kern_lwp.c revision 1.165 1 1.165 jmcneill /* $NetBSD: kern_lwp.c,v 1.165 2011/12/15 00:05:18 jmcneill Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.127 ad * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.9 lukem
32 1.52 ad /*
33 1.52 ad * Overview
34 1.52 ad *
35 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of
36 1.52 ad * execution within the kernel. The core state of an LWP is described
37 1.66 ad * by "struct lwp", also known as lwp_t.
38 1.52 ad *
39 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
40 1.52 ad * Every process contains at least one LWP, but may contain more. The
41 1.52 ad * process describes attributes shared among all of its LWPs such as a
42 1.52 ad * private address space, global execution state (stopped, active,
43 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
44 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel.
45 1.52 ad *
46 1.52 ad * Execution states
47 1.52 ad *
48 1.52 ad * At any given time, an LWP has overall state that is described by
49 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
50 1.52 ad * set is guaranteed to represent the absolute, current state of the
51 1.52 ad * LWP:
52 1.101 rmind *
53 1.101 rmind * LSONPROC
54 1.101 rmind *
55 1.101 rmind * On processor: the LWP is executing on a CPU, either in the
56 1.101 rmind * kernel or in user space.
57 1.101 rmind *
58 1.101 rmind * LSRUN
59 1.101 rmind *
60 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be
61 1.101 rmind * chosen to run by an idle processor, or by a processor that
62 1.101 rmind * has been asked to preempt a currently runnning but lower
63 1.134 rmind * priority LWP.
64 1.101 rmind *
65 1.101 rmind * LSIDL
66 1.101 rmind *
67 1.101 rmind * Idle: the LWP has been created but has not yet executed,
68 1.66 ad * or it has ceased executing a unit of work and is waiting
69 1.66 ad * to be started again.
70 1.101 rmind *
71 1.101 rmind * LSSUSPENDED:
72 1.101 rmind *
73 1.101 rmind * Suspended: the LWP has had its execution suspended by
74 1.52 ad * another LWP in the same process using the _lwp_suspend()
75 1.52 ad * system call. User-level LWPs also enter the suspended
76 1.52 ad * state when the system is shutting down.
77 1.52 ad *
78 1.52 ad * The second set represent a "statement of intent" on behalf of the
79 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
80 1.66 ad * sleeping or idle. It is expected to take the necessary action to
81 1.101 rmind * stop executing or become "running" again within a short timeframe.
82 1.115 ad * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 1.101 rmind * Importantly, it indicates that its state is tied to a CPU.
84 1.101 rmind *
85 1.101 rmind * LSZOMB:
86 1.101 rmind *
87 1.101 rmind * Dead or dying: the LWP has released most of its resources
88 1.129 ad * and is about to switch away into oblivion, or has already
89 1.66 ad * switched away. When it switches away, its few remaining
90 1.66 ad * resources can be collected.
91 1.101 rmind *
92 1.101 rmind * LSSLEEP:
93 1.101 rmind *
94 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and
95 1.101 rmind * has switched away or will switch away shortly to allow other
96 1.66 ad * LWPs to run on the CPU.
97 1.101 rmind *
98 1.101 rmind * LSSTOP:
99 1.101 rmind *
100 1.101 rmind * Stopped: the LWP has been stopped as a result of a job
101 1.101 rmind * control signal, or as a result of the ptrace() interface.
102 1.101 rmind *
103 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle
104 1.101 rmind * signals that they receive, but will not return to user space
105 1.101 rmind * until their process' state is changed away from stopped.
106 1.101 rmind *
107 1.101 rmind * Single LWPs within a process can not be set stopped
108 1.101 rmind * selectively: all actions that can stop or continue LWPs
109 1.101 rmind * occur at the process level.
110 1.101 rmind *
111 1.52 ad * State transitions
112 1.52 ad *
113 1.66 ad * Note that the LSSTOP state may only be set when returning to
114 1.66 ad * user space in userret(), or when sleeping interruptably. The
115 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting
116 1.66 ad * those states, we try to ensure that the LWPs will release all
117 1.66 ad * locks that they hold, and at a minimum try to ensure that the
118 1.66 ad * LWP can be set runnable again by a signal.
119 1.52 ad *
120 1.52 ad * LWPs may transition states in the following ways:
121 1.52 ad *
122 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
123 1.129 ad * > SLEEP
124 1.129 ad * > STOPPED
125 1.52 ad * > SUSPENDED
126 1.52 ad * > ZOMB
127 1.129 ad * > IDL (special cases)
128 1.52 ad *
129 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
130 1.129 ad * > SLEEP
131 1.52 ad *
132 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
133 1.101 rmind * > RUN > SUSPENDED
134 1.101 rmind * > STOPPED > STOPPED
135 1.129 ad * > ONPROC (special cases)
136 1.52 ad *
137 1.129 ad * Some state transitions are only possible with kernel threads (eg
138 1.129 ad * ONPROC -> IDL) and happen under tightly controlled circumstances
139 1.129 ad * free of unwanted side effects.
140 1.66 ad *
141 1.114 rmind * Migration
142 1.114 rmind *
143 1.114 rmind * Migration of threads from one CPU to another could be performed
144 1.114 rmind * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 1.114 rmind * functions. The universal lwp_migrate() function should be used for
146 1.114 rmind * any other cases. Subsystems in the kernel must be aware that CPU
147 1.114 rmind * of LWP may change, while it is not locked.
148 1.114 rmind *
149 1.52 ad * Locking
150 1.52 ad *
151 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
152 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering
153 1.52 ad * each field are documented in sys/lwp.h.
154 1.52 ad *
155 1.66 ad * State transitions must be made with the LWP's general lock held,
156 1.152 rmind * and may cause the LWP's lock pointer to change. Manipulation of
157 1.66 ad * the general lock is not performed directly, but through calls to
158 1.152 rmind * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 1.152 rmind * adaptive locks are not allowed to be released while the LWP's lock
160 1.152 rmind * is being held (unlike for other spin-locks).
161 1.52 ad *
162 1.52 ad * States and their associated locks:
163 1.52 ad *
164 1.74 rmind * LSONPROC, LSZOMB:
165 1.52 ad *
166 1.64 yamt * Always covered by spc_lwplock, which protects running LWPs.
167 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
168 1.52 ad *
169 1.74 rmind * LSIDL, LSRUN:
170 1.52 ad *
171 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
172 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
173 1.52 ad *
174 1.52 ad * LSSLEEP:
175 1.52 ad *
176 1.66 ad * Covered by a lock associated with the sleep queue that the
177 1.129 ad * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 1.52 ad *
179 1.52 ad * LSSTOP, LSSUSPENDED:
180 1.101 rmind *
181 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
182 1.66 ad * l_mutex references the sleep queue lock. If the LWP was
183 1.52 ad * runnable or on the CPU when halted, or has been removed from
184 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock.
185 1.52 ad *
186 1.52 ad * The lock order is as follows:
187 1.52 ad *
188 1.64 yamt * spc::spc_lwplock ->
189 1.112 ad * sleeptab::st_mutex ->
190 1.64 yamt * tschain_t::tc_mutex ->
191 1.64 yamt * spc::spc_mutex
192 1.52 ad *
193 1.103 ad * Each process has an scheduler state lock (proc::p_lock), and a
194 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
196 1.103 ad * following states, p_lock must be held and the process wide counters
197 1.52 ad * adjusted:
198 1.52 ad *
199 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 1.52 ad *
201 1.129 ad * (But not always for kernel threads. There are some special cases
202 1.129 ad * as mentioned above. See kern_softint.c.)
203 1.129 ad *
204 1.52 ad * Note that an LWP is considered running or likely to run soon if in
205 1.52 ad * one of the following states. This affects the value of p_nrlwps:
206 1.52 ad *
207 1.52 ad * LSRUN, LSONPROC, LSSLEEP
208 1.52 ad *
209 1.103 ad * p_lock does not need to be held when transitioning among these
210 1.129 ad * three states, hence p_lock is rarely taken for state transitions.
211 1.52 ad */
212 1.52 ad
213 1.9 lukem #include <sys/cdefs.h>
214 1.165 jmcneill __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.165 2011/12/15 00:05:18 jmcneill Exp $");
215 1.8 martin
216 1.84 yamt #include "opt_ddb.h"
217 1.52 ad #include "opt_lockdebug.h"
218 1.124 wrstuden #include "opt_sa.h"
219 1.139 darran #include "opt_dtrace.h"
220 1.2 thorpej
221 1.47 hannken #define _LWP_API_PRIVATE
222 1.47 hannken
223 1.2 thorpej #include <sys/param.h>
224 1.2 thorpej #include <sys/systm.h>
225 1.64 yamt #include <sys/cpu.h>
226 1.2 thorpej #include <sys/pool.h>
227 1.2 thorpej #include <sys/proc.h>
228 1.124 wrstuden #include <sys/sa.h>
229 1.124 wrstuden #include <sys/savar.h>
230 1.2 thorpej #include <sys/syscallargs.h>
231 1.57 dsl #include <sys/syscall_stats.h>
232 1.37 ad #include <sys/kauth.h>
233 1.161 christos #include <sys/pserialize.h>
234 1.52 ad #include <sys/sleepq.h>
235 1.52 ad #include <sys/lockdebug.h>
236 1.52 ad #include <sys/kmem.h>
237 1.91 rmind #include <sys/pset.h>
238 1.75 ad #include <sys/intr.h>
239 1.78 ad #include <sys/lwpctl.h>
240 1.81 ad #include <sys/atomic.h>
241 1.131 ad #include <sys/filedesc.h>
242 1.138 darran #include <sys/dtrace_bsd.h>
243 1.141 darran #include <sys/sdt.h>
244 1.157 rmind #include <sys/xcall.h>
245 1.138 darran
246 1.2 thorpej #include <uvm/uvm_extern.h>
247 1.80 skrll #include <uvm/uvm_object.h>
248 1.2 thorpej
249 1.152 rmind static pool_cache_t lwp_cache __read_mostly;
250 1.152 rmind struct lwplist alllwp __cacheline_aligned;
251 1.41 thorpej
252 1.157 rmind static void lwp_dtor(void *, void *);
253 1.157 rmind
254 1.141 darran /* DTrace proc provider probes */
255 1.141 darran SDT_PROBE_DEFINE(proc,,,lwp_create,
256 1.141 darran "struct lwp *", NULL,
257 1.141 darran NULL, NULL, NULL, NULL,
258 1.141 darran NULL, NULL, NULL, NULL);
259 1.141 darran SDT_PROBE_DEFINE(proc,,,lwp_start,
260 1.141 darran "struct lwp *", NULL,
261 1.141 darran NULL, NULL, NULL, NULL,
262 1.141 darran NULL, NULL, NULL, NULL);
263 1.141 darran SDT_PROBE_DEFINE(proc,,,lwp_exit,
264 1.141 darran "struct lwp *", NULL,
265 1.141 darran NULL, NULL, NULL, NULL,
266 1.141 darran NULL, NULL, NULL, NULL);
267 1.141 darran
268 1.147 pooka struct turnstile turnstile0;
269 1.147 pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
270 1.147 pooka #ifdef LWP0_CPU_INFO
271 1.147 pooka .l_cpu = LWP0_CPU_INFO,
272 1.147 pooka #endif
273 1.154 matt #ifdef LWP0_MD_INITIALIZER
274 1.154 matt .l_md = LWP0_MD_INITIALIZER,
275 1.154 matt #endif
276 1.147 pooka .l_proc = &proc0,
277 1.147 pooka .l_lid = 1,
278 1.147 pooka .l_flag = LW_SYSTEM,
279 1.147 pooka .l_stat = LSONPROC,
280 1.147 pooka .l_ts = &turnstile0,
281 1.147 pooka .l_syncobj = &sched_syncobj,
282 1.147 pooka .l_refcnt = 1,
283 1.147 pooka .l_priority = PRI_USER + NPRI_USER - 1,
284 1.147 pooka .l_inheritedprio = -1,
285 1.147 pooka .l_class = SCHED_OTHER,
286 1.147 pooka .l_psid = PS_NONE,
287 1.147 pooka .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
288 1.147 pooka .l_name = __UNCONST("swapper"),
289 1.147 pooka .l_fd = &filedesc0,
290 1.147 pooka };
291 1.147 pooka
292 1.41 thorpej void
293 1.41 thorpej lwpinit(void)
294 1.41 thorpej {
295 1.41 thorpej
296 1.152 rmind LIST_INIT(&alllwp);
297 1.144 pooka lwpinit_specificdata();
298 1.52 ad lwp_sys_init();
299 1.87 ad lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
300 1.157 rmind "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
301 1.41 thorpej }
302 1.41 thorpej
303 1.147 pooka void
304 1.147 pooka lwp0_init(void)
305 1.147 pooka {
306 1.147 pooka struct lwp *l = &lwp0;
307 1.147 pooka
308 1.147 pooka KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
309 1.148 pooka KASSERT(l->l_lid == proc0.p_nlwpid);
310 1.147 pooka
311 1.147 pooka LIST_INSERT_HEAD(&alllwp, l, l_list);
312 1.147 pooka
313 1.147 pooka callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
314 1.147 pooka callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
315 1.147 pooka cv_init(&l->l_sigcv, "sigwait");
316 1.147 pooka
317 1.147 pooka kauth_cred_hold(proc0.p_cred);
318 1.147 pooka l->l_cred = proc0.p_cred;
319 1.147 pooka
320 1.164 yamt kdtrace_thread_ctor(NULL, l);
321 1.147 pooka lwp_initspecific(l);
322 1.147 pooka
323 1.147 pooka SYSCALL_TIME_LWP_INIT(l);
324 1.147 pooka }
325 1.147 pooka
326 1.157 rmind static void
327 1.157 rmind lwp_dtor(void *arg, void *obj)
328 1.157 rmind {
329 1.157 rmind lwp_t *l = obj;
330 1.157 rmind uint64_t where;
331 1.157 rmind (void)l;
332 1.157 rmind
333 1.157 rmind /*
334 1.157 rmind * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
335 1.157 rmind * calls will exit before memory of LWP is returned to the pool, where
336 1.157 rmind * KVA of LWP structure might be freed and re-used for other purposes.
337 1.157 rmind * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
338 1.157 rmind * callers, therefore cross-call to all CPUs will do the job. Also,
339 1.157 rmind * the value of l->l_cpu must be still valid at this point.
340 1.157 rmind */
341 1.157 rmind KASSERT(l->l_cpu != NULL);
342 1.157 rmind where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
343 1.157 rmind xc_wait(where);
344 1.157 rmind }
345 1.157 rmind
346 1.52 ad /*
347 1.52 ad * Set an suspended.
348 1.52 ad *
349 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
350 1.52 ad * LWP before return.
351 1.52 ad */
352 1.2 thorpej int
353 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
354 1.2 thorpej {
355 1.52 ad int error;
356 1.2 thorpej
357 1.103 ad KASSERT(mutex_owned(t->l_proc->p_lock));
358 1.63 ad KASSERT(lwp_locked(t, NULL));
359 1.33 chs
360 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
361 1.2 thorpej
362 1.52 ad /*
363 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
364 1.52 ad * else or deadlock could occur. We won't return to userspace.
365 1.2 thorpej */
366 1.109 rmind if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
367 1.52 ad lwp_unlock(t);
368 1.52 ad return (EDEADLK);
369 1.2 thorpej }
370 1.2 thorpej
371 1.52 ad error = 0;
372 1.2 thorpej
373 1.52 ad switch (t->l_stat) {
374 1.52 ad case LSRUN:
375 1.52 ad case LSONPROC:
376 1.56 pavel t->l_flag |= LW_WSUSPEND;
377 1.52 ad lwp_need_userret(t);
378 1.52 ad lwp_unlock(t);
379 1.52 ad break;
380 1.2 thorpej
381 1.52 ad case LSSLEEP:
382 1.56 pavel t->l_flag |= LW_WSUSPEND;
383 1.2 thorpej
384 1.2 thorpej /*
385 1.52 ad * Kick the LWP and try to get it to the kernel boundary
386 1.52 ad * so that it will release any locks that it holds.
387 1.52 ad * setrunnable() will release the lock.
388 1.2 thorpej */
389 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
390 1.52 ad setrunnable(t);
391 1.52 ad else
392 1.52 ad lwp_unlock(t);
393 1.52 ad break;
394 1.2 thorpej
395 1.52 ad case LSSUSPENDED:
396 1.52 ad lwp_unlock(t);
397 1.52 ad break;
398 1.17 manu
399 1.52 ad case LSSTOP:
400 1.56 pavel t->l_flag |= LW_WSUSPEND;
401 1.52 ad setrunnable(t);
402 1.52 ad break;
403 1.2 thorpej
404 1.52 ad case LSIDL:
405 1.52 ad case LSZOMB:
406 1.52 ad error = EINTR; /* It's what Solaris does..... */
407 1.52 ad lwp_unlock(t);
408 1.52 ad break;
409 1.2 thorpej }
410 1.2 thorpej
411 1.69 rmind return (error);
412 1.2 thorpej }
413 1.2 thorpej
414 1.52 ad /*
415 1.52 ad * Restart a suspended LWP.
416 1.52 ad *
417 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
418 1.52 ad * LWP before return.
419 1.52 ad */
420 1.2 thorpej void
421 1.2 thorpej lwp_continue(struct lwp *l)
422 1.2 thorpej {
423 1.2 thorpej
424 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
425 1.63 ad KASSERT(lwp_locked(l, NULL));
426 1.52 ad
427 1.52 ad /* If rebooting or not suspended, then just bail out. */
428 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
429 1.52 ad lwp_unlock(l);
430 1.2 thorpej return;
431 1.10 fvdl }
432 1.2 thorpej
433 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
434 1.2 thorpej
435 1.52 ad if (l->l_stat != LSSUSPENDED) {
436 1.52 ad lwp_unlock(l);
437 1.52 ad return;
438 1.2 thorpej }
439 1.2 thorpej
440 1.52 ad /* setrunnable() will release the lock. */
441 1.52 ad setrunnable(l);
442 1.2 thorpej }
443 1.2 thorpej
444 1.52 ad /*
445 1.142 christos * Restart a stopped LWP.
446 1.142 christos *
447 1.142 christos * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
448 1.142 christos * LWP before return.
449 1.142 christos */
450 1.142 christos void
451 1.142 christos lwp_unstop(struct lwp *l)
452 1.142 christos {
453 1.142 christos struct proc *p = l->l_proc;
454 1.142 christos
455 1.142 christos KASSERT(mutex_owned(proc_lock));
456 1.142 christos KASSERT(mutex_owned(p->p_lock));
457 1.142 christos
458 1.142 christos lwp_lock(l);
459 1.142 christos
460 1.142 christos /* If not stopped, then just bail out. */
461 1.142 christos if (l->l_stat != LSSTOP) {
462 1.142 christos lwp_unlock(l);
463 1.142 christos return;
464 1.142 christos }
465 1.142 christos
466 1.142 christos p->p_stat = SACTIVE;
467 1.142 christos p->p_sflag &= ~PS_STOPPING;
468 1.142 christos
469 1.142 christos if (!p->p_waited)
470 1.142 christos p->p_pptr->p_nstopchild--;
471 1.142 christos
472 1.142 christos if (l->l_wchan == NULL) {
473 1.142 christos /* setrunnable() will release the lock. */
474 1.142 christos setrunnable(l);
475 1.163 christos } else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
476 1.163 christos /* setrunnable() so we can receive the signal */
477 1.163 christos setrunnable(l);
478 1.142 christos } else {
479 1.142 christos l->l_stat = LSSLEEP;
480 1.142 christos p->p_nrlwps++;
481 1.142 christos lwp_unlock(l);
482 1.142 christos }
483 1.142 christos }
484 1.142 christos
485 1.142 christos /*
486 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
487 1.52 ad * non-zero, we are waiting for a specific LWP.
488 1.52 ad *
489 1.103 ad * Must be called with p->p_lock held.
490 1.52 ad */
491 1.2 thorpej int
492 1.2 thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
493 1.2 thorpej {
494 1.2 thorpej struct proc *p = l->l_proc;
495 1.52 ad struct lwp *l2;
496 1.52 ad int nfound, error;
497 1.63 ad lwpid_t curlid;
498 1.63 ad bool exiting;
499 1.2 thorpej
500 1.103 ad KASSERT(mutex_owned(p->p_lock));
501 1.52 ad
502 1.52 ad p->p_nlwpwait++;
503 1.63 ad l->l_waitingfor = lid;
504 1.63 ad curlid = l->l_lid;
505 1.63 ad exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
506 1.52 ad
507 1.52 ad for (;;) {
508 1.52 ad /*
509 1.52 ad * Avoid a race between exit1() and sigexit(): if the
510 1.52 ad * process is dumping core, then we need to bail out: call
511 1.52 ad * into lwp_userret() where we will be suspended until the
512 1.52 ad * deed is done.
513 1.52 ad */
514 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
515 1.103 ad mutex_exit(p->p_lock);
516 1.52 ad lwp_userret(l);
517 1.52 ad #ifdef DIAGNOSTIC
518 1.52 ad panic("lwp_wait1");
519 1.52 ad #endif
520 1.52 ad /* NOTREACHED */
521 1.52 ad }
522 1.52 ad
523 1.52 ad /*
524 1.52 ad * First off, drain any detached LWP that is waiting to be
525 1.52 ad * reaped.
526 1.52 ad */
527 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
528 1.52 ad p->p_zomblwp = NULL;
529 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
530 1.103 ad mutex_enter(p->p_lock);
531 1.52 ad }
532 1.52 ad
533 1.52 ad /*
534 1.52 ad * Now look for an LWP to collect. If the whole process is
535 1.52 ad * exiting, count detached LWPs as eligible to be collected,
536 1.52 ad * but don't drain them here.
537 1.52 ad */
538 1.52 ad nfound = 0;
539 1.63 ad error = 0;
540 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
541 1.63 ad /*
542 1.63 ad * If a specific wait and the target is waiting on
543 1.63 ad * us, then avoid deadlock. This also traps LWPs
544 1.63 ad * that try to wait on themselves.
545 1.63 ad *
546 1.63 ad * Note that this does not handle more complicated
547 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
548 1.63 ad * can still be killed so it is not a major problem.
549 1.63 ad */
550 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
551 1.63 ad error = EDEADLK;
552 1.63 ad break;
553 1.63 ad }
554 1.63 ad if (l2 == l)
555 1.52 ad continue;
556 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
557 1.63 ad nfound += exiting;
558 1.63 ad continue;
559 1.63 ad }
560 1.63 ad if (lid != 0) {
561 1.63 ad if (l2->l_lid != lid)
562 1.63 ad continue;
563 1.63 ad /*
564 1.63 ad * Mark this LWP as the first waiter, if there
565 1.63 ad * is no other.
566 1.63 ad */
567 1.63 ad if (l2->l_waiter == 0)
568 1.63 ad l2->l_waiter = curlid;
569 1.63 ad } else if (l2->l_waiter != 0) {
570 1.63 ad /*
571 1.63 ad * It already has a waiter - so don't
572 1.63 ad * collect it. If the waiter doesn't
573 1.63 ad * grab it we'll get another chance
574 1.63 ad * later.
575 1.63 ad */
576 1.63 ad nfound++;
577 1.52 ad continue;
578 1.52 ad }
579 1.52 ad nfound++;
580 1.2 thorpej
581 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
582 1.52 ad if (l2->l_stat != LSZOMB)
583 1.52 ad continue;
584 1.2 thorpej
585 1.63 ad /*
586 1.63 ad * We're no longer waiting. Reset the "first waiter"
587 1.63 ad * pointer on the target, in case it was us.
588 1.63 ad */
589 1.63 ad l->l_waitingfor = 0;
590 1.63 ad l2->l_waiter = 0;
591 1.63 ad p->p_nlwpwait--;
592 1.2 thorpej if (departed)
593 1.2 thorpej *departed = l2->l_lid;
594 1.75 ad sched_lwp_collect(l2);
595 1.63 ad
596 1.63 ad /* lwp_free() releases the proc lock. */
597 1.63 ad lwp_free(l2, false, false);
598 1.103 ad mutex_enter(p->p_lock);
599 1.52 ad return 0;
600 1.52 ad }
601 1.2 thorpej
602 1.63 ad if (error != 0)
603 1.63 ad break;
604 1.52 ad if (nfound == 0) {
605 1.52 ad error = ESRCH;
606 1.52 ad break;
607 1.52 ad }
608 1.63 ad
609 1.63 ad /*
610 1.63 ad * The kernel is careful to ensure that it can not deadlock
611 1.63 ad * when exiting - just keep waiting.
612 1.63 ad */
613 1.63 ad if (exiting) {
614 1.52 ad KASSERT(p->p_nlwps > 1);
615 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
616 1.52 ad continue;
617 1.52 ad }
618 1.63 ad
619 1.63 ad /*
620 1.63 ad * If all other LWPs are waiting for exits or suspends
621 1.63 ad * and the supply of zombies and potential zombies is
622 1.63 ad * exhausted, then we are about to deadlock.
623 1.63 ad *
624 1.63 ad * If the process is exiting (and this LWP is not the one
625 1.63 ad * that is coordinating the exit) then bail out now.
626 1.63 ad */
627 1.52 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
628 1.63 ad p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
629 1.52 ad error = EDEADLK;
630 1.52 ad break;
631 1.2 thorpej }
632 1.63 ad
633 1.63 ad /*
634 1.63 ad * Sit around and wait for something to happen. We'll be
635 1.63 ad * awoken if any of the conditions examined change: if an
636 1.63 ad * LWP exits, is collected, or is detached.
637 1.63 ad */
638 1.103 ad if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
639 1.52 ad break;
640 1.2 thorpej }
641 1.2 thorpej
642 1.63 ad /*
643 1.63 ad * We didn't find any LWPs to collect, we may have received a
644 1.63 ad * signal, or some other condition has caused us to bail out.
645 1.63 ad *
646 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
647 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
648 1.63 ad * so that they can re-check for zombies and for deadlock.
649 1.63 ad */
650 1.63 ad if (lid != 0) {
651 1.63 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
652 1.63 ad if (l2->l_lid == lid) {
653 1.63 ad if (l2->l_waiter == curlid)
654 1.63 ad l2->l_waiter = 0;
655 1.63 ad break;
656 1.63 ad }
657 1.63 ad }
658 1.63 ad }
659 1.52 ad p->p_nlwpwait--;
660 1.63 ad l->l_waitingfor = 0;
661 1.63 ad cv_broadcast(&p->p_lwpcv);
662 1.63 ad
663 1.52 ad return error;
664 1.2 thorpej }
665 1.2 thorpej
666 1.52 ad /*
667 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
668 1.52 ad * The new LWP is created in state LSIDL and must be set running,
669 1.52 ad * suspended, or stopped by the caller.
670 1.52 ad */
671 1.2 thorpej int
672 1.134 rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
673 1.75 ad void *stack, size_t stacksize, void (*func)(void *), void *arg,
674 1.75 ad lwp_t **rnewlwpp, int sclass)
675 1.2 thorpej {
676 1.52 ad struct lwp *l2, *isfree;
677 1.52 ad turnstile_t *ts;
678 1.151 chs lwpid_t lid;
679 1.2 thorpej
680 1.107 ad KASSERT(l1 == curlwp || l1->l_proc == &proc0);
681 1.107 ad
682 1.52 ad /*
683 1.52 ad * First off, reap any detached LWP waiting to be collected.
684 1.52 ad * We can re-use its LWP structure and turnstile.
685 1.52 ad */
686 1.52 ad isfree = NULL;
687 1.52 ad if (p2->p_zomblwp != NULL) {
688 1.103 ad mutex_enter(p2->p_lock);
689 1.52 ad if ((isfree = p2->p_zomblwp) != NULL) {
690 1.52 ad p2->p_zomblwp = NULL;
691 1.63 ad lwp_free(isfree, true, false);/* releases proc mutex */
692 1.52 ad } else
693 1.103 ad mutex_exit(p2->p_lock);
694 1.52 ad }
695 1.52 ad if (isfree == NULL) {
696 1.87 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK);
697 1.52 ad memset(l2, 0, sizeof(*l2));
698 1.76 ad l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
699 1.60 yamt SLIST_INIT(&l2->l_pi_lenders);
700 1.52 ad } else {
701 1.52 ad l2 = isfree;
702 1.52 ad ts = l2->l_ts;
703 1.75 ad KASSERT(l2->l_inheritedprio == -1);
704 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
705 1.52 ad memset(l2, 0, sizeof(*l2));
706 1.52 ad l2->l_ts = ts;
707 1.52 ad }
708 1.2 thorpej
709 1.2 thorpej l2->l_stat = LSIDL;
710 1.2 thorpej l2->l_proc = p2;
711 1.52 ad l2->l_refcnt = 1;
712 1.75 ad l2->l_class = sclass;
713 1.116 ad
714 1.116 ad /*
715 1.116 ad * If vfork(), we want the LWP to run fast and on the same CPU
716 1.116 ad * as its parent, so that it can reuse the VM context and cache
717 1.116 ad * footprint on the local CPU.
718 1.116 ad */
719 1.116 ad l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
720 1.82 ad l2->l_kpribase = PRI_KERNEL;
721 1.52 ad l2->l_priority = l1->l_priority;
722 1.75 ad l2->l_inheritedprio = -1;
723 1.134 rmind l2->l_flag = 0;
724 1.88 ad l2->l_pflag = LP_MPSAFE;
725 1.131 ad TAILQ_INIT(&l2->l_ld_locks);
726 1.131 ad
727 1.131 ad /*
728 1.156 pooka * For vfork, borrow parent's lwpctl context if it exists.
729 1.156 pooka * This also causes us to return via lwp_userret.
730 1.156 pooka */
731 1.156 pooka if (flags & LWP_VFORK && l1->l_lwpctl) {
732 1.156 pooka l2->l_lwpctl = l1->l_lwpctl;
733 1.156 pooka l2->l_flag |= LW_LWPCTL;
734 1.156 pooka }
735 1.156 pooka
736 1.156 pooka /*
737 1.131 ad * If not the first LWP in the process, grab a reference to the
738 1.131 ad * descriptor table.
739 1.131 ad */
740 1.97 ad l2->l_fd = p2->p_fd;
741 1.131 ad if (p2->p_nlwps != 0) {
742 1.131 ad KASSERT(l1->l_proc == p2);
743 1.136 rmind fd_hold(l2);
744 1.131 ad } else {
745 1.131 ad KASSERT(l1->l_proc != p2);
746 1.131 ad }
747 1.41 thorpej
748 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
749 1.134 rmind /* Mark it as a system LWP. */
750 1.56 pavel l2->l_flag |= LW_SYSTEM;
751 1.52 ad }
752 1.2 thorpej
753 1.107 ad kpreempt_disable();
754 1.107 ad l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
755 1.107 ad l2->l_cpu = l1->l_cpu;
756 1.107 ad kpreempt_enable();
757 1.107 ad
758 1.138 darran kdtrace_thread_ctor(NULL, l2);
759 1.73 rmind lwp_initspecific(l2);
760 1.75 ad sched_lwp_fork(l1, l2);
761 1.37 ad lwp_update_creds(l2);
762 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
763 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
764 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
765 1.52 ad l2->l_syncobj = &sched_syncobj;
766 1.2 thorpej
767 1.2 thorpej if (rnewlwpp != NULL)
768 1.2 thorpej *rnewlwpp = l2;
769 1.2 thorpej
770 1.158 matt /*
771 1.158 matt * PCU state needs to be saved before calling uvm_lwp_fork() so that
772 1.158 matt * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
773 1.158 matt */
774 1.158 matt pcu_save_all(l1);
775 1.158 matt
776 1.137 rmind uvm_lwp_setuarea(l2, uaddr);
777 1.2 thorpej uvm_lwp_fork(l1, l2, stack, stacksize, func,
778 1.2 thorpej (arg != NULL) ? arg : l2);
779 1.2 thorpej
780 1.151 chs if ((flags & LWP_PIDLID) != 0) {
781 1.151 chs lid = proc_alloc_pid(p2);
782 1.151 chs l2->l_pflag |= LP_PIDLID;
783 1.151 chs } else {
784 1.151 chs lid = 0;
785 1.151 chs }
786 1.151 chs
787 1.103 ad mutex_enter(p2->p_lock);
788 1.52 ad
789 1.52 ad if ((flags & LWP_DETACHED) != 0) {
790 1.52 ad l2->l_prflag = LPR_DETACHED;
791 1.52 ad p2->p_ndlwps++;
792 1.52 ad } else
793 1.52 ad l2->l_prflag = 0;
794 1.52 ad
795 1.165 jmcneill l2->l_sigstk = l1->l_sigstk;
796 1.52 ad l2->l_sigmask = l1->l_sigmask;
797 1.52 ad CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
798 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
799 1.52 ad
800 1.151 chs if (lid == 0) {
801 1.53 yamt p2->p_nlwpid++;
802 1.151 chs if (p2->p_nlwpid == 0)
803 1.151 chs p2->p_nlwpid++;
804 1.151 chs lid = p2->p_nlwpid;
805 1.151 chs }
806 1.151 chs l2->l_lid = lid;
807 1.2 thorpej LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
808 1.2 thorpej p2->p_nlwps++;
809 1.149 yamt p2->p_nrlwps++;
810 1.2 thorpej
811 1.162 rmind KASSERT(l2->l_affinity == NULL);
812 1.162 rmind
813 1.91 rmind if ((p2->p_flag & PK_SYSTEM) == 0) {
814 1.162 rmind /* Inherit the affinity mask. */
815 1.162 rmind if (l1->l_affinity) {
816 1.128 rmind /*
817 1.128 rmind * Note that we hold the state lock while inheriting
818 1.128 rmind * the affinity to avoid race with sched_setaffinity().
819 1.128 rmind */
820 1.128 rmind lwp_lock(l1);
821 1.162 rmind if (l1->l_affinity) {
822 1.122 rmind kcpuset_use(l1->l_affinity);
823 1.122 rmind l2->l_affinity = l1->l_affinity;
824 1.122 rmind }
825 1.128 rmind lwp_unlock(l1);
826 1.117 christos }
827 1.128 rmind lwp_lock(l2);
828 1.128 rmind /* Inherit a processor-set */
829 1.128 rmind l2->l_psid = l1->l_psid;
830 1.91 rmind /* Look for a CPU to start */
831 1.91 rmind l2->l_cpu = sched_takecpu(l2);
832 1.91 rmind lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
833 1.91 rmind }
834 1.128 rmind mutex_exit(p2->p_lock);
835 1.128 rmind
836 1.141 darran SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
837 1.141 darran
838 1.128 rmind mutex_enter(proc_lock);
839 1.128 rmind LIST_INSERT_HEAD(&alllwp, l2, l_list);
840 1.128 rmind mutex_exit(proc_lock);
841 1.91 rmind
842 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
843 1.57 dsl
844 1.16 manu if (p2->p_emul->e_lwp_fork)
845 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
846 1.16 manu
847 1.2 thorpej return (0);
848 1.2 thorpej }
849 1.2 thorpej
850 1.2 thorpej /*
851 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
852 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
853 1.64 yamt * previous LWP, at splsched.
854 1.64 yamt */
855 1.64 yamt void
856 1.64 yamt lwp_startup(struct lwp *prev, struct lwp *new)
857 1.64 yamt {
858 1.64 yamt
859 1.141 darran SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
860 1.141 darran
861 1.107 ad KASSERT(kpreempt_disabled());
862 1.64 yamt if (prev != NULL) {
863 1.81 ad /*
864 1.81 ad * Normalize the count of the spin-mutexes, it was
865 1.81 ad * increased in mi_switch(). Unmark the state of
866 1.81 ad * context switch - it is finished for previous LWP.
867 1.81 ad */
868 1.81 ad curcpu()->ci_mtx_count++;
869 1.81 ad membar_exit();
870 1.81 ad prev->l_ctxswtch = 0;
871 1.64 yamt }
872 1.107 ad KPREEMPT_DISABLE(new);
873 1.107 ad spl0();
874 1.105 ad pmap_activate(new);
875 1.161 christos
876 1.161 christos /* Note trip through cpu_switchto(). */
877 1.161 christos pserialize_switchpoint();
878 1.161 christos
879 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
880 1.107 ad KPREEMPT_ENABLE(new);
881 1.65 ad if ((new->l_pflag & LP_MPSAFE) == 0) {
882 1.65 ad KERNEL_LOCK(1, new);
883 1.65 ad }
884 1.64 yamt }
885 1.64 yamt
886 1.64 yamt /*
887 1.65 ad * Exit an LWP.
888 1.2 thorpej */
889 1.2 thorpej void
890 1.2 thorpej lwp_exit(struct lwp *l)
891 1.2 thorpej {
892 1.2 thorpej struct proc *p = l->l_proc;
893 1.52 ad struct lwp *l2;
894 1.65 ad bool current;
895 1.65 ad
896 1.65 ad current = (l == curlwp);
897 1.2 thorpej
898 1.114 rmind KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
899 1.131 ad KASSERT(p == curproc);
900 1.2 thorpej
901 1.141 darran SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
902 1.141 darran
903 1.52 ad /*
904 1.52 ad * Verify that we hold no locks other than the kernel lock.
905 1.52 ad */
906 1.52 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
907 1.16 manu
908 1.2 thorpej /*
909 1.52 ad * If we are the last live LWP in a process, we need to exit the
910 1.52 ad * entire process. We do so with an exit status of zero, because
911 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
912 1.52 ad *
913 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
914 1.52 ad * must increment the count of zombies here.
915 1.45 thorpej *
916 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
917 1.2 thorpej */
918 1.103 ad mutex_enter(p->p_lock);
919 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
920 1.65 ad KASSERT(current == true);
921 1.88 ad /* XXXSMP kernel_lock not held */
922 1.2 thorpej exit1(l, 0);
923 1.19 jdolecek /* NOTREACHED */
924 1.2 thorpej }
925 1.52 ad p->p_nzlwps++;
926 1.103 ad mutex_exit(p->p_lock);
927 1.52 ad
928 1.52 ad if (p->p_emul->e_lwp_exit)
929 1.52 ad (*p->p_emul->e_lwp_exit)(l);
930 1.2 thorpej
931 1.131 ad /* Drop filedesc reference. */
932 1.131 ad fd_free();
933 1.131 ad
934 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
935 1.145 pooka lwp_finispecific(l);
936 1.45 thorpej
937 1.52 ad /*
938 1.52 ad * Release our cached credentials.
939 1.52 ad */
940 1.37 ad kauth_cred_free(l->l_cred);
941 1.70 ad callout_destroy(&l->l_timeout_ch);
942 1.65 ad
943 1.65 ad /*
944 1.52 ad * Remove the LWP from the global list.
945 1.151 chs * Free its LID from the PID namespace if needed.
946 1.52 ad */
947 1.102 ad mutex_enter(proc_lock);
948 1.52 ad LIST_REMOVE(l, l_list);
949 1.151 chs if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
950 1.151 chs proc_free_pid(l->l_lid);
951 1.151 chs }
952 1.102 ad mutex_exit(proc_lock);
953 1.19 jdolecek
954 1.52 ad /*
955 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
956 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
957 1.52 ad * mark it waiting for collection in the proc structure. Note that
958 1.52 ad * before we can do that, we need to free any other dead, deatched
959 1.52 ad * LWP waiting to meet its maker.
960 1.52 ad */
961 1.103 ad mutex_enter(p->p_lock);
962 1.52 ad lwp_drainrefs(l);
963 1.31 yamt
964 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
965 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
966 1.52 ad p->p_zomblwp = NULL;
967 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
968 1.103 ad mutex_enter(p->p_lock);
969 1.72 ad l->l_refcnt++;
970 1.72 ad lwp_drainrefs(l);
971 1.52 ad }
972 1.52 ad p->p_zomblwp = l;
973 1.52 ad }
974 1.31 yamt
975 1.52 ad /*
976 1.52 ad * If we find a pending signal for the process and we have been
977 1.151 chs * asked to check for signals, then we lose: arrange to have
978 1.52 ad * all other LWPs in the process check for signals.
979 1.52 ad */
980 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
981 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
982 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
983 1.52 ad lwp_lock(l2);
984 1.56 pavel l2->l_flag |= LW_PENDSIG;
985 1.52 ad lwp_unlock(l2);
986 1.52 ad }
987 1.31 yamt }
988 1.31 yamt
989 1.158 matt /*
990 1.158 matt * Release any PCU resources before becoming a zombie.
991 1.158 matt */
992 1.158 matt pcu_discard_all(l);
993 1.158 matt
994 1.52 ad lwp_lock(l);
995 1.52 ad l->l_stat = LSZOMB;
996 1.162 rmind if (l->l_name != NULL) {
997 1.90 ad strcpy(l->l_name, "(zombie)");
998 1.128 rmind }
999 1.52 ad lwp_unlock(l);
1000 1.2 thorpej p->p_nrlwps--;
1001 1.52 ad cv_broadcast(&p->p_lwpcv);
1002 1.78 ad if (l->l_lwpctl != NULL)
1003 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1004 1.103 ad mutex_exit(p->p_lock);
1005 1.52 ad
1006 1.52 ad /*
1007 1.52 ad * We can no longer block. At this point, lwp_free() may already
1008 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1009 1.52 ad *
1010 1.52 ad * Free MD LWP resources.
1011 1.52 ad */
1012 1.52 ad cpu_lwp_free(l, 0);
1013 1.2 thorpej
1014 1.65 ad if (current) {
1015 1.65 ad pmap_deactivate(l);
1016 1.65 ad
1017 1.65 ad /*
1018 1.65 ad * Release the kernel lock, and switch away into
1019 1.65 ad * oblivion.
1020 1.65 ad */
1021 1.52 ad #ifdef notyet
1022 1.65 ad /* XXXSMP hold in lwp_userret() */
1023 1.65 ad KERNEL_UNLOCK_LAST(l);
1024 1.52 ad #else
1025 1.65 ad KERNEL_UNLOCK_ALL(l, NULL);
1026 1.52 ad #endif
1027 1.65 ad lwp_exit_switchaway(l);
1028 1.65 ad }
1029 1.2 thorpej }
1030 1.2 thorpej
1031 1.52 ad /*
1032 1.52 ad * Free a dead LWP's remaining resources.
1033 1.52 ad *
1034 1.52 ad * XXXLWP limits.
1035 1.52 ad */
1036 1.52 ad void
1037 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
1038 1.52 ad {
1039 1.52 ad struct proc *p = l->l_proc;
1040 1.100 ad struct rusage *ru;
1041 1.52 ad ksiginfoq_t kq;
1042 1.52 ad
1043 1.92 yamt KASSERT(l != curlwp);
1044 1.160 yamt KASSERT(last || mutex_owned(p->p_lock));
1045 1.92 yamt
1046 1.52 ad /*
1047 1.52 ad * If this was not the last LWP in the process, then adjust
1048 1.52 ad * counters and unlock.
1049 1.52 ad */
1050 1.52 ad if (!last) {
1051 1.52 ad /*
1052 1.52 ad * Add the LWP's run time to the process' base value.
1053 1.52 ad * This needs to co-incide with coming off p_lwps.
1054 1.52 ad */
1055 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime);
1056 1.64 yamt p->p_pctcpu += l->l_pctcpu;
1057 1.100 ad ru = &p->p_stats->p_ru;
1058 1.100 ad ruadd(ru, &l->l_ru);
1059 1.100 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1060 1.100 ad ru->ru_nivcsw += l->l_nivcsw;
1061 1.52 ad LIST_REMOVE(l, l_sibling);
1062 1.52 ad p->p_nlwps--;
1063 1.52 ad p->p_nzlwps--;
1064 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
1065 1.52 ad p->p_ndlwps--;
1066 1.63 ad
1067 1.63 ad /*
1068 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
1069 1.63 ad * deadlock.
1070 1.63 ad */
1071 1.63 ad cv_broadcast(&p->p_lwpcv);
1072 1.103 ad mutex_exit(p->p_lock);
1073 1.63 ad }
1074 1.52 ad
1075 1.52 ad #ifdef MULTIPROCESSOR
1076 1.63 ad /*
1077 1.63 ad * In the unlikely event that the LWP is still on the CPU,
1078 1.63 ad * then spin until it has switched away. We need to release
1079 1.63 ad * all locks to avoid deadlock against interrupt handlers on
1080 1.63 ad * the target CPU.
1081 1.63 ad */
1082 1.115 ad if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1083 1.63 ad int count;
1084 1.64 yamt (void)count; /* XXXgcc */
1085 1.63 ad KERNEL_UNLOCK_ALL(curlwp, &count);
1086 1.115 ad while ((l->l_pflag & LP_RUNNING) != 0 ||
1087 1.64 yamt l->l_cpu->ci_curlwp == l)
1088 1.63 ad SPINLOCK_BACKOFF_HOOK;
1089 1.63 ad KERNEL_LOCK(count, curlwp);
1090 1.63 ad }
1091 1.52 ad #endif
1092 1.52 ad
1093 1.52 ad /*
1094 1.52 ad * Destroy the LWP's remaining signal information.
1095 1.52 ad */
1096 1.52 ad ksiginfo_queue_init(&kq);
1097 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
1098 1.52 ad ksiginfo_queue_drain(&kq);
1099 1.52 ad cv_destroy(&l->l_sigcv);
1100 1.2 thorpej
1101 1.19 jdolecek /*
1102 1.162 rmind * Free lwpctl structure and affinity.
1103 1.162 rmind */
1104 1.162 rmind if (l->l_lwpctl) {
1105 1.162 rmind lwp_ctl_free(l);
1106 1.162 rmind }
1107 1.162 rmind if (l->l_affinity) {
1108 1.162 rmind kcpuset_unuse(l->l_affinity, NULL);
1109 1.162 rmind l->l_affinity = NULL;
1110 1.162 rmind }
1111 1.162 rmind
1112 1.162 rmind /*
1113 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
1114 1.93 yamt * caller wants to recycle them. Also, free the scheduler specific
1115 1.93 yamt * data.
1116 1.52 ad *
1117 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
1118 1.52 ad * so if it comes up just drop it quietly and move on.
1119 1.52 ad *
1120 1.52 ad * We don't recycle the VM resources at this time.
1121 1.19 jdolecek */
1122 1.64 yamt
1123 1.52 ad if (!recycle && l->l_ts != &turnstile0)
1124 1.76 ad pool_cache_put(turnstile_cache, l->l_ts);
1125 1.90 ad if (l->l_name != NULL)
1126 1.90 ad kmem_free(l->l_name, MAXCOMLEN);
1127 1.135 rmind
1128 1.52 ad cpu_lwp_free2(l);
1129 1.19 jdolecek uvm_lwp_exit(l);
1130 1.134 rmind
1131 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1132 1.75 ad KASSERT(l->l_inheritedprio == -1);
1133 1.155 matt KASSERT(l->l_blcnt == 0);
1134 1.138 darran kdtrace_thread_dtor(NULL, l);
1135 1.52 ad if (!recycle)
1136 1.87 ad pool_cache_put(lwp_cache, l);
1137 1.2 thorpej }
1138 1.2 thorpej
1139 1.2 thorpej /*
1140 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP.
1141 1.91 rmind */
1142 1.91 rmind void
1143 1.114 rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
1144 1.91 rmind {
1145 1.114 rmind struct schedstate_percpu *tspc;
1146 1.121 rmind int lstat = l->l_stat;
1147 1.121 rmind
1148 1.91 rmind KASSERT(lwp_locked(l, NULL));
1149 1.114 rmind KASSERT(tci != NULL);
1150 1.114 rmind
1151 1.121 rmind /* If LWP is still on the CPU, it must be handled like LSONPROC */
1152 1.121 rmind if ((l->l_pflag & LP_RUNNING) != 0) {
1153 1.121 rmind lstat = LSONPROC;
1154 1.121 rmind }
1155 1.121 rmind
1156 1.114 rmind /*
1157 1.114 rmind * The destination CPU could be changed while previous migration
1158 1.114 rmind * was not finished.
1159 1.114 rmind */
1160 1.121 rmind if (l->l_target_cpu != NULL) {
1161 1.114 rmind l->l_target_cpu = tci;
1162 1.114 rmind lwp_unlock(l);
1163 1.114 rmind return;
1164 1.114 rmind }
1165 1.91 rmind
1166 1.114 rmind /* Nothing to do if trying to migrate to the same CPU */
1167 1.114 rmind if (l->l_cpu == tci) {
1168 1.91 rmind lwp_unlock(l);
1169 1.91 rmind return;
1170 1.91 rmind }
1171 1.91 rmind
1172 1.114 rmind KASSERT(l->l_target_cpu == NULL);
1173 1.114 rmind tspc = &tci->ci_schedstate;
1174 1.121 rmind switch (lstat) {
1175 1.91 rmind case LSRUN:
1176 1.134 rmind l->l_target_cpu = tci;
1177 1.134 rmind break;
1178 1.91 rmind case LSIDL:
1179 1.114 rmind l->l_cpu = tci;
1180 1.114 rmind lwp_unlock_to(l, tspc->spc_mutex);
1181 1.91 rmind return;
1182 1.91 rmind case LSSLEEP:
1183 1.114 rmind l->l_cpu = tci;
1184 1.91 rmind break;
1185 1.91 rmind case LSSTOP:
1186 1.91 rmind case LSSUSPENDED:
1187 1.114 rmind l->l_cpu = tci;
1188 1.114 rmind if (l->l_wchan == NULL) {
1189 1.114 rmind lwp_unlock_to(l, tspc->spc_lwplock);
1190 1.114 rmind return;
1191 1.91 rmind }
1192 1.114 rmind break;
1193 1.91 rmind case LSONPROC:
1194 1.114 rmind l->l_target_cpu = tci;
1195 1.114 rmind spc_lock(l->l_cpu);
1196 1.114 rmind cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1197 1.114 rmind spc_unlock(l->l_cpu);
1198 1.91 rmind break;
1199 1.91 rmind }
1200 1.91 rmind lwp_unlock(l);
1201 1.91 rmind }
1202 1.91 rmind
1203 1.91 rmind /*
1204 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case,
1205 1.94 rmind * the calling process and first LWP in the list will be used.
1206 1.103 ad * On success - returns proc locked.
1207 1.91 rmind */
1208 1.91 rmind struct lwp *
1209 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid)
1210 1.91 rmind {
1211 1.91 rmind proc_t *p;
1212 1.91 rmind lwp_t *l;
1213 1.91 rmind
1214 1.150 rmind /* Find the process. */
1215 1.94 rmind if (pid != 0) {
1216 1.150 rmind mutex_enter(proc_lock);
1217 1.150 rmind p = proc_find(pid);
1218 1.150 rmind if (p == NULL) {
1219 1.150 rmind mutex_exit(proc_lock);
1220 1.150 rmind return NULL;
1221 1.150 rmind }
1222 1.150 rmind mutex_enter(p->p_lock);
1223 1.102 ad mutex_exit(proc_lock);
1224 1.150 rmind } else {
1225 1.150 rmind p = curlwp->l_proc;
1226 1.150 rmind mutex_enter(p->p_lock);
1227 1.150 rmind }
1228 1.150 rmind /* Find the thread. */
1229 1.150 rmind if (lid != 0) {
1230 1.150 rmind l = lwp_find(p, lid);
1231 1.150 rmind } else {
1232 1.150 rmind l = LIST_FIRST(&p->p_lwps);
1233 1.94 rmind }
1234 1.103 ad if (l == NULL) {
1235 1.103 ad mutex_exit(p->p_lock);
1236 1.103 ad }
1237 1.91 rmind return l;
1238 1.91 rmind }
1239 1.91 rmind
1240 1.91 rmind /*
1241 1.151 chs * Look up a live LWP within the specified process, and return it locked.
1242 1.52 ad *
1243 1.103 ad * Must be called with p->p_lock held.
1244 1.52 ad */
1245 1.52 ad struct lwp *
1246 1.151 chs lwp_find(struct proc *p, lwpid_t id)
1247 1.52 ad {
1248 1.52 ad struct lwp *l;
1249 1.52 ad
1250 1.103 ad KASSERT(mutex_owned(p->p_lock));
1251 1.52 ad
1252 1.52 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1253 1.52 ad if (l->l_lid == id)
1254 1.52 ad break;
1255 1.52 ad }
1256 1.52 ad
1257 1.52 ad /*
1258 1.52 ad * No need to lock - all of these conditions will
1259 1.52 ad * be visible with the process level mutex held.
1260 1.52 ad */
1261 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1262 1.52 ad l = NULL;
1263 1.52 ad
1264 1.52 ad return l;
1265 1.52 ad }
1266 1.52 ad
1267 1.52 ad /*
1268 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1269 1.37 ad *
1270 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1271 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1272 1.37 ad * it's credentials by calling this routine. This may be called from
1273 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1274 1.37 ad */
1275 1.37 ad void
1276 1.37 ad lwp_update_creds(struct lwp *l)
1277 1.37 ad {
1278 1.37 ad kauth_cred_t oc;
1279 1.37 ad struct proc *p;
1280 1.37 ad
1281 1.37 ad p = l->l_proc;
1282 1.37 ad oc = l->l_cred;
1283 1.37 ad
1284 1.103 ad mutex_enter(p->p_lock);
1285 1.37 ad kauth_cred_hold(p->p_cred);
1286 1.37 ad l->l_cred = p->p_cred;
1287 1.98 ad l->l_prflag &= ~LPR_CRMOD;
1288 1.103 ad mutex_exit(p->p_lock);
1289 1.88 ad if (oc != NULL)
1290 1.37 ad kauth_cred_free(oc);
1291 1.52 ad }
1292 1.52 ad
1293 1.52 ad /*
1294 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1295 1.52 ad * one we specify.
1296 1.52 ad */
1297 1.52 ad int
1298 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1299 1.52 ad {
1300 1.52 ad kmutex_t *cur = l->l_mutex;
1301 1.52 ad
1302 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1303 1.52 ad }
1304 1.52 ad
1305 1.52 ad /*
1306 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1307 1.52 ad */
1308 1.52 ad void
1309 1.52 ad lwp_setlock(struct lwp *l, kmutex_t *new)
1310 1.52 ad {
1311 1.52 ad
1312 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1313 1.52 ad
1314 1.107 ad membar_exit();
1315 1.52 ad l->l_mutex = new;
1316 1.52 ad }
1317 1.52 ad
1318 1.52 ad /*
1319 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1320 1.52 ad * must be held.
1321 1.52 ad */
1322 1.52 ad void
1323 1.52 ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
1324 1.52 ad {
1325 1.52 ad kmutex_t *old;
1326 1.52 ad
1327 1.152 rmind KASSERT(lwp_locked(l, NULL));
1328 1.52 ad
1329 1.52 ad old = l->l_mutex;
1330 1.107 ad membar_exit();
1331 1.52 ad l->l_mutex = new;
1332 1.52 ad mutex_spin_exit(old);
1333 1.52 ad }
1334 1.52 ad
1335 1.60 yamt int
1336 1.60 yamt lwp_trylock(struct lwp *l)
1337 1.60 yamt {
1338 1.60 yamt kmutex_t *old;
1339 1.60 yamt
1340 1.60 yamt for (;;) {
1341 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1342 1.60 yamt return 0;
1343 1.60 yamt if (__predict_true(l->l_mutex == old))
1344 1.60 yamt return 1;
1345 1.60 yamt mutex_spin_exit(old);
1346 1.60 yamt }
1347 1.60 yamt }
1348 1.60 yamt
1349 1.134 rmind void
1350 1.96 ad lwp_unsleep(lwp_t *l, bool cleanup)
1351 1.96 ad {
1352 1.96 ad
1353 1.96 ad KASSERT(mutex_owned(l->l_mutex));
1354 1.134 rmind (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1355 1.96 ad }
1356 1.96 ad
1357 1.52 ad /*
1358 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1359 1.52 ad * set.
1360 1.52 ad */
1361 1.52 ad void
1362 1.52 ad lwp_userret(struct lwp *l)
1363 1.52 ad {
1364 1.52 ad struct proc *p;
1365 1.52 ad int sig;
1366 1.52 ad
1367 1.114 rmind KASSERT(l == curlwp);
1368 1.114 rmind KASSERT(l->l_stat == LSONPROC);
1369 1.52 ad p = l->l_proc;
1370 1.52 ad
1371 1.75 ad #ifndef __HAVE_FAST_SOFTINTS
1372 1.75 ad /* Run pending soft interrupts. */
1373 1.75 ad if (l->l_cpu->ci_data.cpu_softints != 0)
1374 1.75 ad softint_overlay();
1375 1.75 ad #endif
1376 1.75 ad
1377 1.125 ad #ifdef KERN_SA
1378 1.125 ad /* Generate UNBLOCKED upcall if needed */
1379 1.125 ad if (l->l_flag & LW_SA_BLOCKING) {
1380 1.125 ad sa_unblock_userret(l);
1381 1.125 ad /* NOTREACHED */
1382 1.125 ad }
1383 1.125 ad #endif
1384 1.125 ad
1385 1.52 ad /*
1386 1.52 ad * It should be safe to do this read unlocked on a multiprocessor
1387 1.52 ad * system..
1388 1.126 wrstuden *
1389 1.126 wrstuden * LW_SA_UPCALL will be handled after the while() loop, so don't
1390 1.126 wrstuden * consider it now.
1391 1.52 ad */
1392 1.126 wrstuden while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1393 1.52 ad /*
1394 1.52 ad * Process pending signals first, unless the process
1395 1.61 ad * is dumping core or exiting, where we will instead
1396 1.101 rmind * enter the LW_WSUSPEND case below.
1397 1.52 ad */
1398 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1399 1.61 ad LW_PENDSIG) {
1400 1.103 ad mutex_enter(p->p_lock);
1401 1.52 ad while ((sig = issignal(l)) != 0)
1402 1.52 ad postsig(sig);
1403 1.103 ad mutex_exit(p->p_lock);
1404 1.52 ad }
1405 1.52 ad
1406 1.52 ad /*
1407 1.52 ad * Core-dump or suspend pending.
1408 1.52 ad *
1409 1.159 matt * In case of core dump, suspend ourselves, so that the kernel
1410 1.159 matt * stack and therefore the userland registers saved in the
1411 1.159 matt * trapframe are around for coredump() to write them out.
1412 1.159 matt * We also need to save any PCU resources that we have so that
1413 1.159 matt * they accessible for coredump(). We issue a wakeup on
1414 1.159 matt * p->p_lwpcv so that sigexit() will write the core file out
1415 1.159 matt * once all other LWPs are suspended.
1416 1.52 ad */
1417 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1418 1.159 matt pcu_save_all(l);
1419 1.103 ad mutex_enter(p->p_lock);
1420 1.52 ad p->p_nrlwps--;
1421 1.52 ad cv_broadcast(&p->p_lwpcv);
1422 1.52 ad lwp_lock(l);
1423 1.52 ad l->l_stat = LSSUSPENDED;
1424 1.104 ad lwp_unlock(l);
1425 1.103 ad mutex_exit(p->p_lock);
1426 1.104 ad lwp_lock(l);
1427 1.64 yamt mi_switch(l);
1428 1.52 ad }
1429 1.52 ad
1430 1.52 ad /* Process is exiting. */
1431 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1432 1.52 ad lwp_exit(l);
1433 1.52 ad KASSERT(0);
1434 1.52 ad /* NOTREACHED */
1435 1.52 ad }
1436 1.156 pooka
1437 1.156 pooka /* update lwpctl processor (for vfork child_return) */
1438 1.156 pooka if (l->l_flag & LW_LWPCTL) {
1439 1.156 pooka lwp_lock(l);
1440 1.156 pooka KASSERT(kpreempt_disabled());
1441 1.156 pooka l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1442 1.156 pooka l->l_lwpctl->lc_pctr++;
1443 1.156 pooka l->l_flag &= ~LW_LWPCTL;
1444 1.156 pooka lwp_unlock(l);
1445 1.156 pooka }
1446 1.52 ad }
1447 1.124 wrstuden
1448 1.124 wrstuden #ifdef KERN_SA
1449 1.124 wrstuden /*
1450 1.124 wrstuden * Timer events are handled specially. We only try once to deliver
1451 1.124 wrstuden * pending timer upcalls; if if fails, we can try again on the next
1452 1.124 wrstuden * loop around. If we need to re-enter lwp_userret(), MD code will
1453 1.124 wrstuden * bounce us back here through the trap path after we return.
1454 1.124 wrstuden */
1455 1.124 wrstuden if (p->p_timerpend)
1456 1.124 wrstuden timerupcall(l);
1457 1.125 ad if (l->l_flag & LW_SA_UPCALL)
1458 1.125 ad sa_upcall_userret(l);
1459 1.124 wrstuden #endif /* KERN_SA */
1460 1.52 ad }
1461 1.52 ad
1462 1.52 ad /*
1463 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1464 1.52 ad */
1465 1.52 ad void
1466 1.52 ad lwp_need_userret(struct lwp *l)
1467 1.52 ad {
1468 1.63 ad KASSERT(lwp_locked(l, NULL));
1469 1.52 ad
1470 1.52 ad /*
1471 1.52 ad * Since the tests in lwp_userret() are done unlocked, make sure
1472 1.52 ad * that the condition will be seen before forcing the LWP to enter
1473 1.52 ad * kernel mode.
1474 1.52 ad */
1475 1.81 ad membar_producer();
1476 1.52 ad cpu_signotify(l);
1477 1.52 ad }
1478 1.52 ad
1479 1.52 ad /*
1480 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1481 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1482 1.52 ad */
1483 1.52 ad void
1484 1.52 ad lwp_addref(struct lwp *l)
1485 1.52 ad {
1486 1.52 ad
1487 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1488 1.52 ad KASSERT(l->l_stat != LSZOMB);
1489 1.52 ad KASSERT(l->l_refcnt != 0);
1490 1.52 ad
1491 1.52 ad l->l_refcnt++;
1492 1.52 ad }
1493 1.52 ad
1494 1.52 ad /*
1495 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1496 1.52 ad * then we must finalize the LWP's death.
1497 1.52 ad */
1498 1.52 ad void
1499 1.52 ad lwp_delref(struct lwp *l)
1500 1.52 ad {
1501 1.52 ad struct proc *p = l->l_proc;
1502 1.52 ad
1503 1.103 ad mutex_enter(p->p_lock);
1504 1.142 christos lwp_delref2(l);
1505 1.142 christos mutex_exit(p->p_lock);
1506 1.142 christos }
1507 1.142 christos
1508 1.142 christos /*
1509 1.142 christos * Remove one reference to an LWP. If this is the last reference,
1510 1.142 christos * then we must finalize the LWP's death. The proc mutex is held
1511 1.142 christos * on entry.
1512 1.142 christos */
1513 1.142 christos void
1514 1.142 christos lwp_delref2(struct lwp *l)
1515 1.142 christos {
1516 1.142 christos struct proc *p = l->l_proc;
1517 1.142 christos
1518 1.142 christos KASSERT(mutex_owned(p->p_lock));
1519 1.72 ad KASSERT(l->l_stat != LSZOMB);
1520 1.72 ad KASSERT(l->l_refcnt > 0);
1521 1.52 ad if (--l->l_refcnt == 0)
1522 1.76 ad cv_broadcast(&p->p_lwpcv);
1523 1.52 ad }
1524 1.52 ad
1525 1.52 ad /*
1526 1.52 ad * Drain all references to the current LWP.
1527 1.52 ad */
1528 1.52 ad void
1529 1.52 ad lwp_drainrefs(struct lwp *l)
1530 1.52 ad {
1531 1.52 ad struct proc *p = l->l_proc;
1532 1.52 ad
1533 1.103 ad KASSERT(mutex_owned(p->p_lock));
1534 1.52 ad KASSERT(l->l_refcnt != 0);
1535 1.52 ad
1536 1.52 ad l->l_refcnt--;
1537 1.52 ad while (l->l_refcnt != 0)
1538 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
1539 1.37 ad }
1540 1.41 thorpej
1541 1.41 thorpej /*
1542 1.127 ad * Return true if the specified LWP is 'alive'. Only p->p_lock need
1543 1.127 ad * be held.
1544 1.127 ad */
1545 1.127 ad bool
1546 1.127 ad lwp_alive(lwp_t *l)
1547 1.127 ad {
1548 1.127 ad
1549 1.127 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1550 1.127 ad
1551 1.127 ad switch (l->l_stat) {
1552 1.127 ad case LSSLEEP:
1553 1.127 ad case LSRUN:
1554 1.127 ad case LSONPROC:
1555 1.127 ad case LSSTOP:
1556 1.127 ad case LSSUSPENDED:
1557 1.127 ad return true;
1558 1.127 ad default:
1559 1.127 ad return false;
1560 1.127 ad }
1561 1.127 ad }
1562 1.127 ad
1563 1.127 ad /*
1564 1.127 ad * Return first live LWP in the process.
1565 1.127 ad */
1566 1.127 ad lwp_t *
1567 1.127 ad lwp_find_first(proc_t *p)
1568 1.127 ad {
1569 1.127 ad lwp_t *l;
1570 1.127 ad
1571 1.127 ad KASSERT(mutex_owned(p->p_lock));
1572 1.127 ad
1573 1.127 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1574 1.127 ad if (lwp_alive(l)) {
1575 1.127 ad return l;
1576 1.127 ad }
1577 1.127 ad }
1578 1.127 ad
1579 1.127 ad return NULL;
1580 1.127 ad }
1581 1.127 ad
1582 1.127 ad /*
1583 1.78 ad * Allocate a new lwpctl structure for a user LWP.
1584 1.78 ad */
1585 1.78 ad int
1586 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr)
1587 1.78 ad {
1588 1.78 ad lcproc_t *lp;
1589 1.78 ad u_int bit, i, offset;
1590 1.78 ad struct uvm_object *uao;
1591 1.78 ad int error;
1592 1.78 ad lcpage_t *lcp;
1593 1.78 ad proc_t *p;
1594 1.78 ad lwp_t *l;
1595 1.78 ad
1596 1.78 ad l = curlwp;
1597 1.78 ad p = l->l_proc;
1598 1.78 ad
1599 1.156 pooka /* don't allow a vforked process to create lwp ctls */
1600 1.156 pooka if (p->p_lflag & PL_PPWAIT)
1601 1.156 pooka return EBUSY;
1602 1.156 pooka
1603 1.81 ad if (l->l_lcpage != NULL) {
1604 1.81 ad lcp = l->l_lcpage;
1605 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1606 1.143 njoly return 0;
1607 1.81 ad }
1608 1.78 ad
1609 1.78 ad /* First time around, allocate header structure for the process. */
1610 1.78 ad if ((lp = p->p_lwpctl) == NULL) {
1611 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1612 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1613 1.78 ad lp->lp_uao = NULL;
1614 1.78 ad TAILQ_INIT(&lp->lp_pages);
1615 1.103 ad mutex_enter(p->p_lock);
1616 1.78 ad if (p->p_lwpctl == NULL) {
1617 1.78 ad p->p_lwpctl = lp;
1618 1.103 ad mutex_exit(p->p_lock);
1619 1.78 ad } else {
1620 1.103 ad mutex_exit(p->p_lock);
1621 1.78 ad mutex_destroy(&lp->lp_lock);
1622 1.78 ad kmem_free(lp, sizeof(*lp));
1623 1.78 ad lp = p->p_lwpctl;
1624 1.78 ad }
1625 1.78 ad }
1626 1.78 ad
1627 1.78 ad /*
1628 1.78 ad * Set up an anonymous memory region to hold the shared pages.
1629 1.78 ad * Map them into the process' address space. The user vmspace
1630 1.78 ad * gets the first reference on the UAO.
1631 1.78 ad */
1632 1.78 ad mutex_enter(&lp->lp_lock);
1633 1.78 ad if (lp->lp_uao == NULL) {
1634 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1635 1.78 ad lp->lp_cur = 0;
1636 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ;
1637 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1638 1.78 ad (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1639 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1640 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1641 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1642 1.78 ad if (error != 0) {
1643 1.78 ad uao_detach(lp->lp_uao);
1644 1.78 ad lp->lp_uao = NULL;
1645 1.78 ad mutex_exit(&lp->lp_lock);
1646 1.78 ad return error;
1647 1.78 ad }
1648 1.78 ad }
1649 1.78 ad
1650 1.78 ad /* Get a free block and allocate for this LWP. */
1651 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1652 1.78 ad if (lcp->lcp_nfree != 0)
1653 1.78 ad break;
1654 1.78 ad }
1655 1.78 ad if (lcp == NULL) {
1656 1.78 ad /* Nothing available - try to set up a free page. */
1657 1.78 ad if (lp->lp_cur == lp->lp_max) {
1658 1.78 ad mutex_exit(&lp->lp_lock);
1659 1.78 ad return ENOMEM;
1660 1.78 ad }
1661 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1662 1.79 yamt if (lcp == NULL) {
1663 1.79 yamt mutex_exit(&lp->lp_lock);
1664 1.78 ad return ENOMEM;
1665 1.79 yamt }
1666 1.78 ad /*
1667 1.78 ad * Wire the next page down in kernel space. Since this
1668 1.78 ad * is a new mapping, we must add a reference.
1669 1.78 ad */
1670 1.78 ad uao = lp->lp_uao;
1671 1.78 ad (*uao->pgops->pgo_reference)(uao);
1672 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map);
1673 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1674 1.78 ad uao, lp->lp_cur, PAGE_SIZE,
1675 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1676 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1677 1.78 ad if (error != 0) {
1678 1.78 ad mutex_exit(&lp->lp_lock);
1679 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1680 1.78 ad (*uao->pgops->pgo_detach)(uao);
1681 1.78 ad return error;
1682 1.78 ad }
1683 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1684 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1685 1.89 yamt if (error != 0) {
1686 1.89 yamt mutex_exit(&lp->lp_lock);
1687 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr,
1688 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE);
1689 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1690 1.89 yamt return error;
1691 1.89 yamt }
1692 1.78 ad /* Prepare the page descriptor and link into the list. */
1693 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1694 1.78 ad lp->lp_cur += PAGE_SIZE;
1695 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE;
1696 1.78 ad lcp->lcp_rotor = 0;
1697 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1698 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1699 1.78 ad }
1700 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1701 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES)
1702 1.78 ad i = 0;
1703 1.78 ad }
1704 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1;
1705 1.78 ad lcp->lcp_bitmap[i] ^= (1 << bit);
1706 1.78 ad lcp->lcp_rotor = i;
1707 1.78 ad lcp->lcp_nfree--;
1708 1.78 ad l->l_lcpage = lcp;
1709 1.78 ad offset = (i << 5) + bit;
1710 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1711 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1712 1.78 ad mutex_exit(&lp->lp_lock);
1713 1.78 ad
1714 1.107 ad KPREEMPT_DISABLE(l);
1715 1.111 ad l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1716 1.107 ad KPREEMPT_ENABLE(l);
1717 1.78 ad
1718 1.78 ad return 0;
1719 1.78 ad }
1720 1.78 ad
1721 1.78 ad /*
1722 1.78 ad * Free an lwpctl structure back to the per-process list.
1723 1.78 ad */
1724 1.78 ad void
1725 1.78 ad lwp_ctl_free(lwp_t *l)
1726 1.78 ad {
1727 1.156 pooka struct proc *p = l->l_proc;
1728 1.78 ad lcproc_t *lp;
1729 1.78 ad lcpage_t *lcp;
1730 1.78 ad u_int map, offset;
1731 1.78 ad
1732 1.156 pooka /* don't free a lwp context we borrowed for vfork */
1733 1.156 pooka if (p->p_lflag & PL_PPWAIT) {
1734 1.156 pooka l->l_lwpctl = NULL;
1735 1.156 pooka return;
1736 1.156 pooka }
1737 1.156 pooka
1738 1.156 pooka lp = p->p_lwpctl;
1739 1.78 ad KASSERT(lp != NULL);
1740 1.78 ad
1741 1.78 ad lcp = l->l_lcpage;
1742 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1743 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE);
1744 1.78 ad
1745 1.78 ad mutex_enter(&lp->lp_lock);
1746 1.78 ad lcp->lcp_nfree++;
1747 1.78 ad map = offset >> 5;
1748 1.78 ad lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1749 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1750 1.78 ad lcp->lcp_rotor = map;
1751 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1752 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1753 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1754 1.78 ad }
1755 1.78 ad mutex_exit(&lp->lp_lock);
1756 1.78 ad }
1757 1.78 ad
1758 1.78 ad /*
1759 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely
1760 1.78 ad * called by the last LWP in the process.
1761 1.78 ad */
1762 1.78 ad void
1763 1.78 ad lwp_ctl_exit(void)
1764 1.78 ad {
1765 1.78 ad lcpage_t *lcp, *next;
1766 1.78 ad lcproc_t *lp;
1767 1.78 ad proc_t *p;
1768 1.78 ad lwp_t *l;
1769 1.78 ad
1770 1.78 ad l = curlwp;
1771 1.78 ad l->l_lwpctl = NULL;
1772 1.95 ad l->l_lcpage = NULL;
1773 1.78 ad p = l->l_proc;
1774 1.78 ad lp = p->p_lwpctl;
1775 1.78 ad
1776 1.78 ad KASSERT(lp != NULL);
1777 1.78 ad KASSERT(p->p_nlwps == 1);
1778 1.78 ad
1779 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1780 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain);
1781 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr,
1782 1.78 ad lcp->lcp_kaddr + PAGE_SIZE);
1783 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1784 1.78 ad }
1785 1.78 ad
1786 1.78 ad if (lp->lp_uao != NULL) {
1787 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1788 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ);
1789 1.78 ad }
1790 1.78 ad
1791 1.78 ad mutex_destroy(&lp->lp_lock);
1792 1.78 ad kmem_free(lp, sizeof(*lp));
1793 1.78 ad p->p_lwpctl = NULL;
1794 1.78 ad }
1795 1.84 yamt
1796 1.130 ad /*
1797 1.130 ad * Return the current LWP's "preemption counter". Used to detect
1798 1.130 ad * preemption across operations that can tolerate preemption without
1799 1.130 ad * crashing, but which may generate incorrect results if preempted.
1800 1.130 ad */
1801 1.130 ad uint64_t
1802 1.130 ad lwp_pctr(void)
1803 1.130 ad {
1804 1.130 ad
1805 1.130 ad return curlwp->l_ncsw;
1806 1.130 ad }
1807 1.130 ad
1808 1.151 chs /*
1809 1.151 chs * Set an LWP's private data pointer.
1810 1.151 chs */
1811 1.151 chs int
1812 1.151 chs lwp_setprivate(struct lwp *l, void *ptr)
1813 1.151 chs {
1814 1.151 chs int error = 0;
1815 1.151 chs
1816 1.151 chs l->l_private = ptr;
1817 1.151 chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
1818 1.151 chs error = cpu_lwp_setprivate(l, ptr);
1819 1.151 chs #endif
1820 1.151 chs return error;
1821 1.151 chs }
1822 1.151 chs
1823 1.84 yamt #if defined(DDB)
1824 1.153 rmind #include <machine/pcb.h>
1825 1.153 rmind
1826 1.84 yamt void
1827 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1828 1.84 yamt {
1829 1.84 yamt lwp_t *l;
1830 1.84 yamt
1831 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) {
1832 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1833 1.84 yamt
1834 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) {
1835 1.84 yamt continue;
1836 1.84 yamt }
1837 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n",
1838 1.84 yamt (void *)addr, (void *)stack,
1839 1.84 yamt (size_t)(addr - stack), l);
1840 1.84 yamt }
1841 1.84 yamt }
1842 1.84 yamt #endif /* defined(DDB) */
1843