Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.153
      1  1.153     rmind /*	$NetBSD: kern_lwp.c,v 1.153 2011/01/14 02:06:34 rmind Exp $	*/
      2    1.2   thorpej 
      3    1.2   thorpej /*-
      4  1.127        ad  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5    1.2   thorpej  * All rights reserved.
      6    1.2   thorpej  *
      7    1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.52        ad  * by Nathan J. Williams, and Andrew Doran.
      9    1.2   thorpej  *
     10    1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     11    1.2   thorpej  * modification, are permitted provided that the following conditions
     12    1.2   thorpej  * are met:
     13    1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     14    1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     15    1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17    1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     18    1.2   thorpej  *
     19    1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30    1.2   thorpej  */
     31    1.9     lukem 
     32   1.52        ad /*
     33   1.52        ad  * Overview
     34   1.52        ad  *
     35   1.66        ad  *	Lightweight processes (LWPs) are the basic unit or thread of
     36   1.52        ad  *	execution within the kernel.  The core state of an LWP is described
     37   1.66        ad  *	by "struct lwp", also known as lwp_t.
     38   1.52        ad  *
     39   1.52        ad  *	Each LWP is contained within a process (described by "struct proc"),
     40   1.52        ad  *	Every process contains at least one LWP, but may contain more.  The
     41   1.52        ad  *	process describes attributes shared among all of its LWPs such as a
     42   1.52        ad  *	private address space, global execution state (stopped, active,
     43   1.52        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44   1.66        ad  *	machine, multiple LWPs be executing concurrently in the kernel.
     45   1.52        ad  *
     46   1.52        ad  * Execution states
     47   1.52        ad  *
     48   1.52        ad  *	At any given time, an LWP has overall state that is described by
     49   1.52        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50   1.52        ad  *	set is guaranteed to represent the absolute, current state of the
     51   1.52        ad  *	LWP:
     52  1.101     rmind  *
     53  1.101     rmind  *	LSONPROC
     54  1.101     rmind  *
     55  1.101     rmind  *		On processor: the LWP is executing on a CPU, either in the
     56  1.101     rmind  *		kernel or in user space.
     57  1.101     rmind  *
     58  1.101     rmind  *	LSRUN
     59  1.101     rmind  *
     60  1.101     rmind  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  1.101     rmind  *		chosen to run by an idle processor, or by a processor that
     62  1.101     rmind  *		has been asked to preempt a currently runnning but lower
     63  1.134     rmind  *		priority LWP.
     64  1.101     rmind  *
     65  1.101     rmind  *	LSIDL
     66  1.101     rmind  *
     67  1.101     rmind  *		Idle: the LWP has been created but has not yet executed,
     68   1.66        ad  *		or it has ceased executing a unit of work and is waiting
     69   1.66        ad  *		to be started again.
     70  1.101     rmind  *
     71  1.101     rmind  *	LSSUSPENDED:
     72  1.101     rmind  *
     73  1.101     rmind  *		Suspended: the LWP has had its execution suspended by
     74   1.52        ad  *		another LWP in the same process using the _lwp_suspend()
     75   1.52        ad  *		system call.  User-level LWPs also enter the suspended
     76   1.52        ad  *		state when the system is shutting down.
     77   1.52        ad  *
     78   1.52        ad  *	The second set represent a "statement of intent" on behalf of the
     79   1.52        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     80   1.66        ad  *	sleeping or idle. It is expected to take the necessary action to
     81  1.101     rmind  *	stop executing or become "running" again within a short timeframe.
     82  1.115        ad  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83  1.101     rmind  *	Importantly, it indicates that its state is tied to a CPU.
     84  1.101     rmind  *
     85  1.101     rmind  *	LSZOMB:
     86  1.101     rmind  *
     87  1.101     rmind  *		Dead or dying: the LWP has released most of its resources
     88  1.129        ad  *		and is about to switch away into oblivion, or has already
     89   1.66        ad  *		switched away.  When it switches away, its few remaining
     90   1.66        ad  *		resources can be collected.
     91  1.101     rmind  *
     92  1.101     rmind  *	LSSLEEP:
     93  1.101     rmind  *
     94  1.101     rmind  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95  1.101     rmind  *		has switched away or will switch away shortly to allow other
     96   1.66        ad  *		LWPs to run on the CPU.
     97  1.101     rmind  *
     98  1.101     rmind  *	LSSTOP:
     99  1.101     rmind  *
    100  1.101     rmind  *		Stopped: the LWP has been stopped as a result of a job
    101  1.101     rmind  *		control signal, or as a result of the ptrace() interface.
    102  1.101     rmind  *
    103  1.101     rmind  *		Stopped LWPs may run briefly within the kernel to handle
    104  1.101     rmind  *		signals that they receive, but will not return to user space
    105  1.101     rmind  *		until their process' state is changed away from stopped.
    106  1.101     rmind  *
    107  1.101     rmind  *		Single LWPs within a process can not be set stopped
    108  1.101     rmind  *		selectively: all actions that can stop or continue LWPs
    109  1.101     rmind  *		occur at the process level.
    110  1.101     rmind  *
    111   1.52        ad  * State transitions
    112   1.52        ad  *
    113   1.66        ad  *	Note that the LSSTOP state may only be set when returning to
    114   1.66        ad  *	user space in userret(), or when sleeping interruptably.  The
    115   1.66        ad  *	LSSUSPENDED state may only be set in userret().  Before setting
    116   1.66        ad  *	those states, we try to ensure that the LWPs will release all
    117   1.66        ad  *	locks that they hold, and at a minimum try to ensure that the
    118   1.66        ad  *	LWP can be set runnable again by a signal.
    119   1.52        ad  *
    120   1.52        ad  *	LWPs may transition states in the following ways:
    121   1.52        ad  *
    122   1.52        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123  1.129        ad  *		    				    > SLEEP
    124  1.129        ad  *		    				    > STOPPED
    125   1.52        ad  *						    > SUSPENDED
    126   1.52        ad  *						    > ZOMB
    127  1.129        ad  *						    > IDL (special cases)
    128   1.52        ad  *
    129   1.52        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  1.129        ad  *	            > SLEEP
    131   1.52        ad  *
    132   1.52        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  1.101     rmind  *		    > RUN			    > SUSPENDED
    134  1.101     rmind  *		    > STOPPED			    > STOPPED
    135  1.129        ad  *						    > ONPROC (special cases)
    136   1.52        ad  *
    137  1.129        ad  *	Some state transitions are only possible with kernel threads (eg
    138  1.129        ad  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139  1.129        ad  *	free of unwanted side effects.
    140   1.66        ad  *
    141  1.114     rmind  * Migration
    142  1.114     rmind  *
    143  1.114     rmind  *	Migration of threads from one CPU to another could be performed
    144  1.114     rmind  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  1.114     rmind  *	functions.  The universal lwp_migrate() function should be used for
    146  1.114     rmind  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  1.114     rmind  *	of LWP may change, while it is not locked.
    148  1.114     rmind  *
    149   1.52        ad  * Locking
    150   1.52        ad  *
    151   1.52        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    152   1.66        ad  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153   1.52        ad  *	each field are documented in sys/lwp.h.
    154   1.52        ad  *
    155   1.66        ad  *	State transitions must be made with the LWP's general lock held,
    156  1.152     rmind  *	and may cause the LWP's lock pointer to change.  Manipulation of
    157   1.66        ad  *	the general lock is not performed directly, but through calls to
    158  1.152     rmind  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    159  1.152     rmind  *	adaptive locks are not allowed to be released while the LWP's lock
    160  1.152     rmind  *	is being held (unlike for other spin-locks).
    161   1.52        ad  *
    162   1.52        ad  *	States and their associated locks:
    163   1.52        ad  *
    164   1.74     rmind  *	LSONPROC, LSZOMB:
    165   1.52        ad  *
    166   1.64      yamt  *		Always covered by spc_lwplock, which protects running LWPs.
    167  1.129        ad  *		This is a per-CPU lock and matches lwp::l_cpu.
    168   1.52        ad  *
    169   1.74     rmind  *	LSIDL, LSRUN:
    170   1.52        ad  *
    171   1.64      yamt  *		Always covered by spc_mutex, which protects the run queues.
    172  1.129        ad  *		This is a per-CPU lock and matches lwp::l_cpu.
    173   1.52        ad  *
    174   1.52        ad  *	LSSLEEP:
    175   1.52        ad  *
    176   1.66        ad  *		Covered by a lock associated with the sleep queue that the
    177  1.129        ad  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    178   1.52        ad  *
    179   1.52        ad  *	LSSTOP, LSSUSPENDED:
    180  1.101     rmind  *
    181   1.52        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    182   1.66        ad  *		l_mutex references the sleep queue lock.  If the LWP was
    183   1.52        ad  *		runnable or on the CPU when halted, or has been removed from
    184   1.66        ad  *		the sleep queue since halted, then the lock is spc_lwplock.
    185   1.52        ad  *
    186   1.52        ad  *	The lock order is as follows:
    187   1.52        ad  *
    188   1.64      yamt  *		spc::spc_lwplock ->
    189  1.112        ad  *		    sleeptab::st_mutex ->
    190   1.64      yamt  *			tschain_t::tc_mutex ->
    191   1.64      yamt  *			    spc::spc_mutex
    192   1.52        ad  *
    193  1.103        ad  *	Each process has an scheduler state lock (proc::p_lock), and a
    194   1.52        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195   1.52        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    196  1.103        ad  *	following states, p_lock must be held and the process wide counters
    197   1.52        ad  *	adjusted:
    198   1.52        ad  *
    199   1.52        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200   1.52        ad  *
    201  1.129        ad  *	(But not always for kernel threads.  There are some special cases
    202  1.129        ad  *	as mentioned above.  See kern_softint.c.)
    203  1.129        ad  *
    204   1.52        ad  *	Note that an LWP is considered running or likely to run soon if in
    205   1.52        ad  *	one of the following states.  This affects the value of p_nrlwps:
    206   1.52        ad  *
    207   1.52        ad  *		LSRUN, LSONPROC, LSSLEEP
    208   1.52        ad  *
    209  1.103        ad  *	p_lock does not need to be held when transitioning among these
    210  1.129        ad  *	three states, hence p_lock is rarely taken for state transitions.
    211   1.52        ad  */
    212   1.52        ad 
    213    1.9     lukem #include <sys/cdefs.h>
    214  1.153     rmind __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.153 2011/01/14 02:06:34 rmind Exp $");
    215    1.8    martin 
    216   1.84      yamt #include "opt_ddb.h"
    217   1.52        ad #include "opt_lockdebug.h"
    218  1.124  wrstuden #include "opt_sa.h"
    219  1.139    darran #include "opt_dtrace.h"
    220    1.2   thorpej 
    221   1.47   hannken #define _LWP_API_PRIVATE
    222   1.47   hannken 
    223    1.2   thorpej #include <sys/param.h>
    224    1.2   thorpej #include <sys/systm.h>
    225   1.64      yamt #include <sys/cpu.h>
    226    1.2   thorpej #include <sys/pool.h>
    227    1.2   thorpej #include <sys/proc.h>
    228  1.124  wrstuden #include <sys/sa.h>
    229  1.124  wrstuden #include <sys/savar.h>
    230    1.2   thorpej #include <sys/syscallargs.h>
    231   1.57       dsl #include <sys/syscall_stats.h>
    232   1.37        ad #include <sys/kauth.h>
    233   1.52        ad #include <sys/sleepq.h>
    234   1.52        ad #include <sys/lockdebug.h>
    235   1.52        ad #include <sys/kmem.h>
    236   1.91     rmind #include <sys/pset.h>
    237   1.75        ad #include <sys/intr.h>
    238   1.78        ad #include <sys/lwpctl.h>
    239   1.81        ad #include <sys/atomic.h>
    240  1.131        ad #include <sys/filedesc.h>
    241  1.138    darran #include <sys/dtrace_bsd.h>
    242  1.141    darran #include <sys/sdt.h>
    243  1.138    darran 
    244    1.2   thorpej #include <uvm/uvm_extern.h>
    245   1.80     skrll #include <uvm/uvm_object.h>
    246    1.2   thorpej 
    247  1.152     rmind static pool_cache_t	lwp_cache	__read_mostly;
    248  1.152     rmind struct lwplist		alllwp		__cacheline_aligned;
    249   1.41   thorpej 
    250  1.141    darran /* DTrace proc provider probes */
    251  1.141    darran SDT_PROBE_DEFINE(proc,,,lwp_create,
    252  1.141    darran 	"struct lwp *", NULL,
    253  1.141    darran 	NULL, NULL, NULL, NULL,
    254  1.141    darran 	NULL, NULL, NULL, NULL);
    255  1.141    darran SDT_PROBE_DEFINE(proc,,,lwp_start,
    256  1.141    darran 	"struct lwp *", NULL,
    257  1.141    darran 	NULL, NULL, NULL, NULL,
    258  1.141    darran 	NULL, NULL, NULL, NULL);
    259  1.141    darran SDT_PROBE_DEFINE(proc,,,lwp_exit,
    260  1.141    darran 	"struct lwp *", NULL,
    261  1.141    darran 	NULL, NULL, NULL, NULL,
    262  1.141    darran 	NULL, NULL, NULL, NULL);
    263  1.141    darran 
    264  1.147     pooka struct turnstile turnstile0;
    265  1.147     pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    266  1.147     pooka #ifdef LWP0_CPU_INFO
    267  1.147     pooka 	.l_cpu = LWP0_CPU_INFO,
    268  1.147     pooka #endif
    269  1.147     pooka 	.l_proc = &proc0,
    270  1.147     pooka 	.l_lid = 1,
    271  1.147     pooka 	.l_flag = LW_SYSTEM,
    272  1.147     pooka 	.l_stat = LSONPROC,
    273  1.147     pooka 	.l_ts = &turnstile0,
    274  1.147     pooka 	.l_syncobj = &sched_syncobj,
    275  1.147     pooka 	.l_refcnt = 1,
    276  1.147     pooka 	.l_priority = PRI_USER + NPRI_USER - 1,
    277  1.147     pooka 	.l_inheritedprio = -1,
    278  1.147     pooka 	.l_class = SCHED_OTHER,
    279  1.147     pooka 	.l_psid = PS_NONE,
    280  1.147     pooka 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    281  1.147     pooka 	.l_name = __UNCONST("swapper"),
    282  1.147     pooka 	.l_fd = &filedesc0,
    283  1.147     pooka };
    284  1.147     pooka 
    285   1.41   thorpej void
    286   1.41   thorpej lwpinit(void)
    287   1.41   thorpej {
    288   1.41   thorpej 
    289  1.152     rmind 	LIST_INIT(&alllwp);
    290  1.144     pooka 	lwpinit_specificdata();
    291   1.52        ad 	lwp_sys_init();
    292   1.87        ad 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    293   1.87        ad 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    294   1.41   thorpej }
    295   1.41   thorpej 
    296  1.147     pooka void
    297  1.147     pooka lwp0_init(void)
    298  1.147     pooka {
    299  1.147     pooka 	struct lwp *l = &lwp0;
    300  1.147     pooka 
    301  1.147     pooka 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    302  1.148     pooka 	KASSERT(l->l_lid == proc0.p_nlwpid);
    303  1.147     pooka 
    304  1.147     pooka 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    305  1.147     pooka 
    306  1.147     pooka 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    307  1.147     pooka 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    308  1.147     pooka 	cv_init(&l->l_sigcv, "sigwait");
    309  1.147     pooka 
    310  1.147     pooka 	kauth_cred_hold(proc0.p_cred);
    311  1.147     pooka 	l->l_cred = proc0.p_cred;
    312  1.147     pooka 
    313  1.147     pooka 	lwp_initspecific(l);
    314  1.147     pooka 
    315  1.147     pooka 	SYSCALL_TIME_LWP_INIT(l);
    316  1.147     pooka }
    317  1.147     pooka 
    318   1.52        ad /*
    319   1.52        ad  * Set an suspended.
    320   1.52        ad  *
    321  1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    322   1.52        ad  * LWP before return.
    323   1.52        ad  */
    324    1.2   thorpej int
    325   1.52        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    326    1.2   thorpej {
    327   1.52        ad 	int error;
    328    1.2   thorpej 
    329  1.103        ad 	KASSERT(mutex_owned(t->l_proc->p_lock));
    330   1.63        ad 	KASSERT(lwp_locked(t, NULL));
    331   1.33       chs 
    332   1.52        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    333    1.2   thorpej 
    334   1.52        ad 	/*
    335   1.52        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    336   1.52        ad 	 * else or deadlock could occur.  We won't return to userspace.
    337    1.2   thorpej 	 */
    338  1.109     rmind 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    339   1.52        ad 		lwp_unlock(t);
    340   1.52        ad 		return (EDEADLK);
    341    1.2   thorpej 	}
    342    1.2   thorpej 
    343   1.52        ad 	error = 0;
    344    1.2   thorpej 
    345   1.52        ad 	switch (t->l_stat) {
    346   1.52        ad 	case LSRUN:
    347   1.52        ad 	case LSONPROC:
    348   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    349   1.52        ad 		lwp_need_userret(t);
    350   1.52        ad 		lwp_unlock(t);
    351   1.52        ad 		break;
    352    1.2   thorpej 
    353   1.52        ad 	case LSSLEEP:
    354   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    355    1.2   thorpej 
    356    1.2   thorpej 		/*
    357   1.52        ad 		 * Kick the LWP and try to get it to the kernel boundary
    358   1.52        ad 		 * so that it will release any locks that it holds.
    359   1.52        ad 		 * setrunnable() will release the lock.
    360    1.2   thorpej 		 */
    361   1.56     pavel 		if ((t->l_flag & LW_SINTR) != 0)
    362   1.52        ad 			setrunnable(t);
    363   1.52        ad 		else
    364   1.52        ad 			lwp_unlock(t);
    365   1.52        ad 		break;
    366    1.2   thorpej 
    367   1.52        ad 	case LSSUSPENDED:
    368   1.52        ad 		lwp_unlock(t);
    369   1.52        ad 		break;
    370   1.17      manu 
    371   1.52        ad 	case LSSTOP:
    372   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    373   1.52        ad 		setrunnable(t);
    374   1.52        ad 		break;
    375    1.2   thorpej 
    376   1.52        ad 	case LSIDL:
    377   1.52        ad 	case LSZOMB:
    378   1.52        ad 		error = EINTR; /* It's what Solaris does..... */
    379   1.52        ad 		lwp_unlock(t);
    380   1.52        ad 		break;
    381    1.2   thorpej 	}
    382    1.2   thorpej 
    383   1.69     rmind 	return (error);
    384    1.2   thorpej }
    385    1.2   thorpej 
    386   1.52        ad /*
    387   1.52        ad  * Restart a suspended LWP.
    388   1.52        ad  *
    389  1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    390   1.52        ad  * LWP before return.
    391   1.52        ad  */
    392    1.2   thorpej void
    393    1.2   thorpej lwp_continue(struct lwp *l)
    394    1.2   thorpej {
    395    1.2   thorpej 
    396  1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
    397   1.63        ad 	KASSERT(lwp_locked(l, NULL));
    398   1.52        ad 
    399   1.52        ad 	/* If rebooting or not suspended, then just bail out. */
    400   1.56     pavel 	if ((l->l_flag & LW_WREBOOT) != 0) {
    401   1.52        ad 		lwp_unlock(l);
    402    1.2   thorpej 		return;
    403   1.10      fvdl 	}
    404    1.2   thorpej 
    405   1.56     pavel 	l->l_flag &= ~LW_WSUSPEND;
    406    1.2   thorpej 
    407   1.52        ad 	if (l->l_stat != LSSUSPENDED) {
    408   1.52        ad 		lwp_unlock(l);
    409   1.52        ad 		return;
    410    1.2   thorpej 	}
    411    1.2   thorpej 
    412   1.52        ad 	/* setrunnable() will release the lock. */
    413   1.52        ad 	setrunnable(l);
    414    1.2   thorpej }
    415    1.2   thorpej 
    416   1.52        ad /*
    417  1.142  christos  * Restart a stopped LWP.
    418  1.142  christos  *
    419  1.142  christos  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    420  1.142  christos  * LWP before return.
    421  1.142  christos  */
    422  1.142  christos void
    423  1.142  christos lwp_unstop(struct lwp *l)
    424  1.142  christos {
    425  1.142  christos 	struct proc *p = l->l_proc;
    426  1.142  christos 
    427  1.142  christos 	KASSERT(mutex_owned(proc_lock));
    428  1.142  christos 	KASSERT(mutex_owned(p->p_lock));
    429  1.142  christos 
    430  1.142  christos 	lwp_lock(l);
    431  1.142  christos 
    432  1.142  christos 	/* If not stopped, then just bail out. */
    433  1.142  christos 	if (l->l_stat != LSSTOP) {
    434  1.142  christos 		lwp_unlock(l);
    435  1.142  christos 		return;
    436  1.142  christos 	}
    437  1.142  christos 
    438  1.142  christos 	p->p_stat = SACTIVE;
    439  1.142  christos 	p->p_sflag &= ~PS_STOPPING;
    440  1.142  christos 
    441  1.142  christos 	if (!p->p_waited)
    442  1.142  christos 		p->p_pptr->p_nstopchild--;
    443  1.142  christos 
    444  1.142  christos 	if (l->l_wchan == NULL) {
    445  1.142  christos 		/* setrunnable() will release the lock. */
    446  1.142  christos 		setrunnable(l);
    447  1.142  christos 	} else {
    448  1.142  christos 		l->l_stat = LSSLEEP;
    449  1.142  christos 		p->p_nrlwps++;
    450  1.142  christos 		lwp_unlock(l);
    451  1.142  christos 	}
    452  1.142  christos }
    453  1.142  christos 
    454  1.142  christos /*
    455   1.52        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    456   1.52        ad  * non-zero, we are waiting for a specific LWP.
    457   1.52        ad  *
    458  1.103        ad  * Must be called with p->p_lock held.
    459   1.52        ad  */
    460    1.2   thorpej int
    461    1.2   thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    462    1.2   thorpej {
    463    1.2   thorpej 	struct proc *p = l->l_proc;
    464   1.52        ad 	struct lwp *l2;
    465   1.52        ad 	int nfound, error;
    466   1.63        ad 	lwpid_t curlid;
    467   1.63        ad 	bool exiting;
    468    1.2   thorpej 
    469  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
    470   1.52        ad 
    471   1.52        ad 	p->p_nlwpwait++;
    472   1.63        ad 	l->l_waitingfor = lid;
    473   1.63        ad 	curlid = l->l_lid;
    474   1.63        ad 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    475   1.52        ad 
    476   1.52        ad 	for (;;) {
    477   1.52        ad 		/*
    478   1.52        ad 		 * Avoid a race between exit1() and sigexit(): if the
    479   1.52        ad 		 * process is dumping core, then we need to bail out: call
    480   1.52        ad 		 * into lwp_userret() where we will be suspended until the
    481   1.52        ad 		 * deed is done.
    482   1.52        ad 		 */
    483   1.52        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    484  1.103        ad 			mutex_exit(p->p_lock);
    485   1.52        ad 			lwp_userret(l);
    486   1.52        ad #ifdef DIAGNOSTIC
    487   1.52        ad 			panic("lwp_wait1");
    488   1.52        ad #endif
    489   1.52        ad 			/* NOTREACHED */
    490   1.52        ad 		}
    491   1.52        ad 
    492   1.52        ad 		/*
    493   1.52        ad 		 * First off, drain any detached LWP that is waiting to be
    494   1.52        ad 		 * reaped.
    495   1.52        ad 		 */
    496   1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    497   1.52        ad 			p->p_zomblwp = NULL;
    498   1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    499  1.103        ad 			mutex_enter(p->p_lock);
    500   1.52        ad 		}
    501   1.52        ad 
    502   1.52        ad 		/*
    503   1.52        ad 		 * Now look for an LWP to collect.  If the whole process is
    504   1.52        ad 		 * exiting, count detached LWPs as eligible to be collected,
    505   1.52        ad 		 * but don't drain them here.
    506   1.52        ad 		 */
    507   1.52        ad 		nfound = 0;
    508   1.63        ad 		error = 0;
    509   1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    510   1.63        ad 			/*
    511   1.63        ad 			 * If a specific wait and the target is waiting on
    512   1.63        ad 			 * us, then avoid deadlock.  This also traps LWPs
    513   1.63        ad 			 * that try to wait on themselves.
    514   1.63        ad 			 *
    515   1.63        ad 			 * Note that this does not handle more complicated
    516   1.63        ad 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    517   1.63        ad 			 * can still be killed so it is not a major problem.
    518   1.63        ad 			 */
    519   1.63        ad 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    520   1.63        ad 				error = EDEADLK;
    521   1.63        ad 				break;
    522   1.63        ad 			}
    523   1.63        ad 			if (l2 == l)
    524   1.52        ad 				continue;
    525   1.52        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    526   1.63        ad 				nfound += exiting;
    527   1.63        ad 				continue;
    528   1.63        ad 			}
    529   1.63        ad 			if (lid != 0) {
    530   1.63        ad 				if (l2->l_lid != lid)
    531   1.63        ad 					continue;
    532   1.63        ad 				/*
    533   1.63        ad 				 * Mark this LWP as the first waiter, if there
    534   1.63        ad 				 * is no other.
    535   1.63        ad 				 */
    536   1.63        ad 				if (l2->l_waiter == 0)
    537   1.63        ad 					l2->l_waiter = curlid;
    538   1.63        ad 			} else if (l2->l_waiter != 0) {
    539   1.63        ad 				/*
    540   1.63        ad 				 * It already has a waiter - so don't
    541   1.63        ad 				 * collect it.  If the waiter doesn't
    542   1.63        ad 				 * grab it we'll get another chance
    543   1.63        ad 				 * later.
    544   1.63        ad 				 */
    545   1.63        ad 				nfound++;
    546   1.52        ad 				continue;
    547   1.52        ad 			}
    548   1.52        ad 			nfound++;
    549    1.2   thorpej 
    550   1.52        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    551   1.52        ad 			if (l2->l_stat != LSZOMB)
    552   1.52        ad 				continue;
    553    1.2   thorpej 
    554   1.63        ad 			/*
    555   1.63        ad 			 * We're no longer waiting.  Reset the "first waiter"
    556   1.63        ad 			 * pointer on the target, in case it was us.
    557   1.63        ad 			 */
    558   1.63        ad 			l->l_waitingfor = 0;
    559   1.63        ad 			l2->l_waiter = 0;
    560   1.63        ad 			p->p_nlwpwait--;
    561    1.2   thorpej 			if (departed)
    562    1.2   thorpej 				*departed = l2->l_lid;
    563   1.75        ad 			sched_lwp_collect(l2);
    564   1.63        ad 
    565   1.63        ad 			/* lwp_free() releases the proc lock. */
    566   1.63        ad 			lwp_free(l2, false, false);
    567  1.103        ad 			mutex_enter(p->p_lock);
    568   1.52        ad 			return 0;
    569   1.52        ad 		}
    570    1.2   thorpej 
    571   1.63        ad 		if (error != 0)
    572   1.63        ad 			break;
    573   1.52        ad 		if (nfound == 0) {
    574   1.52        ad 			error = ESRCH;
    575   1.52        ad 			break;
    576   1.52        ad 		}
    577   1.63        ad 
    578   1.63        ad 		/*
    579   1.63        ad 		 * The kernel is careful to ensure that it can not deadlock
    580   1.63        ad 		 * when exiting - just keep waiting.
    581   1.63        ad 		 */
    582   1.63        ad 		if (exiting) {
    583   1.52        ad 			KASSERT(p->p_nlwps > 1);
    584  1.103        ad 			cv_wait(&p->p_lwpcv, p->p_lock);
    585   1.52        ad 			continue;
    586   1.52        ad 		}
    587   1.63        ad 
    588   1.63        ad 		/*
    589   1.63        ad 		 * If all other LWPs are waiting for exits or suspends
    590   1.63        ad 		 * and the supply of zombies and potential zombies is
    591   1.63        ad 		 * exhausted, then we are about to deadlock.
    592   1.63        ad 		 *
    593   1.63        ad 		 * If the process is exiting (and this LWP is not the one
    594   1.63        ad 		 * that is coordinating the exit) then bail out now.
    595   1.63        ad 		 */
    596   1.52        ad 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    597   1.63        ad 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    598   1.52        ad 			error = EDEADLK;
    599   1.52        ad 			break;
    600    1.2   thorpej 		}
    601   1.63        ad 
    602   1.63        ad 		/*
    603   1.63        ad 		 * Sit around and wait for something to happen.  We'll be
    604   1.63        ad 		 * awoken if any of the conditions examined change: if an
    605   1.63        ad 		 * LWP exits, is collected, or is detached.
    606   1.63        ad 		 */
    607  1.103        ad 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    608   1.52        ad 			break;
    609    1.2   thorpej 	}
    610    1.2   thorpej 
    611   1.63        ad 	/*
    612   1.63        ad 	 * We didn't find any LWPs to collect, we may have received a
    613   1.63        ad 	 * signal, or some other condition has caused us to bail out.
    614   1.63        ad 	 *
    615   1.63        ad 	 * If waiting on a specific LWP, clear the waiters marker: some
    616   1.63        ad 	 * other LWP may want it.  Then, kick all the remaining waiters
    617   1.63        ad 	 * so that they can re-check for zombies and for deadlock.
    618   1.63        ad 	 */
    619   1.63        ad 	if (lid != 0) {
    620   1.63        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    621   1.63        ad 			if (l2->l_lid == lid) {
    622   1.63        ad 				if (l2->l_waiter == curlid)
    623   1.63        ad 					l2->l_waiter = 0;
    624   1.63        ad 				break;
    625   1.63        ad 			}
    626   1.63        ad 		}
    627   1.63        ad 	}
    628   1.52        ad 	p->p_nlwpwait--;
    629   1.63        ad 	l->l_waitingfor = 0;
    630   1.63        ad 	cv_broadcast(&p->p_lwpcv);
    631   1.63        ad 
    632   1.52        ad 	return error;
    633    1.2   thorpej }
    634    1.2   thorpej 
    635   1.52        ad /*
    636   1.52        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    637   1.52        ad  * The new LWP is created in state LSIDL and must be set running,
    638   1.52        ad  * suspended, or stopped by the caller.
    639   1.52        ad  */
    640    1.2   thorpej int
    641  1.134     rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    642   1.75        ad 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    643   1.75        ad 	   lwp_t **rnewlwpp, int sclass)
    644    1.2   thorpej {
    645   1.52        ad 	struct lwp *l2, *isfree;
    646   1.52        ad 	turnstile_t *ts;
    647  1.151       chs 	lwpid_t lid;
    648    1.2   thorpej 
    649  1.107        ad 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    650  1.107        ad 
    651   1.52        ad 	/*
    652   1.52        ad 	 * First off, reap any detached LWP waiting to be collected.
    653   1.52        ad 	 * We can re-use its LWP structure and turnstile.
    654   1.52        ad 	 */
    655   1.52        ad 	isfree = NULL;
    656   1.52        ad 	if (p2->p_zomblwp != NULL) {
    657  1.103        ad 		mutex_enter(p2->p_lock);
    658   1.52        ad 		if ((isfree = p2->p_zomblwp) != NULL) {
    659   1.52        ad 			p2->p_zomblwp = NULL;
    660   1.63        ad 			lwp_free(isfree, true, false);/* releases proc mutex */
    661   1.52        ad 		} else
    662  1.103        ad 			mutex_exit(p2->p_lock);
    663   1.52        ad 	}
    664   1.52        ad 	if (isfree == NULL) {
    665   1.87        ad 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    666   1.52        ad 		memset(l2, 0, sizeof(*l2));
    667   1.76        ad 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    668   1.60      yamt 		SLIST_INIT(&l2->l_pi_lenders);
    669   1.52        ad 	} else {
    670   1.52        ad 		l2 = isfree;
    671   1.52        ad 		ts = l2->l_ts;
    672   1.75        ad 		KASSERT(l2->l_inheritedprio == -1);
    673   1.60      yamt 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    674   1.52        ad 		memset(l2, 0, sizeof(*l2));
    675   1.52        ad 		l2->l_ts = ts;
    676   1.52        ad 	}
    677    1.2   thorpej 
    678    1.2   thorpej 	l2->l_stat = LSIDL;
    679    1.2   thorpej 	l2->l_proc = p2;
    680   1.52        ad 	l2->l_refcnt = 1;
    681   1.75        ad 	l2->l_class = sclass;
    682  1.116        ad 
    683  1.116        ad 	/*
    684  1.116        ad 	 * If vfork(), we want the LWP to run fast and on the same CPU
    685  1.116        ad 	 * as its parent, so that it can reuse the VM context and cache
    686  1.116        ad 	 * footprint on the local CPU.
    687  1.116        ad 	 */
    688  1.116        ad 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    689   1.82        ad 	l2->l_kpribase = PRI_KERNEL;
    690   1.52        ad 	l2->l_priority = l1->l_priority;
    691   1.75        ad 	l2->l_inheritedprio = -1;
    692  1.134     rmind 	l2->l_flag = 0;
    693   1.88        ad 	l2->l_pflag = LP_MPSAFE;
    694  1.131        ad 	TAILQ_INIT(&l2->l_ld_locks);
    695  1.131        ad 
    696  1.131        ad 	/*
    697  1.131        ad 	 * If not the first LWP in the process, grab a reference to the
    698  1.131        ad 	 * descriptor table.
    699  1.131        ad 	 */
    700   1.97        ad 	l2->l_fd = p2->p_fd;
    701  1.131        ad 	if (p2->p_nlwps != 0) {
    702  1.131        ad 		KASSERT(l1->l_proc == p2);
    703  1.136     rmind 		fd_hold(l2);
    704  1.131        ad 	} else {
    705  1.131        ad 		KASSERT(l1->l_proc != p2);
    706  1.131        ad 	}
    707   1.41   thorpej 
    708   1.56     pavel 	if (p2->p_flag & PK_SYSTEM) {
    709  1.134     rmind 		/* Mark it as a system LWP. */
    710   1.56     pavel 		l2->l_flag |= LW_SYSTEM;
    711   1.52        ad 	}
    712    1.2   thorpej 
    713  1.107        ad 	kpreempt_disable();
    714  1.107        ad 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    715  1.107        ad 	l2->l_cpu = l1->l_cpu;
    716  1.107        ad 	kpreempt_enable();
    717  1.107        ad 
    718  1.138    darran 	kdtrace_thread_ctor(NULL, l2);
    719   1.73     rmind 	lwp_initspecific(l2);
    720   1.75        ad 	sched_lwp_fork(l1, l2);
    721   1.37        ad 	lwp_update_creds(l2);
    722   1.70        ad 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    723   1.70        ad 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    724   1.52        ad 	cv_init(&l2->l_sigcv, "sigwait");
    725   1.52        ad 	l2->l_syncobj = &sched_syncobj;
    726    1.2   thorpej 
    727    1.2   thorpej 	if (rnewlwpp != NULL)
    728    1.2   thorpej 		*rnewlwpp = l2;
    729    1.2   thorpej 
    730  1.137     rmind 	uvm_lwp_setuarea(l2, uaddr);
    731    1.2   thorpej 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    732    1.2   thorpej 	    (arg != NULL) ? arg : l2);
    733    1.2   thorpej 
    734  1.151       chs 	if ((flags & LWP_PIDLID) != 0) {
    735  1.151       chs 		lid = proc_alloc_pid(p2);
    736  1.151       chs 		l2->l_pflag |= LP_PIDLID;
    737  1.151       chs 	} else {
    738  1.151       chs 		lid = 0;
    739  1.151       chs 	}
    740  1.151       chs 
    741  1.103        ad 	mutex_enter(p2->p_lock);
    742   1.52        ad 
    743   1.52        ad 	if ((flags & LWP_DETACHED) != 0) {
    744   1.52        ad 		l2->l_prflag = LPR_DETACHED;
    745   1.52        ad 		p2->p_ndlwps++;
    746   1.52        ad 	} else
    747   1.52        ad 		l2->l_prflag = 0;
    748   1.52        ad 
    749   1.52        ad 	l2->l_sigmask = l1->l_sigmask;
    750   1.52        ad 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    751   1.52        ad 	sigemptyset(&l2->l_sigpend.sp_set);
    752   1.52        ad 
    753  1.151       chs 	if (lid == 0) {
    754   1.53      yamt 		p2->p_nlwpid++;
    755  1.151       chs 		if (p2->p_nlwpid == 0)
    756  1.151       chs 			p2->p_nlwpid++;
    757  1.151       chs 		lid = p2->p_nlwpid;
    758  1.151       chs 	}
    759  1.151       chs 	l2->l_lid = lid;
    760    1.2   thorpej 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    761    1.2   thorpej 	p2->p_nlwps++;
    762  1.149      yamt 	p2->p_nrlwps++;
    763    1.2   thorpej 
    764   1.91     rmind 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    765   1.91     rmind 		/* Inherit an affinity */
    766  1.122     rmind 		if (l1->l_flag & LW_AFFINITY) {
    767  1.128     rmind 			/*
    768  1.128     rmind 			 * Note that we hold the state lock while inheriting
    769  1.128     rmind 			 * the affinity to avoid race with sched_setaffinity().
    770  1.128     rmind 			 */
    771  1.128     rmind 			lwp_lock(l1);
    772  1.122     rmind 			if (l1->l_flag & LW_AFFINITY) {
    773  1.122     rmind 				kcpuset_use(l1->l_affinity);
    774  1.122     rmind 				l2->l_affinity = l1->l_affinity;
    775  1.122     rmind 				l2->l_flag |= LW_AFFINITY;
    776  1.122     rmind 			}
    777  1.128     rmind 			lwp_unlock(l1);
    778  1.117  christos 		}
    779  1.128     rmind 		lwp_lock(l2);
    780  1.128     rmind 		/* Inherit a processor-set */
    781  1.128     rmind 		l2->l_psid = l1->l_psid;
    782   1.91     rmind 		/* Look for a CPU to start */
    783   1.91     rmind 		l2->l_cpu = sched_takecpu(l2);
    784   1.91     rmind 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    785   1.91     rmind 	}
    786  1.128     rmind 	mutex_exit(p2->p_lock);
    787  1.128     rmind 
    788  1.141    darran 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
    789  1.141    darran 
    790  1.128     rmind 	mutex_enter(proc_lock);
    791  1.128     rmind 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    792  1.128     rmind 	mutex_exit(proc_lock);
    793   1.91     rmind 
    794   1.57       dsl 	SYSCALL_TIME_LWP_INIT(l2);
    795   1.57       dsl 
    796   1.16      manu 	if (p2->p_emul->e_lwp_fork)
    797   1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    798   1.16      manu 
    799    1.2   thorpej 	return (0);
    800    1.2   thorpej }
    801    1.2   thorpej 
    802    1.2   thorpej /*
    803   1.64      yamt  * Called by MD code when a new LWP begins execution.  Must be called
    804   1.64      yamt  * with the previous LWP locked (so at splsched), or if there is no
    805   1.64      yamt  * previous LWP, at splsched.
    806   1.64      yamt  */
    807   1.64      yamt void
    808   1.64      yamt lwp_startup(struct lwp *prev, struct lwp *new)
    809   1.64      yamt {
    810   1.64      yamt 
    811  1.141    darran 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
    812  1.141    darran 
    813  1.107        ad 	KASSERT(kpreempt_disabled());
    814   1.64      yamt 	if (prev != NULL) {
    815   1.81        ad 		/*
    816   1.81        ad 		 * Normalize the count of the spin-mutexes, it was
    817   1.81        ad 		 * increased in mi_switch().  Unmark the state of
    818   1.81        ad 		 * context switch - it is finished for previous LWP.
    819   1.81        ad 		 */
    820   1.81        ad 		curcpu()->ci_mtx_count++;
    821   1.81        ad 		membar_exit();
    822   1.81        ad 		prev->l_ctxswtch = 0;
    823   1.64      yamt 	}
    824  1.107        ad 	KPREEMPT_DISABLE(new);
    825  1.107        ad 	spl0();
    826  1.105        ad 	pmap_activate(new);
    827   1.64      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
    828  1.107        ad 	KPREEMPT_ENABLE(new);
    829   1.65        ad 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    830   1.65        ad 		KERNEL_LOCK(1, new);
    831   1.65        ad 	}
    832   1.64      yamt }
    833   1.64      yamt 
    834   1.64      yamt /*
    835   1.65        ad  * Exit an LWP.
    836    1.2   thorpej  */
    837    1.2   thorpej void
    838    1.2   thorpej lwp_exit(struct lwp *l)
    839    1.2   thorpej {
    840    1.2   thorpej 	struct proc *p = l->l_proc;
    841   1.52        ad 	struct lwp *l2;
    842   1.65        ad 	bool current;
    843   1.65        ad 
    844   1.65        ad 	current = (l == curlwp);
    845    1.2   thorpej 
    846  1.114     rmind 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    847  1.131        ad 	KASSERT(p == curproc);
    848    1.2   thorpej 
    849  1.141    darran 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
    850  1.141    darran 
    851   1.52        ad 	/*
    852   1.52        ad 	 * Verify that we hold no locks other than the kernel lock.
    853   1.52        ad 	 */
    854   1.52        ad 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    855   1.16      manu 
    856    1.2   thorpej 	/*
    857   1.52        ad 	 * If we are the last live LWP in a process, we need to exit the
    858   1.52        ad 	 * entire process.  We do so with an exit status of zero, because
    859   1.52        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
    860   1.52        ad 	 *
    861   1.52        ad 	 * We are not quite a zombie yet, but for accounting purposes we
    862   1.52        ad 	 * must increment the count of zombies here.
    863   1.45   thorpej 	 *
    864   1.45   thorpej 	 * Note: the last LWP's specificdata will be deleted here.
    865    1.2   thorpej 	 */
    866  1.103        ad 	mutex_enter(p->p_lock);
    867   1.52        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
    868   1.65        ad 		KASSERT(current == true);
    869   1.88        ad 		/* XXXSMP kernel_lock not held */
    870    1.2   thorpej 		exit1(l, 0);
    871   1.19  jdolecek 		/* NOTREACHED */
    872    1.2   thorpej 	}
    873   1.52        ad 	p->p_nzlwps++;
    874  1.103        ad 	mutex_exit(p->p_lock);
    875   1.52        ad 
    876   1.52        ad 	if (p->p_emul->e_lwp_exit)
    877   1.52        ad 		(*p->p_emul->e_lwp_exit)(l);
    878    1.2   thorpej 
    879  1.131        ad 	/* Drop filedesc reference. */
    880  1.131        ad 	fd_free();
    881  1.131        ad 
    882   1.45   thorpej 	/* Delete the specificdata while it's still safe to sleep. */
    883  1.145     pooka 	lwp_finispecific(l);
    884   1.45   thorpej 
    885   1.52        ad 	/*
    886   1.52        ad 	 * Release our cached credentials.
    887   1.52        ad 	 */
    888   1.37        ad 	kauth_cred_free(l->l_cred);
    889   1.70        ad 	callout_destroy(&l->l_timeout_ch);
    890   1.65        ad 
    891   1.65        ad 	/*
    892   1.52        ad 	 * Remove the LWP from the global list.
    893  1.151       chs 	 * Free its LID from the PID namespace if needed.
    894   1.52        ad 	 */
    895  1.102        ad 	mutex_enter(proc_lock);
    896   1.52        ad 	LIST_REMOVE(l, l_list);
    897  1.151       chs 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
    898  1.151       chs 		proc_free_pid(l->l_lid);
    899  1.151       chs 	}
    900  1.102        ad 	mutex_exit(proc_lock);
    901   1.19  jdolecek 
    902   1.52        ad 	/*
    903   1.52        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
    904   1.52        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    905   1.52        ad 	 * mark it waiting for collection in the proc structure.  Note that
    906   1.52        ad 	 * before we can do that, we need to free any other dead, deatched
    907   1.52        ad 	 * LWP waiting to meet its maker.
    908   1.52        ad 	 */
    909  1.103        ad 	mutex_enter(p->p_lock);
    910   1.52        ad 	lwp_drainrefs(l);
    911   1.31      yamt 
    912   1.52        ad 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    913   1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    914   1.52        ad 			p->p_zomblwp = NULL;
    915   1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    916  1.103        ad 			mutex_enter(p->p_lock);
    917   1.72        ad 			l->l_refcnt++;
    918   1.72        ad 			lwp_drainrefs(l);
    919   1.52        ad 		}
    920   1.52        ad 		p->p_zomblwp = l;
    921   1.52        ad 	}
    922   1.31      yamt 
    923   1.52        ad 	/*
    924   1.52        ad 	 * If we find a pending signal for the process and we have been
    925  1.151       chs 	 * asked to check for signals, then we lose: arrange to have
    926   1.52        ad 	 * all other LWPs in the process check for signals.
    927   1.52        ad 	 */
    928   1.56     pavel 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    929   1.52        ad 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    930   1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    931   1.52        ad 			lwp_lock(l2);
    932   1.56     pavel 			l2->l_flag |= LW_PENDSIG;
    933   1.52        ad 			lwp_unlock(l2);
    934   1.52        ad 		}
    935   1.31      yamt 	}
    936   1.31      yamt 
    937   1.52        ad 	lwp_lock(l);
    938   1.52        ad 	l->l_stat = LSZOMB;
    939   1.90        ad 	if (l->l_name != NULL)
    940   1.90        ad 		strcpy(l->l_name, "(zombie)");
    941  1.128     rmind 	if (l->l_flag & LW_AFFINITY) {
    942  1.122     rmind 		l->l_flag &= ~LW_AFFINITY;
    943  1.128     rmind 	} else {
    944  1.128     rmind 		KASSERT(l->l_affinity == NULL);
    945  1.128     rmind 	}
    946   1.52        ad 	lwp_unlock(l);
    947    1.2   thorpej 	p->p_nrlwps--;
    948   1.52        ad 	cv_broadcast(&p->p_lwpcv);
    949   1.78        ad 	if (l->l_lwpctl != NULL)
    950   1.78        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    951  1.103        ad 	mutex_exit(p->p_lock);
    952   1.52        ad 
    953  1.122     rmind 	/* Safe without lock since LWP is in zombie state */
    954  1.122     rmind 	if (l->l_affinity) {
    955  1.122     rmind 		kcpuset_unuse(l->l_affinity, NULL);
    956  1.122     rmind 		l->l_affinity = NULL;
    957  1.122     rmind 	}
    958  1.122     rmind 
    959   1.52        ad 	/*
    960   1.52        ad 	 * We can no longer block.  At this point, lwp_free() may already
    961   1.52        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    962   1.52        ad 	 *
    963   1.52        ad 	 * Free MD LWP resources.
    964   1.52        ad 	 */
    965   1.52        ad 	cpu_lwp_free(l, 0);
    966    1.2   thorpej 
    967   1.65        ad 	if (current) {
    968   1.65        ad 		pmap_deactivate(l);
    969   1.65        ad 
    970   1.65        ad 		/*
    971   1.65        ad 		 * Release the kernel lock, and switch away into
    972   1.65        ad 		 * oblivion.
    973   1.65        ad 		 */
    974   1.52        ad #ifdef notyet
    975   1.65        ad 		/* XXXSMP hold in lwp_userret() */
    976   1.65        ad 		KERNEL_UNLOCK_LAST(l);
    977   1.52        ad #else
    978   1.65        ad 		KERNEL_UNLOCK_ALL(l, NULL);
    979   1.52        ad #endif
    980   1.65        ad 		lwp_exit_switchaway(l);
    981   1.65        ad 	}
    982    1.2   thorpej }
    983    1.2   thorpej 
    984   1.52        ad /*
    985   1.52        ad  * Free a dead LWP's remaining resources.
    986   1.52        ad  *
    987   1.52        ad  * XXXLWP limits.
    988   1.52        ad  */
    989   1.52        ad void
    990   1.63        ad lwp_free(struct lwp *l, bool recycle, bool last)
    991   1.52        ad {
    992   1.52        ad 	struct proc *p = l->l_proc;
    993  1.100        ad 	struct rusage *ru;
    994   1.52        ad 	ksiginfoq_t kq;
    995   1.52        ad 
    996   1.92      yamt 	KASSERT(l != curlwp);
    997   1.92      yamt 
    998   1.52        ad 	/*
    999   1.52        ad 	 * If this was not the last LWP in the process, then adjust
   1000   1.52        ad 	 * counters and unlock.
   1001   1.52        ad 	 */
   1002   1.52        ad 	if (!last) {
   1003   1.52        ad 		/*
   1004   1.52        ad 		 * Add the LWP's run time to the process' base value.
   1005   1.52        ad 		 * This needs to co-incide with coming off p_lwps.
   1006   1.52        ad 		 */
   1007   1.86      yamt 		bintime_add(&p->p_rtime, &l->l_rtime);
   1008   1.64      yamt 		p->p_pctcpu += l->l_pctcpu;
   1009  1.100        ad 		ru = &p->p_stats->p_ru;
   1010  1.100        ad 		ruadd(ru, &l->l_ru);
   1011  1.100        ad 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1012  1.100        ad 		ru->ru_nivcsw += l->l_nivcsw;
   1013   1.52        ad 		LIST_REMOVE(l, l_sibling);
   1014   1.52        ad 		p->p_nlwps--;
   1015   1.52        ad 		p->p_nzlwps--;
   1016   1.52        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1017   1.52        ad 			p->p_ndlwps--;
   1018   1.63        ad 
   1019   1.63        ad 		/*
   1020   1.63        ad 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1021   1.63        ad 		 * deadlock.
   1022   1.63        ad 		 */
   1023   1.63        ad 		cv_broadcast(&p->p_lwpcv);
   1024  1.103        ad 		mutex_exit(p->p_lock);
   1025   1.63        ad 	}
   1026   1.52        ad 
   1027   1.52        ad #ifdef MULTIPROCESSOR
   1028   1.63        ad 	/*
   1029   1.63        ad 	 * In the unlikely event that the LWP is still on the CPU,
   1030   1.63        ad 	 * then spin until it has switched away.  We need to release
   1031   1.63        ad 	 * all locks to avoid deadlock against interrupt handlers on
   1032   1.63        ad 	 * the target CPU.
   1033   1.63        ad 	 */
   1034  1.115        ad 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
   1035   1.63        ad 		int count;
   1036   1.64      yamt 		(void)count; /* XXXgcc */
   1037   1.63        ad 		KERNEL_UNLOCK_ALL(curlwp, &count);
   1038  1.115        ad 		while ((l->l_pflag & LP_RUNNING) != 0 ||
   1039   1.64      yamt 		    l->l_cpu->ci_curlwp == l)
   1040   1.63        ad 			SPINLOCK_BACKOFF_HOOK;
   1041   1.63        ad 		KERNEL_LOCK(count, curlwp);
   1042   1.63        ad 	}
   1043   1.52        ad #endif
   1044   1.52        ad 
   1045   1.52        ad 	/*
   1046   1.52        ad 	 * Destroy the LWP's remaining signal information.
   1047   1.52        ad 	 */
   1048   1.52        ad 	ksiginfo_queue_init(&kq);
   1049   1.52        ad 	sigclear(&l->l_sigpend, NULL, &kq);
   1050   1.52        ad 	ksiginfo_queue_drain(&kq);
   1051   1.52        ad 	cv_destroy(&l->l_sigcv);
   1052    1.2   thorpej 
   1053   1.19  jdolecek 	/*
   1054   1.52        ad 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1055   1.93      yamt 	 * caller wants to recycle them.  Also, free the scheduler specific
   1056   1.93      yamt 	 * data.
   1057   1.52        ad 	 *
   1058   1.52        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1059   1.52        ad 	 * so if it comes up just drop it quietly and move on.
   1060   1.52        ad 	 *
   1061   1.52        ad 	 * We don't recycle the VM resources at this time.
   1062   1.19  jdolecek 	 */
   1063   1.78        ad 	if (l->l_lwpctl != NULL)
   1064   1.78        ad 		lwp_ctl_free(l);
   1065   1.64      yamt 
   1066   1.52        ad 	if (!recycle && l->l_ts != &turnstile0)
   1067   1.76        ad 		pool_cache_put(turnstile_cache, l->l_ts);
   1068   1.90        ad 	if (l->l_name != NULL)
   1069   1.90        ad 		kmem_free(l->l_name, MAXCOMLEN);
   1070  1.135     rmind 
   1071   1.52        ad 	cpu_lwp_free2(l);
   1072   1.19  jdolecek 	uvm_lwp_exit(l);
   1073  1.134     rmind 
   1074   1.60      yamt 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1075   1.75        ad 	KASSERT(l->l_inheritedprio == -1);
   1076  1.138    darran 	kdtrace_thread_dtor(NULL, l);
   1077   1.52        ad 	if (!recycle)
   1078   1.87        ad 		pool_cache_put(lwp_cache, l);
   1079    1.2   thorpej }
   1080    1.2   thorpej 
   1081    1.2   thorpej /*
   1082   1.91     rmind  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1083   1.91     rmind  */
   1084   1.91     rmind void
   1085  1.114     rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1086   1.91     rmind {
   1087  1.114     rmind 	struct schedstate_percpu *tspc;
   1088  1.121     rmind 	int lstat = l->l_stat;
   1089  1.121     rmind 
   1090   1.91     rmind 	KASSERT(lwp_locked(l, NULL));
   1091  1.114     rmind 	KASSERT(tci != NULL);
   1092  1.114     rmind 
   1093  1.121     rmind 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1094  1.121     rmind 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1095  1.121     rmind 		lstat = LSONPROC;
   1096  1.121     rmind 	}
   1097  1.121     rmind 
   1098  1.114     rmind 	/*
   1099  1.114     rmind 	 * The destination CPU could be changed while previous migration
   1100  1.114     rmind 	 * was not finished.
   1101  1.114     rmind 	 */
   1102  1.121     rmind 	if (l->l_target_cpu != NULL) {
   1103  1.114     rmind 		l->l_target_cpu = tci;
   1104  1.114     rmind 		lwp_unlock(l);
   1105  1.114     rmind 		return;
   1106  1.114     rmind 	}
   1107   1.91     rmind 
   1108  1.114     rmind 	/* Nothing to do if trying to migrate to the same CPU */
   1109  1.114     rmind 	if (l->l_cpu == tci) {
   1110   1.91     rmind 		lwp_unlock(l);
   1111   1.91     rmind 		return;
   1112   1.91     rmind 	}
   1113   1.91     rmind 
   1114  1.114     rmind 	KASSERT(l->l_target_cpu == NULL);
   1115  1.114     rmind 	tspc = &tci->ci_schedstate;
   1116  1.121     rmind 	switch (lstat) {
   1117   1.91     rmind 	case LSRUN:
   1118  1.134     rmind 		l->l_target_cpu = tci;
   1119  1.134     rmind 		break;
   1120   1.91     rmind 	case LSIDL:
   1121  1.114     rmind 		l->l_cpu = tci;
   1122  1.114     rmind 		lwp_unlock_to(l, tspc->spc_mutex);
   1123   1.91     rmind 		return;
   1124   1.91     rmind 	case LSSLEEP:
   1125  1.114     rmind 		l->l_cpu = tci;
   1126   1.91     rmind 		break;
   1127   1.91     rmind 	case LSSTOP:
   1128   1.91     rmind 	case LSSUSPENDED:
   1129  1.114     rmind 		l->l_cpu = tci;
   1130  1.114     rmind 		if (l->l_wchan == NULL) {
   1131  1.114     rmind 			lwp_unlock_to(l, tspc->spc_lwplock);
   1132  1.114     rmind 			return;
   1133   1.91     rmind 		}
   1134  1.114     rmind 		break;
   1135   1.91     rmind 	case LSONPROC:
   1136  1.114     rmind 		l->l_target_cpu = tci;
   1137  1.114     rmind 		spc_lock(l->l_cpu);
   1138  1.114     rmind 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1139  1.114     rmind 		spc_unlock(l->l_cpu);
   1140   1.91     rmind 		break;
   1141   1.91     rmind 	}
   1142   1.91     rmind 	lwp_unlock(l);
   1143   1.91     rmind }
   1144   1.91     rmind 
   1145   1.91     rmind /*
   1146   1.94     rmind  * Find the LWP in the process.  Arguments may be zero, in such case,
   1147   1.94     rmind  * the calling process and first LWP in the list will be used.
   1148  1.103        ad  * On success - returns proc locked.
   1149   1.91     rmind  */
   1150   1.91     rmind struct lwp *
   1151   1.91     rmind lwp_find2(pid_t pid, lwpid_t lid)
   1152   1.91     rmind {
   1153   1.91     rmind 	proc_t *p;
   1154   1.91     rmind 	lwp_t *l;
   1155   1.91     rmind 
   1156  1.150     rmind 	/* Find the process. */
   1157   1.94     rmind 	if (pid != 0) {
   1158  1.150     rmind 		mutex_enter(proc_lock);
   1159  1.150     rmind 		p = proc_find(pid);
   1160  1.150     rmind 		if (p == NULL) {
   1161  1.150     rmind 			mutex_exit(proc_lock);
   1162  1.150     rmind 			return NULL;
   1163  1.150     rmind 		}
   1164  1.150     rmind 		mutex_enter(p->p_lock);
   1165  1.102        ad 		mutex_exit(proc_lock);
   1166  1.150     rmind 	} else {
   1167  1.150     rmind 		p = curlwp->l_proc;
   1168  1.150     rmind 		mutex_enter(p->p_lock);
   1169  1.150     rmind 	}
   1170  1.150     rmind 	/* Find the thread. */
   1171  1.150     rmind 	if (lid != 0) {
   1172  1.150     rmind 		l = lwp_find(p, lid);
   1173  1.150     rmind 	} else {
   1174  1.150     rmind 		l = LIST_FIRST(&p->p_lwps);
   1175   1.94     rmind 	}
   1176  1.103        ad 	if (l == NULL) {
   1177  1.103        ad 		mutex_exit(p->p_lock);
   1178  1.103        ad 	}
   1179   1.91     rmind 	return l;
   1180   1.91     rmind }
   1181   1.91     rmind 
   1182   1.91     rmind /*
   1183  1.151       chs  * Look up a live LWP within the specified process, and return it locked.
   1184   1.52        ad  *
   1185  1.103        ad  * Must be called with p->p_lock held.
   1186   1.52        ad  */
   1187   1.52        ad struct lwp *
   1188  1.151       chs lwp_find(struct proc *p, lwpid_t id)
   1189   1.52        ad {
   1190   1.52        ad 	struct lwp *l;
   1191   1.52        ad 
   1192  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1193   1.52        ad 
   1194   1.52        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1195   1.52        ad 		if (l->l_lid == id)
   1196   1.52        ad 			break;
   1197   1.52        ad 	}
   1198   1.52        ad 
   1199   1.52        ad 	/*
   1200   1.52        ad 	 * No need to lock - all of these conditions will
   1201   1.52        ad 	 * be visible with the process level mutex held.
   1202   1.52        ad 	 */
   1203   1.52        ad 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1204   1.52        ad 		l = NULL;
   1205   1.52        ad 
   1206   1.52        ad 	return l;
   1207   1.52        ad }
   1208   1.52        ad 
   1209   1.52        ad /*
   1210   1.37        ad  * Update an LWP's cached credentials to mirror the process' master copy.
   1211   1.37        ad  *
   1212   1.37        ad  * This happens early in the syscall path, on user trap, and on LWP
   1213   1.37        ad  * creation.  A long-running LWP can also voluntarily choose to update
   1214   1.37        ad  * it's credentials by calling this routine.  This may be called from
   1215   1.37        ad  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1216   1.37        ad  */
   1217   1.37        ad void
   1218   1.37        ad lwp_update_creds(struct lwp *l)
   1219   1.37        ad {
   1220   1.37        ad 	kauth_cred_t oc;
   1221   1.37        ad 	struct proc *p;
   1222   1.37        ad 
   1223   1.37        ad 	p = l->l_proc;
   1224   1.37        ad 	oc = l->l_cred;
   1225   1.37        ad 
   1226  1.103        ad 	mutex_enter(p->p_lock);
   1227   1.37        ad 	kauth_cred_hold(p->p_cred);
   1228   1.37        ad 	l->l_cred = p->p_cred;
   1229   1.98        ad 	l->l_prflag &= ~LPR_CRMOD;
   1230  1.103        ad 	mutex_exit(p->p_lock);
   1231   1.88        ad 	if (oc != NULL)
   1232   1.37        ad 		kauth_cred_free(oc);
   1233   1.52        ad }
   1234   1.52        ad 
   1235   1.52        ad /*
   1236   1.52        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
   1237   1.52        ad  * one we specify.
   1238   1.52        ad  */
   1239   1.52        ad int
   1240   1.52        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
   1241   1.52        ad {
   1242   1.52        ad 	kmutex_t *cur = l->l_mutex;
   1243   1.52        ad 
   1244   1.52        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1245   1.52        ad }
   1246   1.52        ad 
   1247   1.52        ad /*
   1248   1.52        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
   1249   1.52        ad  */
   1250   1.52        ad void
   1251   1.52        ad lwp_setlock(struct lwp *l, kmutex_t *new)
   1252   1.52        ad {
   1253   1.52        ad 
   1254   1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1255   1.52        ad 
   1256  1.107        ad 	membar_exit();
   1257   1.52        ad 	l->l_mutex = new;
   1258   1.52        ad }
   1259   1.52        ad 
   1260   1.52        ad /*
   1261   1.52        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1262   1.52        ad  * must be held.
   1263   1.52        ad  */
   1264   1.52        ad void
   1265   1.52        ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1266   1.52        ad {
   1267   1.52        ad 	kmutex_t *old;
   1268   1.52        ad 
   1269  1.152     rmind 	KASSERT(lwp_locked(l, NULL));
   1270   1.52        ad 
   1271   1.52        ad 	old = l->l_mutex;
   1272  1.107        ad 	membar_exit();
   1273   1.52        ad 	l->l_mutex = new;
   1274   1.52        ad 	mutex_spin_exit(old);
   1275   1.52        ad }
   1276   1.52        ad 
   1277   1.60      yamt int
   1278   1.60      yamt lwp_trylock(struct lwp *l)
   1279   1.60      yamt {
   1280   1.60      yamt 	kmutex_t *old;
   1281   1.60      yamt 
   1282   1.60      yamt 	for (;;) {
   1283   1.60      yamt 		if (!mutex_tryenter(old = l->l_mutex))
   1284   1.60      yamt 			return 0;
   1285   1.60      yamt 		if (__predict_true(l->l_mutex == old))
   1286   1.60      yamt 			return 1;
   1287   1.60      yamt 		mutex_spin_exit(old);
   1288   1.60      yamt 	}
   1289   1.60      yamt }
   1290   1.60      yamt 
   1291  1.134     rmind void
   1292   1.96        ad lwp_unsleep(lwp_t *l, bool cleanup)
   1293   1.96        ad {
   1294   1.96        ad 
   1295   1.96        ad 	KASSERT(mutex_owned(l->l_mutex));
   1296  1.134     rmind 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1297   1.96        ad }
   1298   1.96        ad 
   1299   1.52        ad /*
   1300   1.56     pavel  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1301   1.52        ad  * set.
   1302   1.52        ad  */
   1303   1.52        ad void
   1304   1.52        ad lwp_userret(struct lwp *l)
   1305   1.52        ad {
   1306   1.52        ad 	struct proc *p;
   1307   1.52        ad 	int sig;
   1308   1.52        ad 
   1309  1.114     rmind 	KASSERT(l == curlwp);
   1310  1.114     rmind 	KASSERT(l->l_stat == LSONPROC);
   1311   1.52        ad 	p = l->l_proc;
   1312   1.52        ad 
   1313   1.75        ad #ifndef __HAVE_FAST_SOFTINTS
   1314   1.75        ad 	/* Run pending soft interrupts. */
   1315   1.75        ad 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1316   1.75        ad 		softint_overlay();
   1317   1.75        ad #endif
   1318   1.75        ad 
   1319  1.125        ad #ifdef KERN_SA
   1320  1.125        ad 	/* Generate UNBLOCKED upcall if needed */
   1321  1.125        ad 	if (l->l_flag & LW_SA_BLOCKING) {
   1322  1.125        ad 		sa_unblock_userret(l);
   1323  1.125        ad 		/* NOTREACHED */
   1324  1.125        ad 	}
   1325  1.125        ad #endif
   1326  1.125        ad 
   1327   1.52        ad 	/*
   1328   1.52        ad 	 * It should be safe to do this read unlocked on a multiprocessor
   1329   1.52        ad 	 * system..
   1330  1.126  wrstuden 	 *
   1331  1.126  wrstuden 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
   1332  1.126  wrstuden 	 * consider it now.
   1333   1.52        ad 	 */
   1334  1.126  wrstuden 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
   1335   1.52        ad 		/*
   1336   1.52        ad 		 * Process pending signals first, unless the process
   1337   1.61        ad 		 * is dumping core or exiting, where we will instead
   1338  1.101     rmind 		 * enter the LW_WSUSPEND case below.
   1339   1.52        ad 		 */
   1340   1.61        ad 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1341   1.61        ad 		    LW_PENDSIG) {
   1342  1.103        ad 			mutex_enter(p->p_lock);
   1343   1.52        ad 			while ((sig = issignal(l)) != 0)
   1344   1.52        ad 				postsig(sig);
   1345  1.103        ad 			mutex_exit(p->p_lock);
   1346   1.52        ad 		}
   1347   1.52        ad 
   1348   1.52        ad 		/*
   1349   1.52        ad 		 * Core-dump or suspend pending.
   1350   1.52        ad 		 *
   1351   1.52        ad 		 * In case of core dump, suspend ourselves, so that the
   1352   1.52        ad 		 * kernel stack and therefore the userland registers saved
   1353   1.52        ad 		 * in the trapframe are around for coredump() to write them
   1354   1.52        ad 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1355   1.52        ad 		 * will write the core file out once all other LWPs are
   1356   1.52        ad 		 * suspended.
   1357   1.52        ad 		 */
   1358   1.56     pavel 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1359  1.103        ad 			mutex_enter(p->p_lock);
   1360   1.52        ad 			p->p_nrlwps--;
   1361   1.52        ad 			cv_broadcast(&p->p_lwpcv);
   1362   1.52        ad 			lwp_lock(l);
   1363   1.52        ad 			l->l_stat = LSSUSPENDED;
   1364  1.104        ad 			lwp_unlock(l);
   1365  1.103        ad 			mutex_exit(p->p_lock);
   1366  1.104        ad 			lwp_lock(l);
   1367   1.64      yamt 			mi_switch(l);
   1368   1.52        ad 		}
   1369   1.52        ad 
   1370   1.52        ad 		/* Process is exiting. */
   1371   1.56     pavel 		if ((l->l_flag & LW_WEXIT) != 0) {
   1372   1.52        ad 			lwp_exit(l);
   1373   1.52        ad 			KASSERT(0);
   1374   1.52        ad 			/* NOTREACHED */
   1375   1.52        ad 		}
   1376   1.52        ad 	}
   1377  1.124  wrstuden 
   1378  1.124  wrstuden #ifdef KERN_SA
   1379  1.124  wrstuden 	/*
   1380  1.124  wrstuden 	 * Timer events are handled specially.  We only try once to deliver
   1381  1.124  wrstuden 	 * pending timer upcalls; if if fails, we can try again on the next
   1382  1.124  wrstuden 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1383  1.124  wrstuden 	 * bounce us back here through the trap path after we return.
   1384  1.124  wrstuden 	 */
   1385  1.124  wrstuden 	if (p->p_timerpend)
   1386  1.124  wrstuden 		timerupcall(l);
   1387  1.125        ad 	if (l->l_flag & LW_SA_UPCALL)
   1388  1.125        ad 		sa_upcall_userret(l);
   1389  1.124  wrstuden #endif /* KERN_SA */
   1390   1.52        ad }
   1391   1.52        ad 
   1392   1.52        ad /*
   1393   1.52        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1394   1.52        ad  */
   1395   1.52        ad void
   1396   1.52        ad lwp_need_userret(struct lwp *l)
   1397   1.52        ad {
   1398   1.63        ad 	KASSERT(lwp_locked(l, NULL));
   1399   1.52        ad 
   1400   1.52        ad 	/*
   1401   1.52        ad 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1402   1.52        ad 	 * that the condition will be seen before forcing the LWP to enter
   1403   1.52        ad 	 * kernel mode.
   1404   1.52        ad 	 */
   1405   1.81        ad 	membar_producer();
   1406   1.52        ad 	cpu_signotify(l);
   1407   1.52        ad }
   1408   1.52        ad 
   1409   1.52        ad /*
   1410   1.52        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1411   1.52        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1412   1.52        ad  */
   1413   1.52        ad void
   1414   1.52        ad lwp_addref(struct lwp *l)
   1415   1.52        ad {
   1416   1.52        ad 
   1417  1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1418   1.52        ad 	KASSERT(l->l_stat != LSZOMB);
   1419   1.52        ad 	KASSERT(l->l_refcnt != 0);
   1420   1.52        ad 
   1421   1.52        ad 	l->l_refcnt++;
   1422   1.52        ad }
   1423   1.52        ad 
   1424   1.52        ad /*
   1425   1.52        ad  * Remove one reference to an LWP.  If this is the last reference,
   1426   1.52        ad  * then we must finalize the LWP's death.
   1427   1.52        ad  */
   1428   1.52        ad void
   1429   1.52        ad lwp_delref(struct lwp *l)
   1430   1.52        ad {
   1431   1.52        ad 	struct proc *p = l->l_proc;
   1432   1.52        ad 
   1433  1.103        ad 	mutex_enter(p->p_lock);
   1434  1.142  christos 	lwp_delref2(l);
   1435  1.142  christos 	mutex_exit(p->p_lock);
   1436  1.142  christos }
   1437  1.142  christos 
   1438  1.142  christos /*
   1439  1.142  christos  * Remove one reference to an LWP.  If this is the last reference,
   1440  1.142  christos  * then we must finalize the LWP's death.  The proc mutex is held
   1441  1.142  christos  * on entry.
   1442  1.142  christos  */
   1443  1.142  christos void
   1444  1.142  christos lwp_delref2(struct lwp *l)
   1445  1.142  christos {
   1446  1.142  christos 	struct proc *p = l->l_proc;
   1447  1.142  christos 
   1448  1.142  christos 	KASSERT(mutex_owned(p->p_lock));
   1449   1.72        ad 	KASSERT(l->l_stat != LSZOMB);
   1450   1.72        ad 	KASSERT(l->l_refcnt > 0);
   1451   1.52        ad 	if (--l->l_refcnt == 0)
   1452   1.76        ad 		cv_broadcast(&p->p_lwpcv);
   1453   1.52        ad }
   1454   1.52        ad 
   1455   1.52        ad /*
   1456   1.52        ad  * Drain all references to the current LWP.
   1457   1.52        ad  */
   1458   1.52        ad void
   1459   1.52        ad lwp_drainrefs(struct lwp *l)
   1460   1.52        ad {
   1461   1.52        ad 	struct proc *p = l->l_proc;
   1462   1.52        ad 
   1463  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1464   1.52        ad 	KASSERT(l->l_refcnt != 0);
   1465   1.52        ad 
   1466   1.52        ad 	l->l_refcnt--;
   1467   1.52        ad 	while (l->l_refcnt != 0)
   1468  1.103        ad 		cv_wait(&p->p_lwpcv, p->p_lock);
   1469   1.37        ad }
   1470   1.41   thorpej 
   1471   1.41   thorpej /*
   1472  1.127        ad  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1473  1.127        ad  * be held.
   1474  1.127        ad  */
   1475  1.127        ad bool
   1476  1.127        ad lwp_alive(lwp_t *l)
   1477  1.127        ad {
   1478  1.127        ad 
   1479  1.127        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1480  1.127        ad 
   1481  1.127        ad 	switch (l->l_stat) {
   1482  1.127        ad 	case LSSLEEP:
   1483  1.127        ad 	case LSRUN:
   1484  1.127        ad 	case LSONPROC:
   1485  1.127        ad 	case LSSTOP:
   1486  1.127        ad 	case LSSUSPENDED:
   1487  1.127        ad 		return true;
   1488  1.127        ad 	default:
   1489  1.127        ad 		return false;
   1490  1.127        ad 	}
   1491  1.127        ad }
   1492  1.127        ad 
   1493  1.127        ad /*
   1494  1.127        ad  * Return first live LWP in the process.
   1495  1.127        ad  */
   1496  1.127        ad lwp_t *
   1497  1.127        ad lwp_find_first(proc_t *p)
   1498  1.127        ad {
   1499  1.127        ad 	lwp_t *l;
   1500  1.127        ad 
   1501  1.127        ad 	KASSERT(mutex_owned(p->p_lock));
   1502  1.127        ad 
   1503  1.127        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1504  1.127        ad 		if (lwp_alive(l)) {
   1505  1.127        ad 			return l;
   1506  1.127        ad 		}
   1507  1.127        ad 	}
   1508  1.127        ad 
   1509  1.127        ad 	return NULL;
   1510  1.127        ad }
   1511  1.127        ad 
   1512  1.127        ad /*
   1513   1.78        ad  * Allocate a new lwpctl structure for a user LWP.
   1514   1.78        ad  */
   1515   1.78        ad int
   1516   1.78        ad lwp_ctl_alloc(vaddr_t *uaddr)
   1517   1.78        ad {
   1518   1.78        ad 	lcproc_t *lp;
   1519   1.78        ad 	u_int bit, i, offset;
   1520   1.78        ad 	struct uvm_object *uao;
   1521   1.78        ad 	int error;
   1522   1.78        ad 	lcpage_t *lcp;
   1523   1.78        ad 	proc_t *p;
   1524   1.78        ad 	lwp_t *l;
   1525   1.78        ad 
   1526   1.78        ad 	l = curlwp;
   1527   1.78        ad 	p = l->l_proc;
   1528   1.78        ad 
   1529   1.81        ad 	if (l->l_lcpage != NULL) {
   1530   1.81        ad 		lcp = l->l_lcpage;
   1531   1.81        ad 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1532  1.143     njoly 		return 0;
   1533   1.81        ad 	}
   1534   1.78        ad 
   1535   1.78        ad 	/* First time around, allocate header structure for the process. */
   1536   1.78        ad 	if ((lp = p->p_lwpctl) == NULL) {
   1537   1.78        ad 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1538   1.78        ad 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1539   1.78        ad 		lp->lp_uao = NULL;
   1540   1.78        ad 		TAILQ_INIT(&lp->lp_pages);
   1541  1.103        ad 		mutex_enter(p->p_lock);
   1542   1.78        ad 		if (p->p_lwpctl == NULL) {
   1543   1.78        ad 			p->p_lwpctl = lp;
   1544  1.103        ad 			mutex_exit(p->p_lock);
   1545   1.78        ad 		} else {
   1546  1.103        ad 			mutex_exit(p->p_lock);
   1547   1.78        ad 			mutex_destroy(&lp->lp_lock);
   1548   1.78        ad 			kmem_free(lp, sizeof(*lp));
   1549   1.78        ad 			lp = p->p_lwpctl;
   1550   1.78        ad 		}
   1551   1.78        ad 	}
   1552   1.78        ad 
   1553   1.78        ad  	/*
   1554   1.78        ad  	 * Set up an anonymous memory region to hold the shared pages.
   1555   1.78        ad  	 * Map them into the process' address space.  The user vmspace
   1556   1.78        ad  	 * gets the first reference on the UAO.
   1557   1.78        ad  	 */
   1558   1.78        ad 	mutex_enter(&lp->lp_lock);
   1559   1.78        ad 	if (lp->lp_uao == NULL) {
   1560   1.78        ad 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1561   1.78        ad 		lp->lp_cur = 0;
   1562   1.78        ad 		lp->lp_max = LWPCTL_UAREA_SZ;
   1563   1.78        ad 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1564   1.78        ad 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1565   1.78        ad 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1566   1.78        ad 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1567   1.78        ad 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1568   1.78        ad 		if (error != 0) {
   1569   1.78        ad 			uao_detach(lp->lp_uao);
   1570   1.78        ad 			lp->lp_uao = NULL;
   1571   1.78        ad 			mutex_exit(&lp->lp_lock);
   1572   1.78        ad 			return error;
   1573   1.78        ad 		}
   1574   1.78        ad 	}
   1575   1.78        ad 
   1576   1.78        ad 	/* Get a free block and allocate for this LWP. */
   1577   1.78        ad 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1578   1.78        ad 		if (lcp->lcp_nfree != 0)
   1579   1.78        ad 			break;
   1580   1.78        ad 	}
   1581   1.78        ad 	if (lcp == NULL) {
   1582   1.78        ad 		/* Nothing available - try to set up a free page. */
   1583   1.78        ad 		if (lp->lp_cur == lp->lp_max) {
   1584   1.78        ad 			mutex_exit(&lp->lp_lock);
   1585   1.78        ad 			return ENOMEM;
   1586   1.78        ad 		}
   1587   1.78        ad 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1588   1.79      yamt 		if (lcp == NULL) {
   1589   1.79      yamt 			mutex_exit(&lp->lp_lock);
   1590   1.78        ad 			return ENOMEM;
   1591   1.79      yamt 		}
   1592   1.78        ad 		/*
   1593   1.78        ad 		 * Wire the next page down in kernel space.  Since this
   1594   1.78        ad 		 * is a new mapping, we must add a reference.
   1595   1.78        ad 		 */
   1596   1.78        ad 		uao = lp->lp_uao;
   1597   1.78        ad 		(*uao->pgops->pgo_reference)(uao);
   1598   1.99        ad 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1599   1.78        ad 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1600   1.78        ad 		    uao, lp->lp_cur, PAGE_SIZE,
   1601   1.78        ad 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1602   1.78        ad 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1603   1.78        ad 		if (error != 0) {
   1604   1.78        ad 			mutex_exit(&lp->lp_lock);
   1605   1.78        ad 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1606   1.78        ad 			(*uao->pgops->pgo_detach)(uao);
   1607   1.78        ad 			return error;
   1608   1.78        ad 		}
   1609   1.89      yamt 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1610   1.89      yamt 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1611   1.89      yamt 		if (error != 0) {
   1612   1.89      yamt 			mutex_exit(&lp->lp_lock);
   1613   1.89      yamt 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1614   1.89      yamt 			    lcp->lcp_kaddr + PAGE_SIZE);
   1615   1.89      yamt 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1616   1.89      yamt 			return error;
   1617   1.89      yamt 		}
   1618   1.78        ad 		/* Prepare the page descriptor and link into the list. */
   1619   1.78        ad 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1620   1.78        ad 		lp->lp_cur += PAGE_SIZE;
   1621   1.78        ad 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1622   1.78        ad 		lcp->lcp_rotor = 0;
   1623   1.78        ad 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1624   1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1625   1.78        ad 	}
   1626   1.78        ad 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1627   1.78        ad 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1628   1.78        ad 			i = 0;
   1629   1.78        ad 	}
   1630   1.78        ad 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1631   1.78        ad 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1632   1.78        ad 	lcp->lcp_rotor = i;
   1633   1.78        ad 	lcp->lcp_nfree--;
   1634   1.78        ad 	l->l_lcpage = lcp;
   1635   1.78        ad 	offset = (i << 5) + bit;
   1636   1.78        ad 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1637   1.78        ad 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1638   1.78        ad 	mutex_exit(&lp->lp_lock);
   1639   1.78        ad 
   1640  1.107        ad 	KPREEMPT_DISABLE(l);
   1641  1.111        ad 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1642  1.107        ad 	KPREEMPT_ENABLE(l);
   1643   1.78        ad 
   1644   1.78        ad 	return 0;
   1645   1.78        ad }
   1646   1.78        ad 
   1647   1.78        ad /*
   1648   1.78        ad  * Free an lwpctl structure back to the per-process list.
   1649   1.78        ad  */
   1650   1.78        ad void
   1651   1.78        ad lwp_ctl_free(lwp_t *l)
   1652   1.78        ad {
   1653   1.78        ad 	lcproc_t *lp;
   1654   1.78        ad 	lcpage_t *lcp;
   1655   1.78        ad 	u_int map, offset;
   1656   1.78        ad 
   1657   1.78        ad 	lp = l->l_proc->p_lwpctl;
   1658   1.78        ad 	KASSERT(lp != NULL);
   1659   1.78        ad 
   1660   1.78        ad 	lcp = l->l_lcpage;
   1661   1.78        ad 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1662   1.78        ad 	KASSERT(offset < LWPCTL_PER_PAGE);
   1663   1.78        ad 
   1664   1.78        ad 	mutex_enter(&lp->lp_lock);
   1665   1.78        ad 	lcp->lcp_nfree++;
   1666   1.78        ad 	map = offset >> 5;
   1667   1.78        ad 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1668   1.78        ad 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1669   1.78        ad 		lcp->lcp_rotor = map;
   1670   1.78        ad 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1671   1.78        ad 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1672   1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1673   1.78        ad 	}
   1674   1.78        ad 	mutex_exit(&lp->lp_lock);
   1675   1.78        ad }
   1676   1.78        ad 
   1677   1.78        ad /*
   1678   1.78        ad  * Process is exiting; tear down lwpctl state.  This can only be safely
   1679   1.78        ad  * called by the last LWP in the process.
   1680   1.78        ad  */
   1681   1.78        ad void
   1682   1.78        ad lwp_ctl_exit(void)
   1683   1.78        ad {
   1684   1.78        ad 	lcpage_t *lcp, *next;
   1685   1.78        ad 	lcproc_t *lp;
   1686   1.78        ad 	proc_t *p;
   1687   1.78        ad 	lwp_t *l;
   1688   1.78        ad 
   1689   1.78        ad 	l = curlwp;
   1690   1.78        ad 	l->l_lwpctl = NULL;
   1691   1.95        ad 	l->l_lcpage = NULL;
   1692   1.78        ad 	p = l->l_proc;
   1693   1.78        ad 	lp = p->p_lwpctl;
   1694   1.78        ad 
   1695   1.78        ad 	KASSERT(lp != NULL);
   1696   1.78        ad 	KASSERT(p->p_nlwps == 1);
   1697   1.78        ad 
   1698   1.78        ad 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1699   1.78        ad 		next = TAILQ_NEXT(lcp, lcp_chain);
   1700   1.78        ad 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1701   1.78        ad 		    lcp->lcp_kaddr + PAGE_SIZE);
   1702   1.78        ad 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1703   1.78        ad 	}
   1704   1.78        ad 
   1705   1.78        ad 	if (lp->lp_uao != NULL) {
   1706   1.78        ad 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1707   1.78        ad 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1708   1.78        ad 	}
   1709   1.78        ad 
   1710   1.78        ad 	mutex_destroy(&lp->lp_lock);
   1711   1.78        ad 	kmem_free(lp, sizeof(*lp));
   1712   1.78        ad 	p->p_lwpctl = NULL;
   1713   1.78        ad }
   1714   1.84      yamt 
   1715  1.130        ad /*
   1716  1.130        ad  * Return the current LWP's "preemption counter".  Used to detect
   1717  1.130        ad  * preemption across operations that can tolerate preemption without
   1718  1.130        ad  * crashing, but which may generate incorrect results if preempted.
   1719  1.130        ad  */
   1720  1.130        ad uint64_t
   1721  1.130        ad lwp_pctr(void)
   1722  1.130        ad {
   1723  1.130        ad 
   1724  1.130        ad 	return curlwp->l_ncsw;
   1725  1.130        ad }
   1726  1.130        ad 
   1727  1.151       chs /*
   1728  1.151       chs  * Set an LWP's private data pointer.
   1729  1.151       chs  */
   1730  1.151       chs int
   1731  1.151       chs lwp_setprivate(struct lwp *l, void *ptr)
   1732  1.151       chs {
   1733  1.151       chs 	int error = 0;
   1734  1.151       chs 
   1735  1.151       chs 	l->l_private = ptr;
   1736  1.151       chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
   1737  1.151       chs 	error = cpu_lwp_setprivate(l, ptr);
   1738  1.151       chs #endif
   1739  1.151       chs 	return error;
   1740  1.151       chs }
   1741  1.151       chs 
   1742   1.84      yamt #if defined(DDB)
   1743  1.153     rmind #include <machine/pcb.h>
   1744  1.153     rmind 
   1745   1.84      yamt void
   1746   1.84      yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1747   1.84      yamt {
   1748   1.84      yamt 	lwp_t *l;
   1749   1.84      yamt 
   1750   1.84      yamt 	LIST_FOREACH(l, &alllwp, l_list) {
   1751   1.84      yamt 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1752   1.84      yamt 
   1753   1.84      yamt 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1754   1.84      yamt 			continue;
   1755   1.84      yamt 		}
   1756   1.84      yamt 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1757   1.84      yamt 		    (void *)addr, (void *)stack,
   1758   1.84      yamt 		    (size_t)(addr - stack), l);
   1759   1.84      yamt 	}
   1760   1.84      yamt }
   1761   1.84      yamt #endif /* defined(DDB) */
   1762