrunnable(t);
304 1.52 ad break;
305 1.2 thorpej
306 1.52 ad case LSIDL:
307 1.52 ad case LSZOMB:
308 1.52 ad error = EINTR; /* It's what Solaris does..... */
309 1.52 ad lwp_unlock(t);
310 1.52 ad break;
311 1.2 thorpej }
312 1.2 thorpej
313 1.69 rmind return (error);
314 1.2 thorpej }
315 1.2 thorpej
316 1.52 ad /*
317 1.52 ad * Restart a suspended LWP.
318 1.52 ad *
319 1.101.2.1 yamt * Must be called with p_lock held, and the LWP locked. Will unlock the
320 1.52 ad * LWP before return.
321 1.52 ad */
322 1.2 thorpej void
323 1.2 thorpej lwp_continue(struct lwp *l)
324 1.2 thorpej {
325 1.2 thorpej
326 1.101.2.1 yamt KASSERT(mutex_owned(l->l_proc->p_lock));
327 1.63 ad KASSERT(lwp_locked(l, NULL));
328 1.52 ad
329 1.52 ad /* If rebooting or not suspended, then just bail out. */
330 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
331 1.52 ad lwp_unlock(l);
332 1.2 thorpej return;
333 1.10 fvdl }
334 1.2 thorpej
335 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
336 1.2 thorpej
337 1.52 ad if (l->l_stat != LSSUSPENDED) {
338 1.52 ad lwp_unlock(l);
339 1.52 ad return;
340 1.2 thorpej }
341 1.2 thorpej
342 1.52 ad /* setrunnable() will release the lock. */
343 1.52 ad setrunnable(l);
344 1.2 thorpej }
345 1.2 thorpej
346 1.52 ad /*
347 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
348 1.52 ad * non-zero, we are waiting for a specific LWP.
349 1.52 ad *
350 1.101.2.1 yamt * Must be called with p->p_lock held.
351 1.52 ad */
352 1.2 thorpej int
353 1.2 thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
354 1.2 thorpej {
355 1.2 thorpej struct proc *p = l->l_proc;
356 1.52 ad struct lwp *l2;
357 1.52 ad int nfound, error;
358 1.63 ad lwpid_t curlid;
359 1.63 ad bool exiting;
360 1.2 thorpej
361 1.101.2.1 yamt KASSERT(mutex_owned(p->p_lock));
362 1.52 ad
363 1.52 ad p->p_nlwpwait++;
364 1.63 ad l->l_waitingfor = lid;
365 1.63 ad curlid = l->l_lid;
366 1.63 ad exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
367 1.52 ad
368 1.52 ad for (;;) {
369 1.52 ad /*
370 1.52 ad * Avoid a race between exit1() and sigexit(): if the
371 1.52 ad * process is dumping core, then we need to bail out: call
372 1.52 ad * into lwp_userret() where we will be suspended until the
373 1.52 ad * deed is done.
374 1.52 ad */
375 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
376 1.101.2.1 yamt mutex_exit(p->p_lock);
377 1.52 ad lwp_userret(l);
378 1.52 ad #ifdef DIAGNOSTIC
379 1.52 ad panic("lwp_wait1");
380 1.52 ad #endif
381 1.52 ad /* NOTREACHED */
382 1.52 ad }
383 1.52 ad
384 1.52 ad /*
385 1.52 ad * First off, drain any detached LWP that is waiting to be
386 1.52 ad * reaped.
387 1.52 ad */
388 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
389 1.52 ad p->p_zomblwp = NULL;
390 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
391 1.101.2.1 yamt mutex_enter(p->p_lock);
392 1.52 ad }
393 1.52 ad
394 1.52 ad /*
395 1.52 ad * Now look for an LWP to collect. If the whole process is
396 1.52 ad * exiting, count detached LWPs as eligible to be collected,
397 1.52 ad * but don't drain them here.
398 1.52 ad */
399 1.52 ad nfound = 0;
400 1.63 ad error = 0;
401 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
402 1.63 ad /*
403 1.63 ad * If a specific wait and the target is waiting on
404 1.63 ad * us, then avoid deadlock. This also traps LWPs
405 1.63 ad * that try to wait on themselves.
406 1.63 ad *
407 1.63 ad * Note that this does not handle more complicated
408 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
409 1.63 ad * can still be killed so it is not a major problem.
410 1.63 ad */
411 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
412 1.63 ad error = EDEADLK;
413 1.63 ad break;
414 1.63 ad }
415 1.63 ad if (l2 == l)
416 1.52 ad continue;
417 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
418 1.63 ad nfound += exiting;
419 1.63 ad continue;
420 1.63 ad }
421 1.63 ad if (lid != 0) {
422 1.63 ad if (l2->l_lid != lid)
423 1.63 ad continue;
424 1.63 ad /*
425 1.63 ad * Mark this LWP as the first waiter, if there
426 1.63 ad * is no other.
427 1.63 ad */
428 1.63 ad if (l2->l_waiter == 0)
429 1.63 ad l2->l_waiter = curlid;
430 1.63 ad } else if (l2->l_waiter != 0) {
431 1.63 ad /*
432 1.63 ad * It already has a waiter - so don't
433 1.63 ad * collect it. If the waiter doesn't
434 1.63 ad * grab it we'll get another chance
435 1.63 ad * later.
436 1.63 ad */
437 1.63 ad nfound++;
438 1.52 ad continue;
439 1.52 ad }
440 1.52 ad nfound++;
441 1.2 thorpej
442 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
443 1.52 ad if (l2->l_stat != LSZOMB)
444 1.52 ad continue;
445 1.2 thorpej
446 1.63 ad /*
447 1.63 ad * We're no longer waiting. Reset the "first waiter"
448 1.63 ad * pointer on the target, in case it was us.
449 1.63 ad */
450 1.63 ad l->l_waitingfor = 0;
451 1.63 ad l2->l_waiter = 0;
452 1.63 ad p->p_nlwpwait--;
453 1.2 thorpej if (departed)
454 1.2 thorpej *departed = l2->l_lid;
455 1.75 ad sched_lwp_collect(l2);
456 1.63 ad
457 1.63 ad /* lwp_free() releases the proc lock. */
458 1.63 ad lwp_free(l2, false, false);
459 1.101.2.1 yamt mutex_enter(p->p_lock);
460 1.52 ad return 0;
461 1.52 ad }
462 1.2 thorpej
463 1.63 ad if (error != 0)
464 1.63 ad break;
465 1.52 ad if (nfound == 0) {
466 1.52 ad error = ESRCH;
467 1.52 ad break;
468 1.52 ad }
469 1.63 ad
470 1.63 ad /*
471 1.63 ad * The kernel is careful to ensure that it can not deadlock
472 1.63 ad * when exiting - just keep waiting.
473 1.63 ad */
474 1.63 ad if (exiting) {
475 1.52 ad KASSERT(p->p_nlwps > 1);
476 1.101.2.1 yamt cv_wait(&p->p_lwpcv, p->p_lock);
477 1.52 ad continue;
478 1.52 ad }
479 1.63 ad
480 1.63 ad /*
481 1.63 ad * If all other LWPs are waiting for exits or suspends
482 1.63 ad * and the supply of zombies and potential zombies is
483 1.63 ad * exhausted, then we are about to deadlock.
484 1.63 ad *
485 1.63 ad * If the process is exiting (and this LWP is not the one
486 1.63 ad * that is coordinating the exit) then bail out now.
487 1.63 ad */
488 1.52 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
489 1.63 ad p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
490 1.52 ad error = EDEADLK;
491 1.52 ad break;
492 1.2 thorpej }
493 1.63 ad
494 1.63 ad /*
495 1.63 ad * Sit around and wait for something to happen. We'll be
496 1.63 ad * awoken if any of the conditions examined change: if an
497 1.63 ad * LWP exits, is collected, or is detached.
498 1.63 ad */
499 1.101.2.1 yamt if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
500 1.52 ad break;
501 1.2 thorpej }
502 1.2 thorpej
503 1.63 ad /*
504 1.63 ad * We didn't find any LWPs to collect, we may have received a
505 1.63 ad * signal, or some other condition has caused us to bail out.
506 1.63 ad *
507 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
508 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
509 1.63 ad * so that they can re-check for zombies and for deadlock.
510 1.63 ad */
511 1.63 ad if (lid != 0) {
512 1.63 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
513 1.63 ad if (l2->l_lid == lid) {
514 1.63 ad if (l2->l_waiter == curlid)
515 1.63 ad l2->l_waiter = 0;
516 1.63 ad break;
517 1.63 ad }
518 1.63 ad }
519 1.63 ad }
520 1.52 ad p->p_nlwpwait--;
521 1.63 ad l->l_waitingfor = 0;
522 1.63 ad cv_broadcast(&p->p_lwpcv);
523 1.63 ad
524 1.52 ad return error;
525 1.2 thorpej }
526 1.2 thorpej
527 1.52 ad /*
528 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
529 1.52 ad * The new LWP is created in state LSIDL and must be set running,
530 1.52 ad * suspended, or stopped by the caller.
531 1.52 ad */
532 1.2 thorpej int
533 1.75 ad lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
534 1.75 ad void *stack, size_t stacksize, void (*func)(void *), void *arg,
535 1.75 ad lwp_t **rnewlwpp, int sclass)
536 1.2 thorpej {
537 1.52 ad struct lwp *l2, *isfree;
538 1.52 ad turnstile_t *ts;
539 1.2 thorpej
540 1.101.2.1 yamt KASSERT(l1 == curlwp || l1->l_proc == &proc0);
541 1.101.2.1 yamt
542 1.52 ad /*
543 1.52 ad * First off, reap any detached LWP waiting to be collected.
544 1.52 ad * We can re-use its LWP structure and turnstile.
545 1.52 ad */
546 1.52 ad isfree = NULL;
547 1.52 ad if (p2->p_zomblwp != NULL) {
548 1.101.2.1 yamt mutex_enter(p2->p_lock);
549 1.52 ad if ((isfree = p2->p_zomblwp) != NULL) {
550 1.52 ad p2->p_zomblwp = NULL;
551 1.63 ad lwp_free(isfree, true, false);/* releases proc mutex */
552 1.52 ad } else
553 1.101.2.1 yamt mutex_exit(p2->p_lock);
554 1.52 ad }
555 1.52 ad if (isfree == NULL) {
556 1.87 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK);
557 1.52 ad memset(l2, 0, sizeof(*l2));
558 1.76 ad l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
559 1.60 yamt SLIST_INIT(&l2->l_pi_lenders);
560 1.52 ad } else {
561 1.52 ad l2 = isfree;
562 1.52 ad ts = l2->l_ts;
563 1.75 ad KASSERT(l2->l_inheritedprio == -1);
564 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
565 1.52 ad memset(l2, 0, sizeof(*l2));
566 1.52 ad l2->l_ts = ts;
567 1.52 ad }
568 1.2 thorpej
569 1.2 thorpej l2->l_stat = LSIDL;
570 1.2 thorpej l2->l_proc = p2;
571 1.52 ad l2->l_refcnt = 1;
572 1.75 ad l2->l_class = sclass;
573 1.75 ad l2->l_kpriority = l1->l_kpriority;
574 1.82 ad l2->l_kpribase = PRI_KERNEL;
575 1.52 ad l2->l_priority = l1->l_priority;
576 1.75 ad l2->l_inheritedprio = -1;
577 1.56 pavel l2->l_flag = inmem ? LW_INMEM : 0;
578 1.88 ad l2->l_pflag = LP_MPSAFE;
579 1.97 ad l2->l_fd = p2->p_fd;
580 1.101.2.1 yamt TAILQ_INIT(&l2->l_ld_locks);
581 1.41 thorpej
582 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
583 1.91 rmind /* Mark it as a system LWP and not a candidate for swapping */
584 1.56 pavel l2->l_flag |= LW_SYSTEM;
585 1.52 ad }
586 1.2 thorpej
587 1.101.2.1 yamt kpreempt_disable();
588 1.101.2.1 yamt l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
589 1.101.2.1 yamt l2->l_cpu = l1->l_cpu;
590 1.101.2.1 yamt kpreempt_enable();
591 1.101.2.1 yamt
592 1.73 rmind lwp_initspecific(l2);
593 1.75 ad sched_lwp_fork(l1, l2);
594 1.37 ad lwp_update_creds(l2);
595 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
596 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
597 1.65 ad mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
598 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
599 1.52 ad l2->l_syncobj = &sched_syncobj;
600 1.2 thorpej
601 1.2 thorpej if (rnewlwpp != NULL)
602 1.2 thorpej *rnewlwpp = l2;
603 1.2 thorpej
604 1.36 yamt l2->l_addr = UAREA_TO_USER(uaddr);
605 1.2 thorpej uvm_lwp_fork(l1, l2, stack, stacksize, func,
606 1.2 thorpej (arg != NULL) ? arg : l2);
607 1.2 thorpej
608 1.101.2.1 yamt mutex_enter(p2->p_lock);
609 1.52 ad
610 1.52 ad if ((flags & LWP_DETACHED) != 0) {
611 1.52 ad l2->l_prflag = LPR_DETACHED;
612 1.52 ad p2->p_ndlwps++;
613 1.52 ad } else
614 1.52 ad l2->l_prflag = 0;
615 1.52 ad
616 1.52 ad l2->l_sigmask = l1->l_sigmask;
617 1.52 ad CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
618 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
619 1.52 ad
620 1.53 yamt p2->p_nlwpid++;
621 1.53 yamt if (p2->p_nlwpid == 0)
622 1.53 yamt p2->p_nlwpid++;
623 1.53 yamt l2->l_lid = p2->p_nlwpid;
624 1.2 thorpej LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
625 1.2 thorpej p2->p_nlwps++;
626 1.2 thorpej
627 1.101.2.1 yamt mutex_exit(p2->p_lock);
628 1.52 ad
629 1.101.2.1 yamt mutex_enter(proc_lock);
630 1.2 thorpej LIST_INSERT_HEAD(&alllwp, l2, l_list);
631 1.101.2.1 yamt mutex_exit(proc_lock);
632 1.2 thorpej
633 1.91 rmind if ((p2->p_flag & PK_SYSTEM) == 0) {
634 1.91 rmind /* Locking is needed, since LWP is in the list of all LWPs */
635 1.91 rmind lwp_lock(l2);
636 1.91 rmind /* Inherit a processor-set */
637 1.91 rmind l2->l_psid = l1->l_psid;
638 1.91 rmind /* Inherit an affinity */
639 1.91 rmind memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
640 1.91 rmind /* Look for a CPU to start */
641 1.91 rmind l2->l_cpu = sched_takecpu(l2);
642 1.91 rmind lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
643 1.91 rmind }
644 1.91 rmind
645 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
646 1.57 dsl
647 1.16 manu if (p2->p_emul->e_lwp_fork)
648 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
649 1.16 manu
650 1.2 thorpej return (0);
651 1.2 thorpej }
652 1.2 thorpej
653 1.2 thorpej /*
654 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
655 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
656 1.64 yamt * previous LWP, at splsched.
657 1.64 yamt */
658 1.64 yamt void
659 1.64 yamt lwp_startup(struct lwp *prev, struct lwp *new)
660 1.64 yamt {
661 1.64 yamt
662 1.101.2.1 yamt KASSERT(kpreempt_disabled());
663 1.64 yamt if (prev != NULL) {
664 1.81 ad /*
665 1.81 ad * Normalize the count of the spin-mutexes, it was
666 1.81 ad * increased in mi_switch(). Unmark the state of
667 1.81 ad * context switch - it is finished for previous LWP.
668 1.81 ad */
669 1.81 ad curcpu()->ci_mtx_count++;
670 1.81 ad membar_exit();
671 1.81 ad prev->l_ctxswtch = 0;
672 1.64 yamt }
673 1.101.2.1 yamt KPREEMPT_DISABLE(new);
674 1.64 yamt spl0();
675 1.64 yamt pmap_activate(new);
676 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
677 1.101.2.1 yamt KPREEMPT_ENABLE(new);
678 1.65 ad if ((new->l_pflag & LP_MPSAFE) == 0) {
679 1.65 ad KERNEL_LOCK(1, new);
680 1.65 ad }
681 1.64 yamt }
682 1.64 yamt
683 1.64 yamt /*
684 1.65 ad * Exit an LWP.
685 1.2 thorpej */
686 1.2 thorpej void
687 1.2 thorpej lwp_exit(struct lwp *l)
688 1.2 thorpej {
689 1.2 thorpej struct proc *p = l->l_proc;
690 1.52 ad struct lwp *l2;
691 1.65 ad bool current;
692 1.65 ad
693 1.65 ad current = (l == curlwp);
694 1.2 thorpej
695 1.65 ad KASSERT(current || l->l_stat == LSIDL);
696 1.2 thorpej
697 1.52 ad /*
698 1.52 ad * Verify that we hold no locks other than the kernel lock.
699 1.52 ad */
700 1.52 ad #ifdef MULTIPROCESSOR
701 1.52 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
702 1.52 ad #else
703 1.52 ad LOCKDEBUG_BARRIER(NULL, 0);
704 1.52 ad #endif
705 1.16 manu
706 1.2 thorpej /*
707 1.52 ad * If we are the last live LWP in a process, we need to exit the
708 1.52 ad * entire process. We do so with an exit status of zero, because
709 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
710 1.52 ad *
711 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
712 1.52 ad * must increment the count of zombies here.
713 1.45 thorpej *
714 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
715 1.2 thorpej */
716 1.101.2.1 yamt mutex_enter(p->p_lock);
717 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
718 1.65 ad KASSERT(current == true);
719 1.88 ad /* XXXSMP kernel_lock not held */
720 1.2 thorpej exit1(l, 0);
721 1.19 jdolecek /* NOTREACHED */
722 1.2 thorpej }
723 1.52 ad p->p_nzlwps++;
724 1.101.2.1 yamt mutex_exit(p->p_lock);
725 1.52 ad
726 1.52 ad if (p->p_emul->e_lwp_exit)
727 1.52 ad (*p->p_emul->e_lwp_exit)(l);
728 1.2 thorpej
729 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
730 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
731 1.45 thorpej
732 1.52 ad /*
733 1.52 ad * Release our cached credentials.
734 1.52 ad */
735 1.37 ad kauth_cred_free(l->l_cred);
736 1.70 ad callout_destroy(&l->l_timeout_ch);
737 1.65 ad
738 1.65 ad /*
739 1.65 ad * While we can still block, mark the LWP as unswappable to
740 1.65 ad * prevent conflicts with the with the swapper.
741 1.65 ad */
742 1.65 ad if (current)
743 1.65 ad uvm_lwp_hold(l);
744 1.37 ad
745 1.52 ad /*
746 1.52 ad * Remove the LWP from the global list.
747 1.52 ad */
748 1.101.2.1 yamt mutex_enter(proc_lock);
749 1.52 ad LIST_REMOVE(l, l_list);
750 1.101.2.1 yamt mutex_exit(proc_lock);
751 1.19 jdolecek
752 1.52 ad /*
753 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
754 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
755 1.52 ad * mark it waiting for collection in the proc structure. Note that
756 1.52 ad * before we can do that, we need to free any other dead, deatched
757 1.52 ad * LWP waiting to meet its maker.
758 1.52 ad */
759 1.101.2.1 yamt mutex_enter(p->p_lock);
760 1.52 ad lwp_drainrefs(l);
761 1.31 yamt
762 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
763 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
764 1.52 ad p->p_zomblwp = NULL;
765 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
766 1.101.2.1 yamt mutex_enter(p->p_lock);
767 1.72 ad l->l_refcnt++;
768 1.72 ad lwp_drainrefs(l);
769 1.52 ad }
770 1.52 ad p->p_zomblwp = l;
771 1.52 ad }
772 1.31 yamt
773 1.52 ad /*
774 1.52 ad * If we find a pending signal for the process and we have been
775 1.52 ad * asked to check for signals, then we loose: arrange to have
776 1.52 ad * all other LWPs in the process check for signals.
777 1.52 ad */
778 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
779 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
780 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
781 1.52 ad lwp_lock(l2);
782 1.56 pavel l2->l_flag |= LW_PENDSIG;
783 1.52 ad lwp_unlock(l2);
784 1.52 ad }
785 1.31 yamt }
786 1.31 yamt
787 1.52 ad lwp_lock(l);
788 1.52 ad l->l_stat = LSZOMB;
789 1.90 ad if (l->l_name != NULL)
790 1.90 ad strcpy(l->l_name, "(zombie)");
791 1.52 ad lwp_unlock(l);
792 1.2 thorpej p->p_nrlwps--;
793 1.52 ad cv_broadcast(&p->p_lwpcv);
794 1.78 ad if (l->l_lwpctl != NULL)
795 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
796 1.101.2.1 yamt mutex_exit(p->p_lock);
797 1.52 ad
798 1.52 ad /*
799 1.52 ad * We can no longer block. At this point, lwp_free() may already
800 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
801 1.52 ad *
802 1.52 ad * Free MD LWP resources.
803 1.52 ad */
804 1.52 ad #ifndef __NO_CPU_LWP_FREE
805 1.52 ad cpu_lwp_free(l, 0);
806 1.52 ad #endif
807 1.2 thorpej
808 1.65 ad if (current) {
809 1.65 ad pmap_deactivate(l);
810 1.65 ad
811 1.65 ad /*
812 1.65 ad * Release the kernel lock, and switch away into
813 1.65 ad * oblivion.
814 1.65 ad */
815 1.52 ad #ifdef notyet
816 1.65 ad /* XXXSMP hold in lwp_userret() */
817 1.65 ad KERNEL_UNLOCK_LAST(l);
818 1.52 ad #else
819 1.65 ad KERNEL_UNLOCK_ALL(l, NULL);
820 1.52 ad #endif
821 1.65 ad lwp_exit_switchaway(l);
822 1.65 ad }
823 1.2 thorpej }
824 1.2 thorpej
825 1.2 thorpej void
826 1.64 yamt lwp_exit_switchaway(struct lwp *l)
827 1.2 thorpej {
828 1.64 yamt struct cpu_info *ci;
829 1.64 yamt struct lwp *idlelwp;
830 1.64 yamt
831 1.64 yamt (void)splsched();
832 1.64 yamt l->l_flag &= ~LW_RUNNING;
833 1.64 yamt ci = curcpu();
834 1.97 ad ci->ci_data.cpu_nswtch++;
835 1.64 yamt idlelwp = ci->ci_data.cpu_idlelwp;
836 1.64 yamt idlelwp->l_stat = LSONPROC;
837 1.75 ad
838 1.75 ad /*
839 1.75 ad * cpu_onproc must be updated with the CPU locked, as
840 1.75 ad * aston() may try to set a AST pending on the LWP (and
841 1.75 ad * it does so with the CPU locked). Otherwise, the LWP
842 1.75 ad * may be destroyed before the AST can be set, leading
843 1.75 ad * to a user-after-free.
844 1.75 ad */
845 1.75 ad spc_lock(ci);
846 1.75 ad ci->ci_data.cpu_onproc = idlelwp;
847 1.75 ad spc_unlock(ci);
848 1.75 ad cpu_switchto(NULL, idlelwp, false);
849 1.52 ad }
850 1.52 ad
851 1.52 ad /*
852 1.52 ad * Free a dead LWP's remaining resources.
853 1.52 ad *
854 1.52 ad * XXXLWP limits.
855 1.52 ad */
856 1.52 ad void
857 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
858 1.52 ad {
859 1.52 ad struct proc *p = l->l_proc;
860 1.100 ad struct rusage *ru;
861 1.52 ad ksiginfoq_t kq;
862 1.52 ad
863 1.92 yamt KASSERT(l != curlwp);
864 1.92 yamt
865 1.52 ad /*
866 1.52 ad * If this was not the last LWP in the process, then adjust
867 1.52 ad * counters and unlock.
868 1.52 ad */
869 1.52 ad if (!last) {
870 1.52 ad /*
871 1.52 ad * Add the LWP's run time to the process' base value.
872 1.52 ad * This needs to co-incide with coming off p_lwps.
873 1.52 ad */
874 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime);
875 1.64 yamt p->p_pctcpu += l->l_pctcpu;
876 1.100 ad ru = &p->p_stats->p_ru;
877 1.100 ad ruadd(ru, &l->l_ru);
878 1.100 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
879 1.100 ad ru->ru_nivcsw += l->l_nivcsw;
880 1.52 ad LIST_REMOVE(l, l_sibling);
881 1.52 ad p->p_nlwps--;
882 1.52 ad p->p_nzlwps--;
883 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
884 1.52 ad p->p_ndlwps--;
885 1.63 ad
886 1.63 ad /*
887 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
888 1.63 ad * deadlock.
889 1.63 ad */
890 1.63 ad cv_broadcast(&p->p_lwpcv);
891 1.101.2.1 yamt mutex_exit(p->p_lock);
892 1.63 ad }
893 1.52 ad
894 1.52 ad #ifdef MULTIPROCESSOR
895 1.63 ad /*
896 1.63 ad * In the unlikely event that the LWP is still on the CPU,
897 1.63 ad * then spin until it has switched away. We need to release
898 1.63 ad * all locks to avoid deadlock against interrupt handlers on
899 1.63 ad * the target CPU.
900 1.63 ad */
901 1.64 yamt if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
902 1.63 ad int count;
903 1.64 yamt (void)count; /* XXXgcc */
904 1.63 ad KERNEL_UNLOCK_ALL(curlwp, &count);
905 1.64 yamt while ((l->l_flag & LW_RUNNING) != 0 ||
906 1.64 yamt l->l_cpu->ci_curlwp == l)
907 1.63 ad SPINLOCK_BACKOFF_HOOK;
908 1.63 ad KERNEL_LOCK(count, curlwp);
909 1.63 ad }
910 1.52 ad #endif
911 1.52 ad
912 1.52 ad /*
913 1.52 ad * Destroy the LWP's remaining signal information.
914 1.52 ad */
915 1.52 ad ksiginfo_queue_init(&kq);
916 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
917 1.52 ad ksiginfo_queue_drain(&kq);
918 1.52 ad cv_destroy(&l->l_sigcv);
919 1.65 ad mutex_destroy(&l->l_swaplock);
920 1.2 thorpej
921 1.19 jdolecek /*
922 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
923 1.93 yamt * caller wants to recycle them. Also, free the scheduler specific
924 1.93 yamt * data.
925 1.52 ad *
926 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
927 1.52 ad * so if it comes up just drop it quietly and move on.
928 1.52 ad *
929 1.52 ad * We don't recycle the VM resources at this time.
930 1.19 jdolecek */
931 1.78 ad if (l->l_lwpctl != NULL)
932 1.78 ad lwp_ctl_free(l);
933 1.64 yamt sched_lwp_exit(l);
934 1.64 yamt
935 1.52 ad if (!recycle && l->l_ts != &turnstile0)
936 1.76 ad pool_cache_put(turnstile_cache, l->l_ts);
937 1.90 ad if (l->l_name != NULL)
938 1.90 ad kmem_free(l->l_name, MAXCOMLEN);
939 1.52 ad #ifndef __NO_CPU_LWP_FREE
940 1.52 ad cpu_lwp_free2(l);
941 1.52 ad #endif
942 1.92 yamt KASSERT((l->l_flag & LW_INMEM) != 0);
943 1.19 jdolecek uvm_lwp_exit(l);
944 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
945 1.75 ad KASSERT(l->l_inheritedprio == -1);
946 1.52 ad if (!recycle)
947 1.87 ad pool_cache_put(lwp_cache, l);
948 1.2 thorpej }
949 1.2 thorpej
950 1.2 thorpej /*
951 1.2 thorpej * Pick a LWP to represent the process for those operations which
952 1.2 thorpej * want information about a "process" that is actually associated
953 1.2 thorpej * with a LWP.
954 1.52 ad *
955 1.52 ad * If 'locking' is false, no locking or lock checks are performed.
956 1.52 ad * This is intended for use by DDB.
957 1.52 ad *
958 1.52 ad * We don't bother locking the LWP here, since code that uses this
959 1.52 ad * interface is broken by design and an exact match is not required.
960 1.2 thorpej */
961 1.2 thorpej struct lwp *
962 1.52 ad proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
963 1.2 thorpej {
964 1.2 thorpej struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
965 1.27 matt struct lwp *signalled;
966 1.52 ad int cnt;
967 1.52 ad
968 1.52 ad if (locking) {
969 1.101.2.1 yamt KASSERT(mutex_owned(p->p_lock));
970 1.52 ad }
971 1.2 thorpej
972 1.2 thorpej /* Trivial case: only one LWP */
973 1.52 ad if (p->p_nlwps == 1) {
974 1.52 ad l = LIST_FIRST(&p->p_lwps);
975 1.52 ad if (nrlwps)
976 1.68 tnn *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
977 1.52 ad return l;
978 1.52 ad }
979 1.2 thorpej
980 1.52 ad cnt = 0;
981 1.2 thorpej switch (p->p_stat) {
982 1.2 thorpej case SSTOP:
983 1.2 thorpej case SACTIVE:
984 1.2 thorpej /* Pick the most live LWP */
985 1.2 thorpej onproc = running = sleeping = stopped = suspended = NULL;
986 1.27 matt signalled = NULL;
987 1.2 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
988 1.64 yamt if ((l->l_flag & LW_IDLE) != 0) {
989 1.64 yamt continue;
990 1.64 yamt }
991 1.27 matt if (l->l_lid == p->p_sigctx.ps_lwp)
992 1.27 matt signalled = l;
993 1.2 thorpej switch (l->l_stat) {
994 1.2 thorpej case LSONPROC:
995 1.2 thorpej onproc = l;
996 1.52 ad cnt++;
997 1.2 thorpej break;
998 1.2 thorpej case LSRUN:
999 1.2 thorpej running = l;
1000 1.52 ad cnt++;
1001 1.2 thorpej break;
1002 1.2 thorpej case LSSLEEP:
1003 1.2 thorpej sleeping = l;
1004 1.2 thorpej break;
1005 1.2 thorpej case LSSTOP:
1006 1.2 thorpej stopped = l;
1007 1.2 thorpej break;
1008 1.2 thorpej case LSSUSPENDED:
1009 1.2 thorpej suspended = l;
1010 1.2 thorpej break;
1011 1.2 thorpej }
1012 1.2 thorpej }
1013 1.52 ad if (nrlwps)
1014 1.52 ad *nrlwps = cnt;
1015 1.27 matt if (signalled)
1016 1.52 ad l = signalled;
1017 1.52 ad else if (onproc)
1018 1.52 ad l = onproc;
1019 1.52 ad else if (running)
1020 1.52 ad l = running;
1021 1.52 ad else if (sleeping)
1022 1.52 ad l = sleeping;
1023 1.52 ad else if (stopped)
1024 1.52 ad l = stopped;
1025 1.52 ad else if (suspended)
1026 1.52 ad l = suspended;
1027 1.52 ad else
1028 1.52 ad break;
1029 1.52 ad return l;
1030 1.2 thorpej #ifdef DIAGNOSTIC
1031 1.2 thorpej case SIDL:
1032 1.52 ad case SZOMB:
1033 1.52 ad case SDYING:
1034 1.52 ad case SDEAD:
1035 1.52 ad if (locking)
1036 1.101.2.1 yamt mutex_exit(p->p_lock);
1037 1.2 thorpej /* We have more than one LWP and we're in SIDL?
1038 1.2 thorpej * How'd that happen?
1039 1.2 thorpej */
1040 1.52 ad panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1041 1.52 ad p->p_pid, p->p_comm, p->p_stat);
1042 1.52 ad break;
1043 1.2 thorpej default:
1044 1.52 ad if (locking)
1045 1.101.2.1 yamt mutex_exit(p->p_lock);
1046 1.2 thorpej panic("Process %d (%s) in unknown state %d",
1047 1.2 thorpej p->p_pid, p->p_comm, p->p_stat);
1048 1.2 thorpej #endif
1049 1.2 thorpej }
1050 1.2 thorpej
1051 1.52 ad if (locking)
1052 1.101.2.1 yamt mutex_exit(p->p_lock);
1053 1.2 thorpej panic("proc_representative_lwp: couldn't find a lwp for process"
1054 1.2 thorpej " %d (%s)", p->p_pid, p->p_comm);
1055 1.2 thorpej /* NOTREACHED */
1056 1.2 thorpej return NULL;
1057 1.2 thorpej }
1058 1.37 ad
1059 1.37 ad /*
1060 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP.
1061 1.91 rmind */
1062 1.91 rmind void
1063 1.91 rmind lwp_migrate(lwp_t *l, struct cpu_info *ci)
1064 1.91 rmind {
1065 1.91 rmind struct schedstate_percpu *spc;
1066 1.91 rmind KASSERT(lwp_locked(l, NULL));
1067 1.91 rmind
1068 1.91 rmind if (l->l_cpu == ci) {
1069 1.91 rmind lwp_unlock(l);
1070 1.91 rmind return;
1071 1.91 rmind }
1072 1.91 rmind
1073 1.91 rmind spc = &ci->ci_schedstate;
1074 1.91 rmind switch (l->l_stat) {
1075 1.91 rmind case LSRUN:
1076 1.91 rmind if (l->l_flag & LW_INMEM) {
1077 1.91 rmind l->l_target_cpu = ci;
1078 1.91 rmind break;
1079 1.91 rmind }
1080 1.91 rmind case LSIDL:
1081 1.91 rmind l->l_cpu = ci;
1082 1.91 rmind lwp_unlock_to(l, spc->spc_mutex);
1083 1.91 rmind KASSERT(!mutex_owned(spc->spc_mutex));
1084 1.91 rmind return;
1085 1.91 rmind case LSSLEEP:
1086 1.91 rmind l->l_cpu = ci;
1087 1.91 rmind break;
1088 1.91 rmind case LSSTOP:
1089 1.91 rmind case LSSUSPENDED:
1090 1.91 rmind if (l->l_wchan != NULL) {
1091 1.91 rmind l->l_cpu = ci;
1092 1.91 rmind break;
1093 1.91 rmind }
1094 1.91 rmind case LSONPROC:
1095 1.91 rmind l->l_target_cpu = ci;
1096 1.91 rmind break;
1097 1.91 rmind }
1098 1.91 rmind lwp_unlock(l);
1099 1.91 rmind }
1100 1.91 rmind
1101 1.91 rmind /*
1102 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case,
1103 1.94 rmind * the calling process and first LWP in the list will be used.
1104 1.101.2.1 yamt * On success - returns proc locked.
1105 1.91 rmind */
1106 1.91 rmind struct lwp *
1107 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid)
1108 1.91 rmind {
1109 1.91 rmind proc_t *p;
1110 1.91 rmind lwp_t *l;
1111 1.91 rmind
1112 1.91 rmind /* Find the process */
1113 1.94 rmind p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1114 1.91 rmind if (p == NULL)
1115 1.91 rmind return NULL;
1116 1.101.2.1 yamt mutex_enter(p->p_lock);
1117 1.94 rmind if (pid != 0) {
1118 1.94 rmind /* Case of p_find */
1119 1.101.2.1 yamt mutex_exit(proc_lock);
1120 1.94 rmind }
1121 1.91 rmind
1122 1.91 rmind /* Find the thread */
1123 1.94 rmind l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1124 1.101.2.1 yamt if (l == NULL) {
1125 1.101.2.1 yamt mutex_exit(p->p_lock);
1126 1.101.2.1 yamt }
1127 1.91 rmind
1128 1.91 rmind return l;
1129 1.91 rmind }
1130 1.91 rmind
1131 1.91 rmind /*
1132 1.52 ad * Look up a live LWP within the speicifed process, and return it locked.
1133 1.52 ad *
1134 1.101.2.1 yamt * Must be called with p->p_lock held.
1135 1.52 ad */
1136 1.52 ad struct lwp *
1137 1.52 ad lwp_find(struct proc *p, int id)
1138 1.52 ad {
1139 1.52 ad struct lwp *l;
1140 1.52 ad
1141 1.101.2.1 yamt KASSERT(mutex_owned(p->p_lock));
1142 1.52 ad
1143 1.52 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1144 1.52 ad if (l->l_lid == id)
1145 1.52 ad break;
1146 1.52 ad }
1147 1.52 ad
1148 1.52 ad /*
1149 1.52 ad * No need to lock - all of these conditions will
1150 1.52 ad * be visible with the process level mutex held.
1151 1.52 ad */
1152 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1153 1.52 ad l = NULL;
1154 1.52 ad
1155 1.52 ad return l;
1156 1.52 ad }
1157 1.52 ad
1158 1.52 ad /*
1159 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1160 1.37 ad *
1161 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1162 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1163 1.37 ad * it's credentials by calling this routine. This may be called from
1164 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1165 1.37 ad */
1166 1.37 ad void
1167 1.37 ad lwp_update_creds(struct lwp *l)
1168 1.37 ad {
1169 1.37 ad kauth_cred_t oc;
1170 1.37 ad struct proc *p;
1171 1.37 ad
1172 1.37 ad p = l->l_proc;
1173 1.37 ad oc = l->l_cred;
1174 1.37 ad
1175 1.101.2.1 yamt mutex_enter(p->p_lock);
1176 1.37 ad kauth_cred_hold(p->p_cred);
1177 1.37 ad l->l_cred = p->p_cred;
1178 1.98 ad l->l_prflag &= ~LPR_CRMOD;
1179 1.101.2.1 yamt mutex_exit(p->p_lock);
1180 1.88 ad if (oc != NULL)
1181 1.37 ad kauth_cred_free(oc);
1182 1.52 ad }
1183 1.52 ad
1184 1.52 ad /*
1185 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1186 1.52 ad * one we specify.
1187 1.52 ad */
1188 1.52 ad int
1189 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1190 1.52 ad {
1191 1.52 ad kmutex_t *cur = l->l_mutex;
1192 1.52 ad
1193 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1194 1.52 ad }
1195 1.52 ad
1196 1.52 ad /*
1197 1.52 ad * Lock an LWP.
1198 1.52 ad */
1199 1.52 ad void
1200 1.52 ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
1201 1.52 ad {
1202 1.52 ad
1203 1.52 ad /*
1204 1.52 ad * XXXgcc ignoring kmutex_t * volatile on i386
1205 1.52 ad *
1206 1.52 ad * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1207 1.52 ad */
1208 1.52 ad #if 1
1209 1.52 ad while (l->l_mutex != old) {
1210 1.52 ad #else
1211 1.52 ad for (;;) {
1212 1.52 ad #endif
1213 1.52 ad mutex_spin_exit(old);
1214 1.52 ad old = l->l_mutex;
1215 1.52 ad mutex_spin_enter(old);
1216 1.52 ad
1217 1.52 ad /*
1218 1.52 ad * mutex_enter() will have posted a read barrier. Re-test
1219 1.52 ad * l->l_mutex. If it has changed, we need to try again.
1220 1.52 ad */
1221 1.52 ad #if 1
1222 1.52 ad }
1223 1.52 ad #else
1224 1.52 ad } while (__predict_false(l->l_mutex != old));
1225 1.52 ad #endif
1226 1.52 ad }
1227 1.52 ad
1228 1.52 ad /*
1229 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1230 1.52 ad */
1231 1.52 ad void
1232 1.52 ad lwp_setlock(struct lwp *l, kmutex_t *new)
1233 1.52 ad {
1234 1.52 ad
1235 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1236 1.52 ad
1237 1.101.2.1 yamt membar_exit();
1238 1.52 ad l->l_mutex = new;
1239 1.52 ad }
1240 1.52 ad
1241 1.52 ad /*
1242 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1243 1.52 ad * must be held.
1244 1.52 ad */
1245 1.52 ad void
1246 1.52 ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
1247 1.52 ad {
1248 1.52 ad kmutex_t *old;
1249 1.52 ad
1250 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1251 1.52 ad
1252 1.52 ad old = l->l_mutex;
1253 1.101.2.1 yamt membar_exit();
1254 1.52 ad l->l_mutex = new;
1255 1.52 ad mutex_spin_exit(old);
1256 1.52 ad }
1257 1.52 ad
1258 1.52 ad /*
1259 1.52 ad * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1260 1.52 ad * locked.
1261 1.52 ad */
1262 1.52 ad void
1263 1.52 ad lwp_relock(struct lwp *l, kmutex_t *new)
1264 1.52 ad {
1265 1.52 ad kmutex_t *old;
1266 1.52 ad
1267 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1268 1.52 ad
1269 1.52 ad old = l->l_mutex;
1270 1.52 ad if (old != new) {
1271 1.52 ad mutex_spin_enter(new);
1272 1.52 ad l->l_mutex = new;
1273 1.52 ad mutex_spin_exit(old);
1274 1.52 ad }
1275 1.52 ad }
1276 1.52 ad
1277 1.60 yamt int
1278 1.60 yamt lwp_trylock(struct lwp *l)
1279 1.60 yamt {
1280 1.60 yamt kmutex_t *old;
1281 1.60 yamt
1282 1.60 yamt for (;;) {
1283 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1284 1.60 yamt return 0;
1285 1.60 yamt if (__predict_true(l->l_mutex == old))
1286 1.60 yamt return 1;
1287 1.60 yamt mutex_spin_exit(old);
1288 1.60 yamt }
1289 1.60 yamt }
1290 1.60 yamt
1291 1.96 ad u_int
1292 1.96 ad lwp_unsleep(lwp_t *l, bool cleanup)
1293 1.96 ad {
1294 1.96 ad
1295 1.96 ad KASSERT(mutex_owned(l->l_mutex));
1296 1.96 ad
1297 1.96 ad return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1298 1.96 ad }
1299 1.96 ad
1300 1.96 ad
1301 1.52 ad /*
1302 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1303 1.52 ad * set.
1304 1.52 ad */
1305 1.52 ad void
1306 1.52 ad lwp_userret(struct lwp *l)
1307 1.52 ad {
1308 1.52 ad struct proc *p;
1309 1.54 ad void (*hook)(void);
1310 1.52 ad int sig;
1311 1.52 ad
1312 1.52 ad p = l->l_proc;
1313 1.52 ad
1314 1.75 ad #ifndef __HAVE_FAST_SOFTINTS
1315 1.75 ad /* Run pending soft interrupts. */
1316 1.75 ad if (l->l_cpu->ci_data.cpu_softints != 0)
1317 1.75 ad softint_overlay();
1318 1.75 ad #endif
1319 1.75 ad
1320 1.52 ad /*
1321 1.52 ad * It should be safe to do this read unlocked on a multiprocessor
1322 1.52 ad * system..
1323 1.52 ad */
1324 1.56 pavel while ((l->l_flag & LW_USERRET) != 0) {
1325 1.52 ad /*
1326 1.52 ad * Process pending signals first, unless the process
1327 1.61 ad * is dumping core or exiting, where we will instead
1328 1.101 rmind * enter the LW_WSUSPEND case below.
1329 1.52 ad */
1330 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1331 1.61 ad LW_PENDSIG) {
1332 1.101.2.1 yamt mutex_enter(p->p_lock);
1333 1.52 ad while ((sig = issignal(l)) != 0)
1334 1.52 ad postsig(sig);
1335 1.101.2.1 yamt mutex_exit(p->p_lock);
1336 1.52 ad }
1337 1.52 ad
1338 1.52 ad /*
1339 1.52 ad * Core-dump or suspend pending.
1340 1.52 ad *
1341 1.52 ad * In case of core dump, suspend ourselves, so that the
1342 1.52 ad * kernel stack and therefore the userland registers saved
1343 1.52 ad * in the trapframe are around for coredump() to write them
1344 1.52 ad * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1345 1.52 ad * will write the core file out once all other LWPs are
1346 1.52 ad * suspended.
1347 1.52 ad */
1348 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1349 1.101.2.1 yamt mutex_enter(p->p_lock);
1350 1.52 ad p->p_nrlwps--;
1351 1.52 ad cv_broadcast(&p->p_lwpcv);
1352 1.52 ad lwp_lock(l);
1353 1.52 ad l->l_stat = LSSUSPENDED;
1354 1.101.2.1 yamt lwp_unlock(l);
1355 1.101.2.1 yamt mutex_exit(p->p_lock);
1356 1.101.2.1 yamt lwp_lock(l);
1357 1.64 yamt mi_switch(l);
1358 1.52 ad }
1359 1.52 ad
1360 1.52 ad /* Process is exiting. */
1361 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1362 1.52 ad lwp_exit(l);
1363 1.52 ad KASSERT(0);
1364 1.52 ad /* NOTREACHED */
1365 1.52 ad }
1366 1.54 ad
1367 1.54 ad /* Call userret hook; used by Linux emulation. */
1368 1.56 pavel if ((l->l_flag & LW_WUSERRET) != 0) {
1369 1.54 ad lwp_lock(l);
1370 1.56 pavel l->l_flag &= ~LW_WUSERRET;
1371 1.54 ad lwp_unlock(l);
1372 1.54 ad hook = p->p_userret;
1373 1.54 ad p->p_userret = NULL;
1374 1.54 ad (*hook)();
1375 1.54 ad }
1376 1.52 ad }
1377 1.52 ad }
1378 1.52 ad
1379 1.52 ad /*
1380 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1381 1.52 ad */
1382 1.52 ad void
1383 1.52 ad lwp_need_userret(struct lwp *l)
1384 1.52 ad {
1385 1.63 ad KASSERT(lwp_locked(l, NULL));
1386 1.52 ad
1387 1.52 ad /*
1388 1.52 ad * Since the tests in lwp_userret() are done unlocked, make sure
1389 1.52 ad * that the condition will be seen before forcing the LWP to enter
1390 1.52 ad * kernel mode.
1391 1.52 ad */
1392 1.81 ad membar_producer();
1393 1.52 ad cpu_signotify(l);
1394 1.52 ad }
1395 1.52 ad
1396 1.52 ad /*
1397 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1398 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1399 1.52 ad */
1400 1.52 ad void
1401 1.52 ad lwp_addref(struct lwp *l)
1402 1.52 ad {
1403 1.52 ad
1404 1.101.2.1 yamt KASSERT(mutex_owned(l->l_proc->p_lock));
1405 1.52 ad KASSERT(l->l_stat != LSZOMB);
1406 1.52 ad KASSERT(l->l_refcnt != 0);
1407 1.52 ad
1408 1.52 ad l->l_refcnt++;
1409 1.52 ad }
1410 1.52 ad
1411 1.52 ad /*
1412 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1413 1.52 ad * then we must finalize the LWP's death.
1414 1.52 ad */
1415 1.52 ad void
1416 1.52 ad lwp_delref(struct lwp *l)
1417 1.52 ad {
1418 1.52 ad struct proc *p = l->l_proc;
1419 1.52 ad
1420 1.101.2.1 yamt mutex_enter(p->p_lock);
1421 1.72 ad KASSERT(l->l_stat != LSZOMB);
1422 1.72 ad KASSERT(l->l_refcnt > 0);
1423 1.52 ad if (--l->l_refcnt == 0)
1424 1.76 ad cv_broadcast(&p->p_lwpcv);
1425 1.101.2.1 yamt mutex_exit(p->p_lock);
1426 1.52 ad }
1427 1.52 ad
1428 1.52 ad /*
1429 1.52 ad * Drain all references to the current LWP.
1430 1.52 ad */
1431 1.52 ad void
1432 1.52 ad lwp_drainrefs(struct lwp *l)
1433 1.52 ad {
1434 1.52 ad struct proc *p = l->l_proc;
1435 1.52 ad
1436 1.101.2.1 yamt KASSERT(mutex_owned(p->p_lock));
1437 1.52 ad KASSERT(l->l_refcnt != 0);
1438 1.52 ad
1439 1.52 ad l->l_refcnt--;
1440 1.52 ad while (l->l_refcnt != 0)
1441 1.101.2.1 yamt cv_wait(&p->p_lwpcv, p->p_lock);
1442 1.37 ad }
1443 1.41 thorpej
1444 1.41 thorpej /*
1445 1.41 thorpej * lwp_specific_key_create --
1446 1.41 thorpej * Create a key for subsystem lwp-specific data.
1447 1.41 thorpej */
1448 1.41 thorpej int
1449 1.41 thorpej lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1450 1.41 thorpej {
1451 1.41 thorpej
1452 1.45 thorpej return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1453 1.41 thorpej }
1454 1.41 thorpej
1455 1.41 thorpej /*
1456 1.41 thorpej * lwp_specific_key_delete --
1457 1.41 thorpej * Delete a key for subsystem lwp-specific data.
1458 1.41 thorpej */
1459 1.41 thorpej void
1460 1.41 thorpej lwp_specific_key_delete(specificdata_key_t key)
1461 1.41 thorpej {
1462 1.41 thorpej
1463 1.41 thorpej specificdata_key_delete(lwp_specificdata_domain, key);
1464 1.41 thorpej }
1465 1.41 thorpej
1466 1.45 thorpej /*
1467 1.45 thorpej * lwp_initspecific --
1468 1.45 thorpej * Initialize an LWP's specificdata container.
1469 1.45 thorpej */
1470 1.42 christos void
1471 1.42 christos lwp_initspecific(struct lwp *l)
1472 1.42 christos {
1473 1.42 christos int error;
1474 1.45 thorpej
1475 1.42 christos error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1476 1.42 christos KASSERT(error == 0);
1477 1.42 christos }
1478 1.42 christos
1479 1.41 thorpej /*
1480 1.45 thorpej * lwp_finispecific --
1481 1.45 thorpej * Finalize an LWP's specificdata container.
1482 1.45 thorpej */
1483 1.45 thorpej void
1484 1.45 thorpej lwp_finispecific(struct lwp *l)
1485 1.45 thorpej {
1486 1.45 thorpej
1487 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1488 1.45 thorpej }
1489 1.45 thorpej
1490 1.45 thorpej /*
1491 1.41 thorpej * lwp_getspecific --
1492 1.41 thorpej * Return lwp-specific data corresponding to the specified key.
1493 1.41 thorpej *
1494 1.41 thorpej * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1495 1.41 thorpej * only its OWN SPECIFIC DATA. If it is necessary to access another
1496 1.41 thorpej * LWP's specifc data, care must be taken to ensure that doing so
1497 1.41 thorpej * would not cause internal data structure inconsistency (i.e. caller
1498 1.41 thorpej * can guarantee that the target LWP is not inside an lwp_getspecific()
1499 1.41 thorpej * or lwp_setspecific() call).
1500 1.41 thorpej */
1501 1.41 thorpej void *
1502 1.44 thorpej lwp_getspecific(specificdata_key_t key)
1503 1.41 thorpej {
1504 1.41 thorpej
1505 1.41 thorpej return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1506 1.44 thorpej &curlwp->l_specdataref, key));
1507 1.41 thorpej }
1508 1.41 thorpej
1509 1.47 hannken void *
1510 1.47 hannken _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1511 1.47 hannken {
1512 1.47 hannken
1513 1.47 hannken return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1514 1.47 hannken &l->l_specdataref, key));
1515 1.47 hannken }
1516 1.47 hannken
1517 1.41 thorpej /*
1518 1.41 thorpej * lwp_setspecific --
1519 1.41 thorpej * Set lwp-specific data corresponding to the specified key.
1520 1.41 thorpej */
1521 1.41 thorpej void
1522 1.45 thorpej lwp_setspecific(specificdata_key_t key, void *data)
1523 1.41 thorpej {
1524 1.41 thorpej
1525 1.41 thorpej specificdata_setspecific(lwp_specificdata_domain,
1526 1.44 thorpej &curlwp->l_specdataref, key, data);
1527 1.41 thorpej }
1528 1.78 ad
1529 1.78 ad /*
1530 1.78 ad * Allocate a new lwpctl structure for a user LWP.
1531 1.78 ad */
1532 1.78 ad int
1533 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr)
1534 1.78 ad {
1535 1.78 ad lcproc_t *lp;
1536 1.78 ad u_int bit, i, offset;
1537 1.78 ad struct uvm_object *uao;
1538 1.78 ad int error;
1539 1.78 ad lcpage_t *lcp;
1540 1.78 ad proc_t *p;
1541 1.78 ad lwp_t *l;
1542 1.78 ad
1543 1.78 ad l = curlwp;
1544 1.78 ad p = l->l_proc;
1545 1.78 ad
1546 1.81 ad if (l->l_lcpage != NULL) {
1547 1.81 ad lcp = l->l_lcpage;
1548 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1549 1.78 ad return (EINVAL);
1550 1.81 ad }
1551 1.78 ad
1552 1.78 ad /* First time around, allocate header structure for the process. */
1553 1.78 ad if ((lp = p->p_lwpctl) == NULL) {
1554 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1555 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1556 1.78 ad lp->lp_uao = NULL;
1557 1.78 ad TAILQ_INIT(&lp->lp_pages);
1558 1.101.2.1 yamt mutex_enter(p->p_lock);
1559 1.78 ad if (p->p_lwpctl == NULL) {
1560 1.78 ad p->p_lwpctl = lp;
1561 1.101.2.1 yamt mutex_exit(p->p_lock);
1562 1.78 ad } else {
1563 1.101.2.1 yamt mutex_exit(p->p_lock);
1564 1.78 ad mutex_destroy(&lp->lp_lock);
1565 1.78 ad kmem_free(lp, sizeof(*lp));
1566 1.78 ad lp = p->p_lwpctl;
1567 1.78 ad }
1568 1.78 ad }
1569 1.78 ad
1570 1.78 ad /*
1571 1.78 ad * Set up an anonymous memory region to hold the shared pages.
1572 1.78 ad * Map them into the process' address space. The user vmspace
1573 1.78 ad * gets the first reference on the UAO.
1574 1.78 ad */
1575 1.78 ad mutex_enter(&lp->lp_lock);
1576 1.78 ad if (lp->lp_uao == NULL) {
1577 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1578 1.78 ad lp->lp_cur = 0;
1579 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ;
1580 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1581 1.78 ad (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1582 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1583 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1584 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1585 1.78 ad if (error != 0) {
1586 1.78 ad uao_detach(lp->lp_uao);
1587 1.78 ad lp->lp_uao = NULL;
1588 1.78 ad mutex_exit(&lp->lp_lock);
1589 1.78 ad return error;
1590 1.78 ad }
1591 1.78 ad }
1592 1.78 ad
1593 1.78 ad /* Get a free block and allocate for this LWP. */
1594 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1595 1.78 ad if (lcp->lcp_nfree != 0)
1596 1.78 ad break;
1597 1.78 ad }
1598 1.78 ad if (lcp == NULL) {
1599 1.78 ad /* Nothing available - try to set up a free page. */
1600 1.78 ad if (lp->lp_cur == lp->lp_max) {
1601 1.78 ad mutex_exit(&lp->lp_lock);
1602 1.78 ad return ENOMEM;
1603 1.78 ad }
1604 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1605 1.79 yamt if (lcp == NULL) {
1606 1.79 yamt mutex_exit(&lp->lp_lock);
1607 1.78 ad return ENOMEM;
1608 1.79 yamt }
1609 1.78 ad /*
1610 1.78 ad * Wire the next page down in kernel space. Since this
1611 1.78 ad * is a new mapping, we must add a reference.
1612 1.78 ad */
1613 1.78 ad uao = lp->lp_uao;
1614 1.78 ad (*uao->pgops->pgo_reference)(uao);
1615 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map);
1616 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1617 1.78 ad uao, lp->lp_cur, PAGE_SIZE,
1618 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1619 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1620 1.78 ad if (error != 0) {
1621 1.78 ad mutex_exit(&lp->lp_lock);
1622 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1623 1.78 ad (*uao->pgops->pgo_detach)(uao);
1624 1.78 ad return error;
1625 1.78 ad }
1626 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1627 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1628 1.89 yamt if (error != 0) {
1629 1.89 yamt mutex_exit(&lp->lp_lock);
1630 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr,
1631 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE);
1632 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1633 1.89 yamt return error;
1634 1.89 yamt }
1635 1.78 ad /* Prepare the page descriptor and link into the list. */
1636 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1637 1.78 ad lp->lp_cur += PAGE_SIZE;
1638 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE;
1639 1.78 ad lcp->lcp_rotor = 0;
1640 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1641 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1642 1.78 ad }
1643 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1644 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES)
1645 1.78 ad i = 0;
1646 1.78 ad }
1647 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1;
1648 1.78 ad lcp->lcp_bitmap[i] ^= (1 << bit);
1649 1.78 ad lcp->lcp_rotor = i;
1650 1.78 ad lcp->lcp_nfree--;
1651 1.78 ad l->l_lcpage = lcp;
1652 1.78 ad offset = (i << 5) + bit;
1653 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1654 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1655 1.78 ad mutex_exit(&lp->lp_lock);
1656 1.78 ad
1657 1.101.2.1 yamt KPREEMPT_DISABLE(l);
1658 1.78 ad l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1659 1.101.2.1 yamt KPREEMPT_ENABLE(l);
1660 1.78 ad
1661 1.78 ad return 0;
1662 1.78 ad }
1663 1.78 ad
1664 1.78 ad /*
1665 1.78 ad * Free an lwpctl structure back to the per-process list.
1666 1.78 ad */
1667 1.78 ad void
1668 1.78 ad lwp_ctl_free(lwp_t *l)
1669 1.78 ad {
1670 1.78 ad lcproc_t *lp;
1671 1.78 ad lcpage_t *lcp;
1672 1.78 ad u_int map, offset;
1673 1.78 ad
1674 1.78 ad lp = l->l_proc->p_lwpctl;
1675 1.78 ad KASSERT(lp != NULL);
1676 1.78 ad
1677 1.78 ad lcp = l->l_lcpage;
1678 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1679 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE);
1680 1.78 ad
1681 1.78 ad mutex_enter(&lp->lp_lock);
1682 1.78 ad lcp->lcp_nfree++;
1683 1.78 ad map = offset >> 5;
1684 1.78 ad lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1685 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1686 1.78 ad lcp->lcp_rotor = map;
1687 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1688 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1689 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1690 1.78 ad }
1691 1.78 ad mutex_exit(&lp->lp_lock);
1692 1.78 ad }
1693 1.78 ad
1694 1.78 ad /*
1695 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely
1696 1.78 ad * called by the last LWP in the process.
1697 1.78 ad */
1698 1.78 ad void
1699 1.78 ad lwp_ctl_exit(void)
1700 1.78 ad {
1701 1.78 ad lcpage_t *lcp, *next;
1702 1.78 ad lcproc_t *lp;
1703 1.78 ad proc_t *p;
1704 1.78 ad lwp_t *l;
1705 1.78 ad
1706 1.78 ad l = curlwp;
1707 1.78 ad l->l_lwpctl = NULL;
1708 1.95 ad l->l_lcpage = NULL;
1709 1.78 ad p = l->l_proc;
1710 1.78 ad lp = p->p_lwpctl;
1711 1.78 ad
1712 1.78 ad KASSERT(lp != NULL);
1713 1.78 ad KASSERT(p->p_nlwps == 1);
1714 1.78 ad
1715 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1716 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain);
1717 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr,
1718 1.78 ad lcp->lcp_kaddr + PAGE_SIZE);
1719 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1720 1.78 ad }
1721 1.78 ad
1722 1.78 ad if (lp->lp_uao != NULL) {
1723 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1724 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ);
1725 1.78 ad }
1726 1.78 ad
1727 1.78 ad mutex_destroy(&lp->lp_lock);
1728 1.78 ad kmem_free(lp, sizeof(*lp));
1729 1.78 ad p->p_lwpctl = NULL;
1730 1.78 ad }
1731 1.84 yamt
1732 1.84 yamt #if defined(DDB)
1733 1.84 yamt void
1734 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1735 1.84 yamt {
1736 1.84 yamt lwp_t *l;
1737 1.84 yamt
1738 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) {
1739 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1740 1.84 yamt
1741 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) {
1742 1.84 yamt continue;
1743 1.84 yamt }
1744 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n",
1745 1.84 yamt (void *)addr, (void *)stack,
1746 1.84 yamt (size_t)(addr - stack), l);
1747 1.84 yamt }
1748 1.84 yamt }
1749 1.84 yamt #endif /* defined(DDB) */
1750