kern_lwp.c revision 1.135 1 1.135 rmind /* $NetBSD: kern_lwp.c,v 1.135 2009/10/22 22:28:57 rmind Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.127 ad * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.9 lukem
32 1.52 ad /*
33 1.52 ad * Overview
34 1.52 ad *
35 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of
36 1.52 ad * execution within the kernel. The core state of an LWP is described
37 1.66 ad * by "struct lwp", also known as lwp_t.
38 1.52 ad *
39 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
40 1.52 ad * Every process contains at least one LWP, but may contain more. The
41 1.52 ad * process describes attributes shared among all of its LWPs such as a
42 1.52 ad * private address space, global execution state (stopped, active,
43 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
44 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel.
45 1.52 ad *
46 1.52 ad * Execution states
47 1.52 ad *
48 1.52 ad * At any given time, an LWP has overall state that is described by
49 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
50 1.52 ad * set is guaranteed to represent the absolute, current state of the
51 1.52 ad * LWP:
52 1.101 rmind *
53 1.101 rmind * LSONPROC
54 1.101 rmind *
55 1.101 rmind * On processor: the LWP is executing on a CPU, either in the
56 1.101 rmind * kernel or in user space.
57 1.101 rmind *
58 1.101 rmind * LSRUN
59 1.101 rmind *
60 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be
61 1.101 rmind * chosen to run by an idle processor, or by a processor that
62 1.101 rmind * has been asked to preempt a currently runnning but lower
63 1.134 rmind * priority LWP.
64 1.101 rmind *
65 1.101 rmind * LSIDL
66 1.101 rmind *
67 1.101 rmind * Idle: the LWP has been created but has not yet executed,
68 1.66 ad * or it has ceased executing a unit of work and is waiting
69 1.66 ad * to be started again.
70 1.101 rmind *
71 1.101 rmind * LSSUSPENDED:
72 1.101 rmind *
73 1.101 rmind * Suspended: the LWP has had its execution suspended by
74 1.52 ad * another LWP in the same process using the _lwp_suspend()
75 1.52 ad * system call. User-level LWPs also enter the suspended
76 1.52 ad * state when the system is shutting down.
77 1.52 ad *
78 1.52 ad * The second set represent a "statement of intent" on behalf of the
79 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
80 1.66 ad * sleeping or idle. It is expected to take the necessary action to
81 1.101 rmind * stop executing or become "running" again within a short timeframe.
82 1.115 ad * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 1.101 rmind * Importantly, it indicates that its state is tied to a CPU.
84 1.101 rmind *
85 1.101 rmind * LSZOMB:
86 1.101 rmind *
87 1.101 rmind * Dead or dying: the LWP has released most of its resources
88 1.129 ad * and is about to switch away into oblivion, or has already
89 1.66 ad * switched away. When it switches away, its few remaining
90 1.66 ad * resources can be collected.
91 1.101 rmind *
92 1.101 rmind * LSSLEEP:
93 1.101 rmind *
94 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and
95 1.101 rmind * has switched away or will switch away shortly to allow other
96 1.66 ad * LWPs to run on the CPU.
97 1.101 rmind *
98 1.101 rmind * LSSTOP:
99 1.101 rmind *
100 1.101 rmind * Stopped: the LWP has been stopped as a result of a job
101 1.101 rmind * control signal, or as a result of the ptrace() interface.
102 1.101 rmind *
103 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle
104 1.101 rmind * signals that they receive, but will not return to user space
105 1.101 rmind * until their process' state is changed away from stopped.
106 1.101 rmind *
107 1.101 rmind * Single LWPs within a process can not be set stopped
108 1.101 rmind * selectively: all actions that can stop or continue LWPs
109 1.101 rmind * occur at the process level.
110 1.101 rmind *
111 1.52 ad * State transitions
112 1.52 ad *
113 1.66 ad * Note that the LSSTOP state may only be set when returning to
114 1.66 ad * user space in userret(), or when sleeping interruptably. The
115 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting
116 1.66 ad * those states, we try to ensure that the LWPs will release all
117 1.66 ad * locks that they hold, and at a minimum try to ensure that the
118 1.66 ad * LWP can be set runnable again by a signal.
119 1.52 ad *
120 1.52 ad * LWPs may transition states in the following ways:
121 1.52 ad *
122 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
123 1.129 ad * > SLEEP
124 1.129 ad * > STOPPED
125 1.52 ad * > SUSPENDED
126 1.52 ad * > ZOMB
127 1.129 ad * > IDL (special cases)
128 1.52 ad *
129 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
130 1.129 ad * > SLEEP
131 1.52 ad *
132 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
133 1.101 rmind * > RUN > SUSPENDED
134 1.101 rmind * > STOPPED > STOPPED
135 1.129 ad * > ONPROC (special cases)
136 1.52 ad *
137 1.129 ad * Some state transitions are only possible with kernel threads (eg
138 1.129 ad * ONPROC -> IDL) and happen under tightly controlled circumstances
139 1.129 ad * free of unwanted side effects.
140 1.66 ad *
141 1.114 rmind * Migration
142 1.114 rmind *
143 1.114 rmind * Migration of threads from one CPU to another could be performed
144 1.114 rmind * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 1.114 rmind * functions. The universal lwp_migrate() function should be used for
146 1.114 rmind * any other cases. Subsystems in the kernel must be aware that CPU
147 1.114 rmind * of LWP may change, while it is not locked.
148 1.114 rmind *
149 1.52 ad * Locking
150 1.52 ad *
151 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
152 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering
153 1.52 ad * each field are documented in sys/lwp.h.
154 1.52 ad *
155 1.66 ad * State transitions must be made with the LWP's general lock held,
156 1.101 rmind * and may cause the LWP's lock pointer to change. Manipulation of
157 1.66 ad * the general lock is not performed directly, but through calls to
158 1.66 ad * lwp_lock(), lwp_relock() and similar.
159 1.52 ad *
160 1.52 ad * States and their associated locks:
161 1.52 ad *
162 1.74 rmind * LSONPROC, LSZOMB:
163 1.52 ad *
164 1.64 yamt * Always covered by spc_lwplock, which protects running LWPs.
165 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
166 1.52 ad *
167 1.74 rmind * LSIDL, LSRUN:
168 1.52 ad *
169 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
170 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
171 1.52 ad *
172 1.52 ad * LSSLEEP:
173 1.52 ad *
174 1.66 ad * Covered by a lock associated with the sleep queue that the
175 1.129 ad * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
176 1.52 ad *
177 1.52 ad * LSSTOP, LSSUSPENDED:
178 1.101 rmind *
179 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
180 1.66 ad * l_mutex references the sleep queue lock. If the LWP was
181 1.52 ad * runnable or on the CPU when halted, or has been removed from
182 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock.
183 1.52 ad *
184 1.52 ad * The lock order is as follows:
185 1.52 ad *
186 1.64 yamt * spc::spc_lwplock ->
187 1.112 ad * sleeptab::st_mutex ->
188 1.64 yamt * tschain_t::tc_mutex ->
189 1.64 yamt * spc::spc_mutex
190 1.52 ad *
191 1.103 ad * Each process has an scheduler state lock (proc::p_lock), and a
192 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
194 1.103 ad * following states, p_lock must be held and the process wide counters
195 1.52 ad * adjusted:
196 1.52 ad *
197 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 1.52 ad *
199 1.129 ad * (But not always for kernel threads. There are some special cases
200 1.129 ad * as mentioned above. See kern_softint.c.)
201 1.129 ad *
202 1.52 ad * Note that an LWP is considered running or likely to run soon if in
203 1.52 ad * one of the following states. This affects the value of p_nrlwps:
204 1.52 ad *
205 1.52 ad * LSRUN, LSONPROC, LSSLEEP
206 1.52 ad *
207 1.103 ad * p_lock does not need to be held when transitioning among these
208 1.129 ad * three states, hence p_lock is rarely taken for state transitions.
209 1.52 ad */
210 1.52 ad
211 1.9 lukem #include <sys/cdefs.h>
212 1.135 rmind __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.135 2009/10/22 22:28:57 rmind Exp $");
213 1.8 martin
214 1.84 yamt #include "opt_ddb.h"
215 1.52 ad #include "opt_lockdebug.h"
216 1.124 wrstuden #include "opt_sa.h"
217 1.2 thorpej
218 1.47 hannken #define _LWP_API_PRIVATE
219 1.47 hannken
220 1.2 thorpej #include <sys/param.h>
221 1.2 thorpej #include <sys/systm.h>
222 1.64 yamt #include <sys/cpu.h>
223 1.2 thorpej #include <sys/pool.h>
224 1.2 thorpej #include <sys/proc.h>
225 1.124 wrstuden #include <sys/sa.h>
226 1.124 wrstuden #include <sys/savar.h>
227 1.2 thorpej #include <sys/syscallargs.h>
228 1.57 dsl #include <sys/syscall_stats.h>
229 1.37 ad #include <sys/kauth.h>
230 1.52 ad #include <sys/sleepq.h>
231 1.85 yamt #include <sys/user.h>
232 1.52 ad #include <sys/lockdebug.h>
233 1.52 ad #include <sys/kmem.h>
234 1.91 rmind #include <sys/pset.h>
235 1.75 ad #include <sys/intr.h>
236 1.78 ad #include <sys/lwpctl.h>
237 1.81 ad #include <sys/atomic.h>
238 1.131 ad #include <sys/filedesc.h>
239 1.2 thorpej
240 1.2 thorpej #include <uvm/uvm_extern.h>
241 1.80 skrll #include <uvm/uvm_object.h>
242 1.2 thorpej
243 1.77 matt struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
244 1.52 ad
245 1.133 pooka struct pool lwp_uc_pool;
246 1.41 thorpej
247 1.87 ad static pool_cache_t lwp_cache;
248 1.41 thorpej static specificdata_domain_t lwp_specificdata_domain;
249 1.41 thorpej
250 1.41 thorpej void
251 1.41 thorpej lwpinit(void)
252 1.41 thorpej {
253 1.41 thorpej
254 1.133 pooka pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
255 1.133 pooka &pool_allocator_nointr, IPL_NONE);
256 1.41 thorpej lwp_specificdata_domain = specificdata_domain_create();
257 1.41 thorpej KASSERT(lwp_specificdata_domain != NULL);
258 1.52 ad lwp_sys_init();
259 1.87 ad lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
260 1.87 ad "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
261 1.41 thorpej }
262 1.41 thorpej
263 1.52 ad /*
264 1.52 ad * Set an suspended.
265 1.52 ad *
266 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
267 1.52 ad * LWP before return.
268 1.52 ad */
269 1.2 thorpej int
270 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
271 1.2 thorpej {
272 1.52 ad int error;
273 1.2 thorpej
274 1.103 ad KASSERT(mutex_owned(t->l_proc->p_lock));
275 1.63 ad KASSERT(lwp_locked(t, NULL));
276 1.33 chs
277 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
278 1.2 thorpej
279 1.52 ad /*
280 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
281 1.52 ad * else or deadlock could occur. We won't return to userspace.
282 1.2 thorpej */
283 1.109 rmind if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
284 1.52 ad lwp_unlock(t);
285 1.52 ad return (EDEADLK);
286 1.2 thorpej }
287 1.2 thorpej
288 1.52 ad error = 0;
289 1.2 thorpej
290 1.52 ad switch (t->l_stat) {
291 1.52 ad case LSRUN:
292 1.52 ad case LSONPROC:
293 1.56 pavel t->l_flag |= LW_WSUSPEND;
294 1.52 ad lwp_need_userret(t);
295 1.52 ad lwp_unlock(t);
296 1.52 ad break;
297 1.2 thorpej
298 1.52 ad case LSSLEEP:
299 1.56 pavel t->l_flag |= LW_WSUSPEND;
300 1.2 thorpej
301 1.2 thorpej /*
302 1.52 ad * Kick the LWP and try to get it to the kernel boundary
303 1.52 ad * so that it will release any locks that it holds.
304 1.52 ad * setrunnable() will release the lock.
305 1.2 thorpej */
306 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
307 1.52 ad setrunnable(t);
308 1.52 ad else
309 1.52 ad lwp_unlock(t);
310 1.52 ad break;
311 1.2 thorpej
312 1.52 ad case LSSUSPENDED:
313 1.52 ad lwp_unlock(t);
314 1.52 ad break;
315 1.17 manu
316 1.52 ad case LSSTOP:
317 1.56 pavel t->l_flag |= LW_WSUSPEND;
318 1.52 ad setrunnable(t);
319 1.52 ad break;
320 1.2 thorpej
321 1.52 ad case LSIDL:
322 1.52 ad case LSZOMB:
323 1.52 ad error = EINTR; /* It's what Solaris does..... */
324 1.52 ad lwp_unlock(t);
325 1.52 ad break;
326 1.2 thorpej }
327 1.2 thorpej
328 1.69 rmind return (error);
329 1.2 thorpej }
330 1.2 thorpej
331 1.52 ad /*
332 1.52 ad * Restart a suspended LWP.
333 1.52 ad *
334 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
335 1.52 ad * LWP before return.
336 1.52 ad */
337 1.2 thorpej void
338 1.2 thorpej lwp_continue(struct lwp *l)
339 1.2 thorpej {
340 1.2 thorpej
341 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
342 1.63 ad KASSERT(lwp_locked(l, NULL));
343 1.52 ad
344 1.52 ad /* If rebooting or not suspended, then just bail out. */
345 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
346 1.52 ad lwp_unlock(l);
347 1.2 thorpej return;
348 1.10 fvdl }
349 1.2 thorpej
350 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
351 1.2 thorpej
352 1.52 ad if (l->l_stat != LSSUSPENDED) {
353 1.52 ad lwp_unlock(l);
354 1.52 ad return;
355 1.2 thorpej }
356 1.2 thorpej
357 1.52 ad /* setrunnable() will release the lock. */
358 1.52 ad setrunnable(l);
359 1.2 thorpej }
360 1.2 thorpej
361 1.52 ad /*
362 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
363 1.52 ad * non-zero, we are waiting for a specific LWP.
364 1.52 ad *
365 1.103 ad * Must be called with p->p_lock held.
366 1.52 ad */
367 1.2 thorpej int
368 1.2 thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
369 1.2 thorpej {
370 1.2 thorpej struct proc *p = l->l_proc;
371 1.52 ad struct lwp *l2;
372 1.52 ad int nfound, error;
373 1.63 ad lwpid_t curlid;
374 1.63 ad bool exiting;
375 1.2 thorpej
376 1.103 ad KASSERT(mutex_owned(p->p_lock));
377 1.52 ad
378 1.52 ad p->p_nlwpwait++;
379 1.63 ad l->l_waitingfor = lid;
380 1.63 ad curlid = l->l_lid;
381 1.63 ad exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
382 1.52 ad
383 1.52 ad for (;;) {
384 1.52 ad /*
385 1.52 ad * Avoid a race between exit1() and sigexit(): if the
386 1.52 ad * process is dumping core, then we need to bail out: call
387 1.52 ad * into lwp_userret() where we will be suspended until the
388 1.52 ad * deed is done.
389 1.52 ad */
390 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
391 1.103 ad mutex_exit(p->p_lock);
392 1.52 ad lwp_userret(l);
393 1.52 ad #ifdef DIAGNOSTIC
394 1.52 ad panic("lwp_wait1");
395 1.52 ad #endif
396 1.52 ad /* NOTREACHED */
397 1.52 ad }
398 1.52 ad
399 1.52 ad /*
400 1.52 ad * First off, drain any detached LWP that is waiting to be
401 1.52 ad * reaped.
402 1.52 ad */
403 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
404 1.52 ad p->p_zomblwp = NULL;
405 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
406 1.103 ad mutex_enter(p->p_lock);
407 1.52 ad }
408 1.52 ad
409 1.52 ad /*
410 1.52 ad * Now look for an LWP to collect. If the whole process is
411 1.52 ad * exiting, count detached LWPs as eligible to be collected,
412 1.52 ad * but don't drain them here.
413 1.52 ad */
414 1.52 ad nfound = 0;
415 1.63 ad error = 0;
416 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
417 1.63 ad /*
418 1.63 ad * If a specific wait and the target is waiting on
419 1.63 ad * us, then avoid deadlock. This also traps LWPs
420 1.63 ad * that try to wait on themselves.
421 1.63 ad *
422 1.63 ad * Note that this does not handle more complicated
423 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
424 1.63 ad * can still be killed so it is not a major problem.
425 1.63 ad */
426 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
427 1.63 ad error = EDEADLK;
428 1.63 ad break;
429 1.63 ad }
430 1.63 ad if (l2 == l)
431 1.52 ad continue;
432 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
433 1.63 ad nfound += exiting;
434 1.63 ad continue;
435 1.63 ad }
436 1.63 ad if (lid != 0) {
437 1.63 ad if (l2->l_lid != lid)
438 1.63 ad continue;
439 1.63 ad /*
440 1.63 ad * Mark this LWP as the first waiter, if there
441 1.63 ad * is no other.
442 1.63 ad */
443 1.63 ad if (l2->l_waiter == 0)
444 1.63 ad l2->l_waiter = curlid;
445 1.63 ad } else if (l2->l_waiter != 0) {
446 1.63 ad /*
447 1.63 ad * It already has a waiter - so don't
448 1.63 ad * collect it. If the waiter doesn't
449 1.63 ad * grab it we'll get another chance
450 1.63 ad * later.
451 1.63 ad */
452 1.63 ad nfound++;
453 1.52 ad continue;
454 1.52 ad }
455 1.52 ad nfound++;
456 1.2 thorpej
457 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
458 1.52 ad if (l2->l_stat != LSZOMB)
459 1.52 ad continue;
460 1.2 thorpej
461 1.63 ad /*
462 1.63 ad * We're no longer waiting. Reset the "first waiter"
463 1.63 ad * pointer on the target, in case it was us.
464 1.63 ad */
465 1.63 ad l->l_waitingfor = 0;
466 1.63 ad l2->l_waiter = 0;
467 1.63 ad p->p_nlwpwait--;
468 1.2 thorpej if (departed)
469 1.2 thorpej *departed = l2->l_lid;
470 1.75 ad sched_lwp_collect(l2);
471 1.63 ad
472 1.63 ad /* lwp_free() releases the proc lock. */
473 1.63 ad lwp_free(l2, false, false);
474 1.103 ad mutex_enter(p->p_lock);
475 1.52 ad return 0;
476 1.52 ad }
477 1.2 thorpej
478 1.63 ad if (error != 0)
479 1.63 ad break;
480 1.52 ad if (nfound == 0) {
481 1.52 ad error = ESRCH;
482 1.52 ad break;
483 1.52 ad }
484 1.63 ad
485 1.63 ad /*
486 1.63 ad * The kernel is careful to ensure that it can not deadlock
487 1.63 ad * when exiting - just keep waiting.
488 1.63 ad */
489 1.63 ad if (exiting) {
490 1.52 ad KASSERT(p->p_nlwps > 1);
491 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
492 1.52 ad continue;
493 1.52 ad }
494 1.63 ad
495 1.63 ad /*
496 1.63 ad * If all other LWPs are waiting for exits or suspends
497 1.63 ad * and the supply of zombies and potential zombies is
498 1.63 ad * exhausted, then we are about to deadlock.
499 1.63 ad *
500 1.63 ad * If the process is exiting (and this LWP is not the one
501 1.63 ad * that is coordinating the exit) then bail out now.
502 1.63 ad */
503 1.52 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
504 1.63 ad p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
505 1.52 ad error = EDEADLK;
506 1.52 ad break;
507 1.2 thorpej }
508 1.63 ad
509 1.63 ad /*
510 1.63 ad * Sit around and wait for something to happen. We'll be
511 1.63 ad * awoken if any of the conditions examined change: if an
512 1.63 ad * LWP exits, is collected, or is detached.
513 1.63 ad */
514 1.103 ad if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
515 1.52 ad break;
516 1.2 thorpej }
517 1.2 thorpej
518 1.63 ad /*
519 1.63 ad * We didn't find any LWPs to collect, we may have received a
520 1.63 ad * signal, or some other condition has caused us to bail out.
521 1.63 ad *
522 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
523 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
524 1.63 ad * so that they can re-check for zombies and for deadlock.
525 1.63 ad */
526 1.63 ad if (lid != 0) {
527 1.63 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
528 1.63 ad if (l2->l_lid == lid) {
529 1.63 ad if (l2->l_waiter == curlid)
530 1.63 ad l2->l_waiter = 0;
531 1.63 ad break;
532 1.63 ad }
533 1.63 ad }
534 1.63 ad }
535 1.52 ad p->p_nlwpwait--;
536 1.63 ad l->l_waitingfor = 0;
537 1.63 ad cv_broadcast(&p->p_lwpcv);
538 1.63 ad
539 1.52 ad return error;
540 1.2 thorpej }
541 1.2 thorpej
542 1.52 ad /*
543 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
544 1.52 ad * The new LWP is created in state LSIDL and must be set running,
545 1.52 ad * suspended, or stopped by the caller.
546 1.52 ad */
547 1.2 thorpej int
548 1.134 rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
549 1.75 ad void *stack, size_t stacksize, void (*func)(void *), void *arg,
550 1.75 ad lwp_t **rnewlwpp, int sclass)
551 1.2 thorpej {
552 1.52 ad struct lwp *l2, *isfree;
553 1.52 ad turnstile_t *ts;
554 1.2 thorpej
555 1.107 ad KASSERT(l1 == curlwp || l1->l_proc == &proc0);
556 1.107 ad
557 1.52 ad /*
558 1.52 ad * First off, reap any detached LWP waiting to be collected.
559 1.52 ad * We can re-use its LWP structure and turnstile.
560 1.52 ad */
561 1.52 ad isfree = NULL;
562 1.52 ad if (p2->p_zomblwp != NULL) {
563 1.103 ad mutex_enter(p2->p_lock);
564 1.52 ad if ((isfree = p2->p_zomblwp) != NULL) {
565 1.52 ad p2->p_zomblwp = NULL;
566 1.63 ad lwp_free(isfree, true, false);/* releases proc mutex */
567 1.52 ad } else
568 1.103 ad mutex_exit(p2->p_lock);
569 1.52 ad }
570 1.52 ad if (isfree == NULL) {
571 1.87 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK);
572 1.52 ad memset(l2, 0, sizeof(*l2));
573 1.76 ad l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
574 1.60 yamt SLIST_INIT(&l2->l_pi_lenders);
575 1.52 ad } else {
576 1.52 ad l2 = isfree;
577 1.52 ad ts = l2->l_ts;
578 1.75 ad KASSERT(l2->l_inheritedprio == -1);
579 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
580 1.52 ad memset(l2, 0, sizeof(*l2));
581 1.52 ad l2->l_ts = ts;
582 1.52 ad }
583 1.2 thorpej
584 1.2 thorpej l2->l_stat = LSIDL;
585 1.2 thorpej l2->l_proc = p2;
586 1.52 ad l2->l_refcnt = 1;
587 1.75 ad l2->l_class = sclass;
588 1.116 ad
589 1.116 ad /*
590 1.116 ad * If vfork(), we want the LWP to run fast and on the same CPU
591 1.116 ad * as its parent, so that it can reuse the VM context and cache
592 1.116 ad * footprint on the local CPU.
593 1.116 ad */
594 1.116 ad l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
595 1.82 ad l2->l_kpribase = PRI_KERNEL;
596 1.52 ad l2->l_priority = l1->l_priority;
597 1.75 ad l2->l_inheritedprio = -1;
598 1.134 rmind l2->l_flag = 0;
599 1.88 ad l2->l_pflag = LP_MPSAFE;
600 1.131 ad TAILQ_INIT(&l2->l_ld_locks);
601 1.131 ad
602 1.131 ad /*
603 1.131 ad * If not the first LWP in the process, grab a reference to the
604 1.131 ad * descriptor table.
605 1.131 ad */
606 1.97 ad l2->l_fd = p2->p_fd;
607 1.131 ad if (p2->p_nlwps != 0) {
608 1.131 ad KASSERT(l1->l_proc == p2);
609 1.132 dyoung atomic_inc_uint(&l2->l_fd->fd_refcnt);
610 1.131 ad } else {
611 1.131 ad KASSERT(l1->l_proc != p2);
612 1.131 ad }
613 1.41 thorpej
614 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
615 1.134 rmind /* Mark it as a system LWP. */
616 1.56 pavel l2->l_flag |= LW_SYSTEM;
617 1.52 ad }
618 1.2 thorpej
619 1.107 ad kpreempt_disable();
620 1.107 ad l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
621 1.107 ad l2->l_cpu = l1->l_cpu;
622 1.107 ad kpreempt_enable();
623 1.107 ad
624 1.73 rmind lwp_initspecific(l2);
625 1.75 ad sched_lwp_fork(l1, l2);
626 1.37 ad lwp_update_creds(l2);
627 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
628 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
629 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
630 1.52 ad l2->l_syncobj = &sched_syncobj;
631 1.2 thorpej
632 1.2 thorpej if (rnewlwpp != NULL)
633 1.2 thorpej *rnewlwpp = l2;
634 1.2 thorpej
635 1.36 yamt l2->l_addr = UAREA_TO_USER(uaddr);
636 1.2 thorpej uvm_lwp_fork(l1, l2, stack, stacksize, func,
637 1.2 thorpej (arg != NULL) ? arg : l2);
638 1.2 thorpej
639 1.103 ad mutex_enter(p2->p_lock);
640 1.52 ad
641 1.52 ad if ((flags & LWP_DETACHED) != 0) {
642 1.52 ad l2->l_prflag = LPR_DETACHED;
643 1.52 ad p2->p_ndlwps++;
644 1.52 ad } else
645 1.52 ad l2->l_prflag = 0;
646 1.52 ad
647 1.52 ad l2->l_sigmask = l1->l_sigmask;
648 1.52 ad CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
649 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
650 1.52 ad
651 1.53 yamt p2->p_nlwpid++;
652 1.53 yamt if (p2->p_nlwpid == 0)
653 1.53 yamt p2->p_nlwpid++;
654 1.53 yamt l2->l_lid = p2->p_nlwpid;
655 1.2 thorpej LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
656 1.2 thorpej p2->p_nlwps++;
657 1.2 thorpej
658 1.91 rmind if ((p2->p_flag & PK_SYSTEM) == 0) {
659 1.91 rmind /* Inherit an affinity */
660 1.122 rmind if (l1->l_flag & LW_AFFINITY) {
661 1.128 rmind /*
662 1.128 rmind * Note that we hold the state lock while inheriting
663 1.128 rmind * the affinity to avoid race with sched_setaffinity().
664 1.128 rmind */
665 1.128 rmind lwp_lock(l1);
666 1.122 rmind if (l1->l_flag & LW_AFFINITY) {
667 1.122 rmind kcpuset_use(l1->l_affinity);
668 1.122 rmind l2->l_affinity = l1->l_affinity;
669 1.122 rmind l2->l_flag |= LW_AFFINITY;
670 1.122 rmind }
671 1.128 rmind lwp_unlock(l1);
672 1.117 christos }
673 1.128 rmind lwp_lock(l2);
674 1.128 rmind /* Inherit a processor-set */
675 1.128 rmind l2->l_psid = l1->l_psid;
676 1.91 rmind /* Look for a CPU to start */
677 1.91 rmind l2->l_cpu = sched_takecpu(l2);
678 1.91 rmind lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
679 1.91 rmind }
680 1.128 rmind mutex_exit(p2->p_lock);
681 1.128 rmind
682 1.128 rmind mutex_enter(proc_lock);
683 1.128 rmind LIST_INSERT_HEAD(&alllwp, l2, l_list);
684 1.128 rmind mutex_exit(proc_lock);
685 1.91 rmind
686 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
687 1.57 dsl
688 1.16 manu if (p2->p_emul->e_lwp_fork)
689 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
690 1.16 manu
691 1.2 thorpej return (0);
692 1.2 thorpej }
693 1.2 thorpej
694 1.2 thorpej /*
695 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
696 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
697 1.64 yamt * previous LWP, at splsched.
698 1.64 yamt */
699 1.64 yamt void
700 1.64 yamt lwp_startup(struct lwp *prev, struct lwp *new)
701 1.64 yamt {
702 1.64 yamt
703 1.107 ad KASSERT(kpreempt_disabled());
704 1.64 yamt if (prev != NULL) {
705 1.81 ad /*
706 1.81 ad * Normalize the count of the spin-mutexes, it was
707 1.81 ad * increased in mi_switch(). Unmark the state of
708 1.81 ad * context switch - it is finished for previous LWP.
709 1.81 ad */
710 1.81 ad curcpu()->ci_mtx_count++;
711 1.81 ad membar_exit();
712 1.81 ad prev->l_ctxswtch = 0;
713 1.64 yamt }
714 1.107 ad KPREEMPT_DISABLE(new);
715 1.107 ad spl0();
716 1.105 ad pmap_activate(new);
717 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
718 1.107 ad KPREEMPT_ENABLE(new);
719 1.65 ad if ((new->l_pflag & LP_MPSAFE) == 0) {
720 1.65 ad KERNEL_LOCK(1, new);
721 1.65 ad }
722 1.64 yamt }
723 1.64 yamt
724 1.64 yamt /*
725 1.65 ad * Exit an LWP.
726 1.2 thorpej */
727 1.2 thorpej void
728 1.2 thorpej lwp_exit(struct lwp *l)
729 1.2 thorpej {
730 1.2 thorpej struct proc *p = l->l_proc;
731 1.52 ad struct lwp *l2;
732 1.65 ad bool current;
733 1.65 ad
734 1.65 ad current = (l == curlwp);
735 1.2 thorpej
736 1.114 rmind KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
737 1.131 ad KASSERT(p == curproc);
738 1.2 thorpej
739 1.52 ad /*
740 1.52 ad * Verify that we hold no locks other than the kernel lock.
741 1.52 ad */
742 1.52 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
743 1.16 manu
744 1.2 thorpej /*
745 1.52 ad * If we are the last live LWP in a process, we need to exit the
746 1.52 ad * entire process. We do so with an exit status of zero, because
747 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
748 1.52 ad *
749 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
750 1.52 ad * must increment the count of zombies here.
751 1.45 thorpej *
752 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
753 1.2 thorpej */
754 1.103 ad mutex_enter(p->p_lock);
755 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
756 1.65 ad KASSERT(current == true);
757 1.88 ad /* XXXSMP kernel_lock not held */
758 1.2 thorpej exit1(l, 0);
759 1.19 jdolecek /* NOTREACHED */
760 1.2 thorpej }
761 1.52 ad p->p_nzlwps++;
762 1.103 ad mutex_exit(p->p_lock);
763 1.52 ad
764 1.52 ad if (p->p_emul->e_lwp_exit)
765 1.52 ad (*p->p_emul->e_lwp_exit)(l);
766 1.2 thorpej
767 1.131 ad /* Drop filedesc reference. */
768 1.131 ad fd_free();
769 1.131 ad
770 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
771 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
772 1.45 thorpej
773 1.52 ad /*
774 1.52 ad * Release our cached credentials.
775 1.52 ad */
776 1.37 ad kauth_cred_free(l->l_cred);
777 1.70 ad callout_destroy(&l->l_timeout_ch);
778 1.65 ad
779 1.65 ad /*
780 1.52 ad * Remove the LWP from the global list.
781 1.52 ad */
782 1.102 ad mutex_enter(proc_lock);
783 1.52 ad LIST_REMOVE(l, l_list);
784 1.102 ad mutex_exit(proc_lock);
785 1.19 jdolecek
786 1.52 ad /*
787 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
788 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
789 1.52 ad * mark it waiting for collection in the proc structure. Note that
790 1.52 ad * before we can do that, we need to free any other dead, deatched
791 1.52 ad * LWP waiting to meet its maker.
792 1.52 ad */
793 1.103 ad mutex_enter(p->p_lock);
794 1.52 ad lwp_drainrefs(l);
795 1.31 yamt
796 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
797 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
798 1.52 ad p->p_zomblwp = NULL;
799 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
800 1.103 ad mutex_enter(p->p_lock);
801 1.72 ad l->l_refcnt++;
802 1.72 ad lwp_drainrefs(l);
803 1.52 ad }
804 1.52 ad p->p_zomblwp = l;
805 1.52 ad }
806 1.31 yamt
807 1.52 ad /*
808 1.52 ad * If we find a pending signal for the process and we have been
809 1.52 ad * asked to check for signals, then we loose: arrange to have
810 1.52 ad * all other LWPs in the process check for signals.
811 1.52 ad */
812 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
813 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
814 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
815 1.52 ad lwp_lock(l2);
816 1.56 pavel l2->l_flag |= LW_PENDSIG;
817 1.52 ad lwp_unlock(l2);
818 1.52 ad }
819 1.31 yamt }
820 1.31 yamt
821 1.52 ad lwp_lock(l);
822 1.52 ad l->l_stat = LSZOMB;
823 1.90 ad if (l->l_name != NULL)
824 1.90 ad strcpy(l->l_name, "(zombie)");
825 1.128 rmind if (l->l_flag & LW_AFFINITY) {
826 1.122 rmind l->l_flag &= ~LW_AFFINITY;
827 1.128 rmind } else {
828 1.128 rmind KASSERT(l->l_affinity == NULL);
829 1.128 rmind }
830 1.52 ad lwp_unlock(l);
831 1.2 thorpej p->p_nrlwps--;
832 1.52 ad cv_broadcast(&p->p_lwpcv);
833 1.78 ad if (l->l_lwpctl != NULL)
834 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
835 1.103 ad mutex_exit(p->p_lock);
836 1.52 ad
837 1.122 rmind /* Safe without lock since LWP is in zombie state */
838 1.122 rmind if (l->l_affinity) {
839 1.122 rmind kcpuset_unuse(l->l_affinity, NULL);
840 1.122 rmind l->l_affinity = NULL;
841 1.122 rmind }
842 1.122 rmind
843 1.52 ad /*
844 1.52 ad * We can no longer block. At this point, lwp_free() may already
845 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
846 1.52 ad *
847 1.52 ad * Free MD LWP resources.
848 1.52 ad */
849 1.52 ad cpu_lwp_free(l, 0);
850 1.2 thorpej
851 1.65 ad if (current) {
852 1.65 ad pmap_deactivate(l);
853 1.65 ad
854 1.65 ad /*
855 1.65 ad * Release the kernel lock, and switch away into
856 1.65 ad * oblivion.
857 1.65 ad */
858 1.52 ad #ifdef notyet
859 1.65 ad /* XXXSMP hold in lwp_userret() */
860 1.65 ad KERNEL_UNLOCK_LAST(l);
861 1.52 ad #else
862 1.65 ad KERNEL_UNLOCK_ALL(l, NULL);
863 1.52 ad #endif
864 1.65 ad lwp_exit_switchaway(l);
865 1.65 ad }
866 1.2 thorpej }
867 1.2 thorpej
868 1.52 ad /*
869 1.52 ad * Free a dead LWP's remaining resources.
870 1.52 ad *
871 1.52 ad * XXXLWP limits.
872 1.52 ad */
873 1.52 ad void
874 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
875 1.52 ad {
876 1.52 ad struct proc *p = l->l_proc;
877 1.100 ad struct rusage *ru;
878 1.52 ad ksiginfoq_t kq;
879 1.52 ad
880 1.92 yamt KASSERT(l != curlwp);
881 1.92 yamt
882 1.52 ad /*
883 1.52 ad * If this was not the last LWP in the process, then adjust
884 1.52 ad * counters and unlock.
885 1.52 ad */
886 1.52 ad if (!last) {
887 1.52 ad /*
888 1.52 ad * Add the LWP's run time to the process' base value.
889 1.52 ad * This needs to co-incide with coming off p_lwps.
890 1.52 ad */
891 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime);
892 1.64 yamt p->p_pctcpu += l->l_pctcpu;
893 1.100 ad ru = &p->p_stats->p_ru;
894 1.100 ad ruadd(ru, &l->l_ru);
895 1.100 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
896 1.100 ad ru->ru_nivcsw += l->l_nivcsw;
897 1.52 ad LIST_REMOVE(l, l_sibling);
898 1.52 ad p->p_nlwps--;
899 1.52 ad p->p_nzlwps--;
900 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
901 1.52 ad p->p_ndlwps--;
902 1.63 ad
903 1.63 ad /*
904 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
905 1.63 ad * deadlock.
906 1.63 ad */
907 1.63 ad cv_broadcast(&p->p_lwpcv);
908 1.103 ad mutex_exit(p->p_lock);
909 1.63 ad }
910 1.52 ad
911 1.52 ad #ifdef MULTIPROCESSOR
912 1.63 ad /*
913 1.63 ad * In the unlikely event that the LWP is still on the CPU,
914 1.63 ad * then spin until it has switched away. We need to release
915 1.63 ad * all locks to avoid deadlock against interrupt handlers on
916 1.63 ad * the target CPU.
917 1.63 ad */
918 1.115 ad if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
919 1.63 ad int count;
920 1.64 yamt (void)count; /* XXXgcc */
921 1.63 ad KERNEL_UNLOCK_ALL(curlwp, &count);
922 1.115 ad while ((l->l_pflag & LP_RUNNING) != 0 ||
923 1.64 yamt l->l_cpu->ci_curlwp == l)
924 1.63 ad SPINLOCK_BACKOFF_HOOK;
925 1.63 ad KERNEL_LOCK(count, curlwp);
926 1.63 ad }
927 1.52 ad #endif
928 1.52 ad
929 1.52 ad /*
930 1.52 ad * Destroy the LWP's remaining signal information.
931 1.52 ad */
932 1.52 ad ksiginfo_queue_init(&kq);
933 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
934 1.52 ad ksiginfo_queue_drain(&kq);
935 1.52 ad cv_destroy(&l->l_sigcv);
936 1.2 thorpej
937 1.19 jdolecek /*
938 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
939 1.93 yamt * caller wants to recycle them. Also, free the scheduler specific
940 1.93 yamt * data.
941 1.52 ad *
942 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
943 1.52 ad * so if it comes up just drop it quietly and move on.
944 1.52 ad *
945 1.52 ad * We don't recycle the VM resources at this time.
946 1.19 jdolecek */
947 1.78 ad if (l->l_lwpctl != NULL)
948 1.78 ad lwp_ctl_free(l);
949 1.64 yamt
950 1.52 ad if (!recycle && l->l_ts != &turnstile0)
951 1.76 ad pool_cache_put(turnstile_cache, l->l_ts);
952 1.90 ad if (l->l_name != NULL)
953 1.90 ad kmem_free(l->l_name, MAXCOMLEN);
954 1.135 rmind
955 1.52 ad cpu_lwp_free2(l);
956 1.19 jdolecek uvm_lwp_exit(l);
957 1.134 rmind
958 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
959 1.75 ad KASSERT(l->l_inheritedprio == -1);
960 1.52 ad if (!recycle)
961 1.87 ad pool_cache_put(lwp_cache, l);
962 1.2 thorpej }
963 1.2 thorpej
964 1.2 thorpej /*
965 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP.
966 1.91 rmind */
967 1.91 rmind void
968 1.114 rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
969 1.91 rmind {
970 1.114 rmind struct schedstate_percpu *tspc;
971 1.121 rmind int lstat = l->l_stat;
972 1.121 rmind
973 1.91 rmind KASSERT(lwp_locked(l, NULL));
974 1.114 rmind KASSERT(tci != NULL);
975 1.114 rmind
976 1.121 rmind /* If LWP is still on the CPU, it must be handled like LSONPROC */
977 1.121 rmind if ((l->l_pflag & LP_RUNNING) != 0) {
978 1.121 rmind lstat = LSONPROC;
979 1.121 rmind }
980 1.121 rmind
981 1.114 rmind /*
982 1.114 rmind * The destination CPU could be changed while previous migration
983 1.114 rmind * was not finished.
984 1.114 rmind */
985 1.121 rmind if (l->l_target_cpu != NULL) {
986 1.114 rmind l->l_target_cpu = tci;
987 1.114 rmind lwp_unlock(l);
988 1.114 rmind return;
989 1.114 rmind }
990 1.91 rmind
991 1.114 rmind /* Nothing to do if trying to migrate to the same CPU */
992 1.114 rmind if (l->l_cpu == tci) {
993 1.91 rmind lwp_unlock(l);
994 1.91 rmind return;
995 1.91 rmind }
996 1.91 rmind
997 1.114 rmind KASSERT(l->l_target_cpu == NULL);
998 1.114 rmind tspc = &tci->ci_schedstate;
999 1.121 rmind switch (lstat) {
1000 1.91 rmind case LSRUN:
1001 1.134 rmind l->l_target_cpu = tci;
1002 1.134 rmind break;
1003 1.91 rmind case LSIDL:
1004 1.114 rmind l->l_cpu = tci;
1005 1.114 rmind lwp_unlock_to(l, tspc->spc_mutex);
1006 1.91 rmind return;
1007 1.91 rmind case LSSLEEP:
1008 1.114 rmind l->l_cpu = tci;
1009 1.91 rmind break;
1010 1.91 rmind case LSSTOP:
1011 1.91 rmind case LSSUSPENDED:
1012 1.114 rmind l->l_cpu = tci;
1013 1.114 rmind if (l->l_wchan == NULL) {
1014 1.114 rmind lwp_unlock_to(l, tspc->spc_lwplock);
1015 1.114 rmind return;
1016 1.91 rmind }
1017 1.114 rmind break;
1018 1.91 rmind case LSONPROC:
1019 1.114 rmind l->l_target_cpu = tci;
1020 1.114 rmind spc_lock(l->l_cpu);
1021 1.114 rmind cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1022 1.114 rmind spc_unlock(l->l_cpu);
1023 1.91 rmind break;
1024 1.91 rmind }
1025 1.91 rmind lwp_unlock(l);
1026 1.91 rmind }
1027 1.91 rmind
1028 1.91 rmind /*
1029 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case,
1030 1.94 rmind * the calling process and first LWP in the list will be used.
1031 1.103 ad * On success - returns proc locked.
1032 1.91 rmind */
1033 1.91 rmind struct lwp *
1034 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid)
1035 1.91 rmind {
1036 1.91 rmind proc_t *p;
1037 1.91 rmind lwp_t *l;
1038 1.91 rmind
1039 1.91 rmind /* Find the process */
1040 1.94 rmind p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1041 1.91 rmind if (p == NULL)
1042 1.91 rmind return NULL;
1043 1.103 ad mutex_enter(p->p_lock);
1044 1.94 rmind if (pid != 0) {
1045 1.94 rmind /* Case of p_find */
1046 1.102 ad mutex_exit(proc_lock);
1047 1.94 rmind }
1048 1.91 rmind
1049 1.91 rmind /* Find the thread */
1050 1.94 rmind l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1051 1.103 ad if (l == NULL) {
1052 1.103 ad mutex_exit(p->p_lock);
1053 1.103 ad }
1054 1.91 rmind
1055 1.91 rmind return l;
1056 1.91 rmind }
1057 1.91 rmind
1058 1.91 rmind /*
1059 1.52 ad * Look up a live LWP within the speicifed process, and return it locked.
1060 1.52 ad *
1061 1.103 ad * Must be called with p->p_lock held.
1062 1.52 ad */
1063 1.52 ad struct lwp *
1064 1.52 ad lwp_find(struct proc *p, int id)
1065 1.52 ad {
1066 1.52 ad struct lwp *l;
1067 1.52 ad
1068 1.103 ad KASSERT(mutex_owned(p->p_lock));
1069 1.52 ad
1070 1.52 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1071 1.52 ad if (l->l_lid == id)
1072 1.52 ad break;
1073 1.52 ad }
1074 1.52 ad
1075 1.52 ad /*
1076 1.52 ad * No need to lock - all of these conditions will
1077 1.52 ad * be visible with the process level mutex held.
1078 1.52 ad */
1079 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1080 1.52 ad l = NULL;
1081 1.52 ad
1082 1.52 ad return l;
1083 1.52 ad }
1084 1.52 ad
1085 1.52 ad /*
1086 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1087 1.37 ad *
1088 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1089 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1090 1.37 ad * it's credentials by calling this routine. This may be called from
1091 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1092 1.37 ad */
1093 1.37 ad void
1094 1.37 ad lwp_update_creds(struct lwp *l)
1095 1.37 ad {
1096 1.37 ad kauth_cred_t oc;
1097 1.37 ad struct proc *p;
1098 1.37 ad
1099 1.37 ad p = l->l_proc;
1100 1.37 ad oc = l->l_cred;
1101 1.37 ad
1102 1.103 ad mutex_enter(p->p_lock);
1103 1.37 ad kauth_cred_hold(p->p_cred);
1104 1.37 ad l->l_cred = p->p_cred;
1105 1.98 ad l->l_prflag &= ~LPR_CRMOD;
1106 1.103 ad mutex_exit(p->p_lock);
1107 1.88 ad if (oc != NULL)
1108 1.37 ad kauth_cred_free(oc);
1109 1.52 ad }
1110 1.52 ad
1111 1.52 ad /*
1112 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1113 1.52 ad * one we specify.
1114 1.52 ad */
1115 1.52 ad int
1116 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1117 1.52 ad {
1118 1.52 ad kmutex_t *cur = l->l_mutex;
1119 1.52 ad
1120 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1121 1.52 ad }
1122 1.52 ad
1123 1.52 ad /*
1124 1.52 ad * Lock an LWP.
1125 1.52 ad */
1126 1.119 ad kmutex_t *
1127 1.52 ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
1128 1.52 ad {
1129 1.52 ad
1130 1.52 ad /*
1131 1.52 ad * XXXgcc ignoring kmutex_t * volatile on i386
1132 1.52 ad *
1133 1.52 ad * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1134 1.52 ad */
1135 1.52 ad #if 1
1136 1.52 ad while (l->l_mutex != old) {
1137 1.52 ad #else
1138 1.52 ad for (;;) {
1139 1.52 ad #endif
1140 1.52 ad mutex_spin_exit(old);
1141 1.52 ad old = l->l_mutex;
1142 1.52 ad mutex_spin_enter(old);
1143 1.52 ad
1144 1.52 ad /*
1145 1.52 ad * mutex_enter() will have posted a read barrier. Re-test
1146 1.52 ad * l->l_mutex. If it has changed, we need to try again.
1147 1.52 ad */
1148 1.52 ad #if 1
1149 1.52 ad }
1150 1.52 ad #else
1151 1.52 ad } while (__predict_false(l->l_mutex != old));
1152 1.52 ad #endif
1153 1.119 ad
1154 1.119 ad return old;
1155 1.52 ad }
1156 1.52 ad
1157 1.52 ad /*
1158 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1159 1.52 ad */
1160 1.52 ad void
1161 1.52 ad lwp_setlock(struct lwp *l, kmutex_t *new)
1162 1.52 ad {
1163 1.52 ad
1164 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1165 1.52 ad
1166 1.107 ad membar_exit();
1167 1.52 ad l->l_mutex = new;
1168 1.52 ad }
1169 1.52 ad
1170 1.52 ad /*
1171 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1172 1.52 ad * must be held.
1173 1.52 ad */
1174 1.52 ad void
1175 1.52 ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
1176 1.52 ad {
1177 1.52 ad kmutex_t *old;
1178 1.52 ad
1179 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1180 1.52 ad
1181 1.52 ad old = l->l_mutex;
1182 1.107 ad membar_exit();
1183 1.52 ad l->l_mutex = new;
1184 1.52 ad mutex_spin_exit(old);
1185 1.52 ad }
1186 1.52 ad
1187 1.52 ad /*
1188 1.52 ad * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1189 1.52 ad * locked.
1190 1.52 ad */
1191 1.52 ad void
1192 1.52 ad lwp_relock(struct lwp *l, kmutex_t *new)
1193 1.52 ad {
1194 1.52 ad kmutex_t *old;
1195 1.52 ad
1196 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1197 1.52 ad
1198 1.52 ad old = l->l_mutex;
1199 1.52 ad if (old != new) {
1200 1.52 ad mutex_spin_enter(new);
1201 1.52 ad l->l_mutex = new;
1202 1.52 ad mutex_spin_exit(old);
1203 1.52 ad }
1204 1.52 ad }
1205 1.52 ad
1206 1.60 yamt int
1207 1.60 yamt lwp_trylock(struct lwp *l)
1208 1.60 yamt {
1209 1.60 yamt kmutex_t *old;
1210 1.60 yamt
1211 1.60 yamt for (;;) {
1212 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1213 1.60 yamt return 0;
1214 1.60 yamt if (__predict_true(l->l_mutex == old))
1215 1.60 yamt return 1;
1216 1.60 yamt mutex_spin_exit(old);
1217 1.60 yamt }
1218 1.60 yamt }
1219 1.60 yamt
1220 1.134 rmind void
1221 1.96 ad lwp_unsleep(lwp_t *l, bool cleanup)
1222 1.96 ad {
1223 1.96 ad
1224 1.96 ad KASSERT(mutex_owned(l->l_mutex));
1225 1.134 rmind (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1226 1.96 ad }
1227 1.96 ad
1228 1.96 ad
1229 1.52 ad /*
1230 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1231 1.52 ad * set.
1232 1.52 ad */
1233 1.52 ad void
1234 1.52 ad lwp_userret(struct lwp *l)
1235 1.52 ad {
1236 1.52 ad struct proc *p;
1237 1.54 ad void (*hook)(void);
1238 1.52 ad int sig;
1239 1.52 ad
1240 1.114 rmind KASSERT(l == curlwp);
1241 1.114 rmind KASSERT(l->l_stat == LSONPROC);
1242 1.52 ad p = l->l_proc;
1243 1.52 ad
1244 1.75 ad #ifndef __HAVE_FAST_SOFTINTS
1245 1.75 ad /* Run pending soft interrupts. */
1246 1.75 ad if (l->l_cpu->ci_data.cpu_softints != 0)
1247 1.75 ad softint_overlay();
1248 1.75 ad #endif
1249 1.75 ad
1250 1.125 ad #ifdef KERN_SA
1251 1.125 ad /* Generate UNBLOCKED upcall if needed */
1252 1.125 ad if (l->l_flag & LW_SA_BLOCKING) {
1253 1.125 ad sa_unblock_userret(l);
1254 1.125 ad /* NOTREACHED */
1255 1.125 ad }
1256 1.125 ad #endif
1257 1.125 ad
1258 1.52 ad /*
1259 1.52 ad * It should be safe to do this read unlocked on a multiprocessor
1260 1.52 ad * system..
1261 1.126 wrstuden *
1262 1.126 wrstuden * LW_SA_UPCALL will be handled after the while() loop, so don't
1263 1.126 wrstuden * consider it now.
1264 1.52 ad */
1265 1.126 wrstuden while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1266 1.52 ad /*
1267 1.52 ad * Process pending signals first, unless the process
1268 1.61 ad * is dumping core or exiting, where we will instead
1269 1.101 rmind * enter the LW_WSUSPEND case below.
1270 1.52 ad */
1271 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1272 1.61 ad LW_PENDSIG) {
1273 1.103 ad mutex_enter(p->p_lock);
1274 1.52 ad while ((sig = issignal(l)) != 0)
1275 1.52 ad postsig(sig);
1276 1.103 ad mutex_exit(p->p_lock);
1277 1.52 ad }
1278 1.52 ad
1279 1.52 ad /*
1280 1.52 ad * Core-dump or suspend pending.
1281 1.52 ad *
1282 1.52 ad * In case of core dump, suspend ourselves, so that the
1283 1.52 ad * kernel stack and therefore the userland registers saved
1284 1.52 ad * in the trapframe are around for coredump() to write them
1285 1.52 ad * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1286 1.52 ad * will write the core file out once all other LWPs are
1287 1.52 ad * suspended.
1288 1.52 ad */
1289 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1290 1.103 ad mutex_enter(p->p_lock);
1291 1.52 ad p->p_nrlwps--;
1292 1.52 ad cv_broadcast(&p->p_lwpcv);
1293 1.52 ad lwp_lock(l);
1294 1.52 ad l->l_stat = LSSUSPENDED;
1295 1.104 ad lwp_unlock(l);
1296 1.103 ad mutex_exit(p->p_lock);
1297 1.104 ad lwp_lock(l);
1298 1.64 yamt mi_switch(l);
1299 1.52 ad }
1300 1.52 ad
1301 1.52 ad /* Process is exiting. */
1302 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1303 1.52 ad lwp_exit(l);
1304 1.52 ad KASSERT(0);
1305 1.52 ad /* NOTREACHED */
1306 1.52 ad }
1307 1.54 ad
1308 1.54 ad /* Call userret hook; used by Linux emulation. */
1309 1.56 pavel if ((l->l_flag & LW_WUSERRET) != 0) {
1310 1.54 ad lwp_lock(l);
1311 1.56 pavel l->l_flag &= ~LW_WUSERRET;
1312 1.54 ad lwp_unlock(l);
1313 1.54 ad hook = p->p_userret;
1314 1.54 ad p->p_userret = NULL;
1315 1.54 ad (*hook)();
1316 1.54 ad }
1317 1.52 ad }
1318 1.124 wrstuden
1319 1.124 wrstuden #ifdef KERN_SA
1320 1.124 wrstuden /*
1321 1.124 wrstuden * Timer events are handled specially. We only try once to deliver
1322 1.124 wrstuden * pending timer upcalls; if if fails, we can try again on the next
1323 1.124 wrstuden * loop around. If we need to re-enter lwp_userret(), MD code will
1324 1.124 wrstuden * bounce us back here through the trap path after we return.
1325 1.124 wrstuden */
1326 1.124 wrstuden if (p->p_timerpend)
1327 1.124 wrstuden timerupcall(l);
1328 1.125 ad if (l->l_flag & LW_SA_UPCALL)
1329 1.125 ad sa_upcall_userret(l);
1330 1.124 wrstuden #endif /* KERN_SA */
1331 1.52 ad }
1332 1.52 ad
1333 1.52 ad /*
1334 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1335 1.52 ad */
1336 1.52 ad void
1337 1.52 ad lwp_need_userret(struct lwp *l)
1338 1.52 ad {
1339 1.63 ad KASSERT(lwp_locked(l, NULL));
1340 1.52 ad
1341 1.52 ad /*
1342 1.52 ad * Since the tests in lwp_userret() are done unlocked, make sure
1343 1.52 ad * that the condition will be seen before forcing the LWP to enter
1344 1.52 ad * kernel mode.
1345 1.52 ad */
1346 1.81 ad membar_producer();
1347 1.52 ad cpu_signotify(l);
1348 1.52 ad }
1349 1.52 ad
1350 1.52 ad /*
1351 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1352 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1353 1.52 ad */
1354 1.52 ad void
1355 1.52 ad lwp_addref(struct lwp *l)
1356 1.52 ad {
1357 1.52 ad
1358 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1359 1.52 ad KASSERT(l->l_stat != LSZOMB);
1360 1.52 ad KASSERT(l->l_refcnt != 0);
1361 1.52 ad
1362 1.52 ad l->l_refcnt++;
1363 1.52 ad }
1364 1.52 ad
1365 1.52 ad /*
1366 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1367 1.52 ad * then we must finalize the LWP's death.
1368 1.52 ad */
1369 1.52 ad void
1370 1.52 ad lwp_delref(struct lwp *l)
1371 1.52 ad {
1372 1.52 ad struct proc *p = l->l_proc;
1373 1.52 ad
1374 1.103 ad mutex_enter(p->p_lock);
1375 1.72 ad KASSERT(l->l_stat != LSZOMB);
1376 1.72 ad KASSERT(l->l_refcnt > 0);
1377 1.52 ad if (--l->l_refcnt == 0)
1378 1.76 ad cv_broadcast(&p->p_lwpcv);
1379 1.103 ad mutex_exit(p->p_lock);
1380 1.52 ad }
1381 1.52 ad
1382 1.52 ad /*
1383 1.52 ad * Drain all references to the current LWP.
1384 1.52 ad */
1385 1.52 ad void
1386 1.52 ad lwp_drainrefs(struct lwp *l)
1387 1.52 ad {
1388 1.52 ad struct proc *p = l->l_proc;
1389 1.52 ad
1390 1.103 ad KASSERT(mutex_owned(p->p_lock));
1391 1.52 ad KASSERT(l->l_refcnt != 0);
1392 1.52 ad
1393 1.52 ad l->l_refcnt--;
1394 1.52 ad while (l->l_refcnt != 0)
1395 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
1396 1.37 ad }
1397 1.41 thorpej
1398 1.41 thorpej /*
1399 1.127 ad * Return true if the specified LWP is 'alive'. Only p->p_lock need
1400 1.127 ad * be held.
1401 1.127 ad */
1402 1.127 ad bool
1403 1.127 ad lwp_alive(lwp_t *l)
1404 1.127 ad {
1405 1.127 ad
1406 1.127 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1407 1.127 ad
1408 1.127 ad switch (l->l_stat) {
1409 1.127 ad case LSSLEEP:
1410 1.127 ad case LSRUN:
1411 1.127 ad case LSONPROC:
1412 1.127 ad case LSSTOP:
1413 1.127 ad case LSSUSPENDED:
1414 1.127 ad return true;
1415 1.127 ad default:
1416 1.127 ad return false;
1417 1.127 ad }
1418 1.127 ad }
1419 1.127 ad
1420 1.127 ad /*
1421 1.127 ad * Return first live LWP in the process.
1422 1.127 ad */
1423 1.127 ad lwp_t *
1424 1.127 ad lwp_find_first(proc_t *p)
1425 1.127 ad {
1426 1.127 ad lwp_t *l;
1427 1.127 ad
1428 1.127 ad KASSERT(mutex_owned(p->p_lock));
1429 1.127 ad
1430 1.127 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1431 1.127 ad if (lwp_alive(l)) {
1432 1.127 ad return l;
1433 1.127 ad }
1434 1.127 ad }
1435 1.127 ad
1436 1.127 ad return NULL;
1437 1.127 ad }
1438 1.127 ad
1439 1.127 ad /*
1440 1.41 thorpej * lwp_specific_key_create --
1441 1.41 thorpej * Create a key for subsystem lwp-specific data.
1442 1.41 thorpej */
1443 1.41 thorpej int
1444 1.41 thorpej lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1445 1.41 thorpej {
1446 1.41 thorpej
1447 1.45 thorpej return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1448 1.41 thorpej }
1449 1.41 thorpej
1450 1.41 thorpej /*
1451 1.41 thorpej * lwp_specific_key_delete --
1452 1.41 thorpej * Delete a key for subsystem lwp-specific data.
1453 1.41 thorpej */
1454 1.41 thorpej void
1455 1.41 thorpej lwp_specific_key_delete(specificdata_key_t key)
1456 1.41 thorpej {
1457 1.41 thorpej
1458 1.41 thorpej specificdata_key_delete(lwp_specificdata_domain, key);
1459 1.41 thorpej }
1460 1.41 thorpej
1461 1.45 thorpej /*
1462 1.45 thorpej * lwp_initspecific --
1463 1.45 thorpej * Initialize an LWP's specificdata container.
1464 1.45 thorpej */
1465 1.42 christos void
1466 1.42 christos lwp_initspecific(struct lwp *l)
1467 1.42 christos {
1468 1.42 christos int error;
1469 1.45 thorpej
1470 1.42 christos error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1471 1.42 christos KASSERT(error == 0);
1472 1.42 christos }
1473 1.42 christos
1474 1.41 thorpej /*
1475 1.45 thorpej * lwp_finispecific --
1476 1.45 thorpej * Finalize an LWP's specificdata container.
1477 1.45 thorpej */
1478 1.45 thorpej void
1479 1.45 thorpej lwp_finispecific(struct lwp *l)
1480 1.45 thorpej {
1481 1.45 thorpej
1482 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1483 1.45 thorpej }
1484 1.45 thorpej
1485 1.45 thorpej /*
1486 1.41 thorpej * lwp_getspecific --
1487 1.41 thorpej * Return lwp-specific data corresponding to the specified key.
1488 1.41 thorpej *
1489 1.41 thorpej * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1490 1.41 thorpej * only its OWN SPECIFIC DATA. If it is necessary to access another
1491 1.41 thorpej * LWP's specifc data, care must be taken to ensure that doing so
1492 1.41 thorpej * would not cause internal data structure inconsistency (i.e. caller
1493 1.41 thorpej * can guarantee that the target LWP is not inside an lwp_getspecific()
1494 1.41 thorpej * or lwp_setspecific() call).
1495 1.41 thorpej */
1496 1.41 thorpej void *
1497 1.44 thorpej lwp_getspecific(specificdata_key_t key)
1498 1.41 thorpej {
1499 1.41 thorpej
1500 1.41 thorpej return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1501 1.44 thorpej &curlwp->l_specdataref, key));
1502 1.41 thorpej }
1503 1.41 thorpej
1504 1.47 hannken void *
1505 1.47 hannken _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1506 1.47 hannken {
1507 1.47 hannken
1508 1.47 hannken return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1509 1.47 hannken &l->l_specdataref, key));
1510 1.47 hannken }
1511 1.47 hannken
1512 1.41 thorpej /*
1513 1.41 thorpej * lwp_setspecific --
1514 1.41 thorpej * Set lwp-specific data corresponding to the specified key.
1515 1.41 thorpej */
1516 1.41 thorpej void
1517 1.45 thorpej lwp_setspecific(specificdata_key_t key, void *data)
1518 1.41 thorpej {
1519 1.41 thorpej
1520 1.41 thorpej specificdata_setspecific(lwp_specificdata_domain,
1521 1.44 thorpej &curlwp->l_specdataref, key, data);
1522 1.41 thorpej }
1523 1.78 ad
1524 1.78 ad /*
1525 1.78 ad * Allocate a new lwpctl structure for a user LWP.
1526 1.78 ad */
1527 1.78 ad int
1528 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr)
1529 1.78 ad {
1530 1.78 ad lcproc_t *lp;
1531 1.78 ad u_int bit, i, offset;
1532 1.78 ad struct uvm_object *uao;
1533 1.78 ad int error;
1534 1.78 ad lcpage_t *lcp;
1535 1.78 ad proc_t *p;
1536 1.78 ad lwp_t *l;
1537 1.78 ad
1538 1.78 ad l = curlwp;
1539 1.78 ad p = l->l_proc;
1540 1.78 ad
1541 1.81 ad if (l->l_lcpage != NULL) {
1542 1.81 ad lcp = l->l_lcpage;
1543 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1544 1.78 ad return (EINVAL);
1545 1.81 ad }
1546 1.78 ad
1547 1.78 ad /* First time around, allocate header structure for the process. */
1548 1.78 ad if ((lp = p->p_lwpctl) == NULL) {
1549 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1550 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1551 1.78 ad lp->lp_uao = NULL;
1552 1.78 ad TAILQ_INIT(&lp->lp_pages);
1553 1.103 ad mutex_enter(p->p_lock);
1554 1.78 ad if (p->p_lwpctl == NULL) {
1555 1.78 ad p->p_lwpctl = lp;
1556 1.103 ad mutex_exit(p->p_lock);
1557 1.78 ad } else {
1558 1.103 ad mutex_exit(p->p_lock);
1559 1.78 ad mutex_destroy(&lp->lp_lock);
1560 1.78 ad kmem_free(lp, sizeof(*lp));
1561 1.78 ad lp = p->p_lwpctl;
1562 1.78 ad }
1563 1.78 ad }
1564 1.78 ad
1565 1.78 ad /*
1566 1.78 ad * Set up an anonymous memory region to hold the shared pages.
1567 1.78 ad * Map them into the process' address space. The user vmspace
1568 1.78 ad * gets the first reference on the UAO.
1569 1.78 ad */
1570 1.78 ad mutex_enter(&lp->lp_lock);
1571 1.78 ad if (lp->lp_uao == NULL) {
1572 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1573 1.78 ad lp->lp_cur = 0;
1574 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ;
1575 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1576 1.78 ad (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1577 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1578 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1579 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1580 1.78 ad if (error != 0) {
1581 1.78 ad uao_detach(lp->lp_uao);
1582 1.78 ad lp->lp_uao = NULL;
1583 1.78 ad mutex_exit(&lp->lp_lock);
1584 1.78 ad return error;
1585 1.78 ad }
1586 1.78 ad }
1587 1.78 ad
1588 1.78 ad /* Get a free block and allocate for this LWP. */
1589 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1590 1.78 ad if (lcp->lcp_nfree != 0)
1591 1.78 ad break;
1592 1.78 ad }
1593 1.78 ad if (lcp == NULL) {
1594 1.78 ad /* Nothing available - try to set up a free page. */
1595 1.78 ad if (lp->lp_cur == lp->lp_max) {
1596 1.78 ad mutex_exit(&lp->lp_lock);
1597 1.78 ad return ENOMEM;
1598 1.78 ad }
1599 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1600 1.79 yamt if (lcp == NULL) {
1601 1.79 yamt mutex_exit(&lp->lp_lock);
1602 1.78 ad return ENOMEM;
1603 1.79 yamt }
1604 1.78 ad /*
1605 1.78 ad * Wire the next page down in kernel space. Since this
1606 1.78 ad * is a new mapping, we must add a reference.
1607 1.78 ad */
1608 1.78 ad uao = lp->lp_uao;
1609 1.78 ad (*uao->pgops->pgo_reference)(uao);
1610 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map);
1611 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1612 1.78 ad uao, lp->lp_cur, PAGE_SIZE,
1613 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1614 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1615 1.78 ad if (error != 0) {
1616 1.78 ad mutex_exit(&lp->lp_lock);
1617 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1618 1.78 ad (*uao->pgops->pgo_detach)(uao);
1619 1.78 ad return error;
1620 1.78 ad }
1621 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1622 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1623 1.89 yamt if (error != 0) {
1624 1.89 yamt mutex_exit(&lp->lp_lock);
1625 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr,
1626 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE);
1627 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1628 1.89 yamt return error;
1629 1.89 yamt }
1630 1.78 ad /* Prepare the page descriptor and link into the list. */
1631 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1632 1.78 ad lp->lp_cur += PAGE_SIZE;
1633 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE;
1634 1.78 ad lcp->lcp_rotor = 0;
1635 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1636 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1637 1.78 ad }
1638 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1639 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES)
1640 1.78 ad i = 0;
1641 1.78 ad }
1642 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1;
1643 1.78 ad lcp->lcp_bitmap[i] ^= (1 << bit);
1644 1.78 ad lcp->lcp_rotor = i;
1645 1.78 ad lcp->lcp_nfree--;
1646 1.78 ad l->l_lcpage = lcp;
1647 1.78 ad offset = (i << 5) + bit;
1648 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1649 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1650 1.78 ad mutex_exit(&lp->lp_lock);
1651 1.78 ad
1652 1.107 ad KPREEMPT_DISABLE(l);
1653 1.111 ad l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1654 1.107 ad KPREEMPT_ENABLE(l);
1655 1.78 ad
1656 1.78 ad return 0;
1657 1.78 ad }
1658 1.78 ad
1659 1.78 ad /*
1660 1.78 ad * Free an lwpctl structure back to the per-process list.
1661 1.78 ad */
1662 1.78 ad void
1663 1.78 ad lwp_ctl_free(lwp_t *l)
1664 1.78 ad {
1665 1.78 ad lcproc_t *lp;
1666 1.78 ad lcpage_t *lcp;
1667 1.78 ad u_int map, offset;
1668 1.78 ad
1669 1.78 ad lp = l->l_proc->p_lwpctl;
1670 1.78 ad KASSERT(lp != NULL);
1671 1.78 ad
1672 1.78 ad lcp = l->l_lcpage;
1673 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1674 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE);
1675 1.78 ad
1676 1.78 ad mutex_enter(&lp->lp_lock);
1677 1.78 ad lcp->lcp_nfree++;
1678 1.78 ad map = offset >> 5;
1679 1.78 ad lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1680 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1681 1.78 ad lcp->lcp_rotor = map;
1682 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1683 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1684 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1685 1.78 ad }
1686 1.78 ad mutex_exit(&lp->lp_lock);
1687 1.78 ad }
1688 1.78 ad
1689 1.78 ad /*
1690 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely
1691 1.78 ad * called by the last LWP in the process.
1692 1.78 ad */
1693 1.78 ad void
1694 1.78 ad lwp_ctl_exit(void)
1695 1.78 ad {
1696 1.78 ad lcpage_t *lcp, *next;
1697 1.78 ad lcproc_t *lp;
1698 1.78 ad proc_t *p;
1699 1.78 ad lwp_t *l;
1700 1.78 ad
1701 1.78 ad l = curlwp;
1702 1.78 ad l->l_lwpctl = NULL;
1703 1.95 ad l->l_lcpage = NULL;
1704 1.78 ad p = l->l_proc;
1705 1.78 ad lp = p->p_lwpctl;
1706 1.78 ad
1707 1.78 ad KASSERT(lp != NULL);
1708 1.78 ad KASSERT(p->p_nlwps == 1);
1709 1.78 ad
1710 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1711 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain);
1712 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr,
1713 1.78 ad lcp->lcp_kaddr + PAGE_SIZE);
1714 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1715 1.78 ad }
1716 1.78 ad
1717 1.78 ad if (lp->lp_uao != NULL) {
1718 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1719 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ);
1720 1.78 ad }
1721 1.78 ad
1722 1.78 ad mutex_destroy(&lp->lp_lock);
1723 1.78 ad kmem_free(lp, sizeof(*lp));
1724 1.78 ad p->p_lwpctl = NULL;
1725 1.78 ad }
1726 1.84 yamt
1727 1.130 ad /*
1728 1.130 ad * Return the current LWP's "preemption counter". Used to detect
1729 1.130 ad * preemption across operations that can tolerate preemption without
1730 1.130 ad * crashing, but which may generate incorrect results if preempted.
1731 1.130 ad */
1732 1.130 ad uint64_t
1733 1.130 ad lwp_pctr(void)
1734 1.130 ad {
1735 1.130 ad
1736 1.130 ad return curlwp->l_ncsw;
1737 1.130 ad }
1738 1.130 ad
1739 1.84 yamt #if defined(DDB)
1740 1.84 yamt void
1741 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1742 1.84 yamt {
1743 1.84 yamt lwp_t *l;
1744 1.84 yamt
1745 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) {
1746 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1747 1.84 yamt
1748 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) {
1749 1.84 yamt continue;
1750 1.84 yamt }
1751 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n",
1752 1.84 yamt (void *)addr, (void *)stack,
1753 1.84 yamt (size_t)(addr - stack), l);
1754 1.84 yamt }
1755 1.84 yamt }
1756 1.84 yamt #endif /* defined(DDB) */
1757