kern_lwp.c revision 1.125.2.2 1 1.125.2.2 skrll /* $NetBSD: kern_lwp.c,v 1.125.2.2 2009/03/03 18:32:56 skrll Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.125.2.2 skrll * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.9 lukem
32 1.52 ad /*
33 1.52 ad * Overview
34 1.52 ad *
35 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of
36 1.52 ad * execution within the kernel. The core state of an LWP is described
37 1.66 ad * by "struct lwp", also known as lwp_t.
38 1.52 ad *
39 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
40 1.52 ad * Every process contains at least one LWP, but may contain more. The
41 1.52 ad * process describes attributes shared among all of its LWPs such as a
42 1.52 ad * private address space, global execution state (stopped, active,
43 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
44 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel.
45 1.52 ad *
46 1.52 ad * Execution states
47 1.52 ad *
48 1.52 ad * At any given time, an LWP has overall state that is described by
49 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
50 1.52 ad * set is guaranteed to represent the absolute, current state of the
51 1.52 ad * LWP:
52 1.101 rmind *
53 1.101 rmind * LSONPROC
54 1.101 rmind *
55 1.101 rmind * On processor: the LWP is executing on a CPU, either in the
56 1.101 rmind * kernel or in user space.
57 1.101 rmind *
58 1.101 rmind * LSRUN
59 1.101 rmind *
60 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be
61 1.101 rmind * chosen to run by an idle processor, or by a processor that
62 1.101 rmind * has been asked to preempt a currently runnning but lower
63 1.101 rmind * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 1.52 ad * then the LWP is not on a run queue, but may be soon.
65 1.101 rmind *
66 1.101 rmind * LSIDL
67 1.101 rmind *
68 1.101 rmind * Idle: the LWP has been created but has not yet executed,
69 1.66 ad * or it has ceased executing a unit of work and is waiting
70 1.66 ad * to be started again.
71 1.101 rmind *
72 1.101 rmind * LSSUSPENDED:
73 1.101 rmind *
74 1.101 rmind * Suspended: the LWP has had its execution suspended by
75 1.52 ad * another LWP in the same process using the _lwp_suspend()
76 1.52 ad * system call. User-level LWPs also enter the suspended
77 1.52 ad * state when the system is shutting down.
78 1.52 ad *
79 1.52 ad * The second set represent a "statement of intent" on behalf of the
80 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
81 1.66 ad * sleeping or idle. It is expected to take the necessary action to
82 1.101 rmind * stop executing or become "running" again within a short timeframe.
83 1.115 ad * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 1.101 rmind * Importantly, it indicates that its state is tied to a CPU.
85 1.101 rmind *
86 1.101 rmind * LSZOMB:
87 1.101 rmind *
88 1.101 rmind * Dead or dying: the LWP has released most of its resources
89 1.101 rmind * and is: a) about to switch away into oblivion b) has already
90 1.66 ad * switched away. When it switches away, its few remaining
91 1.66 ad * resources can be collected.
92 1.101 rmind *
93 1.101 rmind * LSSLEEP:
94 1.101 rmind *
95 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and
96 1.101 rmind * has switched away or will switch away shortly to allow other
97 1.66 ad * LWPs to run on the CPU.
98 1.101 rmind *
99 1.101 rmind * LSSTOP:
100 1.101 rmind *
101 1.101 rmind * Stopped: the LWP has been stopped as a result of a job
102 1.101 rmind * control signal, or as a result of the ptrace() interface.
103 1.101 rmind *
104 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle
105 1.101 rmind * signals that they receive, but will not return to user space
106 1.101 rmind * until their process' state is changed away from stopped.
107 1.101 rmind *
108 1.101 rmind * Single LWPs within a process can not be set stopped
109 1.101 rmind * selectively: all actions that can stop or continue LWPs
110 1.101 rmind * occur at the process level.
111 1.101 rmind *
112 1.52 ad * State transitions
113 1.52 ad *
114 1.66 ad * Note that the LSSTOP state may only be set when returning to
115 1.66 ad * user space in userret(), or when sleeping interruptably. The
116 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting
117 1.66 ad * those states, we try to ensure that the LWPs will release all
118 1.66 ad * locks that they hold, and at a minimum try to ensure that the
119 1.66 ad * LWP can be set runnable again by a signal.
120 1.52 ad *
121 1.52 ad * LWPs may transition states in the following ways:
122 1.52 ad *
123 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
124 1.101 rmind * > STOPPED > SLEEP
125 1.101 rmind * > SUSPENDED > STOPPED
126 1.52 ad * > SUSPENDED
127 1.52 ad * > ZOMB
128 1.52 ad *
129 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
130 1.52 ad * > SLEEP > SLEEP
131 1.52 ad *
132 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
133 1.101 rmind * > RUN > SUSPENDED
134 1.101 rmind * > STOPPED > STOPPED
135 1.52 ad * > SUSPENDED
136 1.52 ad *
137 1.66 ad * Other state transitions are possible with kernel threads (eg
138 1.66 ad * ONPROC -> IDL), but only happen under tightly controlled
139 1.66 ad * circumstances the side effects are understood.
140 1.66 ad *
141 1.114 rmind * Migration
142 1.114 rmind *
143 1.114 rmind * Migration of threads from one CPU to another could be performed
144 1.114 rmind * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 1.114 rmind * functions. The universal lwp_migrate() function should be used for
146 1.114 rmind * any other cases. Subsystems in the kernel must be aware that CPU
147 1.114 rmind * of LWP may change, while it is not locked.
148 1.114 rmind *
149 1.52 ad * Locking
150 1.52 ad *
151 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
152 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering
153 1.52 ad * each field are documented in sys/lwp.h.
154 1.52 ad *
155 1.66 ad * State transitions must be made with the LWP's general lock held,
156 1.101 rmind * and may cause the LWP's lock pointer to change. Manipulation of
157 1.66 ad * the general lock is not performed directly, but through calls to
158 1.66 ad * lwp_lock(), lwp_relock() and similar.
159 1.52 ad *
160 1.52 ad * States and their associated locks:
161 1.52 ad *
162 1.74 rmind * LSONPROC, LSZOMB:
163 1.52 ad *
164 1.64 yamt * Always covered by spc_lwplock, which protects running LWPs.
165 1.64 yamt * This is a per-CPU lock.
166 1.52 ad *
167 1.74 rmind * LSIDL, LSRUN:
168 1.52 ad *
169 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
170 1.101 rmind * This is a per-CPU lock.
171 1.52 ad *
172 1.52 ad * LSSLEEP:
173 1.52 ad *
174 1.66 ad * Covered by a lock associated with the sleep queue that the
175 1.112 ad * LWP resides on.
176 1.52 ad *
177 1.52 ad * LSSTOP, LSSUSPENDED:
178 1.101 rmind *
179 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
180 1.66 ad * l_mutex references the sleep queue lock. If the LWP was
181 1.52 ad * runnable or on the CPU when halted, or has been removed from
182 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock.
183 1.52 ad *
184 1.52 ad * The lock order is as follows:
185 1.52 ad *
186 1.64 yamt * spc::spc_lwplock ->
187 1.112 ad * sleeptab::st_mutex ->
188 1.64 yamt * tschain_t::tc_mutex ->
189 1.64 yamt * spc::spc_mutex
190 1.52 ad *
191 1.103 ad * Each process has an scheduler state lock (proc::p_lock), and a
192 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
194 1.103 ad * following states, p_lock must be held and the process wide counters
195 1.52 ad * adjusted:
196 1.52 ad *
197 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 1.52 ad *
199 1.52 ad * Note that an LWP is considered running or likely to run soon if in
200 1.52 ad * one of the following states. This affects the value of p_nrlwps:
201 1.52 ad *
202 1.52 ad * LSRUN, LSONPROC, LSSLEEP
203 1.52 ad *
204 1.103 ad * p_lock does not need to be held when transitioning among these
205 1.52 ad * three states.
206 1.52 ad */
207 1.52 ad
208 1.9 lukem #include <sys/cdefs.h>
209 1.125.2.2 skrll __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.125.2.2 2009/03/03 18:32:56 skrll Exp $");
210 1.8 martin
211 1.84 yamt #include "opt_ddb.h"
212 1.52 ad #include "opt_lockdebug.h"
213 1.124 wrstuden #include "opt_sa.h"
214 1.2 thorpej
215 1.47 hannken #define _LWP_API_PRIVATE
216 1.47 hannken
217 1.2 thorpej #include <sys/param.h>
218 1.2 thorpej #include <sys/systm.h>
219 1.64 yamt #include <sys/cpu.h>
220 1.2 thorpej #include <sys/pool.h>
221 1.2 thorpej #include <sys/proc.h>
222 1.124 wrstuden #include <sys/sa.h>
223 1.124 wrstuden #include <sys/savar.h>
224 1.2 thorpej #include <sys/syscallargs.h>
225 1.57 dsl #include <sys/syscall_stats.h>
226 1.37 ad #include <sys/kauth.h>
227 1.52 ad #include <sys/sleepq.h>
228 1.85 yamt #include <sys/user.h>
229 1.52 ad #include <sys/lockdebug.h>
230 1.52 ad #include <sys/kmem.h>
231 1.91 rmind #include <sys/pset.h>
232 1.75 ad #include <sys/intr.h>
233 1.78 ad #include <sys/lwpctl.h>
234 1.81 ad #include <sys/atomic.h>
235 1.2 thorpej
236 1.2 thorpej #include <uvm/uvm_extern.h>
237 1.80 skrll #include <uvm/uvm_object.h>
238 1.2 thorpej
239 1.77 matt struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
240 1.52 ad
241 1.41 thorpej POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
242 1.62 ad &pool_allocator_nointr, IPL_NONE);
243 1.41 thorpej
244 1.87 ad static pool_cache_t lwp_cache;
245 1.41 thorpej static specificdata_domain_t lwp_specificdata_domain;
246 1.41 thorpej
247 1.41 thorpej void
248 1.41 thorpej lwpinit(void)
249 1.41 thorpej {
250 1.41 thorpej
251 1.41 thorpej lwp_specificdata_domain = specificdata_domain_create();
252 1.41 thorpej KASSERT(lwp_specificdata_domain != NULL);
253 1.52 ad lwp_sys_init();
254 1.87 ad lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
255 1.87 ad "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
256 1.41 thorpej }
257 1.41 thorpej
258 1.52 ad /*
259 1.52 ad * Set an suspended.
260 1.52 ad *
261 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
262 1.52 ad * LWP before return.
263 1.52 ad */
264 1.2 thorpej int
265 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
266 1.2 thorpej {
267 1.52 ad int error;
268 1.2 thorpej
269 1.103 ad KASSERT(mutex_owned(t->l_proc->p_lock));
270 1.63 ad KASSERT(lwp_locked(t, NULL));
271 1.33 chs
272 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
273 1.2 thorpej
274 1.52 ad /*
275 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
276 1.52 ad * else or deadlock could occur. We won't return to userspace.
277 1.2 thorpej */
278 1.109 rmind if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
279 1.52 ad lwp_unlock(t);
280 1.52 ad return (EDEADLK);
281 1.2 thorpej }
282 1.2 thorpej
283 1.52 ad error = 0;
284 1.2 thorpej
285 1.52 ad switch (t->l_stat) {
286 1.52 ad case LSRUN:
287 1.52 ad case LSONPROC:
288 1.56 pavel t->l_flag |= LW_WSUSPEND;
289 1.52 ad lwp_need_userret(t);
290 1.52 ad lwp_unlock(t);
291 1.52 ad break;
292 1.2 thorpej
293 1.52 ad case LSSLEEP:
294 1.56 pavel t->l_flag |= LW_WSUSPEND;
295 1.2 thorpej
296 1.2 thorpej /*
297 1.52 ad * Kick the LWP and try to get it to the kernel boundary
298 1.52 ad * so that it will release any locks that it holds.
299 1.52 ad * setrunnable() will release the lock.
300 1.2 thorpej */
301 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
302 1.52 ad setrunnable(t);
303 1.52 ad else
304 1.52 ad lwp_unlock(t);
305 1.52 ad break;
306 1.2 thorpej
307 1.52 ad case LSSUSPENDED:
308 1.52 ad lwp_unlock(t);
309 1.52 ad break;
310 1.17 manu
311 1.52 ad case LSSTOP:
312 1.56 pavel t->l_flag |= LW_WSUSPEND;
313 1.52 ad setrunnable(t);
314 1.52 ad break;
315 1.2 thorpej
316 1.52 ad case LSIDL:
317 1.52 ad case LSZOMB:
318 1.52 ad error = EINTR; /* It's what Solaris does..... */
319 1.52 ad lwp_unlock(t);
320 1.52 ad break;
321 1.2 thorpej }
322 1.2 thorpej
323 1.69 rmind return (error);
324 1.2 thorpej }
325 1.2 thorpej
326 1.52 ad /*
327 1.52 ad * Restart a suspended LWP.
328 1.52 ad *
329 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
330 1.52 ad * LWP before return.
331 1.52 ad */
332 1.2 thorpej void
333 1.2 thorpej lwp_continue(struct lwp *l)
334 1.2 thorpej {
335 1.2 thorpej
336 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
337 1.63 ad KASSERT(lwp_locked(l, NULL));
338 1.52 ad
339 1.52 ad /* If rebooting or not suspended, then just bail out. */
340 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
341 1.52 ad lwp_unlock(l);
342 1.2 thorpej return;
343 1.10 fvdl }
344 1.2 thorpej
345 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
346 1.2 thorpej
347 1.52 ad if (l->l_stat != LSSUSPENDED) {
348 1.52 ad lwp_unlock(l);
349 1.52 ad return;
350 1.2 thorpej }
351 1.2 thorpej
352 1.52 ad /* setrunnable() will release the lock. */
353 1.52 ad setrunnable(l);
354 1.2 thorpej }
355 1.2 thorpej
356 1.52 ad /*
357 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
358 1.52 ad * non-zero, we are waiting for a specific LWP.
359 1.52 ad *
360 1.103 ad * Must be called with p->p_lock held.
361 1.52 ad */
362 1.2 thorpej int
363 1.2 thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
364 1.2 thorpej {
365 1.2 thorpej struct proc *p = l->l_proc;
366 1.52 ad struct lwp *l2;
367 1.52 ad int nfound, error;
368 1.63 ad lwpid_t curlid;
369 1.63 ad bool exiting;
370 1.2 thorpej
371 1.103 ad KASSERT(mutex_owned(p->p_lock));
372 1.52 ad
373 1.52 ad p->p_nlwpwait++;
374 1.63 ad l->l_waitingfor = lid;
375 1.63 ad curlid = l->l_lid;
376 1.63 ad exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
377 1.52 ad
378 1.52 ad for (;;) {
379 1.52 ad /*
380 1.52 ad * Avoid a race between exit1() and sigexit(): if the
381 1.52 ad * process is dumping core, then we need to bail out: call
382 1.52 ad * into lwp_userret() where we will be suspended until the
383 1.52 ad * deed is done.
384 1.52 ad */
385 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
386 1.103 ad mutex_exit(p->p_lock);
387 1.52 ad lwp_userret(l);
388 1.52 ad #ifdef DIAGNOSTIC
389 1.52 ad panic("lwp_wait1");
390 1.52 ad #endif
391 1.52 ad /* NOTREACHED */
392 1.52 ad }
393 1.52 ad
394 1.52 ad /*
395 1.52 ad * First off, drain any detached LWP that is waiting to be
396 1.52 ad * reaped.
397 1.52 ad */
398 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
399 1.52 ad p->p_zomblwp = NULL;
400 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
401 1.103 ad mutex_enter(p->p_lock);
402 1.52 ad }
403 1.52 ad
404 1.52 ad /*
405 1.52 ad * Now look for an LWP to collect. If the whole process is
406 1.52 ad * exiting, count detached LWPs as eligible to be collected,
407 1.52 ad * but don't drain them here.
408 1.52 ad */
409 1.52 ad nfound = 0;
410 1.63 ad error = 0;
411 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
412 1.63 ad /*
413 1.63 ad * If a specific wait and the target is waiting on
414 1.63 ad * us, then avoid deadlock. This also traps LWPs
415 1.63 ad * that try to wait on themselves.
416 1.63 ad *
417 1.63 ad * Note that this does not handle more complicated
418 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
419 1.63 ad * can still be killed so it is not a major problem.
420 1.63 ad */
421 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
422 1.63 ad error = EDEADLK;
423 1.63 ad break;
424 1.63 ad }
425 1.63 ad if (l2 == l)
426 1.52 ad continue;
427 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
428 1.63 ad nfound += exiting;
429 1.63 ad continue;
430 1.63 ad }
431 1.63 ad if (lid != 0) {
432 1.63 ad if (l2->l_lid != lid)
433 1.63 ad continue;
434 1.63 ad /*
435 1.63 ad * Mark this LWP as the first waiter, if there
436 1.63 ad * is no other.
437 1.63 ad */
438 1.63 ad if (l2->l_waiter == 0)
439 1.63 ad l2->l_waiter = curlid;
440 1.63 ad } else if (l2->l_waiter != 0) {
441 1.63 ad /*
442 1.63 ad * It already has a waiter - so don't
443 1.63 ad * collect it. If the waiter doesn't
444 1.63 ad * grab it we'll get another chance
445 1.63 ad * later.
446 1.63 ad */
447 1.63 ad nfound++;
448 1.52 ad continue;
449 1.52 ad }
450 1.52 ad nfound++;
451 1.2 thorpej
452 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
453 1.52 ad if (l2->l_stat != LSZOMB)
454 1.52 ad continue;
455 1.2 thorpej
456 1.63 ad /*
457 1.63 ad * We're no longer waiting. Reset the "first waiter"
458 1.63 ad * pointer on the target, in case it was us.
459 1.63 ad */
460 1.63 ad l->l_waitingfor = 0;
461 1.63 ad l2->l_waiter = 0;
462 1.63 ad p->p_nlwpwait--;
463 1.2 thorpej if (departed)
464 1.2 thorpej *departed = l2->l_lid;
465 1.75 ad sched_lwp_collect(l2);
466 1.63 ad
467 1.63 ad /* lwp_free() releases the proc lock. */
468 1.63 ad lwp_free(l2, false, false);
469 1.103 ad mutex_enter(p->p_lock);
470 1.52 ad return 0;
471 1.52 ad }
472 1.2 thorpej
473 1.63 ad if (error != 0)
474 1.63 ad break;
475 1.52 ad if (nfound == 0) {
476 1.52 ad error = ESRCH;
477 1.52 ad break;
478 1.52 ad }
479 1.63 ad
480 1.63 ad /*
481 1.63 ad * The kernel is careful to ensure that it can not deadlock
482 1.63 ad * when exiting - just keep waiting.
483 1.63 ad */
484 1.63 ad if (exiting) {
485 1.52 ad KASSERT(p->p_nlwps > 1);
486 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
487 1.52 ad continue;
488 1.52 ad }
489 1.63 ad
490 1.63 ad /*
491 1.63 ad * If all other LWPs are waiting for exits or suspends
492 1.63 ad * and the supply of zombies and potential zombies is
493 1.63 ad * exhausted, then we are about to deadlock.
494 1.63 ad *
495 1.63 ad * If the process is exiting (and this LWP is not the one
496 1.63 ad * that is coordinating the exit) then bail out now.
497 1.63 ad */
498 1.52 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
499 1.63 ad p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
500 1.52 ad error = EDEADLK;
501 1.52 ad break;
502 1.2 thorpej }
503 1.63 ad
504 1.63 ad /*
505 1.63 ad * Sit around and wait for something to happen. We'll be
506 1.63 ad * awoken if any of the conditions examined change: if an
507 1.63 ad * LWP exits, is collected, or is detached.
508 1.63 ad */
509 1.103 ad if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
510 1.52 ad break;
511 1.2 thorpej }
512 1.2 thorpej
513 1.63 ad /*
514 1.63 ad * We didn't find any LWPs to collect, we may have received a
515 1.63 ad * signal, or some other condition has caused us to bail out.
516 1.63 ad *
517 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
518 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
519 1.63 ad * so that they can re-check for zombies and for deadlock.
520 1.63 ad */
521 1.63 ad if (lid != 0) {
522 1.63 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
523 1.63 ad if (l2->l_lid == lid) {
524 1.63 ad if (l2->l_waiter == curlid)
525 1.63 ad l2->l_waiter = 0;
526 1.63 ad break;
527 1.63 ad }
528 1.63 ad }
529 1.63 ad }
530 1.52 ad p->p_nlwpwait--;
531 1.63 ad l->l_waitingfor = 0;
532 1.63 ad cv_broadcast(&p->p_lwpcv);
533 1.63 ad
534 1.52 ad return error;
535 1.2 thorpej }
536 1.2 thorpej
537 1.52 ad /*
538 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
539 1.52 ad * The new LWP is created in state LSIDL and must be set running,
540 1.52 ad * suspended, or stopped by the caller.
541 1.52 ad */
542 1.2 thorpej int
543 1.75 ad lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
544 1.75 ad void *stack, size_t stacksize, void (*func)(void *), void *arg,
545 1.75 ad lwp_t **rnewlwpp, int sclass)
546 1.2 thorpej {
547 1.52 ad struct lwp *l2, *isfree;
548 1.52 ad turnstile_t *ts;
549 1.2 thorpej
550 1.107 ad KASSERT(l1 == curlwp || l1->l_proc == &proc0);
551 1.107 ad
552 1.52 ad /*
553 1.52 ad * First off, reap any detached LWP waiting to be collected.
554 1.52 ad * We can re-use its LWP structure and turnstile.
555 1.52 ad */
556 1.52 ad isfree = NULL;
557 1.52 ad if (p2->p_zomblwp != NULL) {
558 1.103 ad mutex_enter(p2->p_lock);
559 1.52 ad if ((isfree = p2->p_zomblwp) != NULL) {
560 1.52 ad p2->p_zomblwp = NULL;
561 1.63 ad lwp_free(isfree, true, false);/* releases proc mutex */
562 1.52 ad } else
563 1.103 ad mutex_exit(p2->p_lock);
564 1.52 ad }
565 1.52 ad if (isfree == NULL) {
566 1.87 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK);
567 1.52 ad memset(l2, 0, sizeof(*l2));
568 1.76 ad l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
569 1.60 yamt SLIST_INIT(&l2->l_pi_lenders);
570 1.52 ad } else {
571 1.52 ad l2 = isfree;
572 1.52 ad ts = l2->l_ts;
573 1.75 ad KASSERT(l2->l_inheritedprio == -1);
574 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
575 1.52 ad memset(l2, 0, sizeof(*l2));
576 1.52 ad l2->l_ts = ts;
577 1.52 ad }
578 1.2 thorpej
579 1.2 thorpej l2->l_stat = LSIDL;
580 1.2 thorpej l2->l_proc = p2;
581 1.52 ad l2->l_refcnt = 1;
582 1.75 ad l2->l_class = sclass;
583 1.116 ad
584 1.116 ad /*
585 1.116 ad * If vfork(), we want the LWP to run fast and on the same CPU
586 1.116 ad * as its parent, so that it can reuse the VM context and cache
587 1.116 ad * footprint on the local CPU.
588 1.116 ad */
589 1.116 ad l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
590 1.82 ad l2->l_kpribase = PRI_KERNEL;
591 1.52 ad l2->l_priority = l1->l_priority;
592 1.75 ad l2->l_inheritedprio = -1;
593 1.56 pavel l2->l_flag = inmem ? LW_INMEM : 0;
594 1.88 ad l2->l_pflag = LP_MPSAFE;
595 1.97 ad l2->l_fd = p2->p_fd;
596 1.110 ad TAILQ_INIT(&l2->l_ld_locks);
597 1.41 thorpej
598 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
599 1.91 rmind /* Mark it as a system LWP and not a candidate for swapping */
600 1.56 pavel l2->l_flag |= LW_SYSTEM;
601 1.52 ad }
602 1.2 thorpej
603 1.107 ad kpreempt_disable();
604 1.107 ad l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
605 1.107 ad l2->l_cpu = l1->l_cpu;
606 1.107 ad kpreempt_enable();
607 1.107 ad
608 1.73 rmind lwp_initspecific(l2);
609 1.75 ad sched_lwp_fork(l1, l2);
610 1.37 ad lwp_update_creds(l2);
611 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
612 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
613 1.65 ad mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
614 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
615 1.52 ad l2->l_syncobj = &sched_syncobj;
616 1.2 thorpej
617 1.2 thorpej if (rnewlwpp != NULL)
618 1.2 thorpej *rnewlwpp = l2;
619 1.2 thorpej
620 1.36 yamt l2->l_addr = UAREA_TO_USER(uaddr);
621 1.2 thorpej uvm_lwp_fork(l1, l2, stack, stacksize, func,
622 1.2 thorpej (arg != NULL) ? arg : l2);
623 1.2 thorpej
624 1.103 ad mutex_enter(p2->p_lock);
625 1.52 ad
626 1.52 ad if ((flags & LWP_DETACHED) != 0) {
627 1.52 ad l2->l_prflag = LPR_DETACHED;
628 1.52 ad p2->p_ndlwps++;
629 1.52 ad } else
630 1.52 ad l2->l_prflag = 0;
631 1.52 ad
632 1.52 ad l2->l_sigmask = l1->l_sigmask;
633 1.52 ad CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
634 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
635 1.52 ad
636 1.53 yamt p2->p_nlwpid++;
637 1.53 yamt if (p2->p_nlwpid == 0)
638 1.53 yamt p2->p_nlwpid++;
639 1.53 yamt l2->l_lid = p2->p_nlwpid;
640 1.2 thorpej LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
641 1.2 thorpej p2->p_nlwps++;
642 1.2 thorpej
643 1.103 ad mutex_exit(p2->p_lock);
644 1.52 ad
645 1.102 ad mutex_enter(proc_lock);
646 1.2 thorpej LIST_INSERT_HEAD(&alllwp, l2, l_list);
647 1.102 ad mutex_exit(proc_lock);
648 1.2 thorpej
649 1.91 rmind if ((p2->p_flag & PK_SYSTEM) == 0) {
650 1.91 rmind /* Locking is needed, since LWP is in the list of all LWPs */
651 1.91 rmind lwp_lock(l2);
652 1.91 rmind /* Inherit a processor-set */
653 1.91 rmind l2->l_psid = l1->l_psid;
654 1.91 rmind /* Inherit an affinity */
655 1.122 rmind if (l1->l_flag & LW_AFFINITY) {
656 1.122 rmind proc_t *p = l1->l_proc;
657 1.122 rmind
658 1.122 rmind mutex_enter(p->p_lock);
659 1.122 rmind if (l1->l_flag & LW_AFFINITY) {
660 1.122 rmind kcpuset_use(l1->l_affinity);
661 1.122 rmind l2->l_affinity = l1->l_affinity;
662 1.122 rmind l2->l_flag |= LW_AFFINITY;
663 1.122 rmind }
664 1.122 rmind mutex_exit(p->p_lock);
665 1.117 christos }
666 1.91 rmind /* Look for a CPU to start */
667 1.91 rmind l2->l_cpu = sched_takecpu(l2);
668 1.91 rmind lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
669 1.91 rmind }
670 1.91 rmind
671 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
672 1.57 dsl
673 1.16 manu if (p2->p_emul->e_lwp_fork)
674 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
675 1.16 manu
676 1.2 thorpej return (0);
677 1.2 thorpej }
678 1.2 thorpej
679 1.2 thorpej /*
680 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
681 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
682 1.64 yamt * previous LWP, at splsched.
683 1.64 yamt */
684 1.64 yamt void
685 1.64 yamt lwp_startup(struct lwp *prev, struct lwp *new)
686 1.64 yamt {
687 1.64 yamt
688 1.107 ad KASSERT(kpreempt_disabled());
689 1.64 yamt if (prev != NULL) {
690 1.81 ad /*
691 1.81 ad * Normalize the count of the spin-mutexes, it was
692 1.81 ad * increased in mi_switch(). Unmark the state of
693 1.81 ad * context switch - it is finished for previous LWP.
694 1.81 ad */
695 1.81 ad curcpu()->ci_mtx_count++;
696 1.81 ad membar_exit();
697 1.81 ad prev->l_ctxswtch = 0;
698 1.64 yamt }
699 1.107 ad KPREEMPT_DISABLE(new);
700 1.107 ad spl0();
701 1.105 ad pmap_activate(new);
702 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
703 1.107 ad KPREEMPT_ENABLE(new);
704 1.65 ad if ((new->l_pflag & LP_MPSAFE) == 0) {
705 1.65 ad KERNEL_LOCK(1, new);
706 1.65 ad }
707 1.64 yamt }
708 1.64 yamt
709 1.64 yamt /*
710 1.65 ad * Exit an LWP.
711 1.2 thorpej */
712 1.2 thorpej void
713 1.2 thorpej lwp_exit(struct lwp *l)
714 1.2 thorpej {
715 1.2 thorpej struct proc *p = l->l_proc;
716 1.52 ad struct lwp *l2;
717 1.65 ad bool current;
718 1.65 ad
719 1.65 ad current = (l == curlwp);
720 1.2 thorpej
721 1.114 rmind KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
722 1.2 thorpej
723 1.52 ad /*
724 1.52 ad * Verify that we hold no locks other than the kernel lock.
725 1.52 ad */
726 1.52 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
727 1.16 manu
728 1.2 thorpej /*
729 1.52 ad * If we are the last live LWP in a process, we need to exit the
730 1.52 ad * entire process. We do so with an exit status of zero, because
731 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
732 1.52 ad *
733 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
734 1.52 ad * must increment the count of zombies here.
735 1.45 thorpej *
736 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
737 1.2 thorpej */
738 1.103 ad mutex_enter(p->p_lock);
739 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
740 1.65 ad KASSERT(current == true);
741 1.88 ad /* XXXSMP kernel_lock not held */
742 1.2 thorpej exit1(l, 0);
743 1.19 jdolecek /* NOTREACHED */
744 1.2 thorpej }
745 1.52 ad p->p_nzlwps++;
746 1.103 ad mutex_exit(p->p_lock);
747 1.52 ad
748 1.52 ad if (p->p_emul->e_lwp_exit)
749 1.52 ad (*p->p_emul->e_lwp_exit)(l);
750 1.2 thorpej
751 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
752 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
753 1.45 thorpej
754 1.52 ad /*
755 1.52 ad * Release our cached credentials.
756 1.52 ad */
757 1.37 ad kauth_cred_free(l->l_cred);
758 1.70 ad callout_destroy(&l->l_timeout_ch);
759 1.65 ad
760 1.65 ad /*
761 1.65 ad * While we can still block, mark the LWP as unswappable to
762 1.65 ad * prevent conflicts with the with the swapper.
763 1.65 ad */
764 1.65 ad if (current)
765 1.65 ad uvm_lwp_hold(l);
766 1.37 ad
767 1.52 ad /*
768 1.52 ad * Remove the LWP from the global list.
769 1.52 ad */
770 1.102 ad mutex_enter(proc_lock);
771 1.52 ad LIST_REMOVE(l, l_list);
772 1.102 ad mutex_exit(proc_lock);
773 1.19 jdolecek
774 1.52 ad /*
775 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
776 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
777 1.52 ad * mark it waiting for collection in the proc structure. Note that
778 1.52 ad * before we can do that, we need to free any other dead, deatched
779 1.52 ad * LWP waiting to meet its maker.
780 1.52 ad */
781 1.103 ad mutex_enter(p->p_lock);
782 1.52 ad lwp_drainrefs(l);
783 1.31 yamt
784 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
785 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
786 1.52 ad p->p_zomblwp = NULL;
787 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
788 1.103 ad mutex_enter(p->p_lock);
789 1.72 ad l->l_refcnt++;
790 1.72 ad lwp_drainrefs(l);
791 1.52 ad }
792 1.52 ad p->p_zomblwp = l;
793 1.52 ad }
794 1.31 yamt
795 1.52 ad /*
796 1.52 ad * If we find a pending signal for the process and we have been
797 1.52 ad * asked to check for signals, then we loose: arrange to have
798 1.52 ad * all other LWPs in the process check for signals.
799 1.52 ad */
800 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
801 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
802 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
803 1.52 ad lwp_lock(l2);
804 1.56 pavel l2->l_flag |= LW_PENDSIG;
805 1.52 ad lwp_unlock(l2);
806 1.52 ad }
807 1.31 yamt }
808 1.31 yamt
809 1.52 ad lwp_lock(l);
810 1.52 ad l->l_stat = LSZOMB;
811 1.90 ad if (l->l_name != NULL)
812 1.90 ad strcpy(l->l_name, "(zombie)");
813 1.122 rmind if (l->l_flag & LW_AFFINITY)
814 1.122 rmind l->l_flag &= ~LW_AFFINITY;
815 1.52 ad lwp_unlock(l);
816 1.2 thorpej p->p_nrlwps--;
817 1.52 ad cv_broadcast(&p->p_lwpcv);
818 1.78 ad if (l->l_lwpctl != NULL)
819 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
820 1.103 ad mutex_exit(p->p_lock);
821 1.52 ad
822 1.122 rmind /* Safe without lock since LWP is in zombie state */
823 1.122 rmind if (l->l_affinity) {
824 1.122 rmind kcpuset_unuse(l->l_affinity, NULL);
825 1.122 rmind l->l_affinity = NULL;
826 1.122 rmind }
827 1.122 rmind
828 1.52 ad /*
829 1.52 ad * We can no longer block. At this point, lwp_free() may already
830 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
831 1.52 ad *
832 1.52 ad * Free MD LWP resources.
833 1.52 ad */
834 1.52 ad #ifndef __NO_CPU_LWP_FREE
835 1.52 ad cpu_lwp_free(l, 0);
836 1.52 ad #endif
837 1.2 thorpej
838 1.65 ad if (current) {
839 1.65 ad pmap_deactivate(l);
840 1.65 ad
841 1.65 ad /*
842 1.65 ad * Release the kernel lock, and switch away into
843 1.65 ad * oblivion.
844 1.65 ad */
845 1.52 ad #ifdef notyet
846 1.65 ad /* XXXSMP hold in lwp_userret() */
847 1.65 ad KERNEL_UNLOCK_LAST(l);
848 1.52 ad #else
849 1.65 ad KERNEL_UNLOCK_ALL(l, NULL);
850 1.52 ad #endif
851 1.65 ad lwp_exit_switchaway(l);
852 1.65 ad }
853 1.2 thorpej }
854 1.2 thorpej
855 1.52 ad /*
856 1.52 ad * Free a dead LWP's remaining resources.
857 1.52 ad *
858 1.52 ad * XXXLWP limits.
859 1.52 ad */
860 1.52 ad void
861 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
862 1.52 ad {
863 1.52 ad struct proc *p = l->l_proc;
864 1.100 ad struct rusage *ru;
865 1.52 ad ksiginfoq_t kq;
866 1.52 ad
867 1.92 yamt KASSERT(l != curlwp);
868 1.92 yamt
869 1.52 ad /*
870 1.52 ad * If this was not the last LWP in the process, then adjust
871 1.52 ad * counters and unlock.
872 1.52 ad */
873 1.52 ad if (!last) {
874 1.52 ad /*
875 1.52 ad * Add the LWP's run time to the process' base value.
876 1.52 ad * This needs to co-incide with coming off p_lwps.
877 1.52 ad */
878 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime);
879 1.64 yamt p->p_pctcpu += l->l_pctcpu;
880 1.100 ad ru = &p->p_stats->p_ru;
881 1.100 ad ruadd(ru, &l->l_ru);
882 1.100 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
883 1.100 ad ru->ru_nivcsw += l->l_nivcsw;
884 1.52 ad LIST_REMOVE(l, l_sibling);
885 1.52 ad p->p_nlwps--;
886 1.52 ad p->p_nzlwps--;
887 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
888 1.52 ad p->p_ndlwps--;
889 1.63 ad
890 1.63 ad /*
891 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
892 1.63 ad * deadlock.
893 1.63 ad */
894 1.63 ad cv_broadcast(&p->p_lwpcv);
895 1.103 ad mutex_exit(p->p_lock);
896 1.63 ad }
897 1.52 ad
898 1.52 ad #ifdef MULTIPROCESSOR
899 1.63 ad /*
900 1.63 ad * In the unlikely event that the LWP is still on the CPU,
901 1.63 ad * then spin until it has switched away. We need to release
902 1.63 ad * all locks to avoid deadlock against interrupt handlers on
903 1.63 ad * the target CPU.
904 1.63 ad */
905 1.115 ad if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
906 1.63 ad int count;
907 1.64 yamt (void)count; /* XXXgcc */
908 1.63 ad KERNEL_UNLOCK_ALL(curlwp, &count);
909 1.115 ad while ((l->l_pflag & LP_RUNNING) != 0 ||
910 1.64 yamt l->l_cpu->ci_curlwp == l)
911 1.63 ad SPINLOCK_BACKOFF_HOOK;
912 1.63 ad KERNEL_LOCK(count, curlwp);
913 1.63 ad }
914 1.52 ad #endif
915 1.52 ad
916 1.52 ad /*
917 1.52 ad * Destroy the LWP's remaining signal information.
918 1.52 ad */
919 1.52 ad ksiginfo_queue_init(&kq);
920 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
921 1.52 ad ksiginfo_queue_drain(&kq);
922 1.52 ad cv_destroy(&l->l_sigcv);
923 1.65 ad mutex_destroy(&l->l_swaplock);
924 1.2 thorpej
925 1.19 jdolecek /*
926 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
927 1.93 yamt * caller wants to recycle them. Also, free the scheduler specific
928 1.93 yamt * data.
929 1.52 ad *
930 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
931 1.52 ad * so if it comes up just drop it quietly and move on.
932 1.52 ad *
933 1.52 ad * We don't recycle the VM resources at this time.
934 1.19 jdolecek */
935 1.78 ad if (l->l_lwpctl != NULL)
936 1.78 ad lwp_ctl_free(l);
937 1.64 yamt
938 1.52 ad if (!recycle && l->l_ts != &turnstile0)
939 1.76 ad pool_cache_put(turnstile_cache, l->l_ts);
940 1.90 ad if (l->l_name != NULL)
941 1.90 ad kmem_free(l->l_name, MAXCOMLEN);
942 1.52 ad #ifndef __NO_CPU_LWP_FREE
943 1.52 ad cpu_lwp_free2(l);
944 1.52 ad #endif
945 1.92 yamt KASSERT((l->l_flag & LW_INMEM) != 0);
946 1.19 jdolecek uvm_lwp_exit(l);
947 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
948 1.75 ad KASSERT(l->l_inheritedprio == -1);
949 1.52 ad if (!recycle)
950 1.87 ad pool_cache_put(lwp_cache, l);
951 1.2 thorpej }
952 1.2 thorpej
953 1.2 thorpej /*
954 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP.
955 1.91 rmind */
956 1.91 rmind void
957 1.114 rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
958 1.91 rmind {
959 1.114 rmind struct schedstate_percpu *tspc;
960 1.121 rmind int lstat = l->l_stat;
961 1.121 rmind
962 1.91 rmind KASSERT(lwp_locked(l, NULL));
963 1.114 rmind KASSERT(tci != NULL);
964 1.114 rmind
965 1.121 rmind /* If LWP is still on the CPU, it must be handled like LSONPROC */
966 1.121 rmind if ((l->l_pflag & LP_RUNNING) != 0) {
967 1.121 rmind lstat = LSONPROC;
968 1.121 rmind }
969 1.121 rmind
970 1.114 rmind /*
971 1.114 rmind * The destination CPU could be changed while previous migration
972 1.114 rmind * was not finished.
973 1.114 rmind */
974 1.121 rmind if (l->l_target_cpu != NULL) {
975 1.114 rmind l->l_target_cpu = tci;
976 1.114 rmind lwp_unlock(l);
977 1.114 rmind return;
978 1.114 rmind }
979 1.91 rmind
980 1.114 rmind /* Nothing to do if trying to migrate to the same CPU */
981 1.114 rmind if (l->l_cpu == tci) {
982 1.91 rmind lwp_unlock(l);
983 1.91 rmind return;
984 1.91 rmind }
985 1.91 rmind
986 1.114 rmind KASSERT(l->l_target_cpu == NULL);
987 1.114 rmind tspc = &tci->ci_schedstate;
988 1.121 rmind switch (lstat) {
989 1.91 rmind case LSRUN:
990 1.91 rmind if (l->l_flag & LW_INMEM) {
991 1.114 rmind l->l_target_cpu = tci;
992 1.114 rmind lwp_unlock(l);
993 1.114 rmind return;
994 1.91 rmind }
995 1.91 rmind case LSIDL:
996 1.114 rmind l->l_cpu = tci;
997 1.114 rmind lwp_unlock_to(l, tspc->spc_mutex);
998 1.91 rmind return;
999 1.91 rmind case LSSLEEP:
1000 1.114 rmind l->l_cpu = tci;
1001 1.91 rmind break;
1002 1.91 rmind case LSSTOP:
1003 1.91 rmind case LSSUSPENDED:
1004 1.114 rmind l->l_cpu = tci;
1005 1.114 rmind if (l->l_wchan == NULL) {
1006 1.114 rmind lwp_unlock_to(l, tspc->spc_lwplock);
1007 1.114 rmind return;
1008 1.91 rmind }
1009 1.114 rmind break;
1010 1.91 rmind case LSONPROC:
1011 1.114 rmind l->l_target_cpu = tci;
1012 1.114 rmind spc_lock(l->l_cpu);
1013 1.114 rmind cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1014 1.114 rmind spc_unlock(l->l_cpu);
1015 1.91 rmind break;
1016 1.91 rmind }
1017 1.91 rmind lwp_unlock(l);
1018 1.91 rmind }
1019 1.91 rmind
1020 1.91 rmind /*
1021 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case,
1022 1.94 rmind * the calling process and first LWP in the list will be used.
1023 1.103 ad * On success - returns proc locked.
1024 1.91 rmind */
1025 1.91 rmind struct lwp *
1026 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid)
1027 1.91 rmind {
1028 1.91 rmind proc_t *p;
1029 1.91 rmind lwp_t *l;
1030 1.91 rmind
1031 1.91 rmind /* Find the process */
1032 1.94 rmind p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1033 1.91 rmind if (p == NULL)
1034 1.91 rmind return NULL;
1035 1.103 ad mutex_enter(p->p_lock);
1036 1.94 rmind if (pid != 0) {
1037 1.94 rmind /* Case of p_find */
1038 1.102 ad mutex_exit(proc_lock);
1039 1.94 rmind }
1040 1.91 rmind
1041 1.91 rmind /* Find the thread */
1042 1.94 rmind l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1043 1.103 ad if (l == NULL) {
1044 1.103 ad mutex_exit(p->p_lock);
1045 1.103 ad }
1046 1.91 rmind
1047 1.91 rmind return l;
1048 1.91 rmind }
1049 1.91 rmind
1050 1.91 rmind /*
1051 1.52 ad * Look up a live LWP within the speicifed process, and return it locked.
1052 1.52 ad *
1053 1.103 ad * Must be called with p->p_lock held.
1054 1.52 ad */
1055 1.52 ad struct lwp *
1056 1.52 ad lwp_find(struct proc *p, int id)
1057 1.52 ad {
1058 1.52 ad struct lwp *l;
1059 1.52 ad
1060 1.103 ad KASSERT(mutex_owned(p->p_lock));
1061 1.52 ad
1062 1.52 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1063 1.52 ad if (l->l_lid == id)
1064 1.52 ad break;
1065 1.52 ad }
1066 1.52 ad
1067 1.52 ad /*
1068 1.52 ad * No need to lock - all of these conditions will
1069 1.52 ad * be visible with the process level mutex held.
1070 1.52 ad */
1071 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1072 1.52 ad l = NULL;
1073 1.52 ad
1074 1.52 ad return l;
1075 1.52 ad }
1076 1.52 ad
1077 1.52 ad /*
1078 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1079 1.37 ad *
1080 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1081 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1082 1.37 ad * it's credentials by calling this routine. This may be called from
1083 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1084 1.37 ad */
1085 1.37 ad void
1086 1.37 ad lwp_update_creds(struct lwp *l)
1087 1.37 ad {
1088 1.37 ad kauth_cred_t oc;
1089 1.37 ad struct proc *p;
1090 1.37 ad
1091 1.37 ad p = l->l_proc;
1092 1.37 ad oc = l->l_cred;
1093 1.37 ad
1094 1.103 ad mutex_enter(p->p_lock);
1095 1.37 ad kauth_cred_hold(p->p_cred);
1096 1.37 ad l->l_cred = p->p_cred;
1097 1.98 ad l->l_prflag &= ~LPR_CRMOD;
1098 1.103 ad mutex_exit(p->p_lock);
1099 1.88 ad if (oc != NULL)
1100 1.37 ad kauth_cred_free(oc);
1101 1.52 ad }
1102 1.52 ad
1103 1.52 ad /*
1104 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1105 1.52 ad * one we specify.
1106 1.52 ad */
1107 1.52 ad int
1108 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1109 1.52 ad {
1110 1.52 ad kmutex_t *cur = l->l_mutex;
1111 1.52 ad
1112 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1113 1.52 ad }
1114 1.52 ad
1115 1.52 ad /*
1116 1.52 ad * Lock an LWP.
1117 1.52 ad */
1118 1.119 ad kmutex_t *
1119 1.52 ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
1120 1.52 ad {
1121 1.52 ad
1122 1.52 ad /*
1123 1.52 ad * XXXgcc ignoring kmutex_t * volatile on i386
1124 1.52 ad *
1125 1.52 ad * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1126 1.52 ad */
1127 1.52 ad #if 1
1128 1.52 ad while (l->l_mutex != old) {
1129 1.52 ad #else
1130 1.52 ad for (;;) {
1131 1.52 ad #endif
1132 1.52 ad mutex_spin_exit(old);
1133 1.52 ad old = l->l_mutex;
1134 1.52 ad mutex_spin_enter(old);
1135 1.52 ad
1136 1.52 ad /*
1137 1.52 ad * mutex_enter() will have posted a read barrier. Re-test
1138 1.52 ad * l->l_mutex. If it has changed, we need to try again.
1139 1.52 ad */
1140 1.52 ad #if 1
1141 1.52 ad }
1142 1.52 ad #else
1143 1.52 ad } while (__predict_false(l->l_mutex != old));
1144 1.52 ad #endif
1145 1.119 ad
1146 1.119 ad return old;
1147 1.52 ad }
1148 1.52 ad
1149 1.52 ad /*
1150 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1151 1.52 ad */
1152 1.52 ad void
1153 1.52 ad lwp_setlock(struct lwp *l, kmutex_t *new)
1154 1.52 ad {
1155 1.52 ad
1156 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1157 1.52 ad
1158 1.107 ad membar_exit();
1159 1.52 ad l->l_mutex = new;
1160 1.52 ad }
1161 1.52 ad
1162 1.52 ad /*
1163 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1164 1.52 ad * must be held.
1165 1.52 ad */
1166 1.52 ad void
1167 1.52 ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
1168 1.52 ad {
1169 1.52 ad kmutex_t *old;
1170 1.52 ad
1171 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1172 1.52 ad
1173 1.52 ad old = l->l_mutex;
1174 1.107 ad membar_exit();
1175 1.52 ad l->l_mutex = new;
1176 1.52 ad mutex_spin_exit(old);
1177 1.52 ad }
1178 1.52 ad
1179 1.52 ad /*
1180 1.52 ad * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1181 1.52 ad * locked.
1182 1.52 ad */
1183 1.52 ad void
1184 1.52 ad lwp_relock(struct lwp *l, kmutex_t *new)
1185 1.52 ad {
1186 1.52 ad kmutex_t *old;
1187 1.52 ad
1188 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1189 1.52 ad
1190 1.52 ad old = l->l_mutex;
1191 1.52 ad if (old != new) {
1192 1.52 ad mutex_spin_enter(new);
1193 1.52 ad l->l_mutex = new;
1194 1.52 ad mutex_spin_exit(old);
1195 1.52 ad }
1196 1.52 ad }
1197 1.52 ad
1198 1.60 yamt int
1199 1.60 yamt lwp_trylock(struct lwp *l)
1200 1.60 yamt {
1201 1.60 yamt kmutex_t *old;
1202 1.60 yamt
1203 1.60 yamt for (;;) {
1204 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1205 1.60 yamt return 0;
1206 1.60 yamt if (__predict_true(l->l_mutex == old))
1207 1.60 yamt return 1;
1208 1.60 yamt mutex_spin_exit(old);
1209 1.60 yamt }
1210 1.60 yamt }
1211 1.60 yamt
1212 1.96 ad u_int
1213 1.96 ad lwp_unsleep(lwp_t *l, bool cleanup)
1214 1.96 ad {
1215 1.96 ad
1216 1.96 ad KASSERT(mutex_owned(l->l_mutex));
1217 1.96 ad
1218 1.96 ad return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1219 1.96 ad }
1220 1.96 ad
1221 1.96 ad
1222 1.52 ad /*
1223 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1224 1.52 ad * set.
1225 1.52 ad */
1226 1.52 ad void
1227 1.52 ad lwp_userret(struct lwp *l)
1228 1.52 ad {
1229 1.52 ad struct proc *p;
1230 1.54 ad void (*hook)(void);
1231 1.52 ad int sig;
1232 1.52 ad
1233 1.114 rmind KASSERT(l == curlwp);
1234 1.114 rmind KASSERT(l->l_stat == LSONPROC);
1235 1.52 ad p = l->l_proc;
1236 1.52 ad
1237 1.75 ad #ifndef __HAVE_FAST_SOFTINTS
1238 1.75 ad /* Run pending soft interrupts. */
1239 1.75 ad if (l->l_cpu->ci_data.cpu_softints != 0)
1240 1.75 ad softint_overlay();
1241 1.75 ad #endif
1242 1.75 ad
1243 1.125 ad #ifdef KERN_SA
1244 1.125 ad /* Generate UNBLOCKED upcall if needed */
1245 1.125 ad if (l->l_flag & LW_SA_BLOCKING) {
1246 1.125 ad sa_unblock_userret(l);
1247 1.125 ad /* NOTREACHED */
1248 1.125 ad }
1249 1.125 ad #endif
1250 1.125 ad
1251 1.52 ad /*
1252 1.52 ad * It should be safe to do this read unlocked on a multiprocessor
1253 1.52 ad * system..
1254 1.125.2.1 skrll *
1255 1.125.2.1 skrll * LW_SA_UPCALL will be handled after the while() loop, so don't
1256 1.125.2.1 skrll * consider it now.
1257 1.52 ad */
1258 1.125.2.1 skrll while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1259 1.52 ad /*
1260 1.52 ad * Process pending signals first, unless the process
1261 1.61 ad * is dumping core or exiting, where we will instead
1262 1.101 rmind * enter the LW_WSUSPEND case below.
1263 1.52 ad */
1264 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1265 1.61 ad LW_PENDSIG) {
1266 1.103 ad mutex_enter(p->p_lock);
1267 1.52 ad while ((sig = issignal(l)) != 0)
1268 1.52 ad postsig(sig);
1269 1.103 ad mutex_exit(p->p_lock);
1270 1.52 ad }
1271 1.52 ad
1272 1.52 ad /*
1273 1.52 ad * Core-dump or suspend pending.
1274 1.52 ad *
1275 1.52 ad * In case of core dump, suspend ourselves, so that the
1276 1.52 ad * kernel stack and therefore the userland registers saved
1277 1.52 ad * in the trapframe are around for coredump() to write them
1278 1.52 ad * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1279 1.52 ad * will write the core file out once all other LWPs are
1280 1.52 ad * suspended.
1281 1.52 ad */
1282 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1283 1.103 ad mutex_enter(p->p_lock);
1284 1.52 ad p->p_nrlwps--;
1285 1.52 ad cv_broadcast(&p->p_lwpcv);
1286 1.52 ad lwp_lock(l);
1287 1.52 ad l->l_stat = LSSUSPENDED;
1288 1.104 ad lwp_unlock(l);
1289 1.103 ad mutex_exit(p->p_lock);
1290 1.104 ad lwp_lock(l);
1291 1.64 yamt mi_switch(l);
1292 1.52 ad }
1293 1.52 ad
1294 1.52 ad /* Process is exiting. */
1295 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1296 1.52 ad lwp_exit(l);
1297 1.52 ad KASSERT(0);
1298 1.52 ad /* NOTREACHED */
1299 1.52 ad }
1300 1.54 ad
1301 1.54 ad /* Call userret hook; used by Linux emulation. */
1302 1.56 pavel if ((l->l_flag & LW_WUSERRET) != 0) {
1303 1.54 ad lwp_lock(l);
1304 1.56 pavel l->l_flag &= ~LW_WUSERRET;
1305 1.54 ad lwp_unlock(l);
1306 1.54 ad hook = p->p_userret;
1307 1.54 ad p->p_userret = NULL;
1308 1.54 ad (*hook)();
1309 1.54 ad }
1310 1.52 ad }
1311 1.124 wrstuden
1312 1.124 wrstuden #ifdef KERN_SA
1313 1.124 wrstuden /*
1314 1.124 wrstuden * Timer events are handled specially. We only try once to deliver
1315 1.124 wrstuden * pending timer upcalls; if if fails, we can try again on the next
1316 1.124 wrstuden * loop around. If we need to re-enter lwp_userret(), MD code will
1317 1.124 wrstuden * bounce us back here through the trap path after we return.
1318 1.124 wrstuden */
1319 1.124 wrstuden if (p->p_timerpend)
1320 1.124 wrstuden timerupcall(l);
1321 1.125 ad if (l->l_flag & LW_SA_UPCALL)
1322 1.125 ad sa_upcall_userret(l);
1323 1.124 wrstuden #endif /* KERN_SA */
1324 1.52 ad }
1325 1.52 ad
1326 1.52 ad /*
1327 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1328 1.52 ad */
1329 1.52 ad void
1330 1.52 ad lwp_need_userret(struct lwp *l)
1331 1.52 ad {
1332 1.63 ad KASSERT(lwp_locked(l, NULL));
1333 1.52 ad
1334 1.52 ad /*
1335 1.52 ad * Since the tests in lwp_userret() are done unlocked, make sure
1336 1.52 ad * that the condition will be seen before forcing the LWP to enter
1337 1.52 ad * kernel mode.
1338 1.52 ad */
1339 1.81 ad membar_producer();
1340 1.52 ad cpu_signotify(l);
1341 1.52 ad }
1342 1.52 ad
1343 1.52 ad /*
1344 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1345 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1346 1.52 ad */
1347 1.52 ad void
1348 1.52 ad lwp_addref(struct lwp *l)
1349 1.52 ad {
1350 1.52 ad
1351 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1352 1.52 ad KASSERT(l->l_stat != LSZOMB);
1353 1.52 ad KASSERT(l->l_refcnt != 0);
1354 1.52 ad
1355 1.52 ad l->l_refcnt++;
1356 1.52 ad }
1357 1.52 ad
1358 1.52 ad /*
1359 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1360 1.52 ad * then we must finalize the LWP's death.
1361 1.52 ad */
1362 1.52 ad void
1363 1.52 ad lwp_delref(struct lwp *l)
1364 1.52 ad {
1365 1.52 ad struct proc *p = l->l_proc;
1366 1.52 ad
1367 1.103 ad mutex_enter(p->p_lock);
1368 1.72 ad KASSERT(l->l_stat != LSZOMB);
1369 1.72 ad KASSERT(l->l_refcnt > 0);
1370 1.52 ad if (--l->l_refcnt == 0)
1371 1.76 ad cv_broadcast(&p->p_lwpcv);
1372 1.103 ad mutex_exit(p->p_lock);
1373 1.52 ad }
1374 1.52 ad
1375 1.52 ad /*
1376 1.52 ad * Drain all references to the current LWP.
1377 1.52 ad */
1378 1.52 ad void
1379 1.52 ad lwp_drainrefs(struct lwp *l)
1380 1.52 ad {
1381 1.52 ad struct proc *p = l->l_proc;
1382 1.52 ad
1383 1.103 ad KASSERT(mutex_owned(p->p_lock));
1384 1.52 ad KASSERT(l->l_refcnt != 0);
1385 1.52 ad
1386 1.52 ad l->l_refcnt--;
1387 1.52 ad while (l->l_refcnt != 0)
1388 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
1389 1.37 ad }
1390 1.41 thorpej
1391 1.41 thorpej /*
1392 1.125.2.2 skrll * Return true if the specified LWP is 'alive'. Only p->p_lock need
1393 1.125.2.2 skrll * be held.
1394 1.125.2.2 skrll */
1395 1.125.2.2 skrll bool
1396 1.125.2.2 skrll lwp_alive(lwp_t *l)
1397 1.125.2.2 skrll {
1398 1.125.2.2 skrll
1399 1.125.2.2 skrll KASSERT(mutex_owned(l->l_proc->p_lock));
1400 1.125.2.2 skrll
1401 1.125.2.2 skrll switch (l->l_stat) {
1402 1.125.2.2 skrll case LSSLEEP:
1403 1.125.2.2 skrll case LSRUN:
1404 1.125.2.2 skrll case LSONPROC:
1405 1.125.2.2 skrll case LSSTOP:
1406 1.125.2.2 skrll case LSSUSPENDED:
1407 1.125.2.2 skrll return true;
1408 1.125.2.2 skrll default:
1409 1.125.2.2 skrll return false;
1410 1.125.2.2 skrll }
1411 1.125.2.2 skrll }
1412 1.125.2.2 skrll
1413 1.125.2.2 skrll /*
1414 1.125.2.2 skrll * Return first live LWP in the process.
1415 1.125.2.2 skrll */
1416 1.125.2.2 skrll lwp_t *
1417 1.125.2.2 skrll lwp_find_first(proc_t *p)
1418 1.125.2.2 skrll {
1419 1.125.2.2 skrll lwp_t *l;
1420 1.125.2.2 skrll
1421 1.125.2.2 skrll KASSERT(mutex_owned(p->p_lock));
1422 1.125.2.2 skrll
1423 1.125.2.2 skrll LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1424 1.125.2.2 skrll if (lwp_alive(l)) {
1425 1.125.2.2 skrll return l;
1426 1.125.2.2 skrll }
1427 1.125.2.2 skrll }
1428 1.125.2.2 skrll
1429 1.125.2.2 skrll return NULL;
1430 1.125.2.2 skrll }
1431 1.125.2.2 skrll
1432 1.125.2.2 skrll /*
1433 1.41 thorpej * lwp_specific_key_create --
1434 1.41 thorpej * Create a key for subsystem lwp-specific data.
1435 1.41 thorpej */
1436 1.41 thorpej int
1437 1.41 thorpej lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1438 1.41 thorpej {
1439 1.41 thorpej
1440 1.45 thorpej return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1441 1.41 thorpej }
1442 1.41 thorpej
1443 1.41 thorpej /*
1444 1.41 thorpej * lwp_specific_key_delete --
1445 1.41 thorpej * Delete a key for subsystem lwp-specific data.
1446 1.41 thorpej */
1447 1.41 thorpej void
1448 1.41 thorpej lwp_specific_key_delete(specificdata_key_t key)
1449 1.41 thorpej {
1450 1.41 thorpej
1451 1.41 thorpej specificdata_key_delete(lwp_specificdata_domain, key);
1452 1.41 thorpej }
1453 1.41 thorpej
1454 1.45 thorpej /*
1455 1.45 thorpej * lwp_initspecific --
1456 1.45 thorpej * Initialize an LWP's specificdata container.
1457 1.45 thorpej */
1458 1.42 christos void
1459 1.42 christos lwp_initspecific(struct lwp *l)
1460 1.42 christos {
1461 1.42 christos int error;
1462 1.45 thorpej
1463 1.42 christos error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1464 1.42 christos KASSERT(error == 0);
1465 1.42 christos }
1466 1.42 christos
1467 1.41 thorpej /*
1468 1.45 thorpej * lwp_finispecific --
1469 1.45 thorpej * Finalize an LWP's specificdata container.
1470 1.45 thorpej */
1471 1.45 thorpej void
1472 1.45 thorpej lwp_finispecific(struct lwp *l)
1473 1.45 thorpej {
1474 1.45 thorpej
1475 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1476 1.45 thorpej }
1477 1.45 thorpej
1478 1.45 thorpej /*
1479 1.41 thorpej * lwp_getspecific --
1480 1.41 thorpej * Return lwp-specific data corresponding to the specified key.
1481 1.41 thorpej *
1482 1.41 thorpej * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1483 1.41 thorpej * only its OWN SPECIFIC DATA. If it is necessary to access another
1484 1.41 thorpej * LWP's specifc data, care must be taken to ensure that doing so
1485 1.41 thorpej * would not cause internal data structure inconsistency (i.e. caller
1486 1.41 thorpej * can guarantee that the target LWP is not inside an lwp_getspecific()
1487 1.41 thorpej * or lwp_setspecific() call).
1488 1.41 thorpej */
1489 1.41 thorpej void *
1490 1.44 thorpej lwp_getspecific(specificdata_key_t key)
1491 1.41 thorpej {
1492 1.41 thorpej
1493 1.41 thorpej return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1494 1.44 thorpej &curlwp->l_specdataref, key));
1495 1.41 thorpej }
1496 1.41 thorpej
1497 1.47 hannken void *
1498 1.47 hannken _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1499 1.47 hannken {
1500 1.47 hannken
1501 1.47 hannken return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1502 1.47 hannken &l->l_specdataref, key));
1503 1.47 hannken }
1504 1.47 hannken
1505 1.41 thorpej /*
1506 1.41 thorpej * lwp_setspecific --
1507 1.41 thorpej * Set lwp-specific data corresponding to the specified key.
1508 1.41 thorpej */
1509 1.41 thorpej void
1510 1.45 thorpej lwp_setspecific(specificdata_key_t key, void *data)
1511 1.41 thorpej {
1512 1.41 thorpej
1513 1.41 thorpej specificdata_setspecific(lwp_specificdata_domain,
1514 1.44 thorpej &curlwp->l_specdataref, key, data);
1515 1.41 thorpej }
1516 1.78 ad
1517 1.78 ad /*
1518 1.78 ad * Allocate a new lwpctl structure for a user LWP.
1519 1.78 ad */
1520 1.78 ad int
1521 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr)
1522 1.78 ad {
1523 1.78 ad lcproc_t *lp;
1524 1.78 ad u_int bit, i, offset;
1525 1.78 ad struct uvm_object *uao;
1526 1.78 ad int error;
1527 1.78 ad lcpage_t *lcp;
1528 1.78 ad proc_t *p;
1529 1.78 ad lwp_t *l;
1530 1.78 ad
1531 1.78 ad l = curlwp;
1532 1.78 ad p = l->l_proc;
1533 1.78 ad
1534 1.81 ad if (l->l_lcpage != NULL) {
1535 1.81 ad lcp = l->l_lcpage;
1536 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1537 1.78 ad return (EINVAL);
1538 1.81 ad }
1539 1.78 ad
1540 1.78 ad /* First time around, allocate header structure for the process. */
1541 1.78 ad if ((lp = p->p_lwpctl) == NULL) {
1542 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1543 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1544 1.78 ad lp->lp_uao = NULL;
1545 1.78 ad TAILQ_INIT(&lp->lp_pages);
1546 1.103 ad mutex_enter(p->p_lock);
1547 1.78 ad if (p->p_lwpctl == NULL) {
1548 1.78 ad p->p_lwpctl = lp;
1549 1.103 ad mutex_exit(p->p_lock);
1550 1.78 ad } else {
1551 1.103 ad mutex_exit(p->p_lock);
1552 1.78 ad mutex_destroy(&lp->lp_lock);
1553 1.78 ad kmem_free(lp, sizeof(*lp));
1554 1.78 ad lp = p->p_lwpctl;
1555 1.78 ad }
1556 1.78 ad }
1557 1.78 ad
1558 1.78 ad /*
1559 1.78 ad * Set up an anonymous memory region to hold the shared pages.
1560 1.78 ad * Map them into the process' address space. The user vmspace
1561 1.78 ad * gets the first reference on the UAO.
1562 1.78 ad */
1563 1.78 ad mutex_enter(&lp->lp_lock);
1564 1.78 ad if (lp->lp_uao == NULL) {
1565 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1566 1.78 ad lp->lp_cur = 0;
1567 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ;
1568 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1569 1.78 ad (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1570 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1571 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1572 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1573 1.78 ad if (error != 0) {
1574 1.78 ad uao_detach(lp->lp_uao);
1575 1.78 ad lp->lp_uao = NULL;
1576 1.78 ad mutex_exit(&lp->lp_lock);
1577 1.78 ad return error;
1578 1.78 ad }
1579 1.78 ad }
1580 1.78 ad
1581 1.78 ad /* Get a free block and allocate for this LWP. */
1582 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1583 1.78 ad if (lcp->lcp_nfree != 0)
1584 1.78 ad break;
1585 1.78 ad }
1586 1.78 ad if (lcp == NULL) {
1587 1.78 ad /* Nothing available - try to set up a free page. */
1588 1.78 ad if (lp->lp_cur == lp->lp_max) {
1589 1.78 ad mutex_exit(&lp->lp_lock);
1590 1.78 ad return ENOMEM;
1591 1.78 ad }
1592 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1593 1.79 yamt if (lcp == NULL) {
1594 1.79 yamt mutex_exit(&lp->lp_lock);
1595 1.78 ad return ENOMEM;
1596 1.79 yamt }
1597 1.78 ad /*
1598 1.78 ad * Wire the next page down in kernel space. Since this
1599 1.78 ad * is a new mapping, we must add a reference.
1600 1.78 ad */
1601 1.78 ad uao = lp->lp_uao;
1602 1.78 ad (*uao->pgops->pgo_reference)(uao);
1603 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map);
1604 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1605 1.78 ad uao, lp->lp_cur, PAGE_SIZE,
1606 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1607 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1608 1.78 ad if (error != 0) {
1609 1.78 ad mutex_exit(&lp->lp_lock);
1610 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1611 1.78 ad (*uao->pgops->pgo_detach)(uao);
1612 1.78 ad return error;
1613 1.78 ad }
1614 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1615 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1616 1.89 yamt if (error != 0) {
1617 1.89 yamt mutex_exit(&lp->lp_lock);
1618 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr,
1619 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE);
1620 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1621 1.89 yamt return error;
1622 1.89 yamt }
1623 1.78 ad /* Prepare the page descriptor and link into the list. */
1624 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1625 1.78 ad lp->lp_cur += PAGE_SIZE;
1626 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE;
1627 1.78 ad lcp->lcp_rotor = 0;
1628 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1629 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1630 1.78 ad }
1631 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1632 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES)
1633 1.78 ad i = 0;
1634 1.78 ad }
1635 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1;
1636 1.78 ad lcp->lcp_bitmap[i] ^= (1 << bit);
1637 1.78 ad lcp->lcp_rotor = i;
1638 1.78 ad lcp->lcp_nfree--;
1639 1.78 ad l->l_lcpage = lcp;
1640 1.78 ad offset = (i << 5) + bit;
1641 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1642 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1643 1.78 ad mutex_exit(&lp->lp_lock);
1644 1.78 ad
1645 1.107 ad KPREEMPT_DISABLE(l);
1646 1.111 ad l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1647 1.107 ad KPREEMPT_ENABLE(l);
1648 1.78 ad
1649 1.78 ad return 0;
1650 1.78 ad }
1651 1.78 ad
1652 1.78 ad /*
1653 1.78 ad * Free an lwpctl structure back to the per-process list.
1654 1.78 ad */
1655 1.78 ad void
1656 1.78 ad lwp_ctl_free(lwp_t *l)
1657 1.78 ad {
1658 1.78 ad lcproc_t *lp;
1659 1.78 ad lcpage_t *lcp;
1660 1.78 ad u_int map, offset;
1661 1.78 ad
1662 1.78 ad lp = l->l_proc->p_lwpctl;
1663 1.78 ad KASSERT(lp != NULL);
1664 1.78 ad
1665 1.78 ad lcp = l->l_lcpage;
1666 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1667 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE);
1668 1.78 ad
1669 1.78 ad mutex_enter(&lp->lp_lock);
1670 1.78 ad lcp->lcp_nfree++;
1671 1.78 ad map = offset >> 5;
1672 1.78 ad lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1673 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1674 1.78 ad lcp->lcp_rotor = map;
1675 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1676 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1677 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1678 1.78 ad }
1679 1.78 ad mutex_exit(&lp->lp_lock);
1680 1.78 ad }
1681 1.78 ad
1682 1.78 ad /*
1683 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely
1684 1.78 ad * called by the last LWP in the process.
1685 1.78 ad */
1686 1.78 ad void
1687 1.78 ad lwp_ctl_exit(void)
1688 1.78 ad {
1689 1.78 ad lcpage_t *lcp, *next;
1690 1.78 ad lcproc_t *lp;
1691 1.78 ad proc_t *p;
1692 1.78 ad lwp_t *l;
1693 1.78 ad
1694 1.78 ad l = curlwp;
1695 1.78 ad l->l_lwpctl = NULL;
1696 1.95 ad l->l_lcpage = NULL;
1697 1.78 ad p = l->l_proc;
1698 1.78 ad lp = p->p_lwpctl;
1699 1.78 ad
1700 1.78 ad KASSERT(lp != NULL);
1701 1.78 ad KASSERT(p->p_nlwps == 1);
1702 1.78 ad
1703 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1704 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain);
1705 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr,
1706 1.78 ad lcp->lcp_kaddr + PAGE_SIZE);
1707 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1708 1.78 ad }
1709 1.78 ad
1710 1.78 ad if (lp->lp_uao != NULL) {
1711 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1712 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ);
1713 1.78 ad }
1714 1.78 ad
1715 1.78 ad mutex_destroy(&lp->lp_lock);
1716 1.78 ad kmem_free(lp, sizeof(*lp));
1717 1.78 ad p->p_lwpctl = NULL;
1718 1.78 ad }
1719 1.84 yamt
1720 1.84 yamt #if defined(DDB)
1721 1.84 yamt void
1722 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1723 1.84 yamt {
1724 1.84 yamt lwp_t *l;
1725 1.84 yamt
1726 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) {
1727 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1728 1.84 yamt
1729 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) {
1730 1.84 yamt continue;
1731 1.84 yamt }
1732 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n",
1733 1.84 yamt (void *)addr, (void *)stack,
1734 1.84 yamt (size_t)(addr - stack), l);
1735 1.84 yamt }
1736 1.84 yamt }
1737 1.84 yamt #endif /* defined(DDB) */
1738