Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.114
      1  1.114     rmind /*	$NetBSD: kern_lwp.c,v 1.114 2008/05/29 22:33:27 rmind Exp $	*/
      2    1.2   thorpej 
      3    1.2   thorpej /*-
      4   1.95        ad  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5    1.2   thorpej  * All rights reserved.
      6    1.2   thorpej  *
      7    1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.52        ad  * by Nathan J. Williams, and Andrew Doran.
      9    1.2   thorpej  *
     10    1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     11    1.2   thorpej  * modification, are permitted provided that the following conditions
     12    1.2   thorpej  * are met:
     13    1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     14    1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     15    1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17    1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     18    1.2   thorpej  *
     19    1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30    1.2   thorpej  */
     31    1.9     lukem 
     32   1.52        ad /*
     33   1.52        ad  * Overview
     34   1.52        ad  *
     35   1.66        ad  *	Lightweight processes (LWPs) are the basic unit or thread of
     36   1.52        ad  *	execution within the kernel.  The core state of an LWP is described
     37   1.66        ad  *	by "struct lwp", also known as lwp_t.
     38   1.52        ad  *
     39   1.52        ad  *	Each LWP is contained within a process (described by "struct proc"),
     40   1.52        ad  *	Every process contains at least one LWP, but may contain more.  The
     41   1.52        ad  *	process describes attributes shared among all of its LWPs such as a
     42   1.52        ad  *	private address space, global execution state (stopped, active,
     43   1.52        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44   1.66        ad  *	machine, multiple LWPs be executing concurrently in the kernel.
     45   1.52        ad  *
     46   1.52        ad  * Execution states
     47   1.52        ad  *
     48   1.52        ad  *	At any given time, an LWP has overall state that is described by
     49   1.52        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50   1.52        ad  *	set is guaranteed to represent the absolute, current state of the
     51   1.52        ad  *	LWP:
     52  1.101     rmind  *
     53  1.101     rmind  *	LSONPROC
     54  1.101     rmind  *
     55  1.101     rmind  *		On processor: the LWP is executing on a CPU, either in the
     56  1.101     rmind  *		kernel or in user space.
     57  1.101     rmind  *
     58  1.101     rmind  *	LSRUN
     59  1.101     rmind  *
     60  1.101     rmind  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  1.101     rmind  *		chosen to run by an idle processor, or by a processor that
     62  1.101     rmind  *		has been asked to preempt a currently runnning but lower
     63  1.101     rmind  *		priority LWP.  If the LWP is not swapped in (LW_INMEM == 0)
     64   1.52        ad  *		then the LWP is not on a run queue, but may be soon.
     65  1.101     rmind  *
     66  1.101     rmind  *	LSIDL
     67  1.101     rmind  *
     68  1.101     rmind  *		Idle: the LWP has been created but has not yet executed,
     69   1.66        ad  *		or it has ceased executing a unit of work and is waiting
     70   1.66        ad  *		to be started again.
     71  1.101     rmind  *
     72  1.101     rmind  *	LSSUSPENDED:
     73  1.101     rmind  *
     74  1.101     rmind  *		Suspended: the LWP has had its execution suspended by
     75   1.52        ad  *		another LWP in the same process using the _lwp_suspend()
     76   1.52        ad  *		system call.  User-level LWPs also enter the suspended
     77   1.52        ad  *		state when the system is shutting down.
     78   1.52        ad  *
     79   1.52        ad  *	The second set represent a "statement of intent" on behalf of the
     80   1.52        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     81   1.66        ad  *	sleeping or idle. It is expected to take the necessary action to
     82  1.101     rmind  *	stop executing or become "running" again within a short timeframe.
     83   1.66        ad  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
     84  1.101     rmind  *	Importantly, it indicates that its state is tied to a CPU.
     85  1.101     rmind  *
     86  1.101     rmind  *	LSZOMB:
     87  1.101     rmind  *
     88  1.101     rmind  *		Dead or dying: the LWP has released most of its resources
     89  1.101     rmind  *		and is: a) about to switch away into oblivion b) has already
     90   1.66        ad  *		switched away.  When it switches away, its few remaining
     91   1.66        ad  *		resources can be collected.
     92  1.101     rmind  *
     93  1.101     rmind  *	LSSLEEP:
     94  1.101     rmind  *
     95  1.101     rmind  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     96  1.101     rmind  *		has switched away or will switch away shortly to allow other
     97   1.66        ad  *		LWPs to run on the CPU.
     98  1.101     rmind  *
     99  1.101     rmind  *	LSSTOP:
    100  1.101     rmind  *
    101  1.101     rmind  *		Stopped: the LWP has been stopped as a result of a job
    102  1.101     rmind  *		control signal, or as a result of the ptrace() interface.
    103  1.101     rmind  *
    104  1.101     rmind  *		Stopped LWPs may run briefly within the kernel to handle
    105  1.101     rmind  *		signals that they receive, but will not return to user space
    106  1.101     rmind  *		until their process' state is changed away from stopped.
    107  1.101     rmind  *
    108  1.101     rmind  *		Single LWPs within a process can not be set stopped
    109  1.101     rmind  *		selectively: all actions that can stop or continue LWPs
    110  1.101     rmind  *		occur at the process level.
    111  1.101     rmind  *
    112   1.52        ad  * State transitions
    113   1.52        ad  *
    114   1.66        ad  *	Note that the LSSTOP state may only be set when returning to
    115   1.66        ad  *	user space in userret(), or when sleeping interruptably.  The
    116   1.66        ad  *	LSSUSPENDED state may only be set in userret().  Before setting
    117   1.66        ad  *	those states, we try to ensure that the LWPs will release all
    118   1.66        ad  *	locks that they hold, and at a minimum try to ensure that the
    119   1.66        ad  *	LWP can be set runnable again by a signal.
    120   1.52        ad  *
    121   1.52        ad  *	LWPs may transition states in the following ways:
    122   1.52        ad  *
    123   1.52        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    124  1.101     rmind  *		    > STOPPED			    > SLEEP
    125  1.101     rmind  *		    > SUSPENDED			    > STOPPED
    126   1.52        ad  *						    > SUSPENDED
    127   1.52        ad  *						    > ZOMB
    128   1.52        ad  *
    129   1.52        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130   1.52        ad  *	            > SLEEP			    > SLEEP
    131   1.52        ad  *
    132   1.52        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  1.101     rmind  *		    > RUN			    > SUSPENDED
    134  1.101     rmind  *		    > STOPPED			    > STOPPED
    135   1.52        ad  *		    > SUSPENDED
    136   1.52        ad  *
    137   1.66        ad  *	Other state transitions are possible with kernel threads (eg
    138   1.66        ad  *	ONPROC -> IDL), but only happen under tightly controlled
    139   1.66        ad  *	circumstances the side effects are understood.
    140   1.66        ad  *
    141  1.114     rmind  * Migration
    142  1.114     rmind  *
    143  1.114     rmind  *	Migration of threads from one CPU to another could be performed
    144  1.114     rmind  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  1.114     rmind  *	functions.  The universal lwp_migrate() function should be used for
    146  1.114     rmind  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  1.114     rmind  *	of LWP may change, while it is not locked.
    148  1.114     rmind  *
    149   1.52        ad  * Locking
    150   1.52        ad  *
    151   1.52        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    152   1.66        ad  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153   1.52        ad  *	each field are documented in sys/lwp.h.
    154   1.52        ad  *
    155   1.66        ad  *	State transitions must be made with the LWP's general lock held,
    156  1.101     rmind  *	and may cause the LWP's lock pointer to change. Manipulation of
    157   1.66        ad  *	the general lock is not performed directly, but through calls to
    158   1.66        ad  *	lwp_lock(), lwp_relock() and similar.
    159   1.52        ad  *
    160   1.52        ad  *	States and their associated locks:
    161   1.52        ad  *
    162   1.74     rmind  *	LSONPROC, LSZOMB:
    163   1.52        ad  *
    164   1.64      yamt  *		Always covered by spc_lwplock, which protects running LWPs.
    165   1.64      yamt  *		This is a per-CPU lock.
    166   1.52        ad  *
    167   1.74     rmind  *	LSIDL, LSRUN:
    168   1.52        ad  *
    169   1.64      yamt  *		Always covered by spc_mutex, which protects the run queues.
    170  1.101     rmind  *		This is a per-CPU lock.
    171   1.52        ad  *
    172   1.52        ad  *	LSSLEEP:
    173   1.52        ad  *
    174   1.66        ad  *		Covered by a lock associated with the sleep queue that the
    175  1.112        ad  *		LWP resides on.
    176   1.52        ad  *
    177   1.52        ad  *	LSSTOP, LSSUSPENDED:
    178  1.101     rmind  *
    179   1.52        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180   1.66        ad  *		l_mutex references the sleep queue lock.  If the LWP was
    181   1.52        ad  *		runnable or on the CPU when halted, or has been removed from
    182   1.66        ad  *		the sleep queue since halted, then the lock is spc_lwplock.
    183   1.52        ad  *
    184   1.52        ad  *	The lock order is as follows:
    185   1.52        ad  *
    186   1.64      yamt  *		spc::spc_lwplock ->
    187  1.112        ad  *		    sleeptab::st_mutex ->
    188   1.64      yamt  *			tschain_t::tc_mutex ->
    189   1.64      yamt  *			    spc::spc_mutex
    190   1.52        ad  *
    191  1.103        ad  *	Each process has an scheduler state lock (proc::p_lock), and a
    192   1.52        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    193   1.52        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    194  1.103        ad  *	following states, p_lock must be held and the process wide counters
    195   1.52        ad  *	adjusted:
    196   1.52        ad  *
    197   1.52        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    198   1.52        ad  *
    199   1.52        ad  *	Note that an LWP is considered running or likely to run soon if in
    200   1.52        ad  *	one of the following states.  This affects the value of p_nrlwps:
    201   1.52        ad  *
    202   1.52        ad  *		LSRUN, LSONPROC, LSSLEEP
    203   1.52        ad  *
    204  1.103        ad  *	p_lock does not need to be held when transitioning among these
    205   1.52        ad  *	three states.
    206   1.52        ad  */
    207   1.52        ad 
    208    1.9     lukem #include <sys/cdefs.h>
    209  1.114     rmind __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.114 2008/05/29 22:33:27 rmind Exp $");
    210    1.8    martin 
    211   1.84      yamt #include "opt_ddb.h"
    212   1.52        ad #include "opt_lockdebug.h"
    213    1.2   thorpej 
    214   1.47   hannken #define _LWP_API_PRIVATE
    215   1.47   hannken 
    216    1.2   thorpej #include <sys/param.h>
    217    1.2   thorpej #include <sys/systm.h>
    218   1.64      yamt #include <sys/cpu.h>
    219    1.2   thorpej #include <sys/pool.h>
    220    1.2   thorpej #include <sys/proc.h>
    221    1.2   thorpej #include <sys/syscallargs.h>
    222   1.57       dsl #include <sys/syscall_stats.h>
    223   1.37        ad #include <sys/kauth.h>
    224   1.52        ad #include <sys/sleepq.h>
    225   1.85      yamt #include <sys/user.h>
    226   1.52        ad #include <sys/lockdebug.h>
    227   1.52        ad #include <sys/kmem.h>
    228   1.91     rmind #include <sys/pset.h>
    229   1.75        ad #include <sys/intr.h>
    230   1.78        ad #include <sys/lwpctl.h>
    231   1.81        ad #include <sys/atomic.h>
    232    1.2   thorpej 
    233    1.2   thorpej #include <uvm/uvm_extern.h>
    234   1.80     skrll #include <uvm/uvm_object.h>
    235    1.2   thorpej 
    236   1.77      matt struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    237   1.52        ad 
    238   1.41   thorpej POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    239   1.62        ad     &pool_allocator_nointr, IPL_NONE);
    240   1.41   thorpej 
    241   1.87        ad static pool_cache_t lwp_cache;
    242   1.41   thorpej static specificdata_domain_t lwp_specificdata_domain;
    243   1.41   thorpej 
    244   1.41   thorpej void
    245   1.41   thorpej lwpinit(void)
    246   1.41   thorpej {
    247   1.41   thorpej 
    248   1.41   thorpej 	lwp_specificdata_domain = specificdata_domain_create();
    249   1.41   thorpej 	KASSERT(lwp_specificdata_domain != NULL);
    250   1.52        ad 	lwp_sys_init();
    251   1.87        ad 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    252   1.87        ad 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    253   1.41   thorpej }
    254   1.41   thorpej 
    255   1.52        ad /*
    256   1.52        ad  * Set an suspended.
    257   1.52        ad  *
    258  1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    259   1.52        ad  * LWP before return.
    260   1.52        ad  */
    261    1.2   thorpej int
    262   1.52        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    263    1.2   thorpej {
    264   1.52        ad 	int error;
    265    1.2   thorpej 
    266  1.103        ad 	KASSERT(mutex_owned(t->l_proc->p_lock));
    267   1.63        ad 	KASSERT(lwp_locked(t, NULL));
    268   1.33       chs 
    269   1.52        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    270    1.2   thorpej 
    271   1.52        ad 	/*
    272   1.52        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    273   1.52        ad 	 * else or deadlock could occur.  We won't return to userspace.
    274    1.2   thorpej 	 */
    275  1.109     rmind 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    276   1.52        ad 		lwp_unlock(t);
    277   1.52        ad 		return (EDEADLK);
    278    1.2   thorpej 	}
    279    1.2   thorpej 
    280   1.52        ad 	error = 0;
    281    1.2   thorpej 
    282   1.52        ad 	switch (t->l_stat) {
    283   1.52        ad 	case LSRUN:
    284   1.52        ad 	case LSONPROC:
    285   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    286   1.52        ad 		lwp_need_userret(t);
    287   1.52        ad 		lwp_unlock(t);
    288   1.52        ad 		break;
    289    1.2   thorpej 
    290   1.52        ad 	case LSSLEEP:
    291   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    292    1.2   thorpej 
    293    1.2   thorpej 		/*
    294   1.52        ad 		 * Kick the LWP and try to get it to the kernel boundary
    295   1.52        ad 		 * so that it will release any locks that it holds.
    296   1.52        ad 		 * setrunnable() will release the lock.
    297    1.2   thorpej 		 */
    298   1.56     pavel 		if ((t->l_flag & LW_SINTR) != 0)
    299   1.52        ad 			setrunnable(t);
    300   1.52        ad 		else
    301   1.52        ad 			lwp_unlock(t);
    302   1.52        ad 		break;
    303    1.2   thorpej 
    304   1.52        ad 	case LSSUSPENDED:
    305   1.52        ad 		lwp_unlock(t);
    306   1.52        ad 		break;
    307   1.17      manu 
    308   1.52        ad 	case LSSTOP:
    309   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    310   1.52        ad 		setrunnable(t);
    311   1.52        ad 		break;
    312    1.2   thorpej 
    313   1.52        ad 	case LSIDL:
    314   1.52        ad 	case LSZOMB:
    315   1.52        ad 		error = EINTR; /* It's what Solaris does..... */
    316   1.52        ad 		lwp_unlock(t);
    317   1.52        ad 		break;
    318    1.2   thorpej 	}
    319    1.2   thorpej 
    320   1.69     rmind 	return (error);
    321    1.2   thorpej }
    322    1.2   thorpej 
    323   1.52        ad /*
    324   1.52        ad  * Restart a suspended LWP.
    325   1.52        ad  *
    326  1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    327   1.52        ad  * LWP before return.
    328   1.52        ad  */
    329    1.2   thorpej void
    330    1.2   thorpej lwp_continue(struct lwp *l)
    331    1.2   thorpej {
    332    1.2   thorpej 
    333  1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
    334   1.63        ad 	KASSERT(lwp_locked(l, NULL));
    335   1.52        ad 
    336   1.52        ad 	/* If rebooting or not suspended, then just bail out. */
    337   1.56     pavel 	if ((l->l_flag & LW_WREBOOT) != 0) {
    338   1.52        ad 		lwp_unlock(l);
    339    1.2   thorpej 		return;
    340   1.10      fvdl 	}
    341    1.2   thorpej 
    342   1.56     pavel 	l->l_flag &= ~LW_WSUSPEND;
    343    1.2   thorpej 
    344   1.52        ad 	if (l->l_stat != LSSUSPENDED) {
    345   1.52        ad 		lwp_unlock(l);
    346   1.52        ad 		return;
    347    1.2   thorpej 	}
    348    1.2   thorpej 
    349   1.52        ad 	/* setrunnable() will release the lock. */
    350   1.52        ad 	setrunnable(l);
    351    1.2   thorpej }
    352    1.2   thorpej 
    353   1.52        ad /*
    354   1.52        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    355   1.52        ad  * non-zero, we are waiting for a specific LWP.
    356   1.52        ad  *
    357  1.103        ad  * Must be called with p->p_lock held.
    358   1.52        ad  */
    359    1.2   thorpej int
    360    1.2   thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    361    1.2   thorpej {
    362    1.2   thorpej 	struct proc *p = l->l_proc;
    363   1.52        ad 	struct lwp *l2;
    364   1.52        ad 	int nfound, error;
    365   1.63        ad 	lwpid_t curlid;
    366   1.63        ad 	bool exiting;
    367    1.2   thorpej 
    368  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
    369   1.52        ad 
    370   1.52        ad 	p->p_nlwpwait++;
    371   1.63        ad 	l->l_waitingfor = lid;
    372   1.63        ad 	curlid = l->l_lid;
    373   1.63        ad 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    374   1.52        ad 
    375   1.52        ad 	for (;;) {
    376   1.52        ad 		/*
    377   1.52        ad 		 * Avoid a race between exit1() and sigexit(): if the
    378   1.52        ad 		 * process is dumping core, then we need to bail out: call
    379   1.52        ad 		 * into lwp_userret() where we will be suspended until the
    380   1.52        ad 		 * deed is done.
    381   1.52        ad 		 */
    382   1.52        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    383  1.103        ad 			mutex_exit(p->p_lock);
    384   1.52        ad 			lwp_userret(l);
    385   1.52        ad #ifdef DIAGNOSTIC
    386   1.52        ad 			panic("lwp_wait1");
    387   1.52        ad #endif
    388   1.52        ad 			/* NOTREACHED */
    389   1.52        ad 		}
    390   1.52        ad 
    391   1.52        ad 		/*
    392   1.52        ad 		 * First off, drain any detached LWP that is waiting to be
    393   1.52        ad 		 * reaped.
    394   1.52        ad 		 */
    395   1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    396   1.52        ad 			p->p_zomblwp = NULL;
    397   1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    398  1.103        ad 			mutex_enter(p->p_lock);
    399   1.52        ad 		}
    400   1.52        ad 
    401   1.52        ad 		/*
    402   1.52        ad 		 * Now look for an LWP to collect.  If the whole process is
    403   1.52        ad 		 * exiting, count detached LWPs as eligible to be collected,
    404   1.52        ad 		 * but don't drain them here.
    405   1.52        ad 		 */
    406   1.52        ad 		nfound = 0;
    407   1.63        ad 		error = 0;
    408   1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    409   1.63        ad 			/*
    410   1.63        ad 			 * If a specific wait and the target is waiting on
    411   1.63        ad 			 * us, then avoid deadlock.  This also traps LWPs
    412   1.63        ad 			 * that try to wait on themselves.
    413   1.63        ad 			 *
    414   1.63        ad 			 * Note that this does not handle more complicated
    415   1.63        ad 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    416   1.63        ad 			 * can still be killed so it is not a major problem.
    417   1.63        ad 			 */
    418   1.63        ad 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    419   1.63        ad 				error = EDEADLK;
    420   1.63        ad 				break;
    421   1.63        ad 			}
    422   1.63        ad 			if (l2 == l)
    423   1.52        ad 				continue;
    424   1.52        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    425   1.63        ad 				nfound += exiting;
    426   1.63        ad 				continue;
    427   1.63        ad 			}
    428   1.63        ad 			if (lid != 0) {
    429   1.63        ad 				if (l2->l_lid != lid)
    430   1.63        ad 					continue;
    431   1.63        ad 				/*
    432   1.63        ad 				 * Mark this LWP as the first waiter, if there
    433   1.63        ad 				 * is no other.
    434   1.63        ad 				 */
    435   1.63        ad 				if (l2->l_waiter == 0)
    436   1.63        ad 					l2->l_waiter = curlid;
    437   1.63        ad 			} else if (l2->l_waiter != 0) {
    438   1.63        ad 				/*
    439   1.63        ad 				 * It already has a waiter - so don't
    440   1.63        ad 				 * collect it.  If the waiter doesn't
    441   1.63        ad 				 * grab it we'll get another chance
    442   1.63        ad 				 * later.
    443   1.63        ad 				 */
    444   1.63        ad 				nfound++;
    445   1.52        ad 				continue;
    446   1.52        ad 			}
    447   1.52        ad 			nfound++;
    448    1.2   thorpej 
    449   1.52        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    450   1.52        ad 			if (l2->l_stat != LSZOMB)
    451   1.52        ad 				continue;
    452    1.2   thorpej 
    453   1.63        ad 			/*
    454   1.63        ad 			 * We're no longer waiting.  Reset the "first waiter"
    455   1.63        ad 			 * pointer on the target, in case it was us.
    456   1.63        ad 			 */
    457   1.63        ad 			l->l_waitingfor = 0;
    458   1.63        ad 			l2->l_waiter = 0;
    459   1.63        ad 			p->p_nlwpwait--;
    460    1.2   thorpej 			if (departed)
    461    1.2   thorpej 				*departed = l2->l_lid;
    462   1.75        ad 			sched_lwp_collect(l2);
    463   1.63        ad 
    464   1.63        ad 			/* lwp_free() releases the proc lock. */
    465   1.63        ad 			lwp_free(l2, false, false);
    466  1.103        ad 			mutex_enter(p->p_lock);
    467   1.52        ad 			return 0;
    468   1.52        ad 		}
    469    1.2   thorpej 
    470   1.63        ad 		if (error != 0)
    471   1.63        ad 			break;
    472   1.52        ad 		if (nfound == 0) {
    473   1.52        ad 			error = ESRCH;
    474   1.52        ad 			break;
    475   1.52        ad 		}
    476   1.63        ad 
    477   1.63        ad 		/*
    478   1.63        ad 		 * The kernel is careful to ensure that it can not deadlock
    479   1.63        ad 		 * when exiting - just keep waiting.
    480   1.63        ad 		 */
    481   1.63        ad 		if (exiting) {
    482   1.52        ad 			KASSERT(p->p_nlwps > 1);
    483  1.103        ad 			cv_wait(&p->p_lwpcv, p->p_lock);
    484   1.52        ad 			continue;
    485   1.52        ad 		}
    486   1.63        ad 
    487   1.63        ad 		/*
    488   1.63        ad 		 * If all other LWPs are waiting for exits or suspends
    489   1.63        ad 		 * and the supply of zombies and potential zombies is
    490   1.63        ad 		 * exhausted, then we are about to deadlock.
    491   1.63        ad 		 *
    492   1.63        ad 		 * If the process is exiting (and this LWP is not the one
    493   1.63        ad 		 * that is coordinating the exit) then bail out now.
    494   1.63        ad 		 */
    495   1.52        ad 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    496   1.63        ad 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    497   1.52        ad 			error = EDEADLK;
    498   1.52        ad 			break;
    499    1.2   thorpej 		}
    500   1.63        ad 
    501   1.63        ad 		/*
    502   1.63        ad 		 * Sit around and wait for something to happen.  We'll be
    503   1.63        ad 		 * awoken if any of the conditions examined change: if an
    504   1.63        ad 		 * LWP exits, is collected, or is detached.
    505   1.63        ad 		 */
    506  1.103        ad 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    507   1.52        ad 			break;
    508    1.2   thorpej 	}
    509    1.2   thorpej 
    510   1.63        ad 	/*
    511   1.63        ad 	 * We didn't find any LWPs to collect, we may have received a
    512   1.63        ad 	 * signal, or some other condition has caused us to bail out.
    513   1.63        ad 	 *
    514   1.63        ad 	 * If waiting on a specific LWP, clear the waiters marker: some
    515   1.63        ad 	 * other LWP may want it.  Then, kick all the remaining waiters
    516   1.63        ad 	 * so that they can re-check for zombies and for deadlock.
    517   1.63        ad 	 */
    518   1.63        ad 	if (lid != 0) {
    519   1.63        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    520   1.63        ad 			if (l2->l_lid == lid) {
    521   1.63        ad 				if (l2->l_waiter == curlid)
    522   1.63        ad 					l2->l_waiter = 0;
    523   1.63        ad 				break;
    524   1.63        ad 			}
    525   1.63        ad 		}
    526   1.63        ad 	}
    527   1.52        ad 	p->p_nlwpwait--;
    528   1.63        ad 	l->l_waitingfor = 0;
    529   1.63        ad 	cv_broadcast(&p->p_lwpcv);
    530   1.63        ad 
    531   1.52        ad 	return error;
    532    1.2   thorpej }
    533    1.2   thorpej 
    534   1.52        ad /*
    535   1.52        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    536   1.52        ad  * The new LWP is created in state LSIDL and must be set running,
    537   1.52        ad  * suspended, or stopped by the caller.
    538   1.52        ad  */
    539    1.2   thorpej int
    540   1.75        ad lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
    541   1.75        ad 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    542   1.75        ad 	   lwp_t **rnewlwpp, int sclass)
    543    1.2   thorpej {
    544   1.52        ad 	struct lwp *l2, *isfree;
    545   1.52        ad 	turnstile_t *ts;
    546    1.2   thorpej 
    547  1.107        ad 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    548  1.107        ad 
    549   1.52        ad 	/*
    550   1.52        ad 	 * First off, reap any detached LWP waiting to be collected.
    551   1.52        ad 	 * We can re-use its LWP structure and turnstile.
    552   1.52        ad 	 */
    553   1.52        ad 	isfree = NULL;
    554   1.52        ad 	if (p2->p_zomblwp != NULL) {
    555  1.103        ad 		mutex_enter(p2->p_lock);
    556   1.52        ad 		if ((isfree = p2->p_zomblwp) != NULL) {
    557   1.52        ad 			p2->p_zomblwp = NULL;
    558   1.63        ad 			lwp_free(isfree, true, false);/* releases proc mutex */
    559   1.52        ad 		} else
    560  1.103        ad 			mutex_exit(p2->p_lock);
    561   1.52        ad 	}
    562   1.52        ad 	if (isfree == NULL) {
    563   1.87        ad 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    564   1.52        ad 		memset(l2, 0, sizeof(*l2));
    565   1.76        ad 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    566   1.60      yamt 		SLIST_INIT(&l2->l_pi_lenders);
    567   1.52        ad 	} else {
    568   1.52        ad 		l2 = isfree;
    569   1.52        ad 		ts = l2->l_ts;
    570   1.75        ad 		KASSERT(l2->l_inheritedprio == -1);
    571   1.60      yamt 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    572   1.52        ad 		memset(l2, 0, sizeof(*l2));
    573   1.52        ad 		l2->l_ts = ts;
    574   1.52        ad 	}
    575    1.2   thorpej 
    576    1.2   thorpej 	l2->l_stat = LSIDL;
    577    1.2   thorpej 	l2->l_proc = p2;
    578   1.52        ad 	l2->l_refcnt = 1;
    579   1.75        ad 	l2->l_class = sclass;
    580   1.75        ad 	l2->l_kpriority = l1->l_kpriority;
    581   1.82        ad 	l2->l_kpribase = PRI_KERNEL;
    582   1.52        ad 	l2->l_priority = l1->l_priority;
    583   1.75        ad 	l2->l_inheritedprio = -1;
    584   1.56     pavel 	l2->l_flag = inmem ? LW_INMEM : 0;
    585   1.88        ad 	l2->l_pflag = LP_MPSAFE;
    586   1.97        ad 	l2->l_fd = p2->p_fd;
    587  1.110        ad 	TAILQ_INIT(&l2->l_ld_locks);
    588   1.41   thorpej 
    589   1.56     pavel 	if (p2->p_flag & PK_SYSTEM) {
    590   1.91     rmind 		/* Mark it as a system LWP and not a candidate for swapping */
    591   1.56     pavel 		l2->l_flag |= LW_SYSTEM;
    592   1.52        ad 	}
    593    1.2   thorpej 
    594  1.107        ad 	kpreempt_disable();
    595  1.107        ad 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    596  1.107        ad 	l2->l_cpu = l1->l_cpu;
    597  1.107        ad 	kpreempt_enable();
    598  1.107        ad 
    599   1.73     rmind 	lwp_initspecific(l2);
    600   1.75        ad 	sched_lwp_fork(l1, l2);
    601   1.37        ad 	lwp_update_creds(l2);
    602   1.70        ad 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    603   1.70        ad 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    604   1.65        ad 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    605   1.52        ad 	cv_init(&l2->l_sigcv, "sigwait");
    606   1.52        ad 	l2->l_syncobj = &sched_syncobj;
    607    1.2   thorpej 
    608    1.2   thorpej 	if (rnewlwpp != NULL)
    609    1.2   thorpej 		*rnewlwpp = l2;
    610    1.2   thorpej 
    611   1.36      yamt 	l2->l_addr = UAREA_TO_USER(uaddr);
    612    1.2   thorpej 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    613    1.2   thorpej 	    (arg != NULL) ? arg : l2);
    614    1.2   thorpej 
    615  1.103        ad 	mutex_enter(p2->p_lock);
    616   1.52        ad 
    617   1.52        ad 	if ((flags & LWP_DETACHED) != 0) {
    618   1.52        ad 		l2->l_prflag = LPR_DETACHED;
    619   1.52        ad 		p2->p_ndlwps++;
    620   1.52        ad 	} else
    621   1.52        ad 		l2->l_prflag = 0;
    622   1.52        ad 
    623   1.52        ad 	l2->l_sigmask = l1->l_sigmask;
    624   1.52        ad 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    625   1.52        ad 	sigemptyset(&l2->l_sigpend.sp_set);
    626   1.52        ad 
    627   1.53      yamt 	p2->p_nlwpid++;
    628   1.53      yamt 	if (p2->p_nlwpid == 0)
    629   1.53      yamt 		p2->p_nlwpid++;
    630   1.53      yamt 	l2->l_lid = p2->p_nlwpid;
    631    1.2   thorpej 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    632    1.2   thorpej 	p2->p_nlwps++;
    633    1.2   thorpej 
    634  1.103        ad 	mutex_exit(p2->p_lock);
    635   1.52        ad 
    636  1.102        ad 	mutex_enter(proc_lock);
    637    1.2   thorpej 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    638  1.102        ad 	mutex_exit(proc_lock);
    639    1.2   thorpej 
    640   1.91     rmind 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    641   1.91     rmind 		/* Locking is needed, since LWP is in the list of all LWPs */
    642   1.91     rmind 		lwp_lock(l2);
    643   1.91     rmind 		/* Inherit a processor-set */
    644   1.91     rmind 		l2->l_psid = l1->l_psid;
    645   1.91     rmind 		/* Inherit an affinity */
    646   1.91     rmind 		memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
    647   1.91     rmind 		/* Look for a CPU to start */
    648   1.91     rmind 		l2->l_cpu = sched_takecpu(l2);
    649   1.91     rmind 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    650   1.91     rmind 	}
    651   1.91     rmind 
    652   1.57       dsl 	SYSCALL_TIME_LWP_INIT(l2);
    653   1.57       dsl 
    654   1.16      manu 	if (p2->p_emul->e_lwp_fork)
    655   1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    656   1.16      manu 
    657    1.2   thorpej 	return (0);
    658    1.2   thorpej }
    659    1.2   thorpej 
    660    1.2   thorpej /*
    661   1.64      yamt  * Called by MD code when a new LWP begins execution.  Must be called
    662   1.64      yamt  * with the previous LWP locked (so at splsched), or if there is no
    663   1.64      yamt  * previous LWP, at splsched.
    664   1.64      yamt  */
    665   1.64      yamt void
    666   1.64      yamt lwp_startup(struct lwp *prev, struct lwp *new)
    667   1.64      yamt {
    668   1.64      yamt 
    669  1.107        ad 	KASSERT(kpreempt_disabled());
    670   1.64      yamt 	if (prev != NULL) {
    671   1.81        ad 		/*
    672   1.81        ad 		 * Normalize the count of the spin-mutexes, it was
    673   1.81        ad 		 * increased in mi_switch().  Unmark the state of
    674   1.81        ad 		 * context switch - it is finished for previous LWP.
    675   1.81        ad 		 */
    676   1.81        ad 		curcpu()->ci_mtx_count++;
    677   1.81        ad 		membar_exit();
    678   1.81        ad 		prev->l_ctxswtch = 0;
    679   1.64      yamt 	}
    680  1.107        ad 	KPREEMPT_DISABLE(new);
    681  1.107        ad 	spl0();
    682  1.105        ad 	pmap_activate(new);
    683   1.64      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
    684  1.107        ad 	KPREEMPT_ENABLE(new);
    685   1.65        ad 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    686   1.65        ad 		KERNEL_LOCK(1, new);
    687   1.65        ad 	}
    688   1.64      yamt }
    689   1.64      yamt 
    690   1.64      yamt /*
    691   1.65        ad  * Exit an LWP.
    692    1.2   thorpej  */
    693    1.2   thorpej void
    694    1.2   thorpej lwp_exit(struct lwp *l)
    695    1.2   thorpej {
    696    1.2   thorpej 	struct proc *p = l->l_proc;
    697   1.52        ad 	struct lwp *l2;
    698   1.65        ad 	bool current;
    699   1.65        ad 
    700   1.65        ad 	current = (l == curlwp);
    701    1.2   thorpej 
    702  1.114     rmind 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    703    1.2   thorpej 
    704   1.52        ad 	/*
    705   1.52        ad 	 * Verify that we hold no locks other than the kernel lock.
    706   1.52        ad 	 */
    707   1.52        ad 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    708   1.16      manu 
    709    1.2   thorpej 	/*
    710   1.52        ad 	 * If we are the last live LWP in a process, we need to exit the
    711   1.52        ad 	 * entire process.  We do so with an exit status of zero, because
    712   1.52        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
    713   1.52        ad 	 *
    714   1.52        ad 	 * We are not quite a zombie yet, but for accounting purposes we
    715   1.52        ad 	 * must increment the count of zombies here.
    716   1.45   thorpej 	 *
    717   1.45   thorpej 	 * Note: the last LWP's specificdata will be deleted here.
    718    1.2   thorpej 	 */
    719  1.103        ad 	mutex_enter(p->p_lock);
    720   1.52        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
    721   1.65        ad 		KASSERT(current == true);
    722   1.88        ad 		/* XXXSMP kernel_lock not held */
    723    1.2   thorpej 		exit1(l, 0);
    724   1.19  jdolecek 		/* NOTREACHED */
    725    1.2   thorpej 	}
    726   1.52        ad 	p->p_nzlwps++;
    727  1.103        ad 	mutex_exit(p->p_lock);
    728   1.52        ad 
    729   1.52        ad 	if (p->p_emul->e_lwp_exit)
    730   1.52        ad 		(*p->p_emul->e_lwp_exit)(l);
    731    1.2   thorpej 
    732   1.45   thorpej 	/* Delete the specificdata while it's still safe to sleep. */
    733   1.45   thorpej 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    734   1.45   thorpej 
    735   1.52        ad 	/*
    736   1.52        ad 	 * Release our cached credentials.
    737   1.52        ad 	 */
    738   1.37        ad 	kauth_cred_free(l->l_cred);
    739   1.70        ad 	callout_destroy(&l->l_timeout_ch);
    740   1.65        ad 
    741   1.65        ad 	/*
    742   1.65        ad 	 * While we can still block, mark the LWP as unswappable to
    743   1.65        ad 	 * prevent conflicts with the with the swapper.
    744   1.65        ad 	 */
    745   1.65        ad 	if (current)
    746   1.65        ad 		uvm_lwp_hold(l);
    747   1.37        ad 
    748   1.52        ad 	/*
    749   1.52        ad 	 * Remove the LWP from the global list.
    750   1.52        ad 	 */
    751  1.102        ad 	mutex_enter(proc_lock);
    752   1.52        ad 	LIST_REMOVE(l, l_list);
    753  1.102        ad 	mutex_exit(proc_lock);
    754   1.19  jdolecek 
    755   1.52        ad 	/*
    756   1.52        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
    757   1.52        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    758   1.52        ad 	 * mark it waiting for collection in the proc structure.  Note that
    759   1.52        ad 	 * before we can do that, we need to free any other dead, deatched
    760   1.52        ad 	 * LWP waiting to meet its maker.
    761   1.52        ad 	 */
    762  1.103        ad 	mutex_enter(p->p_lock);
    763   1.52        ad 	lwp_drainrefs(l);
    764   1.31      yamt 
    765   1.52        ad 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    766   1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    767   1.52        ad 			p->p_zomblwp = NULL;
    768   1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    769  1.103        ad 			mutex_enter(p->p_lock);
    770   1.72        ad 			l->l_refcnt++;
    771   1.72        ad 			lwp_drainrefs(l);
    772   1.52        ad 		}
    773   1.52        ad 		p->p_zomblwp = l;
    774   1.52        ad 	}
    775   1.31      yamt 
    776   1.52        ad 	/*
    777   1.52        ad 	 * If we find a pending signal for the process and we have been
    778   1.52        ad 	 * asked to check for signals, then we loose: arrange to have
    779   1.52        ad 	 * all other LWPs in the process check for signals.
    780   1.52        ad 	 */
    781   1.56     pavel 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    782   1.52        ad 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    783   1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    784   1.52        ad 			lwp_lock(l2);
    785   1.56     pavel 			l2->l_flag |= LW_PENDSIG;
    786   1.52        ad 			lwp_unlock(l2);
    787   1.52        ad 		}
    788   1.31      yamt 	}
    789   1.31      yamt 
    790   1.52        ad 	lwp_lock(l);
    791   1.52        ad 	l->l_stat = LSZOMB;
    792   1.90        ad 	if (l->l_name != NULL)
    793   1.90        ad 		strcpy(l->l_name, "(zombie)");
    794   1.52        ad 	lwp_unlock(l);
    795    1.2   thorpej 	p->p_nrlwps--;
    796   1.52        ad 	cv_broadcast(&p->p_lwpcv);
    797   1.78        ad 	if (l->l_lwpctl != NULL)
    798   1.78        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    799  1.103        ad 	mutex_exit(p->p_lock);
    800   1.52        ad 
    801   1.52        ad 	/*
    802   1.52        ad 	 * We can no longer block.  At this point, lwp_free() may already
    803   1.52        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    804   1.52        ad 	 *
    805   1.52        ad 	 * Free MD LWP resources.
    806   1.52        ad 	 */
    807   1.52        ad #ifndef __NO_CPU_LWP_FREE
    808   1.52        ad 	cpu_lwp_free(l, 0);
    809   1.52        ad #endif
    810    1.2   thorpej 
    811   1.65        ad 	if (current) {
    812   1.65        ad 		pmap_deactivate(l);
    813   1.65        ad 
    814   1.65        ad 		/*
    815   1.65        ad 		 * Release the kernel lock, and switch away into
    816   1.65        ad 		 * oblivion.
    817   1.65        ad 		 */
    818   1.52        ad #ifdef notyet
    819   1.65        ad 		/* XXXSMP hold in lwp_userret() */
    820   1.65        ad 		KERNEL_UNLOCK_LAST(l);
    821   1.52        ad #else
    822   1.65        ad 		KERNEL_UNLOCK_ALL(l, NULL);
    823   1.52        ad #endif
    824   1.65        ad 		lwp_exit_switchaway(l);
    825   1.65        ad 	}
    826    1.2   thorpej }
    827    1.2   thorpej 
    828   1.52        ad /*
    829   1.52        ad  * Free a dead LWP's remaining resources.
    830   1.52        ad  *
    831   1.52        ad  * XXXLWP limits.
    832   1.52        ad  */
    833   1.52        ad void
    834   1.63        ad lwp_free(struct lwp *l, bool recycle, bool last)
    835   1.52        ad {
    836   1.52        ad 	struct proc *p = l->l_proc;
    837  1.100        ad 	struct rusage *ru;
    838   1.52        ad 	ksiginfoq_t kq;
    839   1.52        ad 
    840   1.92      yamt 	KASSERT(l != curlwp);
    841   1.92      yamt 
    842   1.52        ad 	/*
    843   1.52        ad 	 * If this was not the last LWP in the process, then adjust
    844   1.52        ad 	 * counters and unlock.
    845   1.52        ad 	 */
    846   1.52        ad 	if (!last) {
    847   1.52        ad 		/*
    848   1.52        ad 		 * Add the LWP's run time to the process' base value.
    849   1.52        ad 		 * This needs to co-incide with coming off p_lwps.
    850   1.52        ad 		 */
    851   1.86      yamt 		bintime_add(&p->p_rtime, &l->l_rtime);
    852   1.64      yamt 		p->p_pctcpu += l->l_pctcpu;
    853  1.100        ad 		ru = &p->p_stats->p_ru;
    854  1.100        ad 		ruadd(ru, &l->l_ru);
    855  1.100        ad 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    856  1.100        ad 		ru->ru_nivcsw += l->l_nivcsw;
    857   1.52        ad 		LIST_REMOVE(l, l_sibling);
    858   1.52        ad 		p->p_nlwps--;
    859   1.52        ad 		p->p_nzlwps--;
    860   1.52        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
    861   1.52        ad 			p->p_ndlwps--;
    862   1.63        ad 
    863   1.63        ad 		/*
    864   1.63        ad 		 * Have any LWPs sleeping in lwp_wait() recheck for
    865   1.63        ad 		 * deadlock.
    866   1.63        ad 		 */
    867   1.63        ad 		cv_broadcast(&p->p_lwpcv);
    868  1.103        ad 		mutex_exit(p->p_lock);
    869   1.63        ad 	}
    870   1.52        ad 
    871   1.52        ad #ifdef MULTIPROCESSOR
    872   1.63        ad 	/*
    873   1.63        ad 	 * In the unlikely event that the LWP is still on the CPU,
    874   1.63        ad 	 * then spin until it has switched away.  We need to release
    875   1.63        ad 	 * all locks to avoid deadlock against interrupt handlers on
    876   1.63        ad 	 * the target CPU.
    877   1.63        ad 	 */
    878   1.64      yamt 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    879   1.63        ad 		int count;
    880   1.64      yamt 		(void)count; /* XXXgcc */
    881   1.63        ad 		KERNEL_UNLOCK_ALL(curlwp, &count);
    882   1.64      yamt 		while ((l->l_flag & LW_RUNNING) != 0 ||
    883   1.64      yamt 		    l->l_cpu->ci_curlwp == l)
    884   1.63        ad 			SPINLOCK_BACKOFF_HOOK;
    885   1.63        ad 		KERNEL_LOCK(count, curlwp);
    886   1.63        ad 	}
    887   1.52        ad #endif
    888   1.52        ad 
    889   1.52        ad 	/*
    890   1.52        ad 	 * Destroy the LWP's remaining signal information.
    891   1.52        ad 	 */
    892   1.52        ad 	ksiginfo_queue_init(&kq);
    893   1.52        ad 	sigclear(&l->l_sigpend, NULL, &kq);
    894   1.52        ad 	ksiginfo_queue_drain(&kq);
    895   1.52        ad 	cv_destroy(&l->l_sigcv);
    896   1.65        ad 	mutex_destroy(&l->l_swaplock);
    897    1.2   thorpej 
    898   1.19  jdolecek 	/*
    899   1.52        ad 	 * Free the LWP's turnstile and the LWP structure itself unless the
    900   1.93      yamt 	 * caller wants to recycle them.  Also, free the scheduler specific
    901   1.93      yamt 	 * data.
    902   1.52        ad 	 *
    903   1.52        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
    904   1.52        ad 	 * so if it comes up just drop it quietly and move on.
    905   1.52        ad 	 *
    906   1.52        ad 	 * We don't recycle the VM resources at this time.
    907   1.19  jdolecek 	 */
    908   1.78        ad 	if (l->l_lwpctl != NULL)
    909   1.78        ad 		lwp_ctl_free(l);
    910   1.64      yamt 	sched_lwp_exit(l);
    911   1.64      yamt 
    912   1.52        ad 	if (!recycle && l->l_ts != &turnstile0)
    913   1.76        ad 		pool_cache_put(turnstile_cache, l->l_ts);
    914   1.90        ad 	if (l->l_name != NULL)
    915   1.90        ad 		kmem_free(l->l_name, MAXCOMLEN);
    916   1.52        ad #ifndef __NO_CPU_LWP_FREE
    917   1.52        ad 	cpu_lwp_free2(l);
    918   1.52        ad #endif
    919   1.92      yamt 	KASSERT((l->l_flag & LW_INMEM) != 0);
    920   1.19  jdolecek 	uvm_lwp_exit(l);
    921   1.60      yamt 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    922   1.75        ad 	KASSERT(l->l_inheritedprio == -1);
    923   1.52        ad 	if (!recycle)
    924   1.87        ad 		pool_cache_put(lwp_cache, l);
    925    1.2   thorpej }
    926    1.2   thorpej 
    927    1.2   thorpej /*
    928    1.2   thorpej  * Pick a LWP to represent the process for those operations which
    929    1.2   thorpej  * want information about a "process" that is actually associated
    930    1.2   thorpej  * with a LWP.
    931   1.52        ad  *
    932   1.52        ad  * If 'locking' is false, no locking or lock checks are performed.
    933   1.52        ad  * This is intended for use by DDB.
    934   1.52        ad  *
    935   1.52        ad  * We don't bother locking the LWP here, since code that uses this
    936   1.52        ad  * interface is broken by design and an exact match is not required.
    937    1.2   thorpej  */
    938    1.2   thorpej struct lwp *
    939   1.52        ad proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    940    1.2   thorpej {
    941    1.2   thorpej 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    942   1.27      matt 	struct lwp *signalled;
    943   1.52        ad 	int cnt;
    944   1.52        ad 
    945   1.52        ad 	if (locking) {
    946  1.103        ad 		KASSERT(mutex_owned(p->p_lock));
    947   1.52        ad 	}
    948    1.2   thorpej 
    949    1.2   thorpej 	/* Trivial case: only one LWP */
    950   1.52        ad 	if (p->p_nlwps == 1) {
    951   1.52        ad 		l = LIST_FIRST(&p->p_lwps);
    952   1.52        ad 		if (nrlwps)
    953   1.68       tnn 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
    954   1.52        ad 		return l;
    955   1.52        ad 	}
    956    1.2   thorpej 
    957   1.52        ad 	cnt = 0;
    958    1.2   thorpej 	switch (p->p_stat) {
    959    1.2   thorpej 	case SSTOP:
    960    1.2   thorpej 	case SACTIVE:
    961    1.2   thorpej 		/* Pick the most live LWP */
    962    1.2   thorpej 		onproc = running = sleeping = stopped = suspended = NULL;
    963   1.27      matt 		signalled = NULL;
    964    1.2   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    965   1.64      yamt 			if ((l->l_flag & LW_IDLE) != 0) {
    966   1.64      yamt 				continue;
    967   1.64      yamt 			}
    968   1.27      matt 			if (l->l_lid == p->p_sigctx.ps_lwp)
    969   1.27      matt 				signalled = l;
    970    1.2   thorpej 			switch (l->l_stat) {
    971    1.2   thorpej 			case LSONPROC:
    972    1.2   thorpej 				onproc = l;
    973   1.52        ad 				cnt++;
    974    1.2   thorpej 				break;
    975    1.2   thorpej 			case LSRUN:
    976    1.2   thorpej 				running = l;
    977   1.52        ad 				cnt++;
    978    1.2   thorpej 				break;
    979    1.2   thorpej 			case LSSLEEP:
    980    1.2   thorpej 				sleeping = l;
    981    1.2   thorpej 				break;
    982    1.2   thorpej 			case LSSTOP:
    983    1.2   thorpej 				stopped = l;
    984    1.2   thorpej 				break;
    985    1.2   thorpej 			case LSSUSPENDED:
    986    1.2   thorpej 				suspended = l;
    987    1.2   thorpej 				break;
    988    1.2   thorpej 			}
    989    1.2   thorpej 		}
    990   1.52        ad 		if (nrlwps)
    991   1.52        ad 			*nrlwps = cnt;
    992   1.27      matt 		if (signalled)
    993   1.52        ad 			l = signalled;
    994   1.52        ad 		else if (onproc)
    995   1.52        ad 			l = onproc;
    996   1.52        ad 		else if (running)
    997   1.52        ad 			l = running;
    998   1.52        ad 		else if (sleeping)
    999   1.52        ad 			l = sleeping;
   1000   1.52        ad 		else if (stopped)
   1001   1.52        ad 			l = stopped;
   1002   1.52        ad 		else if (suspended)
   1003   1.52        ad 			l = suspended;
   1004   1.52        ad 		else
   1005   1.52        ad 			break;
   1006   1.52        ad 		return l;
   1007    1.2   thorpej #ifdef DIAGNOSTIC
   1008    1.2   thorpej 	case SIDL:
   1009   1.52        ad 	case SZOMB:
   1010   1.52        ad 	case SDYING:
   1011   1.52        ad 	case SDEAD:
   1012   1.52        ad 		if (locking)
   1013  1.103        ad 			mutex_exit(p->p_lock);
   1014    1.2   thorpej 		/* We have more than one LWP and we're in SIDL?
   1015    1.2   thorpej 		 * How'd that happen?
   1016    1.2   thorpej 		 */
   1017   1.52        ad 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
   1018   1.52        ad 		    p->p_pid, p->p_comm, p->p_stat);
   1019   1.52        ad 		break;
   1020    1.2   thorpej 	default:
   1021   1.52        ad 		if (locking)
   1022  1.103        ad 			mutex_exit(p->p_lock);
   1023    1.2   thorpej 		panic("Process %d (%s) in unknown state %d",
   1024    1.2   thorpej 		    p->p_pid, p->p_comm, p->p_stat);
   1025    1.2   thorpej #endif
   1026    1.2   thorpej 	}
   1027    1.2   thorpej 
   1028   1.52        ad 	if (locking)
   1029  1.103        ad 		mutex_exit(p->p_lock);
   1030    1.2   thorpej 	panic("proc_representative_lwp: couldn't find a lwp for process"
   1031    1.2   thorpej 		" %d (%s)", p->p_pid, p->p_comm);
   1032    1.2   thorpej 	/* NOTREACHED */
   1033    1.2   thorpej 	return NULL;
   1034    1.2   thorpej }
   1035   1.37        ad 
   1036   1.37        ad /*
   1037   1.91     rmind  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1038   1.91     rmind  */
   1039   1.91     rmind void
   1040  1.114     rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1041   1.91     rmind {
   1042  1.114     rmind 	struct schedstate_percpu *tspc;
   1043   1.91     rmind 	KASSERT(lwp_locked(l, NULL));
   1044  1.114     rmind 	KASSERT(tci != NULL);
   1045  1.114     rmind 
   1046  1.114     rmind 	/*
   1047  1.114     rmind 	 * If LWP is still on the CPU, it must be handled like on LSONPROC.
   1048  1.114     rmind 	 * The destination CPU could be changed while previous migration
   1049  1.114     rmind 	 * was not finished.
   1050  1.114     rmind 	 */
   1051  1.114     rmind 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_target_cpu != NULL) {
   1052  1.114     rmind 		l->l_target_cpu = tci;
   1053  1.114     rmind 		lwp_unlock(l);
   1054  1.114     rmind 		return;
   1055  1.114     rmind 	}
   1056   1.91     rmind 
   1057  1.114     rmind 	/* Nothing to do if trying to migrate to the same CPU */
   1058  1.114     rmind 	if (l->l_cpu == tci) {
   1059   1.91     rmind 		lwp_unlock(l);
   1060   1.91     rmind 		return;
   1061   1.91     rmind 	}
   1062   1.91     rmind 
   1063  1.114     rmind 	KASSERT(l->l_target_cpu == NULL);
   1064  1.114     rmind 	tspc = &tci->ci_schedstate;
   1065   1.91     rmind 	switch (l->l_stat) {
   1066   1.91     rmind 	case LSRUN:
   1067   1.91     rmind 		if (l->l_flag & LW_INMEM) {
   1068  1.114     rmind 			l->l_target_cpu = tci;
   1069  1.114     rmind 			lwp_unlock(l);
   1070  1.114     rmind 			return;
   1071   1.91     rmind 		}
   1072   1.91     rmind 	case LSIDL:
   1073  1.114     rmind 		l->l_cpu = tci;
   1074  1.114     rmind 		lwp_unlock_to(l, tspc->spc_mutex);
   1075   1.91     rmind 		return;
   1076   1.91     rmind 	case LSSLEEP:
   1077  1.114     rmind 		l->l_cpu = tci;
   1078   1.91     rmind 		break;
   1079   1.91     rmind 	case LSSTOP:
   1080   1.91     rmind 	case LSSUSPENDED:
   1081  1.114     rmind 		l->l_cpu = tci;
   1082  1.114     rmind 		if (l->l_wchan == NULL) {
   1083  1.114     rmind 			lwp_unlock_to(l, tspc->spc_lwplock);
   1084  1.114     rmind 			return;
   1085   1.91     rmind 		}
   1086  1.114     rmind 		break;
   1087   1.91     rmind 	case LSONPROC:
   1088  1.114     rmind 		l->l_target_cpu = tci;
   1089  1.114     rmind 		spc_lock(l->l_cpu);
   1090  1.114     rmind 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1091  1.114     rmind 		spc_unlock(l->l_cpu);
   1092   1.91     rmind 		break;
   1093   1.91     rmind 	}
   1094   1.91     rmind 	lwp_unlock(l);
   1095   1.91     rmind }
   1096   1.91     rmind 
   1097   1.91     rmind /*
   1098   1.94     rmind  * Find the LWP in the process.  Arguments may be zero, in such case,
   1099   1.94     rmind  * the calling process and first LWP in the list will be used.
   1100  1.103        ad  * On success - returns proc locked.
   1101   1.91     rmind  */
   1102   1.91     rmind struct lwp *
   1103   1.91     rmind lwp_find2(pid_t pid, lwpid_t lid)
   1104   1.91     rmind {
   1105   1.91     rmind 	proc_t *p;
   1106   1.91     rmind 	lwp_t *l;
   1107   1.91     rmind 
   1108   1.91     rmind 	/* Find the process */
   1109   1.94     rmind 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
   1110   1.91     rmind 	if (p == NULL)
   1111   1.91     rmind 		return NULL;
   1112  1.103        ad 	mutex_enter(p->p_lock);
   1113   1.94     rmind 	if (pid != 0) {
   1114   1.94     rmind 		/* Case of p_find */
   1115  1.102        ad 		mutex_exit(proc_lock);
   1116   1.94     rmind 	}
   1117   1.91     rmind 
   1118   1.91     rmind 	/* Find the thread */
   1119   1.94     rmind 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
   1120  1.103        ad 	if (l == NULL) {
   1121  1.103        ad 		mutex_exit(p->p_lock);
   1122  1.103        ad 	}
   1123   1.91     rmind 
   1124   1.91     rmind 	return l;
   1125   1.91     rmind }
   1126   1.91     rmind 
   1127   1.91     rmind /*
   1128   1.52        ad  * Look up a live LWP within the speicifed process, and return it locked.
   1129   1.52        ad  *
   1130  1.103        ad  * Must be called with p->p_lock held.
   1131   1.52        ad  */
   1132   1.52        ad struct lwp *
   1133   1.52        ad lwp_find(struct proc *p, int id)
   1134   1.52        ad {
   1135   1.52        ad 	struct lwp *l;
   1136   1.52        ad 
   1137  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1138   1.52        ad 
   1139   1.52        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1140   1.52        ad 		if (l->l_lid == id)
   1141   1.52        ad 			break;
   1142   1.52        ad 	}
   1143   1.52        ad 
   1144   1.52        ad 	/*
   1145   1.52        ad 	 * No need to lock - all of these conditions will
   1146   1.52        ad 	 * be visible with the process level mutex held.
   1147   1.52        ad 	 */
   1148   1.52        ad 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1149   1.52        ad 		l = NULL;
   1150   1.52        ad 
   1151   1.52        ad 	return l;
   1152   1.52        ad }
   1153   1.52        ad 
   1154   1.52        ad /*
   1155   1.37        ad  * Update an LWP's cached credentials to mirror the process' master copy.
   1156   1.37        ad  *
   1157   1.37        ad  * This happens early in the syscall path, on user trap, and on LWP
   1158   1.37        ad  * creation.  A long-running LWP can also voluntarily choose to update
   1159   1.37        ad  * it's credentials by calling this routine.  This may be called from
   1160   1.37        ad  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1161   1.37        ad  */
   1162   1.37        ad void
   1163   1.37        ad lwp_update_creds(struct lwp *l)
   1164   1.37        ad {
   1165   1.37        ad 	kauth_cred_t oc;
   1166   1.37        ad 	struct proc *p;
   1167   1.37        ad 
   1168   1.37        ad 	p = l->l_proc;
   1169   1.37        ad 	oc = l->l_cred;
   1170   1.37        ad 
   1171  1.103        ad 	mutex_enter(p->p_lock);
   1172   1.37        ad 	kauth_cred_hold(p->p_cred);
   1173   1.37        ad 	l->l_cred = p->p_cred;
   1174   1.98        ad 	l->l_prflag &= ~LPR_CRMOD;
   1175  1.103        ad 	mutex_exit(p->p_lock);
   1176   1.88        ad 	if (oc != NULL)
   1177   1.37        ad 		kauth_cred_free(oc);
   1178   1.52        ad }
   1179   1.52        ad 
   1180   1.52        ad /*
   1181   1.52        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
   1182   1.52        ad  * one we specify.
   1183   1.52        ad  */
   1184   1.52        ad int
   1185   1.52        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
   1186   1.52        ad {
   1187   1.52        ad 	kmutex_t *cur = l->l_mutex;
   1188   1.52        ad 
   1189   1.52        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1190   1.52        ad }
   1191   1.52        ad 
   1192   1.52        ad /*
   1193   1.52        ad  * Lock an LWP.
   1194   1.52        ad  */
   1195   1.52        ad void
   1196   1.52        ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1197   1.52        ad {
   1198   1.52        ad 
   1199   1.52        ad 	/*
   1200   1.52        ad 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1201   1.52        ad 	 *
   1202   1.52        ad 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1203   1.52        ad 	 */
   1204   1.52        ad #if 1
   1205   1.52        ad 	while (l->l_mutex != old) {
   1206   1.52        ad #else
   1207   1.52        ad 	for (;;) {
   1208   1.52        ad #endif
   1209   1.52        ad 		mutex_spin_exit(old);
   1210   1.52        ad 		old = l->l_mutex;
   1211   1.52        ad 		mutex_spin_enter(old);
   1212   1.52        ad 
   1213   1.52        ad 		/*
   1214   1.52        ad 		 * mutex_enter() will have posted a read barrier.  Re-test
   1215   1.52        ad 		 * l->l_mutex.  If it has changed, we need to try again.
   1216   1.52        ad 		 */
   1217   1.52        ad #if 1
   1218   1.52        ad 	}
   1219   1.52        ad #else
   1220   1.52        ad 	} while (__predict_false(l->l_mutex != old));
   1221   1.52        ad #endif
   1222   1.52        ad }
   1223   1.52        ad 
   1224   1.52        ad /*
   1225   1.52        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
   1226   1.52        ad  */
   1227   1.52        ad void
   1228   1.52        ad lwp_setlock(struct lwp *l, kmutex_t *new)
   1229   1.52        ad {
   1230   1.52        ad 
   1231   1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1232   1.52        ad 
   1233  1.107        ad 	membar_exit();
   1234   1.52        ad 	l->l_mutex = new;
   1235   1.52        ad }
   1236   1.52        ad 
   1237   1.52        ad /*
   1238   1.52        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1239   1.52        ad  * must be held.
   1240   1.52        ad  */
   1241   1.52        ad void
   1242   1.52        ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1243   1.52        ad {
   1244   1.52        ad 	kmutex_t *old;
   1245   1.52        ad 
   1246   1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1247   1.52        ad 
   1248   1.52        ad 	old = l->l_mutex;
   1249  1.107        ad 	membar_exit();
   1250   1.52        ad 	l->l_mutex = new;
   1251   1.52        ad 	mutex_spin_exit(old);
   1252   1.52        ad }
   1253   1.52        ad 
   1254   1.52        ad /*
   1255   1.52        ad  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1256   1.52        ad  * locked.
   1257   1.52        ad  */
   1258   1.52        ad void
   1259   1.52        ad lwp_relock(struct lwp *l, kmutex_t *new)
   1260   1.52        ad {
   1261   1.52        ad 	kmutex_t *old;
   1262   1.52        ad 
   1263   1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1264   1.52        ad 
   1265   1.52        ad 	old = l->l_mutex;
   1266   1.52        ad 	if (old != new) {
   1267   1.52        ad 		mutex_spin_enter(new);
   1268   1.52        ad 		l->l_mutex = new;
   1269   1.52        ad 		mutex_spin_exit(old);
   1270   1.52        ad 	}
   1271   1.52        ad }
   1272   1.52        ad 
   1273   1.60      yamt int
   1274   1.60      yamt lwp_trylock(struct lwp *l)
   1275   1.60      yamt {
   1276   1.60      yamt 	kmutex_t *old;
   1277   1.60      yamt 
   1278   1.60      yamt 	for (;;) {
   1279   1.60      yamt 		if (!mutex_tryenter(old = l->l_mutex))
   1280   1.60      yamt 			return 0;
   1281   1.60      yamt 		if (__predict_true(l->l_mutex == old))
   1282   1.60      yamt 			return 1;
   1283   1.60      yamt 		mutex_spin_exit(old);
   1284   1.60      yamt 	}
   1285   1.60      yamt }
   1286   1.60      yamt 
   1287   1.96        ad u_int
   1288   1.96        ad lwp_unsleep(lwp_t *l, bool cleanup)
   1289   1.96        ad {
   1290   1.96        ad 
   1291   1.96        ad 	KASSERT(mutex_owned(l->l_mutex));
   1292   1.96        ad 
   1293   1.96        ad 	return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1294   1.96        ad }
   1295   1.96        ad 
   1296   1.96        ad 
   1297   1.52        ad /*
   1298   1.56     pavel  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1299   1.52        ad  * set.
   1300   1.52        ad  */
   1301   1.52        ad void
   1302   1.52        ad lwp_userret(struct lwp *l)
   1303   1.52        ad {
   1304   1.52        ad 	struct proc *p;
   1305   1.54        ad 	void (*hook)(void);
   1306   1.52        ad 	int sig;
   1307   1.52        ad 
   1308  1.114     rmind 	KASSERT(l == curlwp);
   1309  1.114     rmind 	KASSERT(l->l_stat == LSONPROC);
   1310   1.52        ad 	p = l->l_proc;
   1311   1.52        ad 
   1312   1.75        ad #ifndef __HAVE_FAST_SOFTINTS
   1313   1.75        ad 	/* Run pending soft interrupts. */
   1314   1.75        ad 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1315   1.75        ad 		softint_overlay();
   1316   1.75        ad #endif
   1317   1.75        ad 
   1318   1.52        ad 	/*
   1319   1.52        ad 	 * It should be safe to do this read unlocked on a multiprocessor
   1320   1.52        ad 	 * system..
   1321   1.52        ad 	 */
   1322   1.56     pavel 	while ((l->l_flag & LW_USERRET) != 0) {
   1323   1.52        ad 		/*
   1324   1.52        ad 		 * Process pending signals first, unless the process
   1325   1.61        ad 		 * is dumping core or exiting, where we will instead
   1326  1.101     rmind 		 * enter the LW_WSUSPEND case below.
   1327   1.52        ad 		 */
   1328   1.61        ad 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1329   1.61        ad 		    LW_PENDSIG) {
   1330  1.103        ad 			mutex_enter(p->p_lock);
   1331   1.52        ad 			while ((sig = issignal(l)) != 0)
   1332   1.52        ad 				postsig(sig);
   1333  1.103        ad 			mutex_exit(p->p_lock);
   1334   1.52        ad 		}
   1335   1.52        ad 
   1336   1.52        ad 		/*
   1337   1.52        ad 		 * Core-dump or suspend pending.
   1338   1.52        ad 		 *
   1339   1.52        ad 		 * In case of core dump, suspend ourselves, so that the
   1340   1.52        ad 		 * kernel stack and therefore the userland registers saved
   1341   1.52        ad 		 * in the trapframe are around for coredump() to write them
   1342   1.52        ad 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1343   1.52        ad 		 * will write the core file out once all other LWPs are
   1344   1.52        ad 		 * suspended.
   1345   1.52        ad 		 */
   1346   1.56     pavel 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1347  1.103        ad 			mutex_enter(p->p_lock);
   1348   1.52        ad 			p->p_nrlwps--;
   1349   1.52        ad 			cv_broadcast(&p->p_lwpcv);
   1350   1.52        ad 			lwp_lock(l);
   1351   1.52        ad 			l->l_stat = LSSUSPENDED;
   1352  1.104        ad 			lwp_unlock(l);
   1353  1.103        ad 			mutex_exit(p->p_lock);
   1354  1.104        ad 			lwp_lock(l);
   1355   1.64      yamt 			mi_switch(l);
   1356   1.52        ad 		}
   1357   1.52        ad 
   1358   1.52        ad 		/* Process is exiting. */
   1359   1.56     pavel 		if ((l->l_flag & LW_WEXIT) != 0) {
   1360   1.52        ad 			lwp_exit(l);
   1361   1.52        ad 			KASSERT(0);
   1362   1.52        ad 			/* NOTREACHED */
   1363   1.52        ad 		}
   1364   1.54        ad 
   1365   1.54        ad 		/* Call userret hook; used by Linux emulation. */
   1366   1.56     pavel 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1367   1.54        ad 			lwp_lock(l);
   1368   1.56     pavel 			l->l_flag &= ~LW_WUSERRET;
   1369   1.54        ad 			lwp_unlock(l);
   1370   1.54        ad 			hook = p->p_userret;
   1371   1.54        ad 			p->p_userret = NULL;
   1372   1.54        ad 			(*hook)();
   1373   1.54        ad 		}
   1374   1.52        ad 	}
   1375   1.52        ad }
   1376   1.52        ad 
   1377   1.52        ad /*
   1378   1.52        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1379   1.52        ad  */
   1380   1.52        ad void
   1381   1.52        ad lwp_need_userret(struct lwp *l)
   1382   1.52        ad {
   1383   1.63        ad 	KASSERT(lwp_locked(l, NULL));
   1384   1.52        ad 
   1385   1.52        ad 	/*
   1386   1.52        ad 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1387   1.52        ad 	 * that the condition will be seen before forcing the LWP to enter
   1388   1.52        ad 	 * kernel mode.
   1389   1.52        ad 	 */
   1390   1.81        ad 	membar_producer();
   1391   1.52        ad 	cpu_signotify(l);
   1392   1.52        ad }
   1393   1.52        ad 
   1394   1.52        ad /*
   1395   1.52        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1396   1.52        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1397   1.52        ad  */
   1398   1.52        ad void
   1399   1.52        ad lwp_addref(struct lwp *l)
   1400   1.52        ad {
   1401   1.52        ad 
   1402  1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1403   1.52        ad 	KASSERT(l->l_stat != LSZOMB);
   1404   1.52        ad 	KASSERT(l->l_refcnt != 0);
   1405   1.52        ad 
   1406   1.52        ad 	l->l_refcnt++;
   1407   1.52        ad }
   1408   1.52        ad 
   1409   1.52        ad /*
   1410   1.52        ad  * Remove one reference to an LWP.  If this is the last reference,
   1411   1.52        ad  * then we must finalize the LWP's death.
   1412   1.52        ad  */
   1413   1.52        ad void
   1414   1.52        ad lwp_delref(struct lwp *l)
   1415   1.52        ad {
   1416   1.52        ad 	struct proc *p = l->l_proc;
   1417   1.52        ad 
   1418  1.103        ad 	mutex_enter(p->p_lock);
   1419   1.72        ad 	KASSERT(l->l_stat != LSZOMB);
   1420   1.72        ad 	KASSERT(l->l_refcnt > 0);
   1421   1.52        ad 	if (--l->l_refcnt == 0)
   1422   1.76        ad 		cv_broadcast(&p->p_lwpcv);
   1423  1.103        ad 	mutex_exit(p->p_lock);
   1424   1.52        ad }
   1425   1.52        ad 
   1426   1.52        ad /*
   1427   1.52        ad  * Drain all references to the current LWP.
   1428   1.52        ad  */
   1429   1.52        ad void
   1430   1.52        ad lwp_drainrefs(struct lwp *l)
   1431   1.52        ad {
   1432   1.52        ad 	struct proc *p = l->l_proc;
   1433   1.52        ad 
   1434  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1435   1.52        ad 	KASSERT(l->l_refcnt != 0);
   1436   1.52        ad 
   1437   1.52        ad 	l->l_refcnt--;
   1438   1.52        ad 	while (l->l_refcnt != 0)
   1439  1.103        ad 		cv_wait(&p->p_lwpcv, p->p_lock);
   1440   1.37        ad }
   1441   1.41   thorpej 
   1442   1.41   thorpej /*
   1443   1.41   thorpej  * lwp_specific_key_create --
   1444   1.41   thorpej  *	Create a key for subsystem lwp-specific data.
   1445   1.41   thorpej  */
   1446   1.41   thorpej int
   1447   1.41   thorpej lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1448   1.41   thorpej {
   1449   1.41   thorpej 
   1450   1.45   thorpej 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1451   1.41   thorpej }
   1452   1.41   thorpej 
   1453   1.41   thorpej /*
   1454   1.41   thorpej  * lwp_specific_key_delete --
   1455   1.41   thorpej  *	Delete a key for subsystem lwp-specific data.
   1456   1.41   thorpej  */
   1457   1.41   thorpej void
   1458   1.41   thorpej lwp_specific_key_delete(specificdata_key_t key)
   1459   1.41   thorpej {
   1460   1.41   thorpej 
   1461   1.41   thorpej 	specificdata_key_delete(lwp_specificdata_domain, key);
   1462   1.41   thorpej }
   1463   1.41   thorpej 
   1464   1.45   thorpej /*
   1465   1.45   thorpej  * lwp_initspecific --
   1466   1.45   thorpej  *	Initialize an LWP's specificdata container.
   1467   1.45   thorpej  */
   1468   1.42  christos void
   1469   1.42  christos lwp_initspecific(struct lwp *l)
   1470   1.42  christos {
   1471   1.42  christos 	int error;
   1472   1.45   thorpej 
   1473   1.42  christos 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1474   1.42  christos 	KASSERT(error == 0);
   1475   1.42  christos }
   1476   1.42  christos 
   1477   1.41   thorpej /*
   1478   1.45   thorpej  * lwp_finispecific --
   1479   1.45   thorpej  *	Finalize an LWP's specificdata container.
   1480   1.45   thorpej  */
   1481   1.45   thorpej void
   1482   1.45   thorpej lwp_finispecific(struct lwp *l)
   1483   1.45   thorpej {
   1484   1.45   thorpej 
   1485   1.45   thorpej 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1486   1.45   thorpej }
   1487   1.45   thorpej 
   1488   1.45   thorpej /*
   1489   1.41   thorpej  * lwp_getspecific --
   1490   1.41   thorpej  *	Return lwp-specific data corresponding to the specified key.
   1491   1.41   thorpej  *
   1492   1.41   thorpej  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1493   1.41   thorpej  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1494   1.41   thorpej  *	LWP's specifc data, care must be taken to ensure that doing so
   1495   1.41   thorpej  *	would not cause internal data structure inconsistency (i.e. caller
   1496   1.41   thorpej  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1497   1.41   thorpej  *	or lwp_setspecific() call).
   1498   1.41   thorpej  */
   1499   1.41   thorpej void *
   1500   1.44   thorpej lwp_getspecific(specificdata_key_t key)
   1501   1.41   thorpej {
   1502   1.41   thorpej 
   1503   1.41   thorpej 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1504   1.44   thorpej 						  &curlwp->l_specdataref, key));
   1505   1.41   thorpej }
   1506   1.41   thorpej 
   1507   1.47   hannken void *
   1508   1.47   hannken _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1509   1.47   hannken {
   1510   1.47   hannken 
   1511   1.47   hannken 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1512   1.47   hannken 						  &l->l_specdataref, key));
   1513   1.47   hannken }
   1514   1.47   hannken 
   1515   1.41   thorpej /*
   1516   1.41   thorpej  * lwp_setspecific --
   1517   1.41   thorpej  *	Set lwp-specific data corresponding to the specified key.
   1518   1.41   thorpej  */
   1519   1.41   thorpej void
   1520   1.45   thorpej lwp_setspecific(specificdata_key_t key, void *data)
   1521   1.41   thorpej {
   1522   1.41   thorpej 
   1523   1.41   thorpej 	specificdata_setspecific(lwp_specificdata_domain,
   1524   1.44   thorpej 				 &curlwp->l_specdataref, key, data);
   1525   1.41   thorpej }
   1526   1.78        ad 
   1527   1.78        ad /*
   1528   1.78        ad  * Allocate a new lwpctl structure for a user LWP.
   1529   1.78        ad  */
   1530   1.78        ad int
   1531   1.78        ad lwp_ctl_alloc(vaddr_t *uaddr)
   1532   1.78        ad {
   1533   1.78        ad 	lcproc_t *lp;
   1534   1.78        ad 	u_int bit, i, offset;
   1535   1.78        ad 	struct uvm_object *uao;
   1536   1.78        ad 	int error;
   1537   1.78        ad 	lcpage_t *lcp;
   1538   1.78        ad 	proc_t *p;
   1539   1.78        ad 	lwp_t *l;
   1540   1.78        ad 
   1541   1.78        ad 	l = curlwp;
   1542   1.78        ad 	p = l->l_proc;
   1543   1.78        ad 
   1544   1.81        ad 	if (l->l_lcpage != NULL) {
   1545   1.81        ad 		lcp = l->l_lcpage;
   1546   1.81        ad 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1547   1.78        ad 		return (EINVAL);
   1548   1.81        ad 	}
   1549   1.78        ad 
   1550   1.78        ad 	/* First time around, allocate header structure for the process. */
   1551   1.78        ad 	if ((lp = p->p_lwpctl) == NULL) {
   1552   1.78        ad 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1553   1.78        ad 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1554   1.78        ad 		lp->lp_uao = NULL;
   1555   1.78        ad 		TAILQ_INIT(&lp->lp_pages);
   1556  1.103        ad 		mutex_enter(p->p_lock);
   1557   1.78        ad 		if (p->p_lwpctl == NULL) {
   1558   1.78        ad 			p->p_lwpctl = lp;
   1559  1.103        ad 			mutex_exit(p->p_lock);
   1560   1.78        ad 		} else {
   1561  1.103        ad 			mutex_exit(p->p_lock);
   1562   1.78        ad 			mutex_destroy(&lp->lp_lock);
   1563   1.78        ad 			kmem_free(lp, sizeof(*lp));
   1564   1.78        ad 			lp = p->p_lwpctl;
   1565   1.78        ad 		}
   1566   1.78        ad 	}
   1567   1.78        ad 
   1568   1.78        ad  	/*
   1569   1.78        ad  	 * Set up an anonymous memory region to hold the shared pages.
   1570   1.78        ad  	 * Map them into the process' address space.  The user vmspace
   1571   1.78        ad  	 * gets the first reference on the UAO.
   1572   1.78        ad  	 */
   1573   1.78        ad 	mutex_enter(&lp->lp_lock);
   1574   1.78        ad 	if (lp->lp_uao == NULL) {
   1575   1.78        ad 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1576   1.78        ad 		lp->lp_cur = 0;
   1577   1.78        ad 		lp->lp_max = LWPCTL_UAREA_SZ;
   1578   1.78        ad 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1579   1.78        ad 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1580   1.78        ad 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1581   1.78        ad 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1582   1.78        ad 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1583   1.78        ad 		if (error != 0) {
   1584   1.78        ad 			uao_detach(lp->lp_uao);
   1585   1.78        ad 			lp->lp_uao = NULL;
   1586   1.78        ad 			mutex_exit(&lp->lp_lock);
   1587   1.78        ad 			return error;
   1588   1.78        ad 		}
   1589   1.78        ad 	}
   1590   1.78        ad 
   1591   1.78        ad 	/* Get a free block and allocate for this LWP. */
   1592   1.78        ad 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1593   1.78        ad 		if (lcp->lcp_nfree != 0)
   1594   1.78        ad 			break;
   1595   1.78        ad 	}
   1596   1.78        ad 	if (lcp == NULL) {
   1597   1.78        ad 		/* Nothing available - try to set up a free page. */
   1598   1.78        ad 		if (lp->lp_cur == lp->lp_max) {
   1599   1.78        ad 			mutex_exit(&lp->lp_lock);
   1600   1.78        ad 			return ENOMEM;
   1601   1.78        ad 		}
   1602   1.78        ad 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1603   1.79      yamt 		if (lcp == NULL) {
   1604   1.79      yamt 			mutex_exit(&lp->lp_lock);
   1605   1.78        ad 			return ENOMEM;
   1606   1.79      yamt 		}
   1607   1.78        ad 		/*
   1608   1.78        ad 		 * Wire the next page down in kernel space.  Since this
   1609   1.78        ad 		 * is a new mapping, we must add a reference.
   1610   1.78        ad 		 */
   1611   1.78        ad 		uao = lp->lp_uao;
   1612   1.78        ad 		(*uao->pgops->pgo_reference)(uao);
   1613   1.99        ad 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1614   1.78        ad 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1615   1.78        ad 		    uao, lp->lp_cur, PAGE_SIZE,
   1616   1.78        ad 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1617   1.78        ad 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1618   1.78        ad 		if (error != 0) {
   1619   1.78        ad 			mutex_exit(&lp->lp_lock);
   1620   1.78        ad 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1621   1.78        ad 			(*uao->pgops->pgo_detach)(uao);
   1622   1.78        ad 			return error;
   1623   1.78        ad 		}
   1624   1.89      yamt 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1625   1.89      yamt 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1626   1.89      yamt 		if (error != 0) {
   1627   1.89      yamt 			mutex_exit(&lp->lp_lock);
   1628   1.89      yamt 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1629   1.89      yamt 			    lcp->lcp_kaddr + PAGE_SIZE);
   1630   1.89      yamt 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1631   1.89      yamt 			return error;
   1632   1.89      yamt 		}
   1633   1.78        ad 		/* Prepare the page descriptor and link into the list. */
   1634   1.78        ad 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1635   1.78        ad 		lp->lp_cur += PAGE_SIZE;
   1636   1.78        ad 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1637   1.78        ad 		lcp->lcp_rotor = 0;
   1638   1.78        ad 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1639   1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1640   1.78        ad 	}
   1641   1.78        ad 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1642   1.78        ad 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1643   1.78        ad 			i = 0;
   1644   1.78        ad 	}
   1645   1.78        ad 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1646   1.78        ad 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1647   1.78        ad 	lcp->lcp_rotor = i;
   1648   1.78        ad 	lcp->lcp_nfree--;
   1649   1.78        ad 	l->l_lcpage = lcp;
   1650   1.78        ad 	offset = (i << 5) + bit;
   1651   1.78        ad 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1652   1.78        ad 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1653   1.78        ad 	mutex_exit(&lp->lp_lock);
   1654   1.78        ad 
   1655  1.107        ad 	KPREEMPT_DISABLE(l);
   1656  1.111        ad 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1657  1.107        ad 	KPREEMPT_ENABLE(l);
   1658   1.78        ad 
   1659   1.78        ad 	return 0;
   1660   1.78        ad }
   1661   1.78        ad 
   1662   1.78        ad /*
   1663   1.78        ad  * Free an lwpctl structure back to the per-process list.
   1664   1.78        ad  */
   1665   1.78        ad void
   1666   1.78        ad lwp_ctl_free(lwp_t *l)
   1667   1.78        ad {
   1668   1.78        ad 	lcproc_t *lp;
   1669   1.78        ad 	lcpage_t *lcp;
   1670   1.78        ad 	u_int map, offset;
   1671   1.78        ad 
   1672   1.78        ad 	lp = l->l_proc->p_lwpctl;
   1673   1.78        ad 	KASSERT(lp != NULL);
   1674   1.78        ad 
   1675   1.78        ad 	lcp = l->l_lcpage;
   1676   1.78        ad 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1677   1.78        ad 	KASSERT(offset < LWPCTL_PER_PAGE);
   1678   1.78        ad 
   1679   1.78        ad 	mutex_enter(&lp->lp_lock);
   1680   1.78        ad 	lcp->lcp_nfree++;
   1681   1.78        ad 	map = offset >> 5;
   1682   1.78        ad 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1683   1.78        ad 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1684   1.78        ad 		lcp->lcp_rotor = map;
   1685   1.78        ad 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1686   1.78        ad 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1687   1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1688   1.78        ad 	}
   1689   1.78        ad 	mutex_exit(&lp->lp_lock);
   1690   1.78        ad }
   1691   1.78        ad 
   1692   1.78        ad /*
   1693   1.78        ad  * Process is exiting; tear down lwpctl state.  This can only be safely
   1694   1.78        ad  * called by the last LWP in the process.
   1695   1.78        ad  */
   1696   1.78        ad void
   1697   1.78        ad lwp_ctl_exit(void)
   1698   1.78        ad {
   1699   1.78        ad 	lcpage_t *lcp, *next;
   1700   1.78        ad 	lcproc_t *lp;
   1701   1.78        ad 	proc_t *p;
   1702   1.78        ad 	lwp_t *l;
   1703   1.78        ad 
   1704   1.78        ad 	l = curlwp;
   1705   1.78        ad 	l->l_lwpctl = NULL;
   1706   1.95        ad 	l->l_lcpage = NULL;
   1707   1.78        ad 	p = l->l_proc;
   1708   1.78        ad 	lp = p->p_lwpctl;
   1709   1.78        ad 
   1710   1.78        ad 	KASSERT(lp != NULL);
   1711   1.78        ad 	KASSERT(p->p_nlwps == 1);
   1712   1.78        ad 
   1713   1.78        ad 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1714   1.78        ad 		next = TAILQ_NEXT(lcp, lcp_chain);
   1715   1.78        ad 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1716   1.78        ad 		    lcp->lcp_kaddr + PAGE_SIZE);
   1717   1.78        ad 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1718   1.78        ad 	}
   1719   1.78        ad 
   1720   1.78        ad 	if (lp->lp_uao != NULL) {
   1721   1.78        ad 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1722   1.78        ad 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1723   1.78        ad 	}
   1724   1.78        ad 
   1725   1.78        ad 	mutex_destroy(&lp->lp_lock);
   1726   1.78        ad 	kmem_free(lp, sizeof(*lp));
   1727   1.78        ad 	p->p_lwpctl = NULL;
   1728   1.78        ad }
   1729   1.84      yamt 
   1730   1.84      yamt #if defined(DDB)
   1731   1.84      yamt void
   1732   1.84      yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1733   1.84      yamt {
   1734   1.84      yamt 	lwp_t *l;
   1735   1.84      yamt 
   1736   1.84      yamt 	LIST_FOREACH(l, &alllwp, l_list) {
   1737   1.84      yamt 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1738   1.84      yamt 
   1739   1.84      yamt 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1740   1.84      yamt 			continue;
   1741   1.84      yamt 		}
   1742   1.84      yamt 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1743   1.84      yamt 		    (void *)addr, (void *)stack,
   1744   1.84      yamt 		    (size_t)(addr - stack), l);
   1745   1.84      yamt 	}
   1746   1.84      yamt }
   1747   1.84      yamt #endif /* defined(DDB) */
   1748