kern_lwp.c revision 1.116.2.3 1 1.116.2.3 simonb /* $NetBSD: kern_lwp.c,v 1.116.2.3 2008/07/18 16:37:49 simonb Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.95 ad * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.9 lukem
32 1.52 ad /*
33 1.52 ad * Overview
34 1.52 ad *
35 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of
36 1.52 ad * execution within the kernel. The core state of an LWP is described
37 1.66 ad * by "struct lwp", also known as lwp_t.
38 1.52 ad *
39 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
40 1.52 ad * Every process contains at least one LWP, but may contain more. The
41 1.52 ad * process describes attributes shared among all of its LWPs such as a
42 1.52 ad * private address space, global execution state (stopped, active,
43 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
44 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel.
45 1.52 ad *
46 1.52 ad * Execution states
47 1.52 ad *
48 1.52 ad * At any given time, an LWP has overall state that is described by
49 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
50 1.52 ad * set is guaranteed to represent the absolute, current state of the
51 1.52 ad * LWP:
52 1.101 rmind *
53 1.101 rmind * LSONPROC
54 1.101 rmind *
55 1.101 rmind * On processor: the LWP is executing on a CPU, either in the
56 1.101 rmind * kernel or in user space.
57 1.101 rmind *
58 1.101 rmind * LSRUN
59 1.101 rmind *
60 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be
61 1.101 rmind * chosen to run by an idle processor, or by a processor that
62 1.101 rmind * has been asked to preempt a currently runnning but lower
63 1.101 rmind * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 1.52 ad * then the LWP is not on a run queue, but may be soon.
65 1.101 rmind *
66 1.101 rmind * LSIDL
67 1.101 rmind *
68 1.101 rmind * Idle: the LWP has been created but has not yet executed,
69 1.66 ad * or it has ceased executing a unit of work and is waiting
70 1.66 ad * to be started again.
71 1.101 rmind *
72 1.101 rmind * LSSUSPENDED:
73 1.101 rmind *
74 1.101 rmind * Suspended: the LWP has had its execution suspended by
75 1.52 ad * another LWP in the same process using the _lwp_suspend()
76 1.52 ad * system call. User-level LWPs also enter the suspended
77 1.52 ad * state when the system is shutting down.
78 1.52 ad *
79 1.52 ad * The second set represent a "statement of intent" on behalf of the
80 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
81 1.66 ad * sleeping or idle. It is expected to take the necessary action to
82 1.101 rmind * stop executing or become "running" again within a short timeframe.
83 1.115 ad * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 1.101 rmind * Importantly, it indicates that its state is tied to a CPU.
85 1.101 rmind *
86 1.101 rmind * LSZOMB:
87 1.101 rmind *
88 1.101 rmind * Dead or dying: the LWP has released most of its resources
89 1.101 rmind * and is: a) about to switch away into oblivion b) has already
90 1.66 ad * switched away. When it switches away, its few remaining
91 1.66 ad * resources can be collected.
92 1.101 rmind *
93 1.101 rmind * LSSLEEP:
94 1.101 rmind *
95 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and
96 1.101 rmind * has switched away or will switch away shortly to allow other
97 1.66 ad * LWPs to run on the CPU.
98 1.101 rmind *
99 1.101 rmind * LSSTOP:
100 1.101 rmind *
101 1.101 rmind * Stopped: the LWP has been stopped as a result of a job
102 1.101 rmind * control signal, or as a result of the ptrace() interface.
103 1.101 rmind *
104 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle
105 1.101 rmind * signals that they receive, but will not return to user space
106 1.101 rmind * until their process' state is changed away from stopped.
107 1.101 rmind *
108 1.101 rmind * Single LWPs within a process can not be set stopped
109 1.101 rmind * selectively: all actions that can stop or continue LWPs
110 1.101 rmind * occur at the process level.
111 1.101 rmind *
112 1.52 ad * State transitions
113 1.52 ad *
114 1.66 ad * Note that the LSSTOP state may only be set when returning to
115 1.66 ad * user space in userret(), or when sleeping interruptably. The
116 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting
117 1.66 ad * those states, we try to ensure that the LWPs will release all
118 1.66 ad * locks that they hold, and at a minimum try to ensure that the
119 1.66 ad * LWP can be set runnable again by a signal.
120 1.52 ad *
121 1.52 ad * LWPs may transition states in the following ways:
122 1.52 ad *
123 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
124 1.101 rmind * > STOPPED > SLEEP
125 1.101 rmind * > SUSPENDED > STOPPED
126 1.52 ad * > SUSPENDED
127 1.52 ad * > ZOMB
128 1.52 ad *
129 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
130 1.52 ad * > SLEEP > SLEEP
131 1.52 ad *
132 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
133 1.101 rmind * > RUN > SUSPENDED
134 1.101 rmind * > STOPPED > STOPPED
135 1.52 ad * > SUSPENDED
136 1.52 ad *
137 1.66 ad * Other state transitions are possible with kernel threads (eg
138 1.66 ad * ONPROC -> IDL), but only happen under tightly controlled
139 1.66 ad * circumstances the side effects are understood.
140 1.66 ad *
141 1.114 rmind * Migration
142 1.114 rmind *
143 1.114 rmind * Migration of threads from one CPU to another could be performed
144 1.114 rmind * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 1.114 rmind * functions. The universal lwp_migrate() function should be used for
146 1.114 rmind * any other cases. Subsystems in the kernel must be aware that CPU
147 1.114 rmind * of LWP may change, while it is not locked.
148 1.114 rmind *
149 1.52 ad * Locking
150 1.52 ad *
151 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
152 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering
153 1.52 ad * each field are documented in sys/lwp.h.
154 1.52 ad *
155 1.66 ad * State transitions must be made with the LWP's general lock held,
156 1.101 rmind * and may cause the LWP's lock pointer to change. Manipulation of
157 1.66 ad * the general lock is not performed directly, but through calls to
158 1.66 ad * lwp_lock(), lwp_relock() and similar.
159 1.52 ad *
160 1.52 ad * States and their associated locks:
161 1.52 ad *
162 1.74 rmind * LSONPROC, LSZOMB:
163 1.52 ad *
164 1.64 yamt * Always covered by spc_lwplock, which protects running LWPs.
165 1.64 yamt * This is a per-CPU lock.
166 1.52 ad *
167 1.74 rmind * LSIDL, LSRUN:
168 1.52 ad *
169 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
170 1.101 rmind * This is a per-CPU lock.
171 1.52 ad *
172 1.52 ad * LSSLEEP:
173 1.52 ad *
174 1.66 ad * Covered by a lock associated with the sleep queue that the
175 1.112 ad * LWP resides on.
176 1.52 ad *
177 1.52 ad * LSSTOP, LSSUSPENDED:
178 1.101 rmind *
179 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
180 1.66 ad * l_mutex references the sleep queue lock. If the LWP was
181 1.52 ad * runnable or on the CPU when halted, or has been removed from
182 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock.
183 1.52 ad *
184 1.52 ad * The lock order is as follows:
185 1.52 ad *
186 1.64 yamt * spc::spc_lwplock ->
187 1.112 ad * sleeptab::st_mutex ->
188 1.64 yamt * tschain_t::tc_mutex ->
189 1.64 yamt * spc::spc_mutex
190 1.52 ad *
191 1.103 ad * Each process has an scheduler state lock (proc::p_lock), and a
192 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
194 1.103 ad * following states, p_lock must be held and the process wide counters
195 1.52 ad * adjusted:
196 1.52 ad *
197 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 1.52 ad *
199 1.52 ad * Note that an LWP is considered running or likely to run soon if in
200 1.52 ad * one of the following states. This affects the value of p_nrlwps:
201 1.52 ad *
202 1.52 ad * LSRUN, LSONPROC, LSSLEEP
203 1.52 ad *
204 1.103 ad * p_lock does not need to be held when transitioning among these
205 1.52 ad * three states.
206 1.52 ad */
207 1.52 ad
208 1.9 lukem #include <sys/cdefs.h>
209 1.116.2.3 simonb __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.116.2.3 2008/07/18 16:37:49 simonb Exp $");
210 1.8 martin
211 1.84 yamt #include "opt_ddb.h"
212 1.52 ad #include "opt_lockdebug.h"
213 1.2 thorpej
214 1.47 hannken #define _LWP_API_PRIVATE
215 1.47 hannken
216 1.2 thorpej #include <sys/param.h>
217 1.2 thorpej #include <sys/systm.h>
218 1.64 yamt #include <sys/cpu.h>
219 1.2 thorpej #include <sys/pool.h>
220 1.2 thorpej #include <sys/proc.h>
221 1.2 thorpej #include <sys/syscallargs.h>
222 1.57 dsl #include <sys/syscall_stats.h>
223 1.37 ad #include <sys/kauth.h>
224 1.52 ad #include <sys/sleepq.h>
225 1.85 yamt #include <sys/user.h>
226 1.52 ad #include <sys/lockdebug.h>
227 1.52 ad #include <sys/kmem.h>
228 1.91 rmind #include <sys/pset.h>
229 1.75 ad #include <sys/intr.h>
230 1.78 ad #include <sys/lwpctl.h>
231 1.81 ad #include <sys/atomic.h>
232 1.2 thorpej
233 1.2 thorpej #include <uvm/uvm_extern.h>
234 1.80 skrll #include <uvm/uvm_object.h>
235 1.2 thorpej
236 1.77 matt struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
237 1.52 ad
238 1.41 thorpej POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
239 1.62 ad &pool_allocator_nointr, IPL_NONE);
240 1.41 thorpej
241 1.87 ad static pool_cache_t lwp_cache;
242 1.41 thorpej static specificdata_domain_t lwp_specificdata_domain;
243 1.41 thorpej
244 1.41 thorpej void
245 1.41 thorpej lwpinit(void)
246 1.41 thorpej {
247 1.41 thorpej
248 1.41 thorpej lwp_specificdata_domain = specificdata_domain_create();
249 1.41 thorpej KASSERT(lwp_specificdata_domain != NULL);
250 1.52 ad lwp_sys_init();
251 1.87 ad lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
252 1.87 ad "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
253 1.41 thorpej }
254 1.41 thorpej
255 1.52 ad /*
256 1.52 ad * Set an suspended.
257 1.52 ad *
258 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
259 1.52 ad * LWP before return.
260 1.52 ad */
261 1.2 thorpej int
262 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
263 1.2 thorpej {
264 1.52 ad int error;
265 1.2 thorpej
266 1.103 ad KASSERT(mutex_owned(t->l_proc->p_lock));
267 1.63 ad KASSERT(lwp_locked(t, NULL));
268 1.33 chs
269 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
270 1.2 thorpej
271 1.52 ad /*
272 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
273 1.52 ad * else or deadlock could occur. We won't return to userspace.
274 1.2 thorpej */
275 1.109 rmind if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
276 1.52 ad lwp_unlock(t);
277 1.52 ad return (EDEADLK);
278 1.2 thorpej }
279 1.2 thorpej
280 1.52 ad error = 0;
281 1.2 thorpej
282 1.52 ad switch (t->l_stat) {
283 1.52 ad case LSRUN:
284 1.52 ad case LSONPROC:
285 1.56 pavel t->l_flag |= LW_WSUSPEND;
286 1.52 ad lwp_need_userret(t);
287 1.52 ad lwp_unlock(t);
288 1.52 ad break;
289 1.2 thorpej
290 1.52 ad case LSSLEEP:
291 1.56 pavel t->l_flag |= LW_WSUSPEND;
292 1.2 thorpej
293 1.2 thorpej /*
294 1.52 ad * Kick the LWP and try to get it to the kernel boundary
295 1.52 ad * so that it will release any locks that it holds.
296 1.52 ad * setrunnable() will release the lock.
297 1.2 thorpej */
298 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
299 1.52 ad setrunnable(t);
300 1.52 ad else
301 1.52 ad lwp_unlock(t);
302 1.52 ad break;
303 1.2 thorpej
304 1.52 ad case LSSUSPENDED:
305 1.52 ad lwp_unlock(t);
306 1.52 ad break;
307 1.17 manu
308 1.52 ad case LSSTOP:
309 1.56 pavel t->l_flag |= LW_WSUSPEND;
310 1.52 ad setrunnable(t);
311 1.52 ad break;
312 1.2 thorpej
313 1.52 ad case LSIDL:
314 1.52 ad case LSZOMB:
315 1.52 ad error = EINTR; /* It's what Solaris does..... */
316 1.52 ad lwp_unlock(t);
317 1.52 ad break;
318 1.2 thorpej }
319 1.2 thorpej
320 1.69 rmind return (error);
321 1.2 thorpej }
322 1.2 thorpej
323 1.52 ad /*
324 1.52 ad * Restart a suspended LWP.
325 1.52 ad *
326 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
327 1.52 ad * LWP before return.
328 1.52 ad */
329 1.2 thorpej void
330 1.2 thorpej lwp_continue(struct lwp *l)
331 1.2 thorpej {
332 1.2 thorpej
333 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
334 1.63 ad KASSERT(lwp_locked(l, NULL));
335 1.52 ad
336 1.52 ad /* If rebooting or not suspended, then just bail out. */
337 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
338 1.52 ad lwp_unlock(l);
339 1.2 thorpej return;
340 1.10 fvdl }
341 1.2 thorpej
342 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
343 1.2 thorpej
344 1.52 ad if (l->l_stat != LSSUSPENDED) {
345 1.52 ad lwp_unlock(l);
346 1.52 ad return;
347 1.2 thorpej }
348 1.2 thorpej
349 1.52 ad /* setrunnable() will release the lock. */
350 1.52 ad setrunnable(l);
351 1.2 thorpej }
352 1.2 thorpej
353 1.52 ad /*
354 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
355 1.52 ad * non-zero, we are waiting for a specific LWP.
356 1.52 ad *
357 1.103 ad * Must be called with p->p_lock held.
358 1.52 ad */
359 1.2 thorpej int
360 1.2 thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
361 1.2 thorpej {
362 1.2 thorpej struct proc *p = l->l_proc;
363 1.52 ad struct lwp *l2;
364 1.52 ad int nfound, error;
365 1.63 ad lwpid_t curlid;
366 1.63 ad bool exiting;
367 1.2 thorpej
368 1.103 ad KASSERT(mutex_owned(p->p_lock));
369 1.52 ad
370 1.52 ad p->p_nlwpwait++;
371 1.63 ad l->l_waitingfor = lid;
372 1.63 ad curlid = l->l_lid;
373 1.63 ad exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
374 1.52 ad
375 1.52 ad for (;;) {
376 1.52 ad /*
377 1.52 ad * Avoid a race between exit1() and sigexit(): if the
378 1.52 ad * process is dumping core, then we need to bail out: call
379 1.52 ad * into lwp_userret() where we will be suspended until the
380 1.52 ad * deed is done.
381 1.52 ad */
382 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
383 1.103 ad mutex_exit(p->p_lock);
384 1.52 ad lwp_userret(l);
385 1.52 ad #ifdef DIAGNOSTIC
386 1.52 ad panic("lwp_wait1");
387 1.52 ad #endif
388 1.52 ad /* NOTREACHED */
389 1.52 ad }
390 1.52 ad
391 1.52 ad /*
392 1.52 ad * First off, drain any detached LWP that is waiting to be
393 1.52 ad * reaped.
394 1.52 ad */
395 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
396 1.52 ad p->p_zomblwp = NULL;
397 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
398 1.103 ad mutex_enter(p->p_lock);
399 1.52 ad }
400 1.52 ad
401 1.52 ad /*
402 1.52 ad * Now look for an LWP to collect. If the whole process is
403 1.52 ad * exiting, count detached LWPs as eligible to be collected,
404 1.52 ad * but don't drain them here.
405 1.52 ad */
406 1.52 ad nfound = 0;
407 1.63 ad error = 0;
408 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
409 1.63 ad /*
410 1.63 ad * If a specific wait and the target is waiting on
411 1.63 ad * us, then avoid deadlock. This also traps LWPs
412 1.63 ad * that try to wait on themselves.
413 1.63 ad *
414 1.63 ad * Note that this does not handle more complicated
415 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
416 1.63 ad * can still be killed so it is not a major problem.
417 1.63 ad */
418 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
419 1.63 ad error = EDEADLK;
420 1.63 ad break;
421 1.63 ad }
422 1.63 ad if (l2 == l)
423 1.52 ad continue;
424 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
425 1.63 ad nfound += exiting;
426 1.63 ad continue;
427 1.63 ad }
428 1.63 ad if (lid != 0) {
429 1.63 ad if (l2->l_lid != lid)
430 1.63 ad continue;
431 1.63 ad /*
432 1.63 ad * Mark this LWP as the first waiter, if there
433 1.63 ad * is no other.
434 1.63 ad */
435 1.63 ad if (l2->l_waiter == 0)
436 1.63 ad l2->l_waiter = curlid;
437 1.63 ad } else if (l2->l_waiter != 0) {
438 1.63 ad /*
439 1.63 ad * It already has a waiter - so don't
440 1.63 ad * collect it. If the waiter doesn't
441 1.63 ad * grab it we'll get another chance
442 1.63 ad * later.
443 1.63 ad */
444 1.63 ad nfound++;
445 1.52 ad continue;
446 1.52 ad }
447 1.52 ad nfound++;
448 1.2 thorpej
449 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
450 1.52 ad if (l2->l_stat != LSZOMB)
451 1.52 ad continue;
452 1.2 thorpej
453 1.63 ad /*
454 1.63 ad * We're no longer waiting. Reset the "first waiter"
455 1.63 ad * pointer on the target, in case it was us.
456 1.63 ad */
457 1.63 ad l->l_waitingfor = 0;
458 1.63 ad l2->l_waiter = 0;
459 1.63 ad p->p_nlwpwait--;
460 1.2 thorpej if (departed)
461 1.2 thorpej *departed = l2->l_lid;
462 1.75 ad sched_lwp_collect(l2);
463 1.63 ad
464 1.63 ad /* lwp_free() releases the proc lock. */
465 1.63 ad lwp_free(l2, false, false);
466 1.103 ad mutex_enter(p->p_lock);
467 1.52 ad return 0;
468 1.52 ad }
469 1.2 thorpej
470 1.63 ad if (error != 0)
471 1.63 ad break;
472 1.52 ad if (nfound == 0) {
473 1.52 ad error = ESRCH;
474 1.52 ad break;
475 1.52 ad }
476 1.63 ad
477 1.63 ad /*
478 1.63 ad * The kernel is careful to ensure that it can not deadlock
479 1.63 ad * when exiting - just keep waiting.
480 1.63 ad */
481 1.63 ad if (exiting) {
482 1.52 ad KASSERT(p->p_nlwps > 1);
483 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
484 1.52 ad continue;
485 1.52 ad }
486 1.63 ad
487 1.63 ad /*
488 1.63 ad * If all other LWPs are waiting for exits or suspends
489 1.63 ad * and the supply of zombies and potential zombies is
490 1.63 ad * exhausted, then we are about to deadlock.
491 1.63 ad *
492 1.63 ad * If the process is exiting (and this LWP is not the one
493 1.63 ad * that is coordinating the exit) then bail out now.
494 1.63 ad */
495 1.52 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
496 1.63 ad p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
497 1.52 ad error = EDEADLK;
498 1.52 ad break;
499 1.2 thorpej }
500 1.63 ad
501 1.63 ad /*
502 1.63 ad * Sit around and wait for something to happen. We'll be
503 1.63 ad * awoken if any of the conditions examined change: if an
504 1.63 ad * LWP exits, is collected, or is detached.
505 1.63 ad */
506 1.103 ad if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
507 1.52 ad break;
508 1.2 thorpej }
509 1.2 thorpej
510 1.63 ad /*
511 1.63 ad * We didn't find any LWPs to collect, we may have received a
512 1.63 ad * signal, or some other condition has caused us to bail out.
513 1.63 ad *
514 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
515 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
516 1.63 ad * so that they can re-check for zombies and for deadlock.
517 1.63 ad */
518 1.63 ad if (lid != 0) {
519 1.63 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
520 1.63 ad if (l2->l_lid == lid) {
521 1.63 ad if (l2->l_waiter == curlid)
522 1.63 ad l2->l_waiter = 0;
523 1.63 ad break;
524 1.63 ad }
525 1.63 ad }
526 1.63 ad }
527 1.52 ad p->p_nlwpwait--;
528 1.63 ad l->l_waitingfor = 0;
529 1.63 ad cv_broadcast(&p->p_lwpcv);
530 1.63 ad
531 1.52 ad return error;
532 1.2 thorpej }
533 1.2 thorpej
534 1.52 ad /*
535 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
536 1.52 ad * The new LWP is created in state LSIDL and must be set running,
537 1.52 ad * suspended, or stopped by the caller.
538 1.52 ad */
539 1.2 thorpej int
540 1.75 ad lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
541 1.75 ad void *stack, size_t stacksize, void (*func)(void *), void *arg,
542 1.75 ad lwp_t **rnewlwpp, int sclass)
543 1.2 thorpej {
544 1.52 ad struct lwp *l2, *isfree;
545 1.52 ad turnstile_t *ts;
546 1.2 thorpej
547 1.107 ad KASSERT(l1 == curlwp || l1->l_proc == &proc0);
548 1.107 ad
549 1.52 ad /*
550 1.52 ad * First off, reap any detached LWP waiting to be collected.
551 1.52 ad * We can re-use its LWP structure and turnstile.
552 1.52 ad */
553 1.52 ad isfree = NULL;
554 1.52 ad if (p2->p_zomblwp != NULL) {
555 1.103 ad mutex_enter(p2->p_lock);
556 1.52 ad if ((isfree = p2->p_zomblwp) != NULL) {
557 1.52 ad p2->p_zomblwp = NULL;
558 1.63 ad lwp_free(isfree, true, false);/* releases proc mutex */
559 1.52 ad } else
560 1.103 ad mutex_exit(p2->p_lock);
561 1.52 ad }
562 1.52 ad if (isfree == NULL) {
563 1.87 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK);
564 1.52 ad memset(l2, 0, sizeof(*l2));
565 1.76 ad l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
566 1.60 yamt SLIST_INIT(&l2->l_pi_lenders);
567 1.52 ad } else {
568 1.52 ad l2 = isfree;
569 1.52 ad ts = l2->l_ts;
570 1.75 ad KASSERT(l2->l_inheritedprio == -1);
571 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
572 1.52 ad memset(l2, 0, sizeof(*l2));
573 1.52 ad l2->l_ts = ts;
574 1.52 ad }
575 1.2 thorpej
576 1.2 thorpej l2->l_stat = LSIDL;
577 1.2 thorpej l2->l_proc = p2;
578 1.52 ad l2->l_refcnt = 1;
579 1.75 ad l2->l_class = sclass;
580 1.116 ad
581 1.116 ad /*
582 1.116 ad * If vfork(), we want the LWP to run fast and on the same CPU
583 1.116 ad * as its parent, so that it can reuse the VM context and cache
584 1.116 ad * footprint on the local CPU.
585 1.116 ad */
586 1.116 ad l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
587 1.82 ad l2->l_kpribase = PRI_KERNEL;
588 1.52 ad l2->l_priority = l1->l_priority;
589 1.75 ad l2->l_inheritedprio = -1;
590 1.56 pavel l2->l_flag = inmem ? LW_INMEM : 0;
591 1.88 ad l2->l_pflag = LP_MPSAFE;
592 1.97 ad l2->l_fd = p2->p_fd;
593 1.110 ad TAILQ_INIT(&l2->l_ld_locks);
594 1.41 thorpej
595 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
596 1.91 rmind /* Mark it as a system LWP and not a candidate for swapping */
597 1.56 pavel l2->l_flag |= LW_SYSTEM;
598 1.52 ad }
599 1.2 thorpej
600 1.107 ad kpreempt_disable();
601 1.107 ad l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
602 1.107 ad l2->l_cpu = l1->l_cpu;
603 1.107 ad kpreempt_enable();
604 1.107 ad
605 1.73 rmind lwp_initspecific(l2);
606 1.75 ad sched_lwp_fork(l1, l2);
607 1.37 ad lwp_update_creds(l2);
608 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
609 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
610 1.65 ad mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
611 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
612 1.52 ad l2->l_syncobj = &sched_syncobj;
613 1.2 thorpej
614 1.2 thorpej if (rnewlwpp != NULL)
615 1.2 thorpej *rnewlwpp = l2;
616 1.2 thorpej
617 1.36 yamt l2->l_addr = UAREA_TO_USER(uaddr);
618 1.2 thorpej uvm_lwp_fork(l1, l2, stack, stacksize, func,
619 1.2 thorpej (arg != NULL) ? arg : l2);
620 1.2 thorpej
621 1.103 ad mutex_enter(p2->p_lock);
622 1.52 ad
623 1.52 ad if ((flags & LWP_DETACHED) != 0) {
624 1.52 ad l2->l_prflag = LPR_DETACHED;
625 1.52 ad p2->p_ndlwps++;
626 1.52 ad } else
627 1.52 ad l2->l_prflag = 0;
628 1.52 ad
629 1.52 ad l2->l_sigmask = l1->l_sigmask;
630 1.52 ad CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
631 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
632 1.52 ad
633 1.53 yamt p2->p_nlwpid++;
634 1.53 yamt if (p2->p_nlwpid == 0)
635 1.53 yamt p2->p_nlwpid++;
636 1.53 yamt l2->l_lid = p2->p_nlwpid;
637 1.2 thorpej LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
638 1.2 thorpej p2->p_nlwps++;
639 1.2 thorpej
640 1.103 ad mutex_exit(p2->p_lock);
641 1.52 ad
642 1.102 ad mutex_enter(proc_lock);
643 1.2 thorpej LIST_INSERT_HEAD(&alllwp, l2, l_list);
644 1.102 ad mutex_exit(proc_lock);
645 1.2 thorpej
646 1.91 rmind if ((p2->p_flag & PK_SYSTEM) == 0) {
647 1.91 rmind /* Locking is needed, since LWP is in the list of all LWPs */
648 1.91 rmind lwp_lock(l2);
649 1.91 rmind /* Inherit a processor-set */
650 1.91 rmind l2->l_psid = l1->l_psid;
651 1.91 rmind /* Inherit an affinity */
652 1.116.2.3 simonb if (l1->l_flag & LW_AFFINITY) {
653 1.116.2.3 simonb proc_t *p = l1->l_proc;
654 1.116.2.3 simonb
655 1.116.2.3 simonb mutex_enter(p->p_lock);
656 1.116.2.3 simonb if (l1->l_flag & LW_AFFINITY) {
657 1.116.2.3 simonb kcpuset_use(l1->l_affinity);
658 1.116.2.3 simonb l2->l_affinity = l1->l_affinity;
659 1.116.2.3 simonb l2->l_flag |= LW_AFFINITY;
660 1.116.2.3 simonb }
661 1.116.2.3 simonb mutex_exit(p->p_lock);
662 1.116.2.1 simonb }
663 1.91 rmind /* Look for a CPU to start */
664 1.91 rmind l2->l_cpu = sched_takecpu(l2);
665 1.91 rmind lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
666 1.91 rmind }
667 1.91 rmind
668 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
669 1.57 dsl
670 1.16 manu if (p2->p_emul->e_lwp_fork)
671 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
672 1.16 manu
673 1.2 thorpej return (0);
674 1.2 thorpej }
675 1.2 thorpej
676 1.2 thorpej /*
677 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
678 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
679 1.64 yamt * previous LWP, at splsched.
680 1.64 yamt */
681 1.64 yamt void
682 1.64 yamt lwp_startup(struct lwp *prev, struct lwp *new)
683 1.64 yamt {
684 1.64 yamt
685 1.107 ad KASSERT(kpreempt_disabled());
686 1.64 yamt if (prev != NULL) {
687 1.81 ad /*
688 1.81 ad * Normalize the count of the spin-mutexes, it was
689 1.81 ad * increased in mi_switch(). Unmark the state of
690 1.81 ad * context switch - it is finished for previous LWP.
691 1.81 ad */
692 1.81 ad curcpu()->ci_mtx_count++;
693 1.81 ad membar_exit();
694 1.81 ad prev->l_ctxswtch = 0;
695 1.64 yamt }
696 1.107 ad KPREEMPT_DISABLE(new);
697 1.107 ad spl0();
698 1.105 ad pmap_activate(new);
699 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
700 1.107 ad KPREEMPT_ENABLE(new);
701 1.65 ad if ((new->l_pflag & LP_MPSAFE) == 0) {
702 1.65 ad KERNEL_LOCK(1, new);
703 1.65 ad }
704 1.64 yamt }
705 1.64 yamt
706 1.64 yamt /*
707 1.65 ad * Exit an LWP.
708 1.2 thorpej */
709 1.2 thorpej void
710 1.2 thorpej lwp_exit(struct lwp *l)
711 1.2 thorpej {
712 1.2 thorpej struct proc *p = l->l_proc;
713 1.52 ad struct lwp *l2;
714 1.65 ad bool current;
715 1.65 ad
716 1.65 ad current = (l == curlwp);
717 1.2 thorpej
718 1.114 rmind KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
719 1.2 thorpej
720 1.52 ad /*
721 1.52 ad * Verify that we hold no locks other than the kernel lock.
722 1.52 ad */
723 1.52 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
724 1.16 manu
725 1.2 thorpej /*
726 1.52 ad * If we are the last live LWP in a process, we need to exit the
727 1.52 ad * entire process. We do so with an exit status of zero, because
728 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
729 1.52 ad *
730 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
731 1.52 ad * must increment the count of zombies here.
732 1.45 thorpej *
733 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
734 1.2 thorpej */
735 1.103 ad mutex_enter(p->p_lock);
736 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
737 1.65 ad KASSERT(current == true);
738 1.88 ad /* XXXSMP kernel_lock not held */
739 1.2 thorpej exit1(l, 0);
740 1.19 jdolecek /* NOTREACHED */
741 1.2 thorpej }
742 1.52 ad p->p_nzlwps++;
743 1.103 ad mutex_exit(p->p_lock);
744 1.52 ad
745 1.52 ad if (p->p_emul->e_lwp_exit)
746 1.52 ad (*p->p_emul->e_lwp_exit)(l);
747 1.2 thorpej
748 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
749 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
750 1.45 thorpej
751 1.52 ad /*
752 1.52 ad * Release our cached credentials.
753 1.52 ad */
754 1.37 ad kauth_cred_free(l->l_cred);
755 1.70 ad callout_destroy(&l->l_timeout_ch);
756 1.65 ad
757 1.65 ad /*
758 1.65 ad * While we can still block, mark the LWP as unswappable to
759 1.65 ad * prevent conflicts with the with the swapper.
760 1.65 ad */
761 1.65 ad if (current)
762 1.65 ad uvm_lwp_hold(l);
763 1.37 ad
764 1.52 ad /*
765 1.52 ad * Remove the LWP from the global list.
766 1.52 ad */
767 1.102 ad mutex_enter(proc_lock);
768 1.52 ad LIST_REMOVE(l, l_list);
769 1.102 ad mutex_exit(proc_lock);
770 1.19 jdolecek
771 1.52 ad /*
772 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
773 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
774 1.52 ad * mark it waiting for collection in the proc structure. Note that
775 1.52 ad * before we can do that, we need to free any other dead, deatched
776 1.52 ad * LWP waiting to meet its maker.
777 1.52 ad */
778 1.103 ad mutex_enter(p->p_lock);
779 1.52 ad lwp_drainrefs(l);
780 1.31 yamt
781 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
782 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
783 1.52 ad p->p_zomblwp = NULL;
784 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
785 1.103 ad mutex_enter(p->p_lock);
786 1.72 ad l->l_refcnt++;
787 1.72 ad lwp_drainrefs(l);
788 1.52 ad }
789 1.52 ad p->p_zomblwp = l;
790 1.52 ad }
791 1.31 yamt
792 1.52 ad /*
793 1.52 ad * If we find a pending signal for the process and we have been
794 1.52 ad * asked to check for signals, then we loose: arrange to have
795 1.52 ad * all other LWPs in the process check for signals.
796 1.52 ad */
797 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
798 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
799 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
800 1.52 ad lwp_lock(l2);
801 1.56 pavel l2->l_flag |= LW_PENDSIG;
802 1.52 ad lwp_unlock(l2);
803 1.52 ad }
804 1.31 yamt }
805 1.31 yamt
806 1.52 ad lwp_lock(l);
807 1.52 ad l->l_stat = LSZOMB;
808 1.90 ad if (l->l_name != NULL)
809 1.90 ad strcpy(l->l_name, "(zombie)");
810 1.116.2.3 simonb if (l->l_flag & LW_AFFINITY)
811 1.116.2.3 simonb l->l_flag &= ~LW_AFFINITY;
812 1.52 ad lwp_unlock(l);
813 1.2 thorpej p->p_nrlwps--;
814 1.52 ad cv_broadcast(&p->p_lwpcv);
815 1.78 ad if (l->l_lwpctl != NULL)
816 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
817 1.103 ad mutex_exit(p->p_lock);
818 1.52 ad
819 1.116.2.3 simonb /* Safe without lock since LWP is in zombie state */
820 1.116.2.3 simonb if (l->l_affinity) {
821 1.116.2.3 simonb kcpuset_unuse(l->l_affinity, NULL);
822 1.116.2.3 simonb l->l_affinity = NULL;
823 1.116.2.3 simonb }
824 1.116.2.3 simonb
825 1.52 ad /*
826 1.52 ad * We can no longer block. At this point, lwp_free() may already
827 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
828 1.52 ad *
829 1.52 ad * Free MD LWP resources.
830 1.52 ad */
831 1.52 ad #ifndef __NO_CPU_LWP_FREE
832 1.52 ad cpu_lwp_free(l, 0);
833 1.52 ad #endif
834 1.2 thorpej
835 1.65 ad if (current) {
836 1.65 ad pmap_deactivate(l);
837 1.65 ad
838 1.65 ad /*
839 1.65 ad * Release the kernel lock, and switch away into
840 1.65 ad * oblivion.
841 1.65 ad */
842 1.52 ad #ifdef notyet
843 1.65 ad /* XXXSMP hold in lwp_userret() */
844 1.65 ad KERNEL_UNLOCK_LAST(l);
845 1.52 ad #else
846 1.65 ad KERNEL_UNLOCK_ALL(l, NULL);
847 1.52 ad #endif
848 1.65 ad lwp_exit_switchaway(l);
849 1.65 ad }
850 1.2 thorpej }
851 1.2 thorpej
852 1.52 ad /*
853 1.52 ad * Free a dead LWP's remaining resources.
854 1.52 ad *
855 1.52 ad * XXXLWP limits.
856 1.52 ad */
857 1.52 ad void
858 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
859 1.52 ad {
860 1.52 ad struct proc *p = l->l_proc;
861 1.100 ad struct rusage *ru;
862 1.52 ad ksiginfoq_t kq;
863 1.52 ad
864 1.92 yamt KASSERT(l != curlwp);
865 1.92 yamt
866 1.52 ad /*
867 1.52 ad * If this was not the last LWP in the process, then adjust
868 1.52 ad * counters and unlock.
869 1.52 ad */
870 1.52 ad if (!last) {
871 1.52 ad /*
872 1.52 ad * Add the LWP's run time to the process' base value.
873 1.52 ad * This needs to co-incide with coming off p_lwps.
874 1.52 ad */
875 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime);
876 1.64 yamt p->p_pctcpu += l->l_pctcpu;
877 1.100 ad ru = &p->p_stats->p_ru;
878 1.100 ad ruadd(ru, &l->l_ru);
879 1.100 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
880 1.100 ad ru->ru_nivcsw += l->l_nivcsw;
881 1.52 ad LIST_REMOVE(l, l_sibling);
882 1.52 ad p->p_nlwps--;
883 1.52 ad p->p_nzlwps--;
884 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
885 1.52 ad p->p_ndlwps--;
886 1.63 ad
887 1.63 ad /*
888 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
889 1.63 ad * deadlock.
890 1.63 ad */
891 1.63 ad cv_broadcast(&p->p_lwpcv);
892 1.103 ad mutex_exit(p->p_lock);
893 1.63 ad }
894 1.52 ad
895 1.52 ad #ifdef MULTIPROCESSOR
896 1.63 ad /*
897 1.63 ad * In the unlikely event that the LWP is still on the CPU,
898 1.63 ad * then spin until it has switched away. We need to release
899 1.63 ad * all locks to avoid deadlock against interrupt handlers on
900 1.63 ad * the target CPU.
901 1.63 ad */
902 1.115 ad if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
903 1.63 ad int count;
904 1.64 yamt (void)count; /* XXXgcc */
905 1.63 ad KERNEL_UNLOCK_ALL(curlwp, &count);
906 1.115 ad while ((l->l_pflag & LP_RUNNING) != 0 ||
907 1.64 yamt l->l_cpu->ci_curlwp == l)
908 1.63 ad SPINLOCK_BACKOFF_HOOK;
909 1.63 ad KERNEL_LOCK(count, curlwp);
910 1.63 ad }
911 1.52 ad #endif
912 1.52 ad
913 1.52 ad /*
914 1.52 ad * Destroy the LWP's remaining signal information.
915 1.52 ad */
916 1.52 ad ksiginfo_queue_init(&kq);
917 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
918 1.52 ad ksiginfo_queue_drain(&kq);
919 1.52 ad cv_destroy(&l->l_sigcv);
920 1.65 ad mutex_destroy(&l->l_swaplock);
921 1.2 thorpej
922 1.19 jdolecek /*
923 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
924 1.93 yamt * caller wants to recycle them. Also, free the scheduler specific
925 1.93 yamt * data.
926 1.52 ad *
927 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
928 1.52 ad * so if it comes up just drop it quietly and move on.
929 1.52 ad *
930 1.52 ad * We don't recycle the VM resources at this time.
931 1.19 jdolecek */
932 1.78 ad if (l->l_lwpctl != NULL)
933 1.78 ad lwp_ctl_free(l);
934 1.64 yamt sched_lwp_exit(l);
935 1.64 yamt
936 1.52 ad if (!recycle && l->l_ts != &turnstile0)
937 1.76 ad pool_cache_put(turnstile_cache, l->l_ts);
938 1.90 ad if (l->l_name != NULL)
939 1.90 ad kmem_free(l->l_name, MAXCOMLEN);
940 1.52 ad #ifndef __NO_CPU_LWP_FREE
941 1.52 ad cpu_lwp_free2(l);
942 1.52 ad #endif
943 1.92 yamt KASSERT((l->l_flag & LW_INMEM) != 0);
944 1.19 jdolecek uvm_lwp_exit(l);
945 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
946 1.75 ad KASSERT(l->l_inheritedprio == -1);
947 1.52 ad if (!recycle)
948 1.87 ad pool_cache_put(lwp_cache, l);
949 1.2 thorpej }
950 1.2 thorpej
951 1.2 thorpej /*
952 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP.
953 1.91 rmind */
954 1.91 rmind void
955 1.114 rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
956 1.91 rmind {
957 1.114 rmind struct schedstate_percpu *tspc;
958 1.116.2.2 simonb int lstat = l->l_stat;
959 1.116.2.2 simonb
960 1.91 rmind KASSERT(lwp_locked(l, NULL));
961 1.114 rmind KASSERT(tci != NULL);
962 1.114 rmind
963 1.116.2.2 simonb /* If LWP is still on the CPU, it must be handled like LSONPROC */
964 1.116.2.2 simonb if ((l->l_pflag & LP_RUNNING) != 0) {
965 1.116.2.2 simonb lstat = LSONPROC;
966 1.116.2.2 simonb }
967 1.116.2.2 simonb
968 1.114 rmind /*
969 1.114 rmind * The destination CPU could be changed while previous migration
970 1.114 rmind * was not finished.
971 1.114 rmind */
972 1.116.2.2 simonb if (l->l_target_cpu != NULL) {
973 1.114 rmind l->l_target_cpu = tci;
974 1.114 rmind lwp_unlock(l);
975 1.114 rmind return;
976 1.114 rmind }
977 1.91 rmind
978 1.114 rmind /* Nothing to do if trying to migrate to the same CPU */
979 1.114 rmind if (l->l_cpu == tci) {
980 1.91 rmind lwp_unlock(l);
981 1.91 rmind return;
982 1.91 rmind }
983 1.91 rmind
984 1.114 rmind KASSERT(l->l_target_cpu == NULL);
985 1.114 rmind tspc = &tci->ci_schedstate;
986 1.116.2.2 simonb switch (lstat) {
987 1.91 rmind case LSRUN:
988 1.91 rmind if (l->l_flag & LW_INMEM) {
989 1.114 rmind l->l_target_cpu = tci;
990 1.114 rmind lwp_unlock(l);
991 1.114 rmind return;
992 1.91 rmind }
993 1.91 rmind case LSIDL:
994 1.114 rmind l->l_cpu = tci;
995 1.114 rmind lwp_unlock_to(l, tspc->spc_mutex);
996 1.91 rmind return;
997 1.91 rmind case LSSLEEP:
998 1.114 rmind l->l_cpu = tci;
999 1.91 rmind break;
1000 1.91 rmind case LSSTOP:
1001 1.91 rmind case LSSUSPENDED:
1002 1.114 rmind l->l_cpu = tci;
1003 1.114 rmind if (l->l_wchan == NULL) {
1004 1.114 rmind lwp_unlock_to(l, tspc->spc_lwplock);
1005 1.114 rmind return;
1006 1.91 rmind }
1007 1.114 rmind break;
1008 1.91 rmind case LSONPROC:
1009 1.114 rmind l->l_target_cpu = tci;
1010 1.114 rmind spc_lock(l->l_cpu);
1011 1.114 rmind cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1012 1.114 rmind spc_unlock(l->l_cpu);
1013 1.91 rmind break;
1014 1.91 rmind }
1015 1.91 rmind lwp_unlock(l);
1016 1.91 rmind }
1017 1.91 rmind
1018 1.91 rmind /*
1019 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case,
1020 1.94 rmind * the calling process and first LWP in the list will be used.
1021 1.103 ad * On success - returns proc locked.
1022 1.91 rmind */
1023 1.91 rmind struct lwp *
1024 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid)
1025 1.91 rmind {
1026 1.91 rmind proc_t *p;
1027 1.91 rmind lwp_t *l;
1028 1.91 rmind
1029 1.91 rmind /* Find the process */
1030 1.94 rmind p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1031 1.91 rmind if (p == NULL)
1032 1.91 rmind return NULL;
1033 1.103 ad mutex_enter(p->p_lock);
1034 1.94 rmind if (pid != 0) {
1035 1.94 rmind /* Case of p_find */
1036 1.102 ad mutex_exit(proc_lock);
1037 1.94 rmind }
1038 1.91 rmind
1039 1.91 rmind /* Find the thread */
1040 1.94 rmind l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1041 1.103 ad if (l == NULL) {
1042 1.103 ad mutex_exit(p->p_lock);
1043 1.103 ad }
1044 1.91 rmind
1045 1.91 rmind return l;
1046 1.91 rmind }
1047 1.91 rmind
1048 1.91 rmind /*
1049 1.52 ad * Look up a live LWP within the speicifed process, and return it locked.
1050 1.52 ad *
1051 1.103 ad * Must be called with p->p_lock held.
1052 1.52 ad */
1053 1.52 ad struct lwp *
1054 1.52 ad lwp_find(struct proc *p, int id)
1055 1.52 ad {
1056 1.52 ad struct lwp *l;
1057 1.52 ad
1058 1.103 ad KASSERT(mutex_owned(p->p_lock));
1059 1.52 ad
1060 1.52 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1061 1.52 ad if (l->l_lid == id)
1062 1.52 ad break;
1063 1.52 ad }
1064 1.52 ad
1065 1.52 ad /*
1066 1.52 ad * No need to lock - all of these conditions will
1067 1.52 ad * be visible with the process level mutex held.
1068 1.52 ad */
1069 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1070 1.52 ad l = NULL;
1071 1.52 ad
1072 1.52 ad return l;
1073 1.52 ad }
1074 1.52 ad
1075 1.52 ad /*
1076 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1077 1.37 ad *
1078 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1079 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1080 1.37 ad * it's credentials by calling this routine. This may be called from
1081 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1082 1.37 ad */
1083 1.37 ad void
1084 1.37 ad lwp_update_creds(struct lwp *l)
1085 1.37 ad {
1086 1.37 ad kauth_cred_t oc;
1087 1.37 ad struct proc *p;
1088 1.37 ad
1089 1.37 ad p = l->l_proc;
1090 1.37 ad oc = l->l_cred;
1091 1.37 ad
1092 1.103 ad mutex_enter(p->p_lock);
1093 1.37 ad kauth_cred_hold(p->p_cred);
1094 1.37 ad l->l_cred = p->p_cred;
1095 1.98 ad l->l_prflag &= ~LPR_CRMOD;
1096 1.103 ad mutex_exit(p->p_lock);
1097 1.88 ad if (oc != NULL)
1098 1.37 ad kauth_cred_free(oc);
1099 1.52 ad }
1100 1.52 ad
1101 1.52 ad /*
1102 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1103 1.52 ad * one we specify.
1104 1.52 ad */
1105 1.52 ad int
1106 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1107 1.52 ad {
1108 1.52 ad kmutex_t *cur = l->l_mutex;
1109 1.52 ad
1110 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1111 1.52 ad }
1112 1.52 ad
1113 1.52 ad /*
1114 1.52 ad * Lock an LWP.
1115 1.52 ad */
1116 1.116.2.1 simonb kmutex_t *
1117 1.52 ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
1118 1.52 ad {
1119 1.52 ad
1120 1.52 ad /*
1121 1.52 ad * XXXgcc ignoring kmutex_t * volatile on i386
1122 1.52 ad *
1123 1.52 ad * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1124 1.52 ad */
1125 1.52 ad #if 1
1126 1.52 ad while (l->l_mutex != old) {
1127 1.52 ad #else
1128 1.52 ad for (;;) {
1129 1.52 ad #endif
1130 1.52 ad mutex_spin_exit(old);
1131 1.52 ad old = l->l_mutex;
1132 1.52 ad mutex_spin_enter(old);
1133 1.52 ad
1134 1.52 ad /*
1135 1.52 ad * mutex_enter() will have posted a read barrier. Re-test
1136 1.52 ad * l->l_mutex. If it has changed, we need to try again.
1137 1.52 ad */
1138 1.52 ad #if 1
1139 1.52 ad }
1140 1.52 ad #else
1141 1.52 ad } while (__predict_false(l->l_mutex != old));
1142 1.52 ad #endif
1143 1.116.2.1 simonb
1144 1.116.2.1 simonb return old;
1145 1.52 ad }
1146 1.52 ad
1147 1.52 ad /*
1148 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1149 1.52 ad */
1150 1.52 ad void
1151 1.52 ad lwp_setlock(struct lwp *l, kmutex_t *new)
1152 1.52 ad {
1153 1.52 ad
1154 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1155 1.52 ad
1156 1.107 ad membar_exit();
1157 1.52 ad l->l_mutex = new;
1158 1.52 ad }
1159 1.52 ad
1160 1.52 ad /*
1161 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1162 1.52 ad * must be held.
1163 1.52 ad */
1164 1.52 ad void
1165 1.52 ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
1166 1.52 ad {
1167 1.52 ad kmutex_t *old;
1168 1.52 ad
1169 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1170 1.52 ad
1171 1.52 ad old = l->l_mutex;
1172 1.107 ad membar_exit();
1173 1.52 ad l->l_mutex = new;
1174 1.52 ad mutex_spin_exit(old);
1175 1.52 ad }
1176 1.52 ad
1177 1.52 ad /*
1178 1.52 ad * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1179 1.52 ad * locked.
1180 1.52 ad */
1181 1.52 ad void
1182 1.52 ad lwp_relock(struct lwp *l, kmutex_t *new)
1183 1.52 ad {
1184 1.52 ad kmutex_t *old;
1185 1.52 ad
1186 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1187 1.52 ad
1188 1.52 ad old = l->l_mutex;
1189 1.52 ad if (old != new) {
1190 1.52 ad mutex_spin_enter(new);
1191 1.52 ad l->l_mutex = new;
1192 1.52 ad mutex_spin_exit(old);
1193 1.52 ad }
1194 1.52 ad }
1195 1.52 ad
1196 1.60 yamt int
1197 1.60 yamt lwp_trylock(struct lwp *l)
1198 1.60 yamt {
1199 1.60 yamt kmutex_t *old;
1200 1.60 yamt
1201 1.60 yamt for (;;) {
1202 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1203 1.60 yamt return 0;
1204 1.60 yamt if (__predict_true(l->l_mutex == old))
1205 1.60 yamt return 1;
1206 1.60 yamt mutex_spin_exit(old);
1207 1.60 yamt }
1208 1.60 yamt }
1209 1.60 yamt
1210 1.96 ad u_int
1211 1.96 ad lwp_unsleep(lwp_t *l, bool cleanup)
1212 1.96 ad {
1213 1.96 ad
1214 1.96 ad KASSERT(mutex_owned(l->l_mutex));
1215 1.96 ad
1216 1.96 ad return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1217 1.96 ad }
1218 1.96 ad
1219 1.96 ad
1220 1.52 ad /*
1221 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1222 1.52 ad * set.
1223 1.52 ad */
1224 1.52 ad void
1225 1.52 ad lwp_userret(struct lwp *l)
1226 1.52 ad {
1227 1.52 ad struct proc *p;
1228 1.54 ad void (*hook)(void);
1229 1.52 ad int sig;
1230 1.52 ad
1231 1.114 rmind KASSERT(l == curlwp);
1232 1.114 rmind KASSERT(l->l_stat == LSONPROC);
1233 1.52 ad p = l->l_proc;
1234 1.52 ad
1235 1.75 ad #ifndef __HAVE_FAST_SOFTINTS
1236 1.75 ad /* Run pending soft interrupts. */
1237 1.75 ad if (l->l_cpu->ci_data.cpu_softints != 0)
1238 1.75 ad softint_overlay();
1239 1.75 ad #endif
1240 1.75 ad
1241 1.52 ad /*
1242 1.52 ad * It should be safe to do this read unlocked on a multiprocessor
1243 1.52 ad * system..
1244 1.52 ad */
1245 1.56 pavel while ((l->l_flag & LW_USERRET) != 0) {
1246 1.52 ad /*
1247 1.52 ad * Process pending signals first, unless the process
1248 1.61 ad * is dumping core or exiting, where we will instead
1249 1.101 rmind * enter the LW_WSUSPEND case below.
1250 1.52 ad */
1251 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1252 1.61 ad LW_PENDSIG) {
1253 1.103 ad mutex_enter(p->p_lock);
1254 1.52 ad while ((sig = issignal(l)) != 0)
1255 1.52 ad postsig(sig);
1256 1.103 ad mutex_exit(p->p_lock);
1257 1.52 ad }
1258 1.52 ad
1259 1.52 ad /*
1260 1.52 ad * Core-dump or suspend pending.
1261 1.52 ad *
1262 1.52 ad * In case of core dump, suspend ourselves, so that the
1263 1.52 ad * kernel stack and therefore the userland registers saved
1264 1.52 ad * in the trapframe are around for coredump() to write them
1265 1.52 ad * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1266 1.52 ad * will write the core file out once all other LWPs are
1267 1.52 ad * suspended.
1268 1.52 ad */
1269 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1270 1.103 ad mutex_enter(p->p_lock);
1271 1.52 ad p->p_nrlwps--;
1272 1.52 ad cv_broadcast(&p->p_lwpcv);
1273 1.52 ad lwp_lock(l);
1274 1.52 ad l->l_stat = LSSUSPENDED;
1275 1.104 ad lwp_unlock(l);
1276 1.103 ad mutex_exit(p->p_lock);
1277 1.104 ad lwp_lock(l);
1278 1.64 yamt mi_switch(l);
1279 1.52 ad }
1280 1.52 ad
1281 1.52 ad /* Process is exiting. */
1282 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1283 1.52 ad lwp_exit(l);
1284 1.52 ad KASSERT(0);
1285 1.52 ad /* NOTREACHED */
1286 1.52 ad }
1287 1.54 ad
1288 1.54 ad /* Call userret hook; used by Linux emulation. */
1289 1.56 pavel if ((l->l_flag & LW_WUSERRET) != 0) {
1290 1.54 ad lwp_lock(l);
1291 1.56 pavel l->l_flag &= ~LW_WUSERRET;
1292 1.54 ad lwp_unlock(l);
1293 1.54 ad hook = p->p_userret;
1294 1.54 ad p->p_userret = NULL;
1295 1.54 ad (*hook)();
1296 1.54 ad }
1297 1.52 ad }
1298 1.52 ad }
1299 1.52 ad
1300 1.52 ad /*
1301 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1302 1.52 ad */
1303 1.52 ad void
1304 1.52 ad lwp_need_userret(struct lwp *l)
1305 1.52 ad {
1306 1.63 ad KASSERT(lwp_locked(l, NULL));
1307 1.52 ad
1308 1.52 ad /*
1309 1.52 ad * Since the tests in lwp_userret() are done unlocked, make sure
1310 1.52 ad * that the condition will be seen before forcing the LWP to enter
1311 1.52 ad * kernel mode.
1312 1.52 ad */
1313 1.81 ad membar_producer();
1314 1.52 ad cpu_signotify(l);
1315 1.52 ad }
1316 1.52 ad
1317 1.52 ad /*
1318 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1319 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1320 1.52 ad */
1321 1.52 ad void
1322 1.52 ad lwp_addref(struct lwp *l)
1323 1.52 ad {
1324 1.52 ad
1325 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1326 1.52 ad KASSERT(l->l_stat != LSZOMB);
1327 1.52 ad KASSERT(l->l_refcnt != 0);
1328 1.52 ad
1329 1.52 ad l->l_refcnt++;
1330 1.52 ad }
1331 1.52 ad
1332 1.52 ad /*
1333 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1334 1.52 ad * then we must finalize the LWP's death.
1335 1.52 ad */
1336 1.52 ad void
1337 1.52 ad lwp_delref(struct lwp *l)
1338 1.52 ad {
1339 1.52 ad struct proc *p = l->l_proc;
1340 1.52 ad
1341 1.103 ad mutex_enter(p->p_lock);
1342 1.72 ad KASSERT(l->l_stat != LSZOMB);
1343 1.72 ad KASSERT(l->l_refcnt > 0);
1344 1.52 ad if (--l->l_refcnt == 0)
1345 1.76 ad cv_broadcast(&p->p_lwpcv);
1346 1.103 ad mutex_exit(p->p_lock);
1347 1.52 ad }
1348 1.52 ad
1349 1.52 ad /*
1350 1.52 ad * Drain all references to the current LWP.
1351 1.52 ad */
1352 1.52 ad void
1353 1.52 ad lwp_drainrefs(struct lwp *l)
1354 1.52 ad {
1355 1.52 ad struct proc *p = l->l_proc;
1356 1.52 ad
1357 1.103 ad KASSERT(mutex_owned(p->p_lock));
1358 1.52 ad KASSERT(l->l_refcnt != 0);
1359 1.52 ad
1360 1.52 ad l->l_refcnt--;
1361 1.52 ad while (l->l_refcnt != 0)
1362 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
1363 1.37 ad }
1364 1.41 thorpej
1365 1.41 thorpej /*
1366 1.41 thorpej * lwp_specific_key_create --
1367 1.41 thorpej * Create a key for subsystem lwp-specific data.
1368 1.41 thorpej */
1369 1.41 thorpej int
1370 1.41 thorpej lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1371 1.41 thorpej {
1372 1.41 thorpej
1373 1.45 thorpej return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1374 1.41 thorpej }
1375 1.41 thorpej
1376 1.41 thorpej /*
1377 1.41 thorpej * lwp_specific_key_delete --
1378 1.41 thorpej * Delete a key for subsystem lwp-specific data.
1379 1.41 thorpej */
1380 1.41 thorpej void
1381 1.41 thorpej lwp_specific_key_delete(specificdata_key_t key)
1382 1.41 thorpej {
1383 1.41 thorpej
1384 1.41 thorpej specificdata_key_delete(lwp_specificdata_domain, key);
1385 1.41 thorpej }
1386 1.41 thorpej
1387 1.45 thorpej /*
1388 1.45 thorpej * lwp_initspecific --
1389 1.45 thorpej * Initialize an LWP's specificdata container.
1390 1.45 thorpej */
1391 1.42 christos void
1392 1.42 christos lwp_initspecific(struct lwp *l)
1393 1.42 christos {
1394 1.42 christos int error;
1395 1.45 thorpej
1396 1.42 christos error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1397 1.42 christos KASSERT(error == 0);
1398 1.42 christos }
1399 1.42 christos
1400 1.41 thorpej /*
1401 1.45 thorpej * lwp_finispecific --
1402 1.45 thorpej * Finalize an LWP's specificdata container.
1403 1.45 thorpej */
1404 1.45 thorpej void
1405 1.45 thorpej lwp_finispecific(struct lwp *l)
1406 1.45 thorpej {
1407 1.45 thorpej
1408 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1409 1.45 thorpej }
1410 1.45 thorpej
1411 1.45 thorpej /*
1412 1.41 thorpej * lwp_getspecific --
1413 1.41 thorpej * Return lwp-specific data corresponding to the specified key.
1414 1.41 thorpej *
1415 1.41 thorpej * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1416 1.41 thorpej * only its OWN SPECIFIC DATA. If it is necessary to access another
1417 1.41 thorpej * LWP's specifc data, care must be taken to ensure that doing so
1418 1.41 thorpej * would not cause internal data structure inconsistency (i.e. caller
1419 1.41 thorpej * can guarantee that the target LWP is not inside an lwp_getspecific()
1420 1.41 thorpej * or lwp_setspecific() call).
1421 1.41 thorpej */
1422 1.41 thorpej void *
1423 1.44 thorpej lwp_getspecific(specificdata_key_t key)
1424 1.41 thorpej {
1425 1.41 thorpej
1426 1.41 thorpej return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1427 1.44 thorpej &curlwp->l_specdataref, key));
1428 1.41 thorpej }
1429 1.41 thorpej
1430 1.47 hannken void *
1431 1.47 hannken _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1432 1.47 hannken {
1433 1.47 hannken
1434 1.47 hannken return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1435 1.47 hannken &l->l_specdataref, key));
1436 1.47 hannken }
1437 1.47 hannken
1438 1.41 thorpej /*
1439 1.41 thorpej * lwp_setspecific --
1440 1.41 thorpej * Set lwp-specific data corresponding to the specified key.
1441 1.41 thorpej */
1442 1.41 thorpej void
1443 1.45 thorpej lwp_setspecific(specificdata_key_t key, void *data)
1444 1.41 thorpej {
1445 1.41 thorpej
1446 1.41 thorpej specificdata_setspecific(lwp_specificdata_domain,
1447 1.44 thorpej &curlwp->l_specdataref, key, data);
1448 1.41 thorpej }
1449 1.78 ad
1450 1.78 ad /*
1451 1.78 ad * Allocate a new lwpctl structure for a user LWP.
1452 1.78 ad */
1453 1.78 ad int
1454 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr)
1455 1.78 ad {
1456 1.78 ad lcproc_t *lp;
1457 1.78 ad u_int bit, i, offset;
1458 1.78 ad struct uvm_object *uao;
1459 1.78 ad int error;
1460 1.78 ad lcpage_t *lcp;
1461 1.78 ad proc_t *p;
1462 1.78 ad lwp_t *l;
1463 1.78 ad
1464 1.78 ad l = curlwp;
1465 1.78 ad p = l->l_proc;
1466 1.78 ad
1467 1.81 ad if (l->l_lcpage != NULL) {
1468 1.81 ad lcp = l->l_lcpage;
1469 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1470 1.78 ad return (EINVAL);
1471 1.81 ad }
1472 1.78 ad
1473 1.78 ad /* First time around, allocate header structure for the process. */
1474 1.78 ad if ((lp = p->p_lwpctl) == NULL) {
1475 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1476 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1477 1.78 ad lp->lp_uao = NULL;
1478 1.78 ad TAILQ_INIT(&lp->lp_pages);
1479 1.103 ad mutex_enter(p->p_lock);
1480 1.78 ad if (p->p_lwpctl == NULL) {
1481 1.78 ad p->p_lwpctl = lp;
1482 1.103 ad mutex_exit(p->p_lock);
1483 1.78 ad } else {
1484 1.103 ad mutex_exit(p->p_lock);
1485 1.78 ad mutex_destroy(&lp->lp_lock);
1486 1.78 ad kmem_free(lp, sizeof(*lp));
1487 1.78 ad lp = p->p_lwpctl;
1488 1.78 ad }
1489 1.78 ad }
1490 1.78 ad
1491 1.78 ad /*
1492 1.78 ad * Set up an anonymous memory region to hold the shared pages.
1493 1.78 ad * Map them into the process' address space. The user vmspace
1494 1.78 ad * gets the first reference on the UAO.
1495 1.78 ad */
1496 1.78 ad mutex_enter(&lp->lp_lock);
1497 1.78 ad if (lp->lp_uao == NULL) {
1498 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1499 1.78 ad lp->lp_cur = 0;
1500 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ;
1501 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1502 1.78 ad (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1503 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1504 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1505 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1506 1.78 ad if (error != 0) {
1507 1.78 ad uao_detach(lp->lp_uao);
1508 1.78 ad lp->lp_uao = NULL;
1509 1.78 ad mutex_exit(&lp->lp_lock);
1510 1.78 ad return error;
1511 1.78 ad }
1512 1.78 ad }
1513 1.78 ad
1514 1.78 ad /* Get a free block and allocate for this LWP. */
1515 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1516 1.78 ad if (lcp->lcp_nfree != 0)
1517 1.78 ad break;
1518 1.78 ad }
1519 1.78 ad if (lcp == NULL) {
1520 1.78 ad /* Nothing available - try to set up a free page. */
1521 1.78 ad if (lp->lp_cur == lp->lp_max) {
1522 1.78 ad mutex_exit(&lp->lp_lock);
1523 1.78 ad return ENOMEM;
1524 1.78 ad }
1525 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1526 1.79 yamt if (lcp == NULL) {
1527 1.79 yamt mutex_exit(&lp->lp_lock);
1528 1.78 ad return ENOMEM;
1529 1.79 yamt }
1530 1.78 ad /*
1531 1.78 ad * Wire the next page down in kernel space. Since this
1532 1.78 ad * is a new mapping, we must add a reference.
1533 1.78 ad */
1534 1.78 ad uao = lp->lp_uao;
1535 1.78 ad (*uao->pgops->pgo_reference)(uao);
1536 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map);
1537 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1538 1.78 ad uao, lp->lp_cur, PAGE_SIZE,
1539 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1540 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1541 1.78 ad if (error != 0) {
1542 1.78 ad mutex_exit(&lp->lp_lock);
1543 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1544 1.78 ad (*uao->pgops->pgo_detach)(uao);
1545 1.78 ad return error;
1546 1.78 ad }
1547 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1548 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1549 1.89 yamt if (error != 0) {
1550 1.89 yamt mutex_exit(&lp->lp_lock);
1551 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr,
1552 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE);
1553 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1554 1.89 yamt return error;
1555 1.89 yamt }
1556 1.78 ad /* Prepare the page descriptor and link into the list. */
1557 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1558 1.78 ad lp->lp_cur += PAGE_SIZE;
1559 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE;
1560 1.78 ad lcp->lcp_rotor = 0;
1561 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1562 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1563 1.78 ad }
1564 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1565 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES)
1566 1.78 ad i = 0;
1567 1.78 ad }
1568 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1;
1569 1.78 ad lcp->lcp_bitmap[i] ^= (1 << bit);
1570 1.78 ad lcp->lcp_rotor = i;
1571 1.78 ad lcp->lcp_nfree--;
1572 1.78 ad l->l_lcpage = lcp;
1573 1.78 ad offset = (i << 5) + bit;
1574 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1575 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1576 1.78 ad mutex_exit(&lp->lp_lock);
1577 1.78 ad
1578 1.107 ad KPREEMPT_DISABLE(l);
1579 1.111 ad l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1580 1.107 ad KPREEMPT_ENABLE(l);
1581 1.78 ad
1582 1.78 ad return 0;
1583 1.78 ad }
1584 1.78 ad
1585 1.78 ad /*
1586 1.78 ad * Free an lwpctl structure back to the per-process list.
1587 1.78 ad */
1588 1.78 ad void
1589 1.78 ad lwp_ctl_free(lwp_t *l)
1590 1.78 ad {
1591 1.78 ad lcproc_t *lp;
1592 1.78 ad lcpage_t *lcp;
1593 1.78 ad u_int map, offset;
1594 1.78 ad
1595 1.78 ad lp = l->l_proc->p_lwpctl;
1596 1.78 ad KASSERT(lp != NULL);
1597 1.78 ad
1598 1.78 ad lcp = l->l_lcpage;
1599 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1600 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE);
1601 1.78 ad
1602 1.78 ad mutex_enter(&lp->lp_lock);
1603 1.78 ad lcp->lcp_nfree++;
1604 1.78 ad map = offset >> 5;
1605 1.78 ad lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1606 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1607 1.78 ad lcp->lcp_rotor = map;
1608 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1609 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1610 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1611 1.78 ad }
1612 1.78 ad mutex_exit(&lp->lp_lock);
1613 1.78 ad }
1614 1.78 ad
1615 1.78 ad /*
1616 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely
1617 1.78 ad * called by the last LWP in the process.
1618 1.78 ad */
1619 1.78 ad void
1620 1.78 ad lwp_ctl_exit(void)
1621 1.78 ad {
1622 1.78 ad lcpage_t *lcp, *next;
1623 1.78 ad lcproc_t *lp;
1624 1.78 ad proc_t *p;
1625 1.78 ad lwp_t *l;
1626 1.78 ad
1627 1.78 ad l = curlwp;
1628 1.78 ad l->l_lwpctl = NULL;
1629 1.95 ad l->l_lcpage = NULL;
1630 1.78 ad p = l->l_proc;
1631 1.78 ad lp = p->p_lwpctl;
1632 1.78 ad
1633 1.78 ad KASSERT(lp != NULL);
1634 1.78 ad KASSERT(p->p_nlwps == 1);
1635 1.78 ad
1636 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1637 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain);
1638 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr,
1639 1.78 ad lcp->lcp_kaddr + PAGE_SIZE);
1640 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1641 1.78 ad }
1642 1.78 ad
1643 1.78 ad if (lp->lp_uao != NULL) {
1644 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1645 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ);
1646 1.78 ad }
1647 1.78 ad
1648 1.78 ad mutex_destroy(&lp->lp_lock);
1649 1.78 ad kmem_free(lp, sizeof(*lp));
1650 1.78 ad p->p_lwpctl = NULL;
1651 1.78 ad }
1652 1.84 yamt
1653 1.84 yamt #if defined(DDB)
1654 1.84 yamt void
1655 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1656 1.84 yamt {
1657 1.84 yamt lwp_t *l;
1658 1.84 yamt
1659 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) {
1660 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1661 1.84 yamt
1662 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) {
1663 1.84 yamt continue;
1664 1.84 yamt }
1665 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n",
1666 1.84 yamt (void *)addr, (void *)stack,
1667 1.84 yamt (size_t)(addr - stack), l);
1668 1.84 yamt }
1669 1.84 yamt }
1670 1.84 yamt #endif /* defined(DDB) */
1671