Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.141.2.5
      1  1.141.2.3     rmind /*	$NetBSD: kern_lwp.c,v 1.141.2.5 2011/06/12 00:24:29 rmind Exp $	*/
      2        1.2   thorpej 
      3        1.2   thorpej /*-
      4      1.127        ad  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5        1.2   thorpej  * All rights reserved.
      6        1.2   thorpej  *
      7        1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.52        ad  * by Nathan J. Williams, and Andrew Doran.
      9        1.2   thorpej  *
     10        1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     11        1.2   thorpej  * modification, are permitted provided that the following conditions
     12        1.2   thorpej  * are met:
     13        1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     14        1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     15        1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17        1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     18        1.2   thorpej  *
     19        1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30        1.2   thorpej  */
     31        1.9     lukem 
     32       1.52        ad /*
     33       1.52        ad  * Overview
     34       1.52        ad  *
     35       1.66        ad  *	Lightweight processes (LWPs) are the basic unit or thread of
     36       1.52        ad  *	execution within the kernel.  The core state of an LWP is described
     37       1.66        ad  *	by "struct lwp", also known as lwp_t.
     38       1.52        ad  *
     39       1.52        ad  *	Each LWP is contained within a process (described by "struct proc"),
     40       1.52        ad  *	Every process contains at least one LWP, but may contain more.  The
     41       1.52        ad  *	process describes attributes shared among all of its LWPs such as a
     42       1.52        ad  *	private address space, global execution state (stopped, active,
     43       1.52        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44       1.66        ad  *	machine, multiple LWPs be executing concurrently in the kernel.
     45       1.52        ad  *
     46       1.52        ad  * Execution states
     47       1.52        ad  *
     48       1.52        ad  *	At any given time, an LWP has overall state that is described by
     49       1.52        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50       1.52        ad  *	set is guaranteed to represent the absolute, current state of the
     51       1.52        ad  *	LWP:
     52      1.101     rmind  *
     53      1.101     rmind  *	LSONPROC
     54      1.101     rmind  *
     55      1.101     rmind  *		On processor: the LWP is executing on a CPU, either in the
     56      1.101     rmind  *		kernel or in user space.
     57      1.101     rmind  *
     58      1.101     rmind  *	LSRUN
     59      1.101     rmind  *
     60      1.101     rmind  *		Runnable: the LWP is parked on a run queue, and may soon be
     61      1.101     rmind  *		chosen to run by an idle processor, or by a processor that
     62      1.101     rmind  *		has been asked to preempt a currently runnning but lower
     63      1.134     rmind  *		priority LWP.
     64      1.101     rmind  *
     65      1.101     rmind  *	LSIDL
     66      1.101     rmind  *
     67      1.101     rmind  *		Idle: the LWP has been created but has not yet executed,
     68       1.66        ad  *		or it has ceased executing a unit of work and is waiting
     69       1.66        ad  *		to be started again.
     70      1.101     rmind  *
     71      1.101     rmind  *	LSSUSPENDED:
     72      1.101     rmind  *
     73      1.101     rmind  *		Suspended: the LWP has had its execution suspended by
     74       1.52        ad  *		another LWP in the same process using the _lwp_suspend()
     75       1.52        ad  *		system call.  User-level LWPs also enter the suspended
     76       1.52        ad  *		state when the system is shutting down.
     77       1.52        ad  *
     78       1.52        ad  *	The second set represent a "statement of intent" on behalf of the
     79       1.52        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     80       1.66        ad  *	sleeping or idle. It is expected to take the necessary action to
     81      1.101     rmind  *	stop executing or become "running" again within a short timeframe.
     82      1.115        ad  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83      1.101     rmind  *	Importantly, it indicates that its state is tied to a CPU.
     84      1.101     rmind  *
     85      1.101     rmind  *	LSZOMB:
     86      1.101     rmind  *
     87      1.101     rmind  *		Dead or dying: the LWP has released most of its resources
     88      1.129        ad  *		and is about to switch away into oblivion, or has already
     89       1.66        ad  *		switched away.  When it switches away, its few remaining
     90       1.66        ad  *		resources can be collected.
     91      1.101     rmind  *
     92      1.101     rmind  *	LSSLEEP:
     93      1.101     rmind  *
     94      1.101     rmind  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95      1.101     rmind  *		has switched away or will switch away shortly to allow other
     96       1.66        ad  *		LWPs to run on the CPU.
     97      1.101     rmind  *
     98      1.101     rmind  *	LSSTOP:
     99      1.101     rmind  *
    100      1.101     rmind  *		Stopped: the LWP has been stopped as a result of a job
    101      1.101     rmind  *		control signal, or as a result of the ptrace() interface.
    102      1.101     rmind  *
    103      1.101     rmind  *		Stopped LWPs may run briefly within the kernel to handle
    104      1.101     rmind  *		signals that they receive, but will not return to user space
    105      1.101     rmind  *		until their process' state is changed away from stopped.
    106      1.101     rmind  *
    107      1.101     rmind  *		Single LWPs within a process can not be set stopped
    108      1.101     rmind  *		selectively: all actions that can stop or continue LWPs
    109      1.101     rmind  *		occur at the process level.
    110      1.101     rmind  *
    111       1.52        ad  * State transitions
    112       1.52        ad  *
    113       1.66        ad  *	Note that the LSSTOP state may only be set when returning to
    114       1.66        ad  *	user space in userret(), or when sleeping interruptably.  The
    115       1.66        ad  *	LSSUSPENDED state may only be set in userret().  Before setting
    116       1.66        ad  *	those states, we try to ensure that the LWPs will release all
    117       1.66        ad  *	locks that they hold, and at a minimum try to ensure that the
    118       1.66        ad  *	LWP can be set runnable again by a signal.
    119       1.52        ad  *
    120       1.52        ad  *	LWPs may transition states in the following ways:
    121       1.52        ad  *
    122       1.52        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123      1.129        ad  *		    				    > SLEEP
    124      1.129        ad  *		    				    > STOPPED
    125       1.52        ad  *						    > SUSPENDED
    126       1.52        ad  *						    > ZOMB
    127      1.129        ad  *						    > IDL (special cases)
    128       1.52        ad  *
    129       1.52        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130      1.129        ad  *	            > SLEEP
    131       1.52        ad  *
    132       1.52        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133      1.101     rmind  *		    > RUN			    > SUSPENDED
    134      1.101     rmind  *		    > STOPPED			    > STOPPED
    135      1.129        ad  *						    > ONPROC (special cases)
    136       1.52        ad  *
    137      1.129        ad  *	Some state transitions are only possible with kernel threads (eg
    138      1.129        ad  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139      1.129        ad  *	free of unwanted side effects.
    140       1.66        ad  *
    141      1.114     rmind  * Migration
    142      1.114     rmind  *
    143      1.114     rmind  *	Migration of threads from one CPU to another could be performed
    144      1.114     rmind  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145      1.114     rmind  *	functions.  The universal lwp_migrate() function should be used for
    146      1.114     rmind  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147      1.114     rmind  *	of LWP may change, while it is not locked.
    148      1.114     rmind  *
    149       1.52        ad  * Locking
    150       1.52        ad  *
    151       1.52        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    152       1.66        ad  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153       1.52        ad  *	each field are documented in sys/lwp.h.
    154       1.52        ad  *
    155       1.66        ad  *	State transitions must be made with the LWP's general lock held,
    156  1.141.2.3     rmind  *	and may cause the LWP's lock pointer to change.  Manipulation of
    157       1.66        ad  *	the general lock is not performed directly, but through calls to
    158  1.141.2.3     rmind  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    159  1.141.2.3     rmind  *	adaptive locks are not allowed to be released while the LWP's lock
    160  1.141.2.3     rmind  *	is being held (unlike for other spin-locks).
    161       1.52        ad  *
    162       1.52        ad  *	States and their associated locks:
    163       1.52        ad  *
    164       1.74     rmind  *	LSONPROC, LSZOMB:
    165       1.52        ad  *
    166       1.64      yamt  *		Always covered by spc_lwplock, which protects running LWPs.
    167      1.129        ad  *		This is a per-CPU lock and matches lwp::l_cpu.
    168       1.52        ad  *
    169       1.74     rmind  *	LSIDL, LSRUN:
    170       1.52        ad  *
    171       1.64      yamt  *		Always covered by spc_mutex, which protects the run queues.
    172      1.129        ad  *		This is a per-CPU lock and matches lwp::l_cpu.
    173       1.52        ad  *
    174       1.52        ad  *	LSSLEEP:
    175       1.52        ad  *
    176       1.66        ad  *		Covered by a lock associated with the sleep queue that the
    177      1.129        ad  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    178       1.52        ad  *
    179       1.52        ad  *	LSSTOP, LSSUSPENDED:
    180      1.101     rmind  *
    181       1.52        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    182       1.66        ad  *		l_mutex references the sleep queue lock.  If the LWP was
    183       1.52        ad  *		runnable or on the CPU when halted, or has been removed from
    184       1.66        ad  *		the sleep queue since halted, then the lock is spc_lwplock.
    185       1.52        ad  *
    186       1.52        ad  *	The lock order is as follows:
    187       1.52        ad  *
    188       1.64      yamt  *		spc::spc_lwplock ->
    189      1.112        ad  *		    sleeptab::st_mutex ->
    190       1.64      yamt  *			tschain_t::tc_mutex ->
    191       1.64      yamt  *			    spc::spc_mutex
    192       1.52        ad  *
    193      1.103        ad  *	Each process has an scheduler state lock (proc::p_lock), and a
    194       1.52        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195       1.52        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    196      1.103        ad  *	following states, p_lock must be held and the process wide counters
    197       1.52        ad  *	adjusted:
    198       1.52        ad  *
    199       1.52        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200       1.52        ad  *
    201      1.129        ad  *	(But not always for kernel threads.  There are some special cases
    202      1.129        ad  *	as mentioned above.  See kern_softint.c.)
    203      1.129        ad  *
    204       1.52        ad  *	Note that an LWP is considered running or likely to run soon if in
    205       1.52        ad  *	one of the following states.  This affects the value of p_nrlwps:
    206       1.52        ad  *
    207       1.52        ad  *		LSRUN, LSONPROC, LSSLEEP
    208       1.52        ad  *
    209      1.103        ad  *	p_lock does not need to be held when transitioning among these
    210      1.129        ad  *	three states, hence p_lock is rarely taken for state transitions.
    211       1.52        ad  */
    212       1.52        ad 
    213        1.9     lukem #include <sys/cdefs.h>
    214  1.141.2.3     rmind __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.141.2.5 2011/06/12 00:24:29 rmind Exp $");
    215        1.8    martin 
    216       1.84      yamt #include "opt_ddb.h"
    217       1.52        ad #include "opt_lockdebug.h"
    218      1.124  wrstuden #include "opt_sa.h"
    219      1.139    darran #include "opt_dtrace.h"
    220        1.2   thorpej 
    221       1.47   hannken #define _LWP_API_PRIVATE
    222       1.47   hannken 
    223        1.2   thorpej #include <sys/param.h>
    224        1.2   thorpej #include <sys/systm.h>
    225       1.64      yamt #include <sys/cpu.h>
    226        1.2   thorpej #include <sys/pool.h>
    227        1.2   thorpej #include <sys/proc.h>
    228      1.124  wrstuden #include <sys/sa.h>
    229      1.124  wrstuden #include <sys/savar.h>
    230        1.2   thorpej #include <sys/syscallargs.h>
    231       1.57       dsl #include <sys/syscall_stats.h>
    232       1.37        ad #include <sys/kauth.h>
    233       1.52        ad #include <sys/sleepq.h>
    234       1.52        ad #include <sys/lockdebug.h>
    235       1.52        ad #include <sys/kmem.h>
    236       1.91     rmind #include <sys/pset.h>
    237       1.75        ad #include <sys/intr.h>
    238       1.78        ad #include <sys/lwpctl.h>
    239       1.81        ad #include <sys/atomic.h>
    240      1.131        ad #include <sys/filedesc.h>
    241      1.138    darran #include <sys/dtrace_bsd.h>
    242      1.141    darran #include <sys/sdt.h>
    243  1.141.2.4     rmind #include <sys/xcall.h>
    244      1.138    darran 
    245        1.2   thorpej #include <uvm/uvm_extern.h>
    246       1.80     skrll #include <uvm/uvm_object.h>
    247        1.2   thorpej 
    248  1.141.2.3     rmind static pool_cache_t	lwp_cache	__read_mostly;
    249  1.141.2.3     rmind struct lwplist		alllwp		__cacheline_aligned;
    250       1.41   thorpej 
    251  1.141.2.4     rmind static void		lwp_dtor(void *, void *);
    252  1.141.2.4     rmind 
    253      1.141    darran /* DTrace proc provider probes */
    254      1.141    darran SDT_PROBE_DEFINE(proc,,,lwp_create,
    255      1.141    darran 	"struct lwp *", NULL,
    256      1.141    darran 	NULL, NULL, NULL, NULL,
    257      1.141    darran 	NULL, NULL, NULL, NULL);
    258      1.141    darran SDT_PROBE_DEFINE(proc,,,lwp_start,
    259      1.141    darran 	"struct lwp *", NULL,
    260      1.141    darran 	NULL, NULL, NULL, NULL,
    261      1.141    darran 	NULL, NULL, NULL, NULL);
    262      1.141    darran SDT_PROBE_DEFINE(proc,,,lwp_exit,
    263      1.141    darran 	"struct lwp *", NULL,
    264      1.141    darran 	NULL, NULL, NULL, NULL,
    265      1.141    darran 	NULL, NULL, NULL, NULL);
    266      1.141    darran 
    267  1.141.2.2     rmind struct turnstile turnstile0;
    268  1.141.2.2     rmind struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    269  1.141.2.2     rmind #ifdef LWP0_CPU_INFO
    270  1.141.2.2     rmind 	.l_cpu = LWP0_CPU_INFO,
    271  1.141.2.2     rmind #endif
    272  1.141.2.3     rmind #ifdef LWP0_MD_INITIALIZER
    273  1.141.2.3     rmind 	.l_md = LWP0_MD_INITIALIZER,
    274  1.141.2.3     rmind #endif
    275  1.141.2.2     rmind 	.l_proc = &proc0,
    276  1.141.2.2     rmind 	.l_lid = 1,
    277  1.141.2.2     rmind 	.l_flag = LW_SYSTEM,
    278  1.141.2.2     rmind 	.l_stat = LSONPROC,
    279  1.141.2.2     rmind 	.l_ts = &turnstile0,
    280  1.141.2.2     rmind 	.l_syncobj = &sched_syncobj,
    281  1.141.2.2     rmind 	.l_refcnt = 1,
    282  1.141.2.2     rmind 	.l_priority = PRI_USER + NPRI_USER - 1,
    283  1.141.2.2     rmind 	.l_inheritedprio = -1,
    284  1.141.2.2     rmind 	.l_class = SCHED_OTHER,
    285  1.141.2.2     rmind 	.l_psid = PS_NONE,
    286  1.141.2.2     rmind 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    287  1.141.2.2     rmind 	.l_name = __UNCONST("swapper"),
    288  1.141.2.2     rmind 	.l_fd = &filedesc0,
    289  1.141.2.2     rmind };
    290  1.141.2.2     rmind 
    291       1.41   thorpej void
    292       1.41   thorpej lwpinit(void)
    293       1.41   thorpej {
    294       1.41   thorpej 
    295  1.141.2.3     rmind 	LIST_INIT(&alllwp);
    296  1.141.2.1     rmind 	lwpinit_specificdata();
    297       1.52        ad 	lwp_sys_init();
    298       1.87        ad 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    299  1.141.2.4     rmind 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
    300       1.41   thorpej }
    301       1.41   thorpej 
    302  1.141.2.2     rmind void
    303  1.141.2.2     rmind lwp0_init(void)
    304  1.141.2.2     rmind {
    305  1.141.2.2     rmind 	struct lwp *l = &lwp0;
    306  1.141.2.2     rmind 
    307  1.141.2.2     rmind 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    308  1.141.2.2     rmind 	KASSERT(l->l_lid == proc0.p_nlwpid);
    309  1.141.2.2     rmind 
    310  1.141.2.2     rmind 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    311  1.141.2.2     rmind 
    312  1.141.2.2     rmind 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    313  1.141.2.2     rmind 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    314  1.141.2.2     rmind 	cv_init(&l->l_sigcv, "sigwait");
    315  1.141.2.2     rmind 
    316  1.141.2.2     rmind 	kauth_cred_hold(proc0.p_cred);
    317  1.141.2.2     rmind 	l->l_cred = proc0.p_cred;
    318  1.141.2.2     rmind 
    319  1.141.2.2     rmind 	lwp_initspecific(l);
    320  1.141.2.2     rmind 
    321  1.141.2.2     rmind 	SYSCALL_TIME_LWP_INIT(l);
    322  1.141.2.2     rmind }
    323  1.141.2.2     rmind 
    324  1.141.2.4     rmind static void
    325  1.141.2.4     rmind lwp_dtor(void *arg, void *obj)
    326  1.141.2.4     rmind {
    327  1.141.2.4     rmind 	lwp_t *l = obj;
    328  1.141.2.4     rmind 	uint64_t where;
    329  1.141.2.4     rmind 	(void)l;
    330  1.141.2.4     rmind 
    331  1.141.2.4     rmind 	/*
    332  1.141.2.4     rmind 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    333  1.141.2.4     rmind 	 * calls will exit before memory of LWP is returned to the pool, where
    334  1.141.2.4     rmind 	 * KVA of LWP structure might be freed and re-used for other purposes.
    335  1.141.2.4     rmind 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    336  1.141.2.4     rmind 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
    337  1.141.2.4     rmind 	 * the value of l->l_cpu must be still valid at this point.
    338  1.141.2.4     rmind 	 */
    339  1.141.2.4     rmind 	KASSERT(l->l_cpu != NULL);
    340  1.141.2.4     rmind 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    341  1.141.2.4     rmind 	xc_wait(where);
    342  1.141.2.4     rmind }
    343  1.141.2.4     rmind 
    344       1.52        ad /*
    345       1.52        ad  * Set an suspended.
    346       1.52        ad  *
    347      1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    348       1.52        ad  * LWP before return.
    349       1.52        ad  */
    350        1.2   thorpej int
    351       1.52        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    352        1.2   thorpej {
    353       1.52        ad 	int error;
    354        1.2   thorpej 
    355      1.103        ad 	KASSERT(mutex_owned(t->l_proc->p_lock));
    356       1.63        ad 	KASSERT(lwp_locked(t, NULL));
    357       1.33       chs 
    358       1.52        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    359        1.2   thorpej 
    360       1.52        ad 	/*
    361       1.52        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    362       1.52        ad 	 * else or deadlock could occur.  We won't return to userspace.
    363        1.2   thorpej 	 */
    364      1.109     rmind 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    365       1.52        ad 		lwp_unlock(t);
    366       1.52        ad 		return (EDEADLK);
    367        1.2   thorpej 	}
    368        1.2   thorpej 
    369       1.52        ad 	error = 0;
    370        1.2   thorpej 
    371       1.52        ad 	switch (t->l_stat) {
    372       1.52        ad 	case LSRUN:
    373       1.52        ad 	case LSONPROC:
    374       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    375       1.52        ad 		lwp_need_userret(t);
    376       1.52        ad 		lwp_unlock(t);
    377       1.52        ad 		break;
    378        1.2   thorpej 
    379       1.52        ad 	case LSSLEEP:
    380       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    381        1.2   thorpej 
    382        1.2   thorpej 		/*
    383       1.52        ad 		 * Kick the LWP and try to get it to the kernel boundary
    384       1.52        ad 		 * so that it will release any locks that it holds.
    385       1.52        ad 		 * setrunnable() will release the lock.
    386        1.2   thorpej 		 */
    387       1.56     pavel 		if ((t->l_flag & LW_SINTR) != 0)
    388       1.52        ad 			setrunnable(t);
    389       1.52        ad 		else
    390       1.52        ad 			lwp_unlock(t);
    391       1.52        ad 		break;
    392        1.2   thorpej 
    393       1.52        ad 	case LSSUSPENDED:
    394       1.52        ad 		lwp_unlock(t);
    395       1.52        ad 		break;
    396       1.17      manu 
    397       1.52        ad 	case LSSTOP:
    398       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    399       1.52        ad 		setrunnable(t);
    400       1.52        ad 		break;
    401        1.2   thorpej 
    402       1.52        ad 	case LSIDL:
    403       1.52        ad 	case LSZOMB:
    404       1.52        ad 		error = EINTR; /* It's what Solaris does..... */
    405       1.52        ad 		lwp_unlock(t);
    406       1.52        ad 		break;
    407        1.2   thorpej 	}
    408        1.2   thorpej 
    409       1.69     rmind 	return (error);
    410        1.2   thorpej }
    411        1.2   thorpej 
    412       1.52        ad /*
    413       1.52        ad  * Restart a suspended LWP.
    414       1.52        ad  *
    415      1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    416       1.52        ad  * LWP before return.
    417       1.52        ad  */
    418        1.2   thorpej void
    419        1.2   thorpej lwp_continue(struct lwp *l)
    420        1.2   thorpej {
    421        1.2   thorpej 
    422      1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
    423       1.63        ad 	KASSERT(lwp_locked(l, NULL));
    424       1.52        ad 
    425       1.52        ad 	/* If rebooting or not suspended, then just bail out. */
    426       1.56     pavel 	if ((l->l_flag & LW_WREBOOT) != 0) {
    427       1.52        ad 		lwp_unlock(l);
    428        1.2   thorpej 		return;
    429       1.10      fvdl 	}
    430        1.2   thorpej 
    431       1.56     pavel 	l->l_flag &= ~LW_WSUSPEND;
    432        1.2   thorpej 
    433       1.52        ad 	if (l->l_stat != LSSUSPENDED) {
    434       1.52        ad 		lwp_unlock(l);
    435       1.52        ad 		return;
    436        1.2   thorpej 	}
    437        1.2   thorpej 
    438       1.52        ad 	/* setrunnable() will release the lock. */
    439       1.52        ad 	setrunnable(l);
    440        1.2   thorpej }
    441        1.2   thorpej 
    442       1.52        ad /*
    443  1.141.2.1     rmind  * Restart a stopped LWP.
    444  1.141.2.1     rmind  *
    445  1.141.2.1     rmind  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    446  1.141.2.1     rmind  * LWP before return.
    447  1.141.2.1     rmind  */
    448  1.141.2.1     rmind void
    449  1.141.2.1     rmind lwp_unstop(struct lwp *l)
    450  1.141.2.1     rmind {
    451  1.141.2.1     rmind 	struct proc *p = l->l_proc;
    452  1.141.2.1     rmind 
    453  1.141.2.1     rmind 	KASSERT(mutex_owned(proc_lock));
    454  1.141.2.1     rmind 	KASSERT(mutex_owned(p->p_lock));
    455  1.141.2.1     rmind 
    456  1.141.2.1     rmind 	lwp_lock(l);
    457  1.141.2.1     rmind 
    458  1.141.2.1     rmind 	/* If not stopped, then just bail out. */
    459  1.141.2.1     rmind 	if (l->l_stat != LSSTOP) {
    460  1.141.2.1     rmind 		lwp_unlock(l);
    461  1.141.2.1     rmind 		return;
    462  1.141.2.1     rmind 	}
    463  1.141.2.1     rmind 
    464  1.141.2.1     rmind 	p->p_stat = SACTIVE;
    465  1.141.2.1     rmind 	p->p_sflag &= ~PS_STOPPING;
    466  1.141.2.1     rmind 
    467  1.141.2.1     rmind 	if (!p->p_waited)
    468  1.141.2.1     rmind 		p->p_pptr->p_nstopchild--;
    469  1.141.2.1     rmind 
    470  1.141.2.1     rmind 	if (l->l_wchan == NULL) {
    471  1.141.2.1     rmind 		/* setrunnable() will release the lock. */
    472  1.141.2.1     rmind 		setrunnable(l);
    473  1.141.2.1     rmind 	} else {
    474  1.141.2.1     rmind 		l->l_stat = LSSLEEP;
    475  1.141.2.1     rmind 		p->p_nrlwps++;
    476  1.141.2.1     rmind 		lwp_unlock(l);
    477  1.141.2.1     rmind 	}
    478  1.141.2.1     rmind }
    479  1.141.2.1     rmind 
    480  1.141.2.1     rmind /*
    481       1.52        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    482       1.52        ad  * non-zero, we are waiting for a specific LWP.
    483       1.52        ad  *
    484      1.103        ad  * Must be called with p->p_lock held.
    485       1.52        ad  */
    486        1.2   thorpej int
    487        1.2   thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    488        1.2   thorpej {
    489        1.2   thorpej 	struct proc *p = l->l_proc;
    490       1.52        ad 	struct lwp *l2;
    491       1.52        ad 	int nfound, error;
    492       1.63        ad 	lwpid_t curlid;
    493       1.63        ad 	bool exiting;
    494        1.2   thorpej 
    495      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
    496       1.52        ad 
    497       1.52        ad 	p->p_nlwpwait++;
    498       1.63        ad 	l->l_waitingfor = lid;
    499       1.63        ad 	curlid = l->l_lid;
    500       1.63        ad 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    501       1.52        ad 
    502       1.52        ad 	for (;;) {
    503       1.52        ad 		/*
    504       1.52        ad 		 * Avoid a race between exit1() and sigexit(): if the
    505       1.52        ad 		 * process is dumping core, then we need to bail out: call
    506       1.52        ad 		 * into lwp_userret() where we will be suspended until the
    507       1.52        ad 		 * deed is done.
    508       1.52        ad 		 */
    509       1.52        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    510      1.103        ad 			mutex_exit(p->p_lock);
    511       1.52        ad 			lwp_userret(l);
    512       1.52        ad #ifdef DIAGNOSTIC
    513       1.52        ad 			panic("lwp_wait1");
    514       1.52        ad #endif
    515       1.52        ad 			/* NOTREACHED */
    516       1.52        ad 		}
    517       1.52        ad 
    518       1.52        ad 		/*
    519       1.52        ad 		 * First off, drain any detached LWP that is waiting to be
    520       1.52        ad 		 * reaped.
    521       1.52        ad 		 */
    522       1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    523       1.52        ad 			p->p_zomblwp = NULL;
    524       1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    525      1.103        ad 			mutex_enter(p->p_lock);
    526       1.52        ad 		}
    527       1.52        ad 
    528       1.52        ad 		/*
    529       1.52        ad 		 * Now look for an LWP to collect.  If the whole process is
    530       1.52        ad 		 * exiting, count detached LWPs as eligible to be collected,
    531       1.52        ad 		 * but don't drain them here.
    532       1.52        ad 		 */
    533       1.52        ad 		nfound = 0;
    534       1.63        ad 		error = 0;
    535       1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    536       1.63        ad 			/*
    537       1.63        ad 			 * If a specific wait and the target is waiting on
    538       1.63        ad 			 * us, then avoid deadlock.  This also traps LWPs
    539       1.63        ad 			 * that try to wait on themselves.
    540       1.63        ad 			 *
    541       1.63        ad 			 * Note that this does not handle more complicated
    542       1.63        ad 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    543       1.63        ad 			 * can still be killed so it is not a major problem.
    544       1.63        ad 			 */
    545       1.63        ad 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    546       1.63        ad 				error = EDEADLK;
    547       1.63        ad 				break;
    548       1.63        ad 			}
    549       1.63        ad 			if (l2 == l)
    550       1.52        ad 				continue;
    551       1.52        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    552       1.63        ad 				nfound += exiting;
    553       1.63        ad 				continue;
    554       1.63        ad 			}
    555       1.63        ad 			if (lid != 0) {
    556       1.63        ad 				if (l2->l_lid != lid)
    557       1.63        ad 					continue;
    558       1.63        ad 				/*
    559       1.63        ad 				 * Mark this LWP as the first waiter, if there
    560       1.63        ad 				 * is no other.
    561       1.63        ad 				 */
    562       1.63        ad 				if (l2->l_waiter == 0)
    563       1.63        ad 					l2->l_waiter = curlid;
    564       1.63        ad 			} else if (l2->l_waiter != 0) {
    565       1.63        ad 				/*
    566       1.63        ad 				 * It already has a waiter - so don't
    567       1.63        ad 				 * collect it.  If the waiter doesn't
    568       1.63        ad 				 * grab it we'll get another chance
    569       1.63        ad 				 * later.
    570       1.63        ad 				 */
    571       1.63        ad 				nfound++;
    572       1.52        ad 				continue;
    573       1.52        ad 			}
    574       1.52        ad 			nfound++;
    575        1.2   thorpej 
    576       1.52        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    577       1.52        ad 			if (l2->l_stat != LSZOMB)
    578       1.52        ad 				continue;
    579        1.2   thorpej 
    580       1.63        ad 			/*
    581       1.63        ad 			 * We're no longer waiting.  Reset the "first waiter"
    582       1.63        ad 			 * pointer on the target, in case it was us.
    583       1.63        ad 			 */
    584       1.63        ad 			l->l_waitingfor = 0;
    585       1.63        ad 			l2->l_waiter = 0;
    586       1.63        ad 			p->p_nlwpwait--;
    587        1.2   thorpej 			if (departed)
    588        1.2   thorpej 				*departed = l2->l_lid;
    589       1.75        ad 			sched_lwp_collect(l2);
    590       1.63        ad 
    591       1.63        ad 			/* lwp_free() releases the proc lock. */
    592       1.63        ad 			lwp_free(l2, false, false);
    593      1.103        ad 			mutex_enter(p->p_lock);
    594       1.52        ad 			return 0;
    595       1.52        ad 		}
    596        1.2   thorpej 
    597       1.63        ad 		if (error != 0)
    598       1.63        ad 			break;
    599       1.52        ad 		if (nfound == 0) {
    600       1.52        ad 			error = ESRCH;
    601       1.52        ad 			break;
    602       1.52        ad 		}
    603       1.63        ad 
    604       1.63        ad 		/*
    605       1.63        ad 		 * The kernel is careful to ensure that it can not deadlock
    606       1.63        ad 		 * when exiting - just keep waiting.
    607       1.63        ad 		 */
    608       1.63        ad 		if (exiting) {
    609       1.52        ad 			KASSERT(p->p_nlwps > 1);
    610      1.103        ad 			cv_wait(&p->p_lwpcv, p->p_lock);
    611       1.52        ad 			continue;
    612       1.52        ad 		}
    613       1.63        ad 
    614       1.63        ad 		/*
    615       1.63        ad 		 * If all other LWPs are waiting for exits or suspends
    616       1.63        ad 		 * and the supply of zombies and potential zombies is
    617       1.63        ad 		 * exhausted, then we are about to deadlock.
    618       1.63        ad 		 *
    619       1.63        ad 		 * If the process is exiting (and this LWP is not the one
    620       1.63        ad 		 * that is coordinating the exit) then bail out now.
    621       1.63        ad 		 */
    622       1.52        ad 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    623       1.63        ad 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    624       1.52        ad 			error = EDEADLK;
    625       1.52        ad 			break;
    626        1.2   thorpej 		}
    627       1.63        ad 
    628       1.63        ad 		/*
    629       1.63        ad 		 * Sit around and wait for something to happen.  We'll be
    630       1.63        ad 		 * awoken if any of the conditions examined change: if an
    631       1.63        ad 		 * LWP exits, is collected, or is detached.
    632       1.63        ad 		 */
    633      1.103        ad 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    634       1.52        ad 			break;
    635        1.2   thorpej 	}
    636        1.2   thorpej 
    637       1.63        ad 	/*
    638       1.63        ad 	 * We didn't find any LWPs to collect, we may have received a
    639       1.63        ad 	 * signal, or some other condition has caused us to bail out.
    640       1.63        ad 	 *
    641       1.63        ad 	 * If waiting on a specific LWP, clear the waiters marker: some
    642       1.63        ad 	 * other LWP may want it.  Then, kick all the remaining waiters
    643       1.63        ad 	 * so that they can re-check for zombies and for deadlock.
    644       1.63        ad 	 */
    645       1.63        ad 	if (lid != 0) {
    646       1.63        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    647       1.63        ad 			if (l2->l_lid == lid) {
    648       1.63        ad 				if (l2->l_waiter == curlid)
    649       1.63        ad 					l2->l_waiter = 0;
    650       1.63        ad 				break;
    651       1.63        ad 			}
    652       1.63        ad 		}
    653       1.63        ad 	}
    654       1.52        ad 	p->p_nlwpwait--;
    655       1.63        ad 	l->l_waitingfor = 0;
    656       1.63        ad 	cv_broadcast(&p->p_lwpcv);
    657       1.63        ad 
    658       1.52        ad 	return error;
    659        1.2   thorpej }
    660        1.2   thorpej 
    661       1.52        ad /*
    662       1.52        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    663       1.52        ad  * The new LWP is created in state LSIDL and must be set running,
    664       1.52        ad  * suspended, or stopped by the caller.
    665       1.52        ad  */
    666        1.2   thorpej int
    667      1.134     rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    668       1.75        ad 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    669       1.75        ad 	   lwp_t **rnewlwpp, int sclass)
    670        1.2   thorpej {
    671       1.52        ad 	struct lwp *l2, *isfree;
    672       1.52        ad 	turnstile_t *ts;
    673  1.141.2.3     rmind 	lwpid_t lid;
    674        1.2   thorpej 
    675      1.107        ad 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    676      1.107        ad 
    677       1.52        ad 	/*
    678       1.52        ad 	 * First off, reap any detached LWP waiting to be collected.
    679       1.52        ad 	 * We can re-use its LWP structure and turnstile.
    680       1.52        ad 	 */
    681       1.52        ad 	isfree = NULL;
    682       1.52        ad 	if (p2->p_zomblwp != NULL) {
    683      1.103        ad 		mutex_enter(p2->p_lock);
    684       1.52        ad 		if ((isfree = p2->p_zomblwp) != NULL) {
    685       1.52        ad 			p2->p_zomblwp = NULL;
    686       1.63        ad 			lwp_free(isfree, true, false);/* releases proc mutex */
    687       1.52        ad 		} else
    688      1.103        ad 			mutex_exit(p2->p_lock);
    689       1.52        ad 	}
    690       1.52        ad 	if (isfree == NULL) {
    691       1.87        ad 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    692       1.52        ad 		memset(l2, 0, sizeof(*l2));
    693       1.76        ad 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    694       1.60      yamt 		SLIST_INIT(&l2->l_pi_lenders);
    695       1.52        ad 	} else {
    696       1.52        ad 		l2 = isfree;
    697       1.52        ad 		ts = l2->l_ts;
    698       1.75        ad 		KASSERT(l2->l_inheritedprio == -1);
    699       1.60      yamt 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    700       1.52        ad 		memset(l2, 0, sizeof(*l2));
    701       1.52        ad 		l2->l_ts = ts;
    702       1.52        ad 	}
    703        1.2   thorpej 
    704        1.2   thorpej 	l2->l_stat = LSIDL;
    705        1.2   thorpej 	l2->l_proc = p2;
    706       1.52        ad 	l2->l_refcnt = 1;
    707       1.75        ad 	l2->l_class = sclass;
    708      1.116        ad 
    709      1.116        ad 	/*
    710      1.116        ad 	 * If vfork(), we want the LWP to run fast and on the same CPU
    711      1.116        ad 	 * as its parent, so that it can reuse the VM context and cache
    712      1.116        ad 	 * footprint on the local CPU.
    713      1.116        ad 	 */
    714      1.116        ad 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    715       1.82        ad 	l2->l_kpribase = PRI_KERNEL;
    716       1.52        ad 	l2->l_priority = l1->l_priority;
    717       1.75        ad 	l2->l_inheritedprio = -1;
    718      1.134     rmind 	l2->l_flag = 0;
    719       1.88        ad 	l2->l_pflag = LP_MPSAFE;
    720      1.131        ad 	TAILQ_INIT(&l2->l_ld_locks);
    721      1.131        ad 
    722      1.131        ad 	/*
    723  1.141.2.3     rmind 	 * For vfork, borrow parent's lwpctl context if it exists.
    724  1.141.2.3     rmind 	 * This also causes us to return via lwp_userret.
    725  1.141.2.3     rmind 	 */
    726  1.141.2.3     rmind 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    727  1.141.2.3     rmind 		l2->l_lwpctl = l1->l_lwpctl;
    728  1.141.2.3     rmind 		l2->l_flag |= LW_LWPCTL;
    729  1.141.2.3     rmind 	}
    730  1.141.2.3     rmind 
    731  1.141.2.3     rmind 	/*
    732      1.131        ad 	 * If not the first LWP in the process, grab a reference to the
    733      1.131        ad 	 * descriptor table.
    734      1.131        ad 	 */
    735       1.97        ad 	l2->l_fd = p2->p_fd;
    736      1.131        ad 	if (p2->p_nlwps != 0) {
    737      1.131        ad 		KASSERT(l1->l_proc == p2);
    738      1.136     rmind 		fd_hold(l2);
    739      1.131        ad 	} else {
    740      1.131        ad 		KASSERT(l1->l_proc != p2);
    741      1.131        ad 	}
    742       1.41   thorpej 
    743       1.56     pavel 	if (p2->p_flag & PK_SYSTEM) {
    744      1.134     rmind 		/* Mark it as a system LWP. */
    745       1.56     pavel 		l2->l_flag |= LW_SYSTEM;
    746       1.52        ad 	}
    747        1.2   thorpej 
    748      1.107        ad 	kpreempt_disable();
    749      1.107        ad 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    750      1.107        ad 	l2->l_cpu = l1->l_cpu;
    751      1.107        ad 	kpreempt_enable();
    752      1.107        ad 
    753      1.138    darran 	kdtrace_thread_ctor(NULL, l2);
    754       1.73     rmind 	lwp_initspecific(l2);
    755       1.75        ad 	sched_lwp_fork(l1, l2);
    756       1.37        ad 	lwp_update_creds(l2);
    757       1.70        ad 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    758       1.70        ad 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    759       1.52        ad 	cv_init(&l2->l_sigcv, "sigwait");
    760       1.52        ad 	l2->l_syncobj = &sched_syncobj;
    761        1.2   thorpej 
    762        1.2   thorpej 	if (rnewlwpp != NULL)
    763        1.2   thorpej 		*rnewlwpp = l2;
    764        1.2   thorpej 
    765  1.141.2.5     rmind 	/*
    766  1.141.2.5     rmind 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    767  1.141.2.5     rmind 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    768  1.141.2.5     rmind 	 */
    769  1.141.2.5     rmind 	pcu_save_all(l1);
    770  1.141.2.5     rmind 
    771      1.137     rmind 	uvm_lwp_setuarea(l2, uaddr);
    772        1.2   thorpej 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    773        1.2   thorpej 	    (arg != NULL) ? arg : l2);
    774        1.2   thorpej 
    775  1.141.2.3     rmind 	if ((flags & LWP_PIDLID) != 0) {
    776  1.141.2.3     rmind 		lid = proc_alloc_pid(p2);
    777  1.141.2.3     rmind 		l2->l_pflag |= LP_PIDLID;
    778  1.141.2.3     rmind 	} else {
    779  1.141.2.3     rmind 		lid = 0;
    780  1.141.2.3     rmind 	}
    781  1.141.2.3     rmind 
    782      1.103        ad 	mutex_enter(p2->p_lock);
    783       1.52        ad 
    784       1.52        ad 	if ((flags & LWP_DETACHED) != 0) {
    785       1.52        ad 		l2->l_prflag = LPR_DETACHED;
    786       1.52        ad 		p2->p_ndlwps++;
    787       1.52        ad 	} else
    788       1.52        ad 		l2->l_prflag = 0;
    789       1.52        ad 
    790       1.52        ad 	l2->l_sigmask = l1->l_sigmask;
    791       1.52        ad 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    792       1.52        ad 	sigemptyset(&l2->l_sigpend.sp_set);
    793       1.52        ad 
    794  1.141.2.3     rmind 	if (lid == 0) {
    795       1.53      yamt 		p2->p_nlwpid++;
    796  1.141.2.3     rmind 		if (p2->p_nlwpid == 0)
    797  1.141.2.3     rmind 			p2->p_nlwpid++;
    798  1.141.2.3     rmind 		lid = p2->p_nlwpid;
    799  1.141.2.3     rmind 	}
    800  1.141.2.3     rmind 	l2->l_lid = lid;
    801        1.2   thorpej 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    802        1.2   thorpej 	p2->p_nlwps++;
    803  1.141.2.2     rmind 	p2->p_nrlwps++;
    804        1.2   thorpej 
    805       1.91     rmind 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    806       1.91     rmind 		/* Inherit an affinity */
    807      1.122     rmind 		if (l1->l_flag & LW_AFFINITY) {
    808      1.128     rmind 			/*
    809      1.128     rmind 			 * Note that we hold the state lock while inheriting
    810      1.128     rmind 			 * the affinity to avoid race with sched_setaffinity().
    811      1.128     rmind 			 */
    812      1.128     rmind 			lwp_lock(l1);
    813      1.122     rmind 			if (l1->l_flag & LW_AFFINITY) {
    814      1.122     rmind 				kcpuset_use(l1->l_affinity);
    815      1.122     rmind 				l2->l_affinity = l1->l_affinity;
    816      1.122     rmind 				l2->l_flag |= LW_AFFINITY;
    817      1.122     rmind 			}
    818      1.128     rmind 			lwp_unlock(l1);
    819      1.117  christos 		}
    820      1.128     rmind 		lwp_lock(l2);
    821      1.128     rmind 		/* Inherit a processor-set */
    822      1.128     rmind 		l2->l_psid = l1->l_psid;
    823       1.91     rmind 		/* Look for a CPU to start */
    824       1.91     rmind 		l2->l_cpu = sched_takecpu(l2);
    825       1.91     rmind 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    826       1.91     rmind 	}
    827      1.128     rmind 	mutex_exit(p2->p_lock);
    828      1.128     rmind 
    829      1.141    darran 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
    830      1.141    darran 
    831      1.128     rmind 	mutex_enter(proc_lock);
    832      1.128     rmind 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    833      1.128     rmind 	mutex_exit(proc_lock);
    834       1.91     rmind 
    835       1.57       dsl 	SYSCALL_TIME_LWP_INIT(l2);
    836       1.57       dsl 
    837       1.16      manu 	if (p2->p_emul->e_lwp_fork)
    838       1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    839       1.16      manu 
    840        1.2   thorpej 	return (0);
    841        1.2   thorpej }
    842        1.2   thorpej 
    843        1.2   thorpej /*
    844       1.64      yamt  * Called by MD code when a new LWP begins execution.  Must be called
    845       1.64      yamt  * with the previous LWP locked (so at splsched), or if there is no
    846       1.64      yamt  * previous LWP, at splsched.
    847       1.64      yamt  */
    848       1.64      yamt void
    849       1.64      yamt lwp_startup(struct lwp *prev, struct lwp *new)
    850       1.64      yamt {
    851       1.64      yamt 
    852      1.141    darran 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
    853      1.141    darran 
    854      1.107        ad 	KASSERT(kpreempt_disabled());
    855       1.64      yamt 	if (prev != NULL) {
    856       1.81        ad 		/*
    857       1.81        ad 		 * Normalize the count of the spin-mutexes, it was
    858       1.81        ad 		 * increased in mi_switch().  Unmark the state of
    859       1.81        ad 		 * context switch - it is finished for previous LWP.
    860       1.81        ad 		 */
    861       1.81        ad 		curcpu()->ci_mtx_count++;
    862       1.81        ad 		membar_exit();
    863       1.81        ad 		prev->l_ctxswtch = 0;
    864       1.64      yamt 	}
    865      1.107        ad 	KPREEMPT_DISABLE(new);
    866      1.107        ad 	spl0();
    867      1.105        ad 	pmap_activate(new);
    868       1.64      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
    869      1.107        ad 	KPREEMPT_ENABLE(new);
    870       1.65        ad 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    871       1.65        ad 		KERNEL_LOCK(1, new);
    872       1.65        ad 	}
    873       1.64      yamt }
    874       1.64      yamt 
    875       1.64      yamt /*
    876       1.65        ad  * Exit an LWP.
    877        1.2   thorpej  */
    878        1.2   thorpej void
    879        1.2   thorpej lwp_exit(struct lwp *l)
    880        1.2   thorpej {
    881        1.2   thorpej 	struct proc *p = l->l_proc;
    882       1.52        ad 	struct lwp *l2;
    883       1.65        ad 	bool current;
    884       1.65        ad 
    885       1.65        ad 	current = (l == curlwp);
    886        1.2   thorpej 
    887      1.114     rmind 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    888      1.131        ad 	KASSERT(p == curproc);
    889        1.2   thorpej 
    890      1.141    darran 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
    891      1.141    darran 
    892       1.52        ad 	/*
    893       1.52        ad 	 * Verify that we hold no locks other than the kernel lock.
    894       1.52        ad 	 */
    895       1.52        ad 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    896       1.16      manu 
    897        1.2   thorpej 	/*
    898       1.52        ad 	 * If we are the last live LWP in a process, we need to exit the
    899       1.52        ad 	 * entire process.  We do so with an exit status of zero, because
    900       1.52        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
    901       1.52        ad 	 *
    902       1.52        ad 	 * We are not quite a zombie yet, but for accounting purposes we
    903       1.52        ad 	 * must increment the count of zombies here.
    904       1.45   thorpej 	 *
    905       1.45   thorpej 	 * Note: the last LWP's specificdata will be deleted here.
    906        1.2   thorpej 	 */
    907      1.103        ad 	mutex_enter(p->p_lock);
    908       1.52        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
    909       1.65        ad 		KASSERT(current == true);
    910       1.88        ad 		/* XXXSMP kernel_lock not held */
    911        1.2   thorpej 		exit1(l, 0);
    912       1.19  jdolecek 		/* NOTREACHED */
    913        1.2   thorpej 	}
    914       1.52        ad 	p->p_nzlwps++;
    915      1.103        ad 	mutex_exit(p->p_lock);
    916       1.52        ad 
    917       1.52        ad 	if (p->p_emul->e_lwp_exit)
    918       1.52        ad 		(*p->p_emul->e_lwp_exit)(l);
    919        1.2   thorpej 
    920      1.131        ad 	/* Drop filedesc reference. */
    921      1.131        ad 	fd_free();
    922      1.131        ad 
    923       1.45   thorpej 	/* Delete the specificdata while it's still safe to sleep. */
    924  1.141.2.1     rmind 	lwp_finispecific(l);
    925       1.45   thorpej 
    926       1.52        ad 	/*
    927       1.52        ad 	 * Release our cached credentials.
    928       1.52        ad 	 */
    929       1.37        ad 	kauth_cred_free(l->l_cred);
    930       1.70        ad 	callout_destroy(&l->l_timeout_ch);
    931       1.65        ad 
    932       1.65        ad 	/*
    933       1.52        ad 	 * Remove the LWP from the global list.
    934  1.141.2.3     rmind 	 * Free its LID from the PID namespace if needed.
    935       1.52        ad 	 */
    936      1.102        ad 	mutex_enter(proc_lock);
    937       1.52        ad 	LIST_REMOVE(l, l_list);
    938  1.141.2.3     rmind 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
    939  1.141.2.3     rmind 		proc_free_pid(l->l_lid);
    940  1.141.2.3     rmind 	}
    941      1.102        ad 	mutex_exit(proc_lock);
    942       1.19  jdolecek 
    943       1.52        ad 	/*
    944       1.52        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
    945       1.52        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    946       1.52        ad 	 * mark it waiting for collection in the proc structure.  Note that
    947       1.52        ad 	 * before we can do that, we need to free any other dead, deatched
    948       1.52        ad 	 * LWP waiting to meet its maker.
    949       1.52        ad 	 */
    950      1.103        ad 	mutex_enter(p->p_lock);
    951       1.52        ad 	lwp_drainrefs(l);
    952       1.31      yamt 
    953       1.52        ad 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    954       1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    955       1.52        ad 			p->p_zomblwp = NULL;
    956       1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    957      1.103        ad 			mutex_enter(p->p_lock);
    958       1.72        ad 			l->l_refcnt++;
    959       1.72        ad 			lwp_drainrefs(l);
    960       1.52        ad 		}
    961       1.52        ad 		p->p_zomblwp = l;
    962       1.52        ad 	}
    963       1.31      yamt 
    964       1.52        ad 	/*
    965       1.52        ad 	 * If we find a pending signal for the process and we have been
    966  1.141.2.3     rmind 	 * asked to check for signals, then we lose: arrange to have
    967       1.52        ad 	 * all other LWPs in the process check for signals.
    968       1.52        ad 	 */
    969       1.56     pavel 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    970       1.52        ad 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    971       1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    972       1.52        ad 			lwp_lock(l2);
    973       1.56     pavel 			l2->l_flag |= LW_PENDSIG;
    974       1.52        ad 			lwp_unlock(l2);
    975       1.52        ad 		}
    976       1.31      yamt 	}
    977       1.31      yamt 
    978  1.141.2.5     rmind 	/*
    979  1.141.2.5     rmind 	 * Release any PCU resources before becoming a zombie.
    980  1.141.2.5     rmind 	 */
    981  1.141.2.5     rmind 	pcu_discard_all(l);
    982  1.141.2.5     rmind 
    983       1.52        ad 	lwp_lock(l);
    984       1.52        ad 	l->l_stat = LSZOMB;
    985       1.90        ad 	if (l->l_name != NULL)
    986       1.90        ad 		strcpy(l->l_name, "(zombie)");
    987      1.128     rmind 	if (l->l_flag & LW_AFFINITY) {
    988      1.122     rmind 		l->l_flag &= ~LW_AFFINITY;
    989      1.128     rmind 	} else {
    990      1.128     rmind 		KASSERT(l->l_affinity == NULL);
    991      1.128     rmind 	}
    992       1.52        ad 	lwp_unlock(l);
    993        1.2   thorpej 	p->p_nrlwps--;
    994       1.52        ad 	cv_broadcast(&p->p_lwpcv);
    995       1.78        ad 	if (l->l_lwpctl != NULL)
    996       1.78        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    997      1.103        ad 	mutex_exit(p->p_lock);
    998       1.52        ad 
    999      1.122     rmind 	/* Safe without lock since LWP is in zombie state */
   1000      1.122     rmind 	if (l->l_affinity) {
   1001      1.122     rmind 		kcpuset_unuse(l->l_affinity, NULL);
   1002      1.122     rmind 		l->l_affinity = NULL;
   1003      1.122     rmind 	}
   1004      1.122     rmind 
   1005       1.52        ad 	/*
   1006       1.52        ad 	 * We can no longer block.  At this point, lwp_free() may already
   1007       1.52        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1008       1.52        ad 	 *
   1009       1.52        ad 	 * Free MD LWP resources.
   1010       1.52        ad 	 */
   1011       1.52        ad 	cpu_lwp_free(l, 0);
   1012        1.2   thorpej 
   1013       1.65        ad 	if (current) {
   1014       1.65        ad 		pmap_deactivate(l);
   1015       1.65        ad 
   1016       1.65        ad 		/*
   1017       1.65        ad 		 * Release the kernel lock, and switch away into
   1018       1.65        ad 		 * oblivion.
   1019       1.65        ad 		 */
   1020       1.52        ad #ifdef notyet
   1021       1.65        ad 		/* XXXSMP hold in lwp_userret() */
   1022       1.65        ad 		KERNEL_UNLOCK_LAST(l);
   1023       1.52        ad #else
   1024       1.65        ad 		KERNEL_UNLOCK_ALL(l, NULL);
   1025       1.52        ad #endif
   1026       1.65        ad 		lwp_exit_switchaway(l);
   1027       1.65        ad 	}
   1028        1.2   thorpej }
   1029        1.2   thorpej 
   1030       1.52        ad /*
   1031       1.52        ad  * Free a dead LWP's remaining resources.
   1032       1.52        ad  *
   1033       1.52        ad  * XXXLWP limits.
   1034       1.52        ad  */
   1035       1.52        ad void
   1036       1.63        ad lwp_free(struct lwp *l, bool recycle, bool last)
   1037       1.52        ad {
   1038       1.52        ad 	struct proc *p = l->l_proc;
   1039      1.100        ad 	struct rusage *ru;
   1040       1.52        ad 	ksiginfoq_t kq;
   1041       1.52        ad 
   1042       1.92      yamt 	KASSERT(l != curlwp);
   1043       1.92      yamt 
   1044       1.52        ad 	/*
   1045       1.52        ad 	 * If this was not the last LWP in the process, then adjust
   1046       1.52        ad 	 * counters and unlock.
   1047       1.52        ad 	 */
   1048       1.52        ad 	if (!last) {
   1049       1.52        ad 		/*
   1050       1.52        ad 		 * Add the LWP's run time to the process' base value.
   1051       1.52        ad 		 * This needs to co-incide with coming off p_lwps.
   1052       1.52        ad 		 */
   1053       1.86      yamt 		bintime_add(&p->p_rtime, &l->l_rtime);
   1054       1.64      yamt 		p->p_pctcpu += l->l_pctcpu;
   1055      1.100        ad 		ru = &p->p_stats->p_ru;
   1056      1.100        ad 		ruadd(ru, &l->l_ru);
   1057      1.100        ad 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1058      1.100        ad 		ru->ru_nivcsw += l->l_nivcsw;
   1059       1.52        ad 		LIST_REMOVE(l, l_sibling);
   1060       1.52        ad 		p->p_nlwps--;
   1061       1.52        ad 		p->p_nzlwps--;
   1062       1.52        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1063       1.52        ad 			p->p_ndlwps--;
   1064       1.63        ad 
   1065       1.63        ad 		/*
   1066       1.63        ad 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1067       1.63        ad 		 * deadlock.
   1068       1.63        ad 		 */
   1069       1.63        ad 		cv_broadcast(&p->p_lwpcv);
   1070      1.103        ad 		mutex_exit(p->p_lock);
   1071       1.63        ad 	}
   1072       1.52        ad 
   1073       1.52        ad #ifdef MULTIPROCESSOR
   1074       1.63        ad 	/*
   1075       1.63        ad 	 * In the unlikely event that the LWP is still on the CPU,
   1076       1.63        ad 	 * then spin until it has switched away.  We need to release
   1077       1.63        ad 	 * all locks to avoid deadlock against interrupt handlers on
   1078       1.63        ad 	 * the target CPU.
   1079       1.63        ad 	 */
   1080      1.115        ad 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
   1081       1.63        ad 		int count;
   1082       1.64      yamt 		(void)count; /* XXXgcc */
   1083       1.63        ad 		KERNEL_UNLOCK_ALL(curlwp, &count);
   1084      1.115        ad 		while ((l->l_pflag & LP_RUNNING) != 0 ||
   1085       1.64      yamt 		    l->l_cpu->ci_curlwp == l)
   1086       1.63        ad 			SPINLOCK_BACKOFF_HOOK;
   1087       1.63        ad 		KERNEL_LOCK(count, curlwp);
   1088       1.63        ad 	}
   1089       1.52        ad #endif
   1090       1.52        ad 
   1091       1.52        ad 	/*
   1092       1.52        ad 	 * Destroy the LWP's remaining signal information.
   1093       1.52        ad 	 */
   1094       1.52        ad 	ksiginfo_queue_init(&kq);
   1095       1.52        ad 	sigclear(&l->l_sigpend, NULL, &kq);
   1096       1.52        ad 	ksiginfo_queue_drain(&kq);
   1097       1.52        ad 	cv_destroy(&l->l_sigcv);
   1098        1.2   thorpej 
   1099       1.19  jdolecek 	/*
   1100       1.52        ad 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1101       1.93      yamt 	 * caller wants to recycle them.  Also, free the scheduler specific
   1102       1.93      yamt 	 * data.
   1103       1.52        ad 	 *
   1104       1.52        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1105       1.52        ad 	 * so if it comes up just drop it quietly and move on.
   1106       1.52        ad 	 *
   1107       1.52        ad 	 * We don't recycle the VM resources at this time.
   1108       1.19  jdolecek 	 */
   1109       1.78        ad 	if (l->l_lwpctl != NULL)
   1110       1.78        ad 		lwp_ctl_free(l);
   1111       1.64      yamt 
   1112       1.52        ad 	if (!recycle && l->l_ts != &turnstile0)
   1113       1.76        ad 		pool_cache_put(turnstile_cache, l->l_ts);
   1114       1.90        ad 	if (l->l_name != NULL)
   1115       1.90        ad 		kmem_free(l->l_name, MAXCOMLEN);
   1116      1.135     rmind 
   1117       1.52        ad 	cpu_lwp_free2(l);
   1118       1.19  jdolecek 	uvm_lwp_exit(l);
   1119      1.134     rmind 
   1120       1.60      yamt 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1121       1.75        ad 	KASSERT(l->l_inheritedprio == -1);
   1122  1.141.2.3     rmind 	KASSERT(l->l_blcnt == 0);
   1123      1.138    darran 	kdtrace_thread_dtor(NULL, l);
   1124       1.52        ad 	if (!recycle)
   1125       1.87        ad 		pool_cache_put(lwp_cache, l);
   1126        1.2   thorpej }
   1127        1.2   thorpej 
   1128        1.2   thorpej /*
   1129       1.91     rmind  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1130       1.91     rmind  */
   1131       1.91     rmind void
   1132      1.114     rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1133       1.91     rmind {
   1134      1.114     rmind 	struct schedstate_percpu *tspc;
   1135      1.121     rmind 	int lstat = l->l_stat;
   1136      1.121     rmind 
   1137       1.91     rmind 	KASSERT(lwp_locked(l, NULL));
   1138      1.114     rmind 	KASSERT(tci != NULL);
   1139      1.114     rmind 
   1140      1.121     rmind 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1141      1.121     rmind 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1142      1.121     rmind 		lstat = LSONPROC;
   1143      1.121     rmind 	}
   1144      1.121     rmind 
   1145      1.114     rmind 	/*
   1146      1.114     rmind 	 * The destination CPU could be changed while previous migration
   1147      1.114     rmind 	 * was not finished.
   1148      1.114     rmind 	 */
   1149      1.121     rmind 	if (l->l_target_cpu != NULL) {
   1150      1.114     rmind 		l->l_target_cpu = tci;
   1151      1.114     rmind 		lwp_unlock(l);
   1152      1.114     rmind 		return;
   1153      1.114     rmind 	}
   1154       1.91     rmind 
   1155      1.114     rmind 	/* Nothing to do if trying to migrate to the same CPU */
   1156      1.114     rmind 	if (l->l_cpu == tci) {
   1157       1.91     rmind 		lwp_unlock(l);
   1158       1.91     rmind 		return;
   1159       1.91     rmind 	}
   1160       1.91     rmind 
   1161      1.114     rmind 	KASSERT(l->l_target_cpu == NULL);
   1162      1.114     rmind 	tspc = &tci->ci_schedstate;
   1163      1.121     rmind 	switch (lstat) {
   1164       1.91     rmind 	case LSRUN:
   1165      1.134     rmind 		l->l_target_cpu = tci;
   1166      1.134     rmind 		break;
   1167       1.91     rmind 	case LSIDL:
   1168      1.114     rmind 		l->l_cpu = tci;
   1169      1.114     rmind 		lwp_unlock_to(l, tspc->spc_mutex);
   1170       1.91     rmind 		return;
   1171       1.91     rmind 	case LSSLEEP:
   1172      1.114     rmind 		l->l_cpu = tci;
   1173       1.91     rmind 		break;
   1174       1.91     rmind 	case LSSTOP:
   1175       1.91     rmind 	case LSSUSPENDED:
   1176      1.114     rmind 		l->l_cpu = tci;
   1177      1.114     rmind 		if (l->l_wchan == NULL) {
   1178      1.114     rmind 			lwp_unlock_to(l, tspc->spc_lwplock);
   1179      1.114     rmind 			return;
   1180       1.91     rmind 		}
   1181      1.114     rmind 		break;
   1182       1.91     rmind 	case LSONPROC:
   1183      1.114     rmind 		l->l_target_cpu = tci;
   1184      1.114     rmind 		spc_lock(l->l_cpu);
   1185      1.114     rmind 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1186      1.114     rmind 		spc_unlock(l->l_cpu);
   1187       1.91     rmind 		break;
   1188       1.91     rmind 	}
   1189       1.91     rmind 	lwp_unlock(l);
   1190       1.91     rmind }
   1191       1.91     rmind 
   1192       1.91     rmind /*
   1193       1.94     rmind  * Find the LWP in the process.  Arguments may be zero, in such case,
   1194       1.94     rmind  * the calling process and first LWP in the list will be used.
   1195      1.103        ad  * On success - returns proc locked.
   1196       1.91     rmind  */
   1197       1.91     rmind struct lwp *
   1198       1.91     rmind lwp_find2(pid_t pid, lwpid_t lid)
   1199       1.91     rmind {
   1200       1.91     rmind 	proc_t *p;
   1201       1.91     rmind 	lwp_t *l;
   1202       1.91     rmind 
   1203  1.141.2.2     rmind 	/* Find the process. */
   1204       1.94     rmind 	if (pid != 0) {
   1205  1.141.2.2     rmind 		mutex_enter(proc_lock);
   1206  1.141.2.2     rmind 		p = proc_find(pid);
   1207  1.141.2.2     rmind 		if (p == NULL) {
   1208  1.141.2.2     rmind 			mutex_exit(proc_lock);
   1209  1.141.2.2     rmind 			return NULL;
   1210  1.141.2.2     rmind 		}
   1211  1.141.2.2     rmind 		mutex_enter(p->p_lock);
   1212      1.102        ad 		mutex_exit(proc_lock);
   1213  1.141.2.2     rmind 	} else {
   1214  1.141.2.2     rmind 		p = curlwp->l_proc;
   1215  1.141.2.2     rmind 		mutex_enter(p->p_lock);
   1216  1.141.2.2     rmind 	}
   1217  1.141.2.2     rmind 	/* Find the thread. */
   1218  1.141.2.2     rmind 	if (lid != 0) {
   1219  1.141.2.2     rmind 		l = lwp_find(p, lid);
   1220  1.141.2.2     rmind 	} else {
   1221  1.141.2.2     rmind 		l = LIST_FIRST(&p->p_lwps);
   1222       1.94     rmind 	}
   1223      1.103        ad 	if (l == NULL) {
   1224      1.103        ad 		mutex_exit(p->p_lock);
   1225      1.103        ad 	}
   1226       1.91     rmind 	return l;
   1227       1.91     rmind }
   1228       1.91     rmind 
   1229       1.91     rmind /*
   1230  1.141.2.3     rmind  * Look up a live LWP within the specified process, and return it locked.
   1231       1.52        ad  *
   1232      1.103        ad  * Must be called with p->p_lock held.
   1233       1.52        ad  */
   1234       1.52        ad struct lwp *
   1235  1.141.2.3     rmind lwp_find(struct proc *p, lwpid_t id)
   1236       1.52        ad {
   1237       1.52        ad 	struct lwp *l;
   1238       1.52        ad 
   1239      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1240       1.52        ad 
   1241       1.52        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1242       1.52        ad 		if (l->l_lid == id)
   1243       1.52        ad 			break;
   1244       1.52        ad 	}
   1245       1.52        ad 
   1246       1.52        ad 	/*
   1247       1.52        ad 	 * No need to lock - all of these conditions will
   1248       1.52        ad 	 * be visible with the process level mutex held.
   1249       1.52        ad 	 */
   1250       1.52        ad 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1251       1.52        ad 		l = NULL;
   1252       1.52        ad 
   1253       1.52        ad 	return l;
   1254       1.52        ad }
   1255       1.52        ad 
   1256       1.52        ad /*
   1257       1.37        ad  * Update an LWP's cached credentials to mirror the process' master copy.
   1258       1.37        ad  *
   1259       1.37        ad  * This happens early in the syscall path, on user trap, and on LWP
   1260       1.37        ad  * creation.  A long-running LWP can also voluntarily choose to update
   1261       1.37        ad  * it's credentials by calling this routine.  This may be called from
   1262       1.37        ad  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1263       1.37        ad  */
   1264       1.37        ad void
   1265       1.37        ad lwp_update_creds(struct lwp *l)
   1266       1.37        ad {
   1267       1.37        ad 	kauth_cred_t oc;
   1268       1.37        ad 	struct proc *p;
   1269       1.37        ad 
   1270       1.37        ad 	p = l->l_proc;
   1271       1.37        ad 	oc = l->l_cred;
   1272       1.37        ad 
   1273      1.103        ad 	mutex_enter(p->p_lock);
   1274       1.37        ad 	kauth_cred_hold(p->p_cred);
   1275       1.37        ad 	l->l_cred = p->p_cred;
   1276       1.98        ad 	l->l_prflag &= ~LPR_CRMOD;
   1277      1.103        ad 	mutex_exit(p->p_lock);
   1278       1.88        ad 	if (oc != NULL)
   1279       1.37        ad 		kauth_cred_free(oc);
   1280       1.52        ad }
   1281       1.52        ad 
   1282       1.52        ad /*
   1283       1.52        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
   1284       1.52        ad  * one we specify.
   1285       1.52        ad  */
   1286       1.52        ad int
   1287       1.52        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
   1288       1.52        ad {
   1289       1.52        ad 	kmutex_t *cur = l->l_mutex;
   1290       1.52        ad 
   1291       1.52        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1292       1.52        ad }
   1293       1.52        ad 
   1294       1.52        ad /*
   1295       1.52        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
   1296       1.52        ad  */
   1297       1.52        ad void
   1298       1.52        ad lwp_setlock(struct lwp *l, kmutex_t *new)
   1299       1.52        ad {
   1300       1.52        ad 
   1301       1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1302       1.52        ad 
   1303      1.107        ad 	membar_exit();
   1304       1.52        ad 	l->l_mutex = new;
   1305       1.52        ad }
   1306       1.52        ad 
   1307       1.52        ad /*
   1308       1.52        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1309       1.52        ad  * must be held.
   1310       1.52        ad  */
   1311       1.52        ad void
   1312       1.52        ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1313       1.52        ad {
   1314       1.52        ad 	kmutex_t *old;
   1315       1.52        ad 
   1316  1.141.2.3     rmind 	KASSERT(lwp_locked(l, NULL));
   1317       1.52        ad 
   1318       1.52        ad 	old = l->l_mutex;
   1319      1.107        ad 	membar_exit();
   1320       1.52        ad 	l->l_mutex = new;
   1321       1.52        ad 	mutex_spin_exit(old);
   1322       1.52        ad }
   1323       1.52        ad 
   1324       1.60      yamt int
   1325       1.60      yamt lwp_trylock(struct lwp *l)
   1326       1.60      yamt {
   1327       1.60      yamt 	kmutex_t *old;
   1328       1.60      yamt 
   1329       1.60      yamt 	for (;;) {
   1330       1.60      yamt 		if (!mutex_tryenter(old = l->l_mutex))
   1331       1.60      yamt 			return 0;
   1332       1.60      yamt 		if (__predict_true(l->l_mutex == old))
   1333       1.60      yamt 			return 1;
   1334       1.60      yamt 		mutex_spin_exit(old);
   1335       1.60      yamt 	}
   1336       1.60      yamt }
   1337       1.60      yamt 
   1338      1.134     rmind void
   1339       1.96        ad lwp_unsleep(lwp_t *l, bool cleanup)
   1340       1.96        ad {
   1341       1.96        ad 
   1342       1.96        ad 	KASSERT(mutex_owned(l->l_mutex));
   1343      1.134     rmind 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1344       1.96        ad }
   1345       1.96        ad 
   1346       1.52        ad /*
   1347       1.56     pavel  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1348       1.52        ad  * set.
   1349       1.52        ad  */
   1350       1.52        ad void
   1351       1.52        ad lwp_userret(struct lwp *l)
   1352       1.52        ad {
   1353       1.52        ad 	struct proc *p;
   1354       1.52        ad 	int sig;
   1355       1.52        ad 
   1356      1.114     rmind 	KASSERT(l == curlwp);
   1357      1.114     rmind 	KASSERT(l->l_stat == LSONPROC);
   1358       1.52        ad 	p = l->l_proc;
   1359       1.52        ad 
   1360       1.75        ad #ifndef __HAVE_FAST_SOFTINTS
   1361       1.75        ad 	/* Run pending soft interrupts. */
   1362       1.75        ad 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1363       1.75        ad 		softint_overlay();
   1364       1.75        ad #endif
   1365       1.75        ad 
   1366      1.125        ad #ifdef KERN_SA
   1367      1.125        ad 	/* Generate UNBLOCKED upcall if needed */
   1368      1.125        ad 	if (l->l_flag & LW_SA_BLOCKING) {
   1369      1.125        ad 		sa_unblock_userret(l);
   1370      1.125        ad 		/* NOTREACHED */
   1371      1.125        ad 	}
   1372      1.125        ad #endif
   1373      1.125        ad 
   1374       1.52        ad 	/*
   1375       1.52        ad 	 * It should be safe to do this read unlocked on a multiprocessor
   1376       1.52        ad 	 * system..
   1377      1.126  wrstuden 	 *
   1378      1.126  wrstuden 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
   1379      1.126  wrstuden 	 * consider it now.
   1380       1.52        ad 	 */
   1381      1.126  wrstuden 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
   1382       1.52        ad 		/*
   1383       1.52        ad 		 * Process pending signals first, unless the process
   1384       1.61        ad 		 * is dumping core or exiting, where we will instead
   1385      1.101     rmind 		 * enter the LW_WSUSPEND case below.
   1386       1.52        ad 		 */
   1387       1.61        ad 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1388       1.61        ad 		    LW_PENDSIG) {
   1389      1.103        ad 			mutex_enter(p->p_lock);
   1390       1.52        ad 			while ((sig = issignal(l)) != 0)
   1391       1.52        ad 				postsig(sig);
   1392      1.103        ad 			mutex_exit(p->p_lock);
   1393       1.52        ad 		}
   1394       1.52        ad 
   1395       1.52        ad 		/*
   1396       1.52        ad 		 * Core-dump or suspend pending.
   1397       1.52        ad 		 *
   1398       1.52        ad 		 * In case of core dump, suspend ourselves, so that the
   1399       1.52        ad 		 * kernel stack and therefore the userland registers saved
   1400       1.52        ad 		 * in the trapframe are around for coredump() to write them
   1401       1.52        ad 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1402       1.52        ad 		 * will write the core file out once all other LWPs are
   1403       1.52        ad 		 * suspended.
   1404       1.52        ad 		 */
   1405       1.56     pavel 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1406      1.103        ad 			mutex_enter(p->p_lock);
   1407       1.52        ad 			p->p_nrlwps--;
   1408       1.52        ad 			cv_broadcast(&p->p_lwpcv);
   1409       1.52        ad 			lwp_lock(l);
   1410       1.52        ad 			l->l_stat = LSSUSPENDED;
   1411      1.104        ad 			lwp_unlock(l);
   1412      1.103        ad 			mutex_exit(p->p_lock);
   1413      1.104        ad 			lwp_lock(l);
   1414       1.64      yamt 			mi_switch(l);
   1415       1.52        ad 		}
   1416       1.52        ad 
   1417       1.52        ad 		/* Process is exiting. */
   1418       1.56     pavel 		if ((l->l_flag & LW_WEXIT) != 0) {
   1419       1.52        ad 			lwp_exit(l);
   1420       1.52        ad 			KASSERT(0);
   1421       1.52        ad 			/* NOTREACHED */
   1422       1.52        ad 		}
   1423       1.54        ad 
   1424  1.141.2.3     rmind 		/* update lwpctl processor (for vfork child_return) */
   1425  1.141.2.3     rmind 		if (l->l_flag & LW_LWPCTL) {
   1426       1.54        ad 			lwp_lock(l);
   1427  1.141.2.3     rmind 			KASSERT(kpreempt_disabled());
   1428  1.141.2.3     rmind 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1429  1.141.2.3     rmind 			l->l_lwpctl->lc_pctr++;
   1430  1.141.2.3     rmind 			l->l_flag &= ~LW_LWPCTL;
   1431       1.54        ad 			lwp_unlock(l);
   1432       1.54        ad 		}
   1433       1.52        ad 	}
   1434      1.124  wrstuden 
   1435      1.124  wrstuden #ifdef KERN_SA
   1436      1.124  wrstuden 	/*
   1437      1.124  wrstuden 	 * Timer events are handled specially.  We only try once to deliver
   1438      1.124  wrstuden 	 * pending timer upcalls; if if fails, we can try again on the next
   1439      1.124  wrstuden 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1440      1.124  wrstuden 	 * bounce us back here through the trap path after we return.
   1441      1.124  wrstuden 	 */
   1442      1.124  wrstuden 	if (p->p_timerpend)
   1443      1.124  wrstuden 		timerupcall(l);
   1444      1.125        ad 	if (l->l_flag & LW_SA_UPCALL)
   1445      1.125        ad 		sa_upcall_userret(l);
   1446      1.124  wrstuden #endif /* KERN_SA */
   1447       1.52        ad }
   1448       1.52        ad 
   1449       1.52        ad /*
   1450       1.52        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1451       1.52        ad  */
   1452       1.52        ad void
   1453       1.52        ad lwp_need_userret(struct lwp *l)
   1454       1.52        ad {
   1455       1.63        ad 	KASSERT(lwp_locked(l, NULL));
   1456       1.52        ad 
   1457       1.52        ad 	/*
   1458       1.52        ad 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1459       1.52        ad 	 * that the condition will be seen before forcing the LWP to enter
   1460       1.52        ad 	 * kernel mode.
   1461       1.52        ad 	 */
   1462       1.81        ad 	membar_producer();
   1463       1.52        ad 	cpu_signotify(l);
   1464       1.52        ad }
   1465       1.52        ad 
   1466       1.52        ad /*
   1467       1.52        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1468       1.52        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1469       1.52        ad  */
   1470       1.52        ad void
   1471       1.52        ad lwp_addref(struct lwp *l)
   1472       1.52        ad {
   1473       1.52        ad 
   1474      1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1475       1.52        ad 	KASSERT(l->l_stat != LSZOMB);
   1476       1.52        ad 	KASSERT(l->l_refcnt != 0);
   1477       1.52        ad 
   1478       1.52        ad 	l->l_refcnt++;
   1479       1.52        ad }
   1480       1.52        ad 
   1481       1.52        ad /*
   1482       1.52        ad  * Remove one reference to an LWP.  If this is the last reference,
   1483       1.52        ad  * then we must finalize the LWP's death.
   1484       1.52        ad  */
   1485       1.52        ad void
   1486       1.52        ad lwp_delref(struct lwp *l)
   1487       1.52        ad {
   1488       1.52        ad 	struct proc *p = l->l_proc;
   1489       1.52        ad 
   1490      1.103        ad 	mutex_enter(p->p_lock);
   1491  1.141.2.1     rmind 	lwp_delref2(l);
   1492  1.141.2.1     rmind 	mutex_exit(p->p_lock);
   1493  1.141.2.1     rmind }
   1494  1.141.2.1     rmind 
   1495  1.141.2.1     rmind /*
   1496  1.141.2.1     rmind  * Remove one reference to an LWP.  If this is the last reference,
   1497  1.141.2.1     rmind  * then we must finalize the LWP's death.  The proc mutex is held
   1498  1.141.2.1     rmind  * on entry.
   1499  1.141.2.1     rmind  */
   1500  1.141.2.1     rmind void
   1501  1.141.2.1     rmind lwp_delref2(struct lwp *l)
   1502  1.141.2.1     rmind {
   1503  1.141.2.1     rmind 	struct proc *p = l->l_proc;
   1504  1.141.2.1     rmind 
   1505  1.141.2.1     rmind 	KASSERT(mutex_owned(p->p_lock));
   1506       1.72        ad 	KASSERT(l->l_stat != LSZOMB);
   1507       1.72        ad 	KASSERT(l->l_refcnt > 0);
   1508       1.52        ad 	if (--l->l_refcnt == 0)
   1509       1.76        ad 		cv_broadcast(&p->p_lwpcv);
   1510       1.52        ad }
   1511       1.52        ad 
   1512       1.52        ad /*
   1513       1.52        ad  * Drain all references to the current LWP.
   1514       1.52        ad  */
   1515       1.52        ad void
   1516       1.52        ad lwp_drainrefs(struct lwp *l)
   1517       1.52        ad {
   1518       1.52        ad 	struct proc *p = l->l_proc;
   1519       1.52        ad 
   1520      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1521       1.52        ad 	KASSERT(l->l_refcnt != 0);
   1522       1.52        ad 
   1523       1.52        ad 	l->l_refcnt--;
   1524       1.52        ad 	while (l->l_refcnt != 0)
   1525      1.103        ad 		cv_wait(&p->p_lwpcv, p->p_lock);
   1526       1.37        ad }
   1527       1.41   thorpej 
   1528       1.41   thorpej /*
   1529      1.127        ad  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1530      1.127        ad  * be held.
   1531      1.127        ad  */
   1532      1.127        ad bool
   1533      1.127        ad lwp_alive(lwp_t *l)
   1534      1.127        ad {
   1535      1.127        ad 
   1536      1.127        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1537      1.127        ad 
   1538      1.127        ad 	switch (l->l_stat) {
   1539      1.127        ad 	case LSSLEEP:
   1540      1.127        ad 	case LSRUN:
   1541      1.127        ad 	case LSONPROC:
   1542      1.127        ad 	case LSSTOP:
   1543      1.127        ad 	case LSSUSPENDED:
   1544      1.127        ad 		return true;
   1545      1.127        ad 	default:
   1546      1.127        ad 		return false;
   1547      1.127        ad 	}
   1548      1.127        ad }
   1549      1.127        ad 
   1550      1.127        ad /*
   1551      1.127        ad  * Return first live LWP in the process.
   1552      1.127        ad  */
   1553      1.127        ad lwp_t *
   1554      1.127        ad lwp_find_first(proc_t *p)
   1555      1.127        ad {
   1556      1.127        ad 	lwp_t *l;
   1557      1.127        ad 
   1558      1.127        ad 	KASSERT(mutex_owned(p->p_lock));
   1559      1.127        ad 
   1560      1.127        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1561      1.127        ad 		if (lwp_alive(l)) {
   1562      1.127        ad 			return l;
   1563      1.127        ad 		}
   1564      1.127        ad 	}
   1565      1.127        ad 
   1566      1.127        ad 	return NULL;
   1567      1.127        ad }
   1568      1.127        ad 
   1569      1.127        ad /*
   1570       1.78        ad  * Allocate a new lwpctl structure for a user LWP.
   1571       1.78        ad  */
   1572       1.78        ad int
   1573       1.78        ad lwp_ctl_alloc(vaddr_t *uaddr)
   1574       1.78        ad {
   1575       1.78        ad 	lcproc_t *lp;
   1576       1.78        ad 	u_int bit, i, offset;
   1577       1.78        ad 	struct uvm_object *uao;
   1578       1.78        ad 	int error;
   1579       1.78        ad 	lcpage_t *lcp;
   1580       1.78        ad 	proc_t *p;
   1581       1.78        ad 	lwp_t *l;
   1582       1.78        ad 
   1583       1.78        ad 	l = curlwp;
   1584       1.78        ad 	p = l->l_proc;
   1585       1.78        ad 
   1586  1.141.2.3     rmind 	/* don't allow a vforked process to create lwp ctls */
   1587  1.141.2.3     rmind 	if (p->p_lflag & PL_PPWAIT)
   1588  1.141.2.3     rmind 		return EBUSY;
   1589  1.141.2.3     rmind 
   1590       1.81        ad 	if (l->l_lcpage != NULL) {
   1591       1.81        ad 		lcp = l->l_lcpage;
   1592       1.81        ad 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1593  1.141.2.1     rmind 		return 0;
   1594       1.81        ad 	}
   1595       1.78        ad 
   1596       1.78        ad 	/* First time around, allocate header structure for the process. */
   1597       1.78        ad 	if ((lp = p->p_lwpctl) == NULL) {
   1598       1.78        ad 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1599       1.78        ad 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1600       1.78        ad 		lp->lp_uao = NULL;
   1601       1.78        ad 		TAILQ_INIT(&lp->lp_pages);
   1602      1.103        ad 		mutex_enter(p->p_lock);
   1603       1.78        ad 		if (p->p_lwpctl == NULL) {
   1604       1.78        ad 			p->p_lwpctl = lp;
   1605      1.103        ad 			mutex_exit(p->p_lock);
   1606       1.78        ad 		} else {
   1607      1.103        ad 			mutex_exit(p->p_lock);
   1608       1.78        ad 			mutex_destroy(&lp->lp_lock);
   1609       1.78        ad 			kmem_free(lp, sizeof(*lp));
   1610       1.78        ad 			lp = p->p_lwpctl;
   1611       1.78        ad 		}
   1612       1.78        ad 	}
   1613       1.78        ad 
   1614       1.78        ad  	/*
   1615       1.78        ad  	 * Set up an anonymous memory region to hold the shared pages.
   1616       1.78        ad  	 * Map them into the process' address space.  The user vmspace
   1617       1.78        ad  	 * gets the first reference on the UAO.
   1618       1.78        ad  	 */
   1619       1.78        ad 	mutex_enter(&lp->lp_lock);
   1620       1.78        ad 	if (lp->lp_uao == NULL) {
   1621       1.78        ad 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1622       1.78        ad 		lp->lp_cur = 0;
   1623       1.78        ad 		lp->lp_max = LWPCTL_UAREA_SZ;
   1624       1.78        ad 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1625       1.78        ad 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1626       1.78        ad 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1627       1.78        ad 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1628       1.78        ad 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1629       1.78        ad 		if (error != 0) {
   1630       1.78        ad 			uao_detach(lp->lp_uao);
   1631       1.78        ad 			lp->lp_uao = NULL;
   1632       1.78        ad 			mutex_exit(&lp->lp_lock);
   1633       1.78        ad 			return error;
   1634       1.78        ad 		}
   1635       1.78        ad 	}
   1636       1.78        ad 
   1637       1.78        ad 	/* Get a free block and allocate for this LWP. */
   1638       1.78        ad 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1639       1.78        ad 		if (lcp->lcp_nfree != 0)
   1640       1.78        ad 			break;
   1641       1.78        ad 	}
   1642       1.78        ad 	if (lcp == NULL) {
   1643       1.78        ad 		/* Nothing available - try to set up a free page. */
   1644       1.78        ad 		if (lp->lp_cur == lp->lp_max) {
   1645       1.78        ad 			mutex_exit(&lp->lp_lock);
   1646       1.78        ad 			return ENOMEM;
   1647       1.78        ad 		}
   1648       1.78        ad 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1649       1.79      yamt 		if (lcp == NULL) {
   1650       1.79      yamt 			mutex_exit(&lp->lp_lock);
   1651       1.78        ad 			return ENOMEM;
   1652       1.79      yamt 		}
   1653       1.78        ad 		/*
   1654       1.78        ad 		 * Wire the next page down in kernel space.  Since this
   1655       1.78        ad 		 * is a new mapping, we must add a reference.
   1656       1.78        ad 		 */
   1657       1.78        ad 		uao = lp->lp_uao;
   1658       1.78        ad 		(*uao->pgops->pgo_reference)(uao);
   1659       1.99        ad 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1660       1.78        ad 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1661       1.78        ad 		    uao, lp->lp_cur, PAGE_SIZE,
   1662       1.78        ad 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1663       1.78        ad 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1664       1.78        ad 		if (error != 0) {
   1665       1.78        ad 			mutex_exit(&lp->lp_lock);
   1666       1.78        ad 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1667       1.78        ad 			(*uao->pgops->pgo_detach)(uao);
   1668       1.78        ad 			return error;
   1669       1.78        ad 		}
   1670       1.89      yamt 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1671       1.89      yamt 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1672       1.89      yamt 		if (error != 0) {
   1673       1.89      yamt 			mutex_exit(&lp->lp_lock);
   1674       1.89      yamt 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1675       1.89      yamt 			    lcp->lcp_kaddr + PAGE_SIZE);
   1676       1.89      yamt 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1677       1.89      yamt 			return error;
   1678       1.89      yamt 		}
   1679       1.78        ad 		/* Prepare the page descriptor and link into the list. */
   1680       1.78        ad 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1681       1.78        ad 		lp->lp_cur += PAGE_SIZE;
   1682       1.78        ad 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1683       1.78        ad 		lcp->lcp_rotor = 0;
   1684       1.78        ad 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1685       1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1686       1.78        ad 	}
   1687       1.78        ad 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1688       1.78        ad 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1689       1.78        ad 			i = 0;
   1690       1.78        ad 	}
   1691       1.78        ad 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1692       1.78        ad 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1693       1.78        ad 	lcp->lcp_rotor = i;
   1694       1.78        ad 	lcp->lcp_nfree--;
   1695       1.78        ad 	l->l_lcpage = lcp;
   1696       1.78        ad 	offset = (i << 5) + bit;
   1697       1.78        ad 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1698       1.78        ad 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1699       1.78        ad 	mutex_exit(&lp->lp_lock);
   1700       1.78        ad 
   1701      1.107        ad 	KPREEMPT_DISABLE(l);
   1702      1.111        ad 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1703      1.107        ad 	KPREEMPT_ENABLE(l);
   1704       1.78        ad 
   1705       1.78        ad 	return 0;
   1706       1.78        ad }
   1707       1.78        ad 
   1708       1.78        ad /*
   1709       1.78        ad  * Free an lwpctl structure back to the per-process list.
   1710       1.78        ad  */
   1711       1.78        ad void
   1712       1.78        ad lwp_ctl_free(lwp_t *l)
   1713       1.78        ad {
   1714  1.141.2.3     rmind 	struct proc *p = l->l_proc;
   1715       1.78        ad 	lcproc_t *lp;
   1716       1.78        ad 	lcpage_t *lcp;
   1717       1.78        ad 	u_int map, offset;
   1718       1.78        ad 
   1719  1.141.2.3     rmind 	/* don't free a lwp context we borrowed for vfork */
   1720  1.141.2.3     rmind 	if (p->p_lflag & PL_PPWAIT) {
   1721  1.141.2.3     rmind 		l->l_lwpctl = NULL;
   1722  1.141.2.3     rmind 		return;
   1723  1.141.2.3     rmind 	}
   1724  1.141.2.3     rmind 
   1725  1.141.2.3     rmind 	lp = p->p_lwpctl;
   1726       1.78        ad 	KASSERT(lp != NULL);
   1727       1.78        ad 
   1728       1.78        ad 	lcp = l->l_lcpage;
   1729       1.78        ad 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1730       1.78        ad 	KASSERT(offset < LWPCTL_PER_PAGE);
   1731       1.78        ad 
   1732       1.78        ad 	mutex_enter(&lp->lp_lock);
   1733       1.78        ad 	lcp->lcp_nfree++;
   1734       1.78        ad 	map = offset >> 5;
   1735       1.78        ad 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1736       1.78        ad 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1737       1.78        ad 		lcp->lcp_rotor = map;
   1738       1.78        ad 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1739       1.78        ad 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1740       1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1741       1.78        ad 	}
   1742       1.78        ad 	mutex_exit(&lp->lp_lock);
   1743       1.78        ad }
   1744       1.78        ad 
   1745       1.78        ad /*
   1746       1.78        ad  * Process is exiting; tear down lwpctl state.  This can only be safely
   1747       1.78        ad  * called by the last LWP in the process.
   1748       1.78        ad  */
   1749       1.78        ad void
   1750       1.78        ad lwp_ctl_exit(void)
   1751       1.78        ad {
   1752       1.78        ad 	lcpage_t *lcp, *next;
   1753       1.78        ad 	lcproc_t *lp;
   1754       1.78        ad 	proc_t *p;
   1755       1.78        ad 	lwp_t *l;
   1756       1.78        ad 
   1757       1.78        ad 	l = curlwp;
   1758       1.78        ad 	l->l_lwpctl = NULL;
   1759       1.95        ad 	l->l_lcpage = NULL;
   1760       1.78        ad 	p = l->l_proc;
   1761       1.78        ad 	lp = p->p_lwpctl;
   1762       1.78        ad 
   1763       1.78        ad 	KASSERT(lp != NULL);
   1764       1.78        ad 	KASSERT(p->p_nlwps == 1);
   1765       1.78        ad 
   1766       1.78        ad 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1767       1.78        ad 		next = TAILQ_NEXT(lcp, lcp_chain);
   1768       1.78        ad 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1769       1.78        ad 		    lcp->lcp_kaddr + PAGE_SIZE);
   1770       1.78        ad 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1771       1.78        ad 	}
   1772       1.78        ad 
   1773       1.78        ad 	if (lp->lp_uao != NULL) {
   1774       1.78        ad 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1775       1.78        ad 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1776       1.78        ad 	}
   1777       1.78        ad 
   1778       1.78        ad 	mutex_destroy(&lp->lp_lock);
   1779       1.78        ad 	kmem_free(lp, sizeof(*lp));
   1780       1.78        ad 	p->p_lwpctl = NULL;
   1781       1.78        ad }
   1782       1.84      yamt 
   1783      1.130        ad /*
   1784      1.130        ad  * Return the current LWP's "preemption counter".  Used to detect
   1785      1.130        ad  * preemption across operations that can tolerate preemption without
   1786      1.130        ad  * crashing, but which may generate incorrect results if preempted.
   1787      1.130        ad  */
   1788      1.130        ad uint64_t
   1789      1.130        ad lwp_pctr(void)
   1790      1.130        ad {
   1791      1.130        ad 
   1792      1.130        ad 	return curlwp->l_ncsw;
   1793      1.130        ad }
   1794      1.130        ad 
   1795  1.141.2.3     rmind /*
   1796  1.141.2.3     rmind  * Set an LWP's private data pointer.
   1797  1.141.2.3     rmind  */
   1798  1.141.2.3     rmind int
   1799  1.141.2.3     rmind lwp_setprivate(struct lwp *l, void *ptr)
   1800  1.141.2.3     rmind {
   1801  1.141.2.3     rmind 	int error = 0;
   1802  1.141.2.3     rmind 
   1803  1.141.2.3     rmind 	l->l_private = ptr;
   1804  1.141.2.3     rmind #ifdef __HAVE_CPU_LWP_SETPRIVATE
   1805  1.141.2.3     rmind 	error = cpu_lwp_setprivate(l, ptr);
   1806  1.141.2.3     rmind #endif
   1807  1.141.2.3     rmind 	return error;
   1808  1.141.2.3     rmind }
   1809  1.141.2.3     rmind 
   1810       1.84      yamt #if defined(DDB)
   1811  1.141.2.3     rmind #include <machine/pcb.h>
   1812  1.141.2.3     rmind 
   1813       1.84      yamt void
   1814       1.84      yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1815       1.84      yamt {
   1816       1.84      yamt 	lwp_t *l;
   1817       1.84      yamt 
   1818       1.84      yamt 	LIST_FOREACH(l, &alllwp, l_list) {
   1819       1.84      yamt 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1820       1.84      yamt 
   1821       1.84      yamt 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1822       1.84      yamt 			continue;
   1823       1.84      yamt 		}
   1824       1.84      yamt 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1825       1.84      yamt 		    (void *)addr, (void *)stack,
   1826       1.84      yamt 		    (size_t)(addr - stack), l);
   1827       1.84      yamt 	}
   1828       1.84      yamt }
   1829       1.84      yamt #endif /* defined(DDB) */
   1830