Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.202.2.3
      1  1.202.2.3    martin /*	$NetBSD: kern_lwp.c,v 1.202.2.3 2020/02/12 19:35:31 martin Exp $	*/
      2        1.2   thorpej 
      3        1.2   thorpej /*-
      4      1.127        ad  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5        1.2   thorpej  * All rights reserved.
      6        1.2   thorpej  *
      7        1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.52        ad  * by Nathan J. Williams, and Andrew Doran.
      9        1.2   thorpej  *
     10        1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     11        1.2   thorpej  * modification, are permitted provided that the following conditions
     12        1.2   thorpej  * are met:
     13        1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     14        1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     15        1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17        1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     18        1.2   thorpej  *
     19        1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30        1.2   thorpej  */
     31        1.9     lukem 
     32       1.52        ad /*
     33       1.52        ad  * Overview
     34       1.52        ad  *
     35       1.66        ad  *	Lightweight processes (LWPs) are the basic unit or thread of
     36       1.52        ad  *	execution within the kernel.  The core state of an LWP is described
     37       1.66        ad  *	by "struct lwp", also known as lwp_t.
     38       1.52        ad  *
     39       1.52        ad  *	Each LWP is contained within a process (described by "struct proc"),
     40       1.52        ad  *	Every process contains at least one LWP, but may contain more.  The
     41       1.52        ad  *	process describes attributes shared among all of its LWPs such as a
     42       1.52        ad  *	private address space, global execution state (stopped, active,
     43       1.52        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44       1.66        ad  *	machine, multiple LWPs be executing concurrently in the kernel.
     45       1.52        ad  *
     46       1.52        ad  * Execution states
     47       1.52        ad  *
     48       1.52        ad  *	At any given time, an LWP has overall state that is described by
     49       1.52        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50       1.52        ad  *	set is guaranteed to represent the absolute, current state of the
     51       1.52        ad  *	LWP:
     52      1.101     rmind  *
     53      1.101     rmind  *	LSONPROC
     54      1.101     rmind  *
     55      1.101     rmind  *		On processor: the LWP is executing on a CPU, either in the
     56      1.101     rmind  *		kernel or in user space.
     57      1.101     rmind  *
     58      1.101     rmind  *	LSRUN
     59      1.101     rmind  *
     60      1.101     rmind  *		Runnable: the LWP is parked on a run queue, and may soon be
     61      1.101     rmind  *		chosen to run by an idle processor, or by a processor that
     62      1.101     rmind  *		has been asked to preempt a currently runnning but lower
     63      1.134     rmind  *		priority LWP.
     64      1.101     rmind  *
     65      1.101     rmind  *	LSIDL
     66      1.101     rmind  *
     67      1.101     rmind  *		Idle: the LWP has been created but has not yet executed,
     68       1.66        ad  *		or it has ceased executing a unit of work and is waiting
     69       1.66        ad  *		to be started again.
     70      1.101     rmind  *
     71      1.101     rmind  *	LSSUSPENDED:
     72      1.101     rmind  *
     73      1.101     rmind  *		Suspended: the LWP has had its execution suspended by
     74       1.52        ad  *		another LWP in the same process using the _lwp_suspend()
     75       1.52        ad  *		system call.  User-level LWPs also enter the suspended
     76       1.52        ad  *		state when the system is shutting down.
     77       1.52        ad  *
     78       1.52        ad  *	The second set represent a "statement of intent" on behalf of the
     79       1.52        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     80       1.66        ad  *	sleeping or idle. It is expected to take the necessary action to
     81      1.101     rmind  *	stop executing or become "running" again within a short timeframe.
     82      1.115        ad  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83      1.101     rmind  *	Importantly, it indicates that its state is tied to a CPU.
     84      1.101     rmind  *
     85      1.101     rmind  *	LSZOMB:
     86      1.101     rmind  *
     87      1.101     rmind  *		Dead or dying: the LWP has released most of its resources
     88      1.129        ad  *		and is about to switch away into oblivion, or has already
     89       1.66        ad  *		switched away.  When it switches away, its few remaining
     90       1.66        ad  *		resources can be collected.
     91      1.101     rmind  *
     92      1.101     rmind  *	LSSLEEP:
     93      1.101     rmind  *
     94      1.101     rmind  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95      1.101     rmind  *		has switched away or will switch away shortly to allow other
     96       1.66        ad  *		LWPs to run on the CPU.
     97      1.101     rmind  *
     98      1.101     rmind  *	LSSTOP:
     99      1.101     rmind  *
    100      1.101     rmind  *		Stopped: the LWP has been stopped as a result of a job
    101      1.101     rmind  *		control signal, or as a result of the ptrace() interface.
    102      1.101     rmind  *
    103      1.101     rmind  *		Stopped LWPs may run briefly within the kernel to handle
    104      1.101     rmind  *		signals that they receive, but will not return to user space
    105      1.101     rmind  *		until their process' state is changed away from stopped.
    106      1.101     rmind  *
    107      1.101     rmind  *		Single LWPs within a process can not be set stopped
    108      1.101     rmind  *		selectively: all actions that can stop or continue LWPs
    109      1.101     rmind  *		occur at the process level.
    110      1.101     rmind  *
    111       1.52        ad  * State transitions
    112       1.52        ad  *
    113       1.66        ad  *	Note that the LSSTOP state may only be set when returning to
    114       1.66        ad  *	user space in userret(), or when sleeping interruptably.  The
    115       1.66        ad  *	LSSUSPENDED state may only be set in userret().  Before setting
    116       1.66        ad  *	those states, we try to ensure that the LWPs will release all
    117       1.66        ad  *	locks that they hold, and at a minimum try to ensure that the
    118       1.66        ad  *	LWP can be set runnable again by a signal.
    119       1.52        ad  *
    120       1.52        ad  *	LWPs may transition states in the following ways:
    121       1.52        ad  *
    122       1.52        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123      1.129        ad  *		    				    > SLEEP
    124      1.129        ad  *		    				    > STOPPED
    125       1.52        ad  *						    > SUSPENDED
    126       1.52        ad  *						    > ZOMB
    127      1.129        ad  *						    > IDL (special cases)
    128       1.52        ad  *
    129       1.52        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130      1.129        ad  *	            > SLEEP
    131       1.52        ad  *
    132       1.52        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133      1.101     rmind  *		    > RUN			    > SUSPENDED
    134      1.101     rmind  *		    > STOPPED			    > STOPPED
    135      1.129        ad  *						    > ONPROC (special cases)
    136       1.52        ad  *
    137      1.129        ad  *	Some state transitions are only possible with kernel threads (eg
    138      1.129        ad  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139      1.129        ad  *	free of unwanted side effects.
    140       1.66        ad  *
    141      1.114     rmind  * Migration
    142      1.114     rmind  *
    143      1.114     rmind  *	Migration of threads from one CPU to another could be performed
    144      1.114     rmind  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145      1.114     rmind  *	functions.  The universal lwp_migrate() function should be used for
    146      1.114     rmind  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147      1.114     rmind  *	of LWP may change, while it is not locked.
    148      1.114     rmind  *
    149       1.52        ad  * Locking
    150       1.52        ad  *
    151       1.52        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    152       1.66        ad  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153       1.52        ad  *	each field are documented in sys/lwp.h.
    154       1.52        ad  *
    155       1.66        ad  *	State transitions must be made with the LWP's general lock held,
    156      1.152     rmind  *	and may cause the LWP's lock pointer to change.  Manipulation of
    157       1.66        ad  *	the general lock is not performed directly, but through calls to
    158      1.152     rmind  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    159      1.152     rmind  *	adaptive locks are not allowed to be released while the LWP's lock
    160      1.152     rmind  *	is being held (unlike for other spin-locks).
    161       1.52        ad  *
    162       1.52        ad  *	States and their associated locks:
    163       1.52        ad  *
    164       1.74     rmind  *	LSONPROC, LSZOMB:
    165       1.52        ad  *
    166       1.64      yamt  *		Always covered by spc_lwplock, which protects running LWPs.
    167      1.129        ad  *		This is a per-CPU lock and matches lwp::l_cpu.
    168       1.52        ad  *
    169       1.74     rmind  *	LSIDL, LSRUN:
    170       1.52        ad  *
    171       1.64      yamt  *		Always covered by spc_mutex, which protects the run queues.
    172      1.129        ad  *		This is a per-CPU lock and matches lwp::l_cpu.
    173       1.52        ad  *
    174       1.52        ad  *	LSSLEEP:
    175       1.52        ad  *
    176       1.66        ad  *		Covered by a lock associated with the sleep queue that the
    177      1.129        ad  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    178       1.52        ad  *
    179       1.52        ad  *	LSSTOP, LSSUSPENDED:
    180      1.101     rmind  *
    181       1.52        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    182       1.66        ad  *		l_mutex references the sleep queue lock.  If the LWP was
    183       1.52        ad  *		runnable or on the CPU when halted, or has been removed from
    184       1.66        ad  *		the sleep queue since halted, then the lock is spc_lwplock.
    185       1.52        ad  *
    186       1.52        ad  *	The lock order is as follows:
    187       1.52        ad  *
    188       1.64      yamt  *		spc::spc_lwplock ->
    189      1.112        ad  *		    sleeptab::st_mutex ->
    190       1.64      yamt  *			tschain_t::tc_mutex ->
    191       1.64      yamt  *			    spc::spc_mutex
    192       1.52        ad  *
    193      1.103        ad  *	Each process has an scheduler state lock (proc::p_lock), and a
    194       1.52        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195       1.52        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    196      1.103        ad  *	following states, p_lock must be held and the process wide counters
    197       1.52        ad  *	adjusted:
    198       1.52        ad  *
    199       1.52        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200       1.52        ad  *
    201      1.129        ad  *	(But not always for kernel threads.  There are some special cases
    202      1.129        ad  *	as mentioned above.  See kern_softint.c.)
    203      1.129        ad  *
    204       1.52        ad  *	Note that an LWP is considered running or likely to run soon if in
    205       1.52        ad  *	one of the following states.  This affects the value of p_nrlwps:
    206       1.52        ad  *
    207       1.52        ad  *		LSRUN, LSONPROC, LSSLEEP
    208       1.52        ad  *
    209      1.103        ad  *	p_lock does not need to be held when transitioning among these
    210      1.129        ad  *	three states, hence p_lock is rarely taken for state transitions.
    211       1.52        ad  */
    212       1.52        ad 
    213        1.9     lukem #include <sys/cdefs.h>
    214  1.202.2.3    martin __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.202.2.3 2020/02/12 19:35:31 martin Exp $");
    215        1.8    martin 
    216       1.84      yamt #include "opt_ddb.h"
    217       1.52        ad #include "opt_lockdebug.h"
    218      1.139    darran #include "opt_dtrace.h"
    219        1.2   thorpej 
    220       1.47   hannken #define _LWP_API_PRIVATE
    221       1.47   hannken 
    222        1.2   thorpej #include <sys/param.h>
    223        1.2   thorpej #include <sys/systm.h>
    224       1.64      yamt #include <sys/cpu.h>
    225        1.2   thorpej #include <sys/pool.h>
    226        1.2   thorpej #include <sys/proc.h>
    227        1.2   thorpej #include <sys/syscallargs.h>
    228       1.57       dsl #include <sys/syscall_stats.h>
    229       1.37        ad #include <sys/kauth.h>
    230      1.161  christos #include <sys/pserialize.h>
    231       1.52        ad #include <sys/sleepq.h>
    232       1.52        ad #include <sys/lockdebug.h>
    233       1.52        ad #include <sys/kmem.h>
    234       1.91     rmind #include <sys/pset.h>
    235       1.75        ad #include <sys/intr.h>
    236       1.78        ad #include <sys/lwpctl.h>
    237       1.81        ad #include <sys/atomic.h>
    238      1.131        ad #include <sys/filedesc.h>
    239      1.196   hannken #include <sys/fstrans.h>
    240      1.138    darran #include <sys/dtrace_bsd.h>
    241      1.141    darran #include <sys/sdt.h>
    242  1.202.2.1    martin #include <sys/ptrace.h>
    243      1.157     rmind #include <sys/xcall.h>
    244      1.169  christos #include <sys/uidinfo.h>
    245      1.169  christos #include <sys/sysctl.h>
    246      1.201     ozaki #include <sys/psref.h>
    247      1.138    darran 
    248        1.2   thorpej #include <uvm/uvm_extern.h>
    249       1.80     skrll #include <uvm/uvm_object.h>
    250        1.2   thorpej 
    251      1.152     rmind static pool_cache_t	lwp_cache	__read_mostly;
    252      1.152     rmind struct lwplist		alllwp		__cacheline_aligned;
    253       1.41   thorpej 
    254      1.157     rmind static void		lwp_dtor(void *, void *);
    255      1.157     rmind 
    256      1.141    darran /* DTrace proc provider probes */
    257      1.180  christos SDT_PROVIDER_DEFINE(proc);
    258      1.180  christos 
    259      1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
    260      1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
    261      1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
    262      1.141    darran 
    263      1.147     pooka struct turnstile turnstile0;
    264      1.147     pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    265      1.147     pooka #ifdef LWP0_CPU_INFO
    266      1.147     pooka 	.l_cpu = LWP0_CPU_INFO,
    267      1.147     pooka #endif
    268      1.154      matt #ifdef LWP0_MD_INITIALIZER
    269      1.154      matt 	.l_md = LWP0_MD_INITIALIZER,
    270      1.154      matt #endif
    271      1.147     pooka 	.l_proc = &proc0,
    272      1.147     pooka 	.l_lid = 1,
    273      1.147     pooka 	.l_flag = LW_SYSTEM,
    274      1.147     pooka 	.l_stat = LSONPROC,
    275      1.147     pooka 	.l_ts = &turnstile0,
    276      1.147     pooka 	.l_syncobj = &sched_syncobj,
    277      1.147     pooka 	.l_refcnt = 1,
    278      1.147     pooka 	.l_priority = PRI_USER + NPRI_USER - 1,
    279      1.147     pooka 	.l_inheritedprio = -1,
    280      1.147     pooka 	.l_class = SCHED_OTHER,
    281      1.147     pooka 	.l_psid = PS_NONE,
    282      1.147     pooka 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    283      1.147     pooka 	.l_name = __UNCONST("swapper"),
    284      1.147     pooka 	.l_fd = &filedesc0,
    285      1.147     pooka };
    286      1.147     pooka 
    287      1.169  christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
    288      1.169  christos 
    289      1.169  christos /*
    290      1.169  christos  * sysctl helper routine for kern.maxlwp. Ensures that the new
    291      1.169  christos  * values are not too low or too high.
    292      1.169  christos  */
    293      1.169  christos static int
    294      1.169  christos sysctl_kern_maxlwp(SYSCTLFN_ARGS)
    295      1.169  christos {
    296      1.169  christos 	int error, nmaxlwp;
    297      1.169  christos 	struct sysctlnode node;
    298      1.169  christos 
    299      1.169  christos 	nmaxlwp = maxlwp;
    300      1.169  christos 	node = *rnode;
    301      1.169  christos 	node.sysctl_data = &nmaxlwp;
    302      1.169  christos 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    303      1.169  christos 	if (error || newp == NULL)
    304      1.169  christos 		return error;
    305      1.169  christos 
    306      1.169  christos 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
    307      1.169  christos 		return EINVAL;
    308      1.169  christos 	if (nmaxlwp > cpu_maxlwp())
    309      1.169  christos 		return EINVAL;
    310      1.169  christos 	maxlwp = nmaxlwp;
    311      1.169  christos 
    312      1.169  christos 	return 0;
    313      1.169  christos }
    314      1.169  christos 
    315      1.169  christos static void
    316      1.169  christos sysctl_kern_lwp_setup(void)
    317      1.169  christos {
    318      1.169  christos 	struct sysctllog *clog = NULL;
    319      1.169  christos 
    320      1.169  christos 	sysctl_createv(&clog, 0, NULL, NULL,
    321      1.169  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    322      1.169  christos 		       CTLTYPE_INT, "maxlwp",
    323      1.169  christos 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
    324      1.169  christos 		       sysctl_kern_maxlwp, 0, NULL, 0,
    325      1.169  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    326      1.169  christos }
    327      1.169  christos 
    328       1.41   thorpej void
    329       1.41   thorpej lwpinit(void)
    330       1.41   thorpej {
    331       1.41   thorpej 
    332      1.152     rmind 	LIST_INIT(&alllwp);
    333      1.144     pooka 	lwpinit_specificdata();
    334       1.52        ad 	lwp_sys_init();
    335       1.87        ad 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    336      1.157     rmind 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
    337      1.169  christos 
    338      1.169  christos 	maxlwp = cpu_maxlwp();
    339      1.169  christos 	sysctl_kern_lwp_setup();
    340       1.41   thorpej }
    341       1.41   thorpej 
    342      1.147     pooka void
    343      1.147     pooka lwp0_init(void)
    344      1.147     pooka {
    345      1.147     pooka 	struct lwp *l = &lwp0;
    346      1.147     pooka 
    347      1.147     pooka 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    348      1.148     pooka 	KASSERT(l->l_lid == proc0.p_nlwpid);
    349      1.147     pooka 
    350      1.147     pooka 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    351      1.147     pooka 
    352      1.147     pooka 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    353      1.147     pooka 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    354      1.147     pooka 	cv_init(&l->l_sigcv, "sigwait");
    355      1.171     rmind 	cv_init(&l->l_waitcv, "vfork");
    356      1.147     pooka 
    357      1.147     pooka 	kauth_cred_hold(proc0.p_cred);
    358      1.147     pooka 	l->l_cred = proc0.p_cred;
    359      1.147     pooka 
    360      1.164      yamt 	kdtrace_thread_ctor(NULL, l);
    361      1.147     pooka 	lwp_initspecific(l);
    362      1.147     pooka 
    363      1.147     pooka 	SYSCALL_TIME_LWP_INIT(l);
    364      1.147     pooka }
    365      1.147     pooka 
    366      1.157     rmind static void
    367      1.157     rmind lwp_dtor(void *arg, void *obj)
    368      1.157     rmind {
    369      1.157     rmind 	lwp_t *l = obj;
    370      1.157     rmind 	uint64_t where;
    371      1.157     rmind 	(void)l;
    372      1.157     rmind 
    373      1.157     rmind 	/*
    374      1.157     rmind 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    375      1.157     rmind 	 * calls will exit before memory of LWP is returned to the pool, where
    376      1.157     rmind 	 * KVA of LWP structure might be freed and re-used for other purposes.
    377      1.157     rmind 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    378      1.157     rmind 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
    379      1.157     rmind 	 * the value of l->l_cpu must be still valid at this point.
    380      1.157     rmind 	 */
    381      1.157     rmind 	KASSERT(l->l_cpu != NULL);
    382      1.157     rmind 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    383      1.157     rmind 	xc_wait(where);
    384      1.157     rmind }
    385      1.157     rmind 
    386       1.52        ad /*
    387       1.52        ad  * Set an suspended.
    388       1.52        ad  *
    389      1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    390       1.52        ad  * LWP before return.
    391       1.52        ad  */
    392        1.2   thorpej int
    393       1.52        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    394        1.2   thorpej {
    395       1.52        ad 	int error;
    396        1.2   thorpej 
    397      1.103        ad 	KASSERT(mutex_owned(t->l_proc->p_lock));
    398       1.63        ad 	KASSERT(lwp_locked(t, NULL));
    399       1.33       chs 
    400       1.52        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    401        1.2   thorpej 
    402       1.52        ad 	/*
    403       1.52        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    404       1.52        ad 	 * else or deadlock could occur.  We won't return to userspace.
    405        1.2   thorpej 	 */
    406      1.109     rmind 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    407       1.52        ad 		lwp_unlock(t);
    408       1.52        ad 		return (EDEADLK);
    409        1.2   thorpej 	}
    410        1.2   thorpej 
    411  1.202.2.2    martin 	if ((t->l_flag & LW_DBGSUSPEND) != 0) {
    412  1.202.2.2    martin 		lwp_unlock(t);
    413  1.202.2.2    martin 		return 0;
    414  1.202.2.2    martin 	}
    415  1.202.2.2    martin 
    416       1.52        ad 	error = 0;
    417        1.2   thorpej 
    418       1.52        ad 	switch (t->l_stat) {
    419       1.52        ad 	case LSRUN:
    420       1.52        ad 	case LSONPROC:
    421       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    422       1.52        ad 		lwp_need_userret(t);
    423       1.52        ad 		lwp_unlock(t);
    424       1.52        ad 		break;
    425        1.2   thorpej 
    426       1.52        ad 	case LSSLEEP:
    427       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    428        1.2   thorpej 
    429        1.2   thorpej 		/*
    430       1.52        ad 		 * Kick the LWP and try to get it to the kernel boundary
    431       1.52        ad 		 * so that it will release any locks that it holds.
    432       1.52        ad 		 * setrunnable() will release the lock.
    433        1.2   thorpej 		 */
    434       1.56     pavel 		if ((t->l_flag & LW_SINTR) != 0)
    435       1.52        ad 			setrunnable(t);
    436       1.52        ad 		else
    437       1.52        ad 			lwp_unlock(t);
    438       1.52        ad 		break;
    439        1.2   thorpej 
    440       1.52        ad 	case LSSUSPENDED:
    441       1.52        ad 		lwp_unlock(t);
    442       1.52        ad 		break;
    443       1.17      manu 
    444       1.52        ad 	case LSSTOP:
    445       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    446       1.52        ad 		setrunnable(t);
    447       1.52        ad 		break;
    448        1.2   thorpej 
    449       1.52        ad 	case LSIDL:
    450       1.52        ad 	case LSZOMB:
    451       1.52        ad 		error = EINTR; /* It's what Solaris does..... */
    452       1.52        ad 		lwp_unlock(t);
    453       1.52        ad 		break;
    454        1.2   thorpej 	}
    455        1.2   thorpej 
    456       1.69     rmind 	return (error);
    457        1.2   thorpej }
    458        1.2   thorpej 
    459       1.52        ad /*
    460       1.52        ad  * Restart a suspended LWP.
    461       1.52        ad  *
    462      1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    463       1.52        ad  * LWP before return.
    464       1.52        ad  */
    465        1.2   thorpej void
    466        1.2   thorpej lwp_continue(struct lwp *l)
    467        1.2   thorpej {
    468        1.2   thorpej 
    469      1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
    470       1.63        ad 	KASSERT(lwp_locked(l, NULL));
    471       1.52        ad 
    472       1.52        ad 	/* If rebooting or not suspended, then just bail out. */
    473       1.56     pavel 	if ((l->l_flag & LW_WREBOOT) != 0) {
    474       1.52        ad 		lwp_unlock(l);
    475        1.2   thorpej 		return;
    476       1.10      fvdl 	}
    477        1.2   thorpej 
    478       1.56     pavel 	l->l_flag &= ~LW_WSUSPEND;
    479        1.2   thorpej 
    480  1.202.2.2    martin 	if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
    481       1.52        ad 		lwp_unlock(l);
    482       1.52        ad 		return;
    483        1.2   thorpej 	}
    484        1.2   thorpej 
    485       1.52        ad 	/* setrunnable() will release the lock. */
    486       1.52        ad 	setrunnable(l);
    487        1.2   thorpej }
    488        1.2   thorpej 
    489       1.52        ad /*
    490      1.142  christos  * Restart a stopped LWP.
    491      1.142  christos  *
    492      1.142  christos  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    493      1.142  christos  * LWP before return.
    494      1.142  christos  */
    495      1.142  christos void
    496      1.142  christos lwp_unstop(struct lwp *l)
    497      1.142  christos {
    498      1.142  christos 	struct proc *p = l->l_proc;
    499      1.167     rmind 
    500      1.142  christos 	KASSERT(mutex_owned(proc_lock));
    501      1.142  christos 	KASSERT(mutex_owned(p->p_lock));
    502      1.142  christos 
    503      1.142  christos 	lwp_lock(l);
    504      1.142  christos 
    505  1.202.2.2    martin 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    506  1.202.2.2    martin 
    507      1.142  christos 	/* If not stopped, then just bail out. */
    508      1.142  christos 	if (l->l_stat != LSSTOP) {
    509      1.142  christos 		lwp_unlock(l);
    510      1.142  christos 		return;
    511      1.142  christos 	}
    512      1.142  christos 
    513      1.142  christos 	p->p_stat = SACTIVE;
    514      1.142  christos 	p->p_sflag &= ~PS_STOPPING;
    515      1.142  christos 
    516      1.142  christos 	if (!p->p_waited)
    517      1.142  christos 		p->p_pptr->p_nstopchild--;
    518      1.142  christos 
    519      1.142  christos 	if (l->l_wchan == NULL) {
    520      1.142  christos 		/* setrunnable() will release the lock. */
    521      1.142  christos 		setrunnable(l);
    522      1.183  christos 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
    523      1.163  christos 		/* setrunnable() so we can receive the signal */
    524      1.163  christos 		setrunnable(l);
    525      1.142  christos 	} else {
    526      1.142  christos 		l->l_stat = LSSLEEP;
    527      1.142  christos 		p->p_nrlwps++;
    528      1.142  christos 		lwp_unlock(l);
    529      1.142  christos 	}
    530      1.142  christos }
    531      1.142  christos 
    532      1.142  christos /*
    533       1.52        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    534       1.52        ad  * non-zero, we are waiting for a specific LWP.
    535       1.52        ad  *
    536      1.103        ad  * Must be called with p->p_lock held.
    537       1.52        ad  */
    538        1.2   thorpej int
    539      1.173     rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
    540        1.2   thorpej {
    541      1.173     rmind 	const lwpid_t curlid = l->l_lid;
    542      1.173     rmind 	proc_t *p = l->l_proc;
    543      1.173     rmind 	lwp_t *l2;
    544      1.173     rmind 	int error;
    545        1.2   thorpej 
    546      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
    547       1.52        ad 
    548       1.52        ad 	p->p_nlwpwait++;
    549       1.63        ad 	l->l_waitingfor = lid;
    550       1.52        ad 
    551       1.52        ad 	for (;;) {
    552      1.173     rmind 		int nfound;
    553      1.173     rmind 
    554       1.52        ad 		/*
    555       1.52        ad 		 * Avoid a race between exit1() and sigexit(): if the
    556       1.52        ad 		 * process is dumping core, then we need to bail out: call
    557       1.52        ad 		 * into lwp_userret() where we will be suspended until the
    558       1.52        ad 		 * deed is done.
    559       1.52        ad 		 */
    560       1.52        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    561      1.103        ad 			mutex_exit(p->p_lock);
    562       1.52        ad 			lwp_userret(l);
    563      1.173     rmind 			KASSERT(false);
    564       1.52        ad 		}
    565       1.52        ad 
    566       1.52        ad 		/*
    567       1.52        ad 		 * First off, drain any detached LWP that is waiting to be
    568       1.52        ad 		 * reaped.
    569       1.52        ad 		 */
    570       1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    571       1.52        ad 			p->p_zomblwp = NULL;
    572       1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    573      1.103        ad 			mutex_enter(p->p_lock);
    574       1.52        ad 		}
    575       1.52        ad 
    576       1.52        ad 		/*
    577       1.52        ad 		 * Now look for an LWP to collect.  If the whole process is
    578       1.52        ad 		 * exiting, count detached LWPs as eligible to be collected,
    579       1.52        ad 		 * but don't drain them here.
    580       1.52        ad 		 */
    581       1.52        ad 		nfound = 0;
    582       1.63        ad 		error = 0;
    583       1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    584       1.63        ad 			/*
    585       1.63        ad 			 * If a specific wait and the target is waiting on
    586       1.63        ad 			 * us, then avoid deadlock.  This also traps LWPs
    587       1.63        ad 			 * that try to wait on themselves.
    588       1.63        ad 			 *
    589       1.63        ad 			 * Note that this does not handle more complicated
    590       1.63        ad 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    591       1.63        ad 			 * can still be killed so it is not a major problem.
    592       1.63        ad 			 */
    593       1.63        ad 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    594       1.63        ad 				error = EDEADLK;
    595       1.63        ad 				break;
    596       1.63        ad 			}
    597       1.63        ad 			if (l2 == l)
    598       1.52        ad 				continue;
    599       1.52        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    600       1.63        ad 				nfound += exiting;
    601       1.63        ad 				continue;
    602       1.63        ad 			}
    603       1.63        ad 			if (lid != 0) {
    604       1.63        ad 				if (l2->l_lid != lid)
    605       1.63        ad 					continue;
    606       1.63        ad 				/*
    607       1.63        ad 				 * Mark this LWP as the first waiter, if there
    608       1.63        ad 				 * is no other.
    609       1.63        ad 				 */
    610       1.63        ad 				if (l2->l_waiter == 0)
    611       1.63        ad 					l2->l_waiter = curlid;
    612       1.63        ad 			} else if (l2->l_waiter != 0) {
    613       1.63        ad 				/*
    614       1.63        ad 				 * It already has a waiter - so don't
    615       1.63        ad 				 * collect it.  If the waiter doesn't
    616       1.63        ad 				 * grab it we'll get another chance
    617       1.63        ad 				 * later.
    618       1.63        ad 				 */
    619       1.63        ad 				nfound++;
    620       1.52        ad 				continue;
    621       1.52        ad 			}
    622       1.52        ad 			nfound++;
    623        1.2   thorpej 
    624       1.52        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    625       1.52        ad 			if (l2->l_stat != LSZOMB)
    626       1.52        ad 				continue;
    627        1.2   thorpej 
    628       1.63        ad 			/*
    629       1.63        ad 			 * We're no longer waiting.  Reset the "first waiter"
    630       1.63        ad 			 * pointer on the target, in case it was us.
    631       1.63        ad 			 */
    632       1.63        ad 			l->l_waitingfor = 0;
    633       1.63        ad 			l2->l_waiter = 0;
    634       1.63        ad 			p->p_nlwpwait--;
    635        1.2   thorpej 			if (departed)
    636        1.2   thorpej 				*departed = l2->l_lid;
    637       1.75        ad 			sched_lwp_collect(l2);
    638       1.63        ad 
    639       1.63        ad 			/* lwp_free() releases the proc lock. */
    640       1.63        ad 			lwp_free(l2, false, false);
    641      1.103        ad 			mutex_enter(p->p_lock);
    642       1.52        ad 			return 0;
    643       1.52        ad 		}
    644        1.2   thorpej 
    645       1.63        ad 		if (error != 0)
    646       1.63        ad 			break;
    647       1.52        ad 		if (nfound == 0) {
    648       1.52        ad 			error = ESRCH;
    649       1.52        ad 			break;
    650       1.52        ad 		}
    651       1.63        ad 
    652       1.63        ad 		/*
    653      1.173     rmind 		 * Note: since the lock will be dropped, need to restart on
    654      1.173     rmind 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
    655       1.63        ad 		 */
    656       1.63        ad 		if (exiting) {
    657       1.52        ad 			KASSERT(p->p_nlwps > 1);
    658      1.192  christos 			cv_wait(&p->p_lwpcv, p->p_lock);
    659      1.192  christos 			error = EAGAIN;
    660      1.173     rmind 			break;
    661       1.52        ad 		}
    662       1.63        ad 
    663       1.63        ad 		/*
    664       1.63        ad 		 * If all other LWPs are waiting for exits or suspends
    665       1.63        ad 		 * and the supply of zombies and potential zombies is
    666       1.63        ad 		 * exhausted, then we are about to deadlock.
    667       1.63        ad 		 *
    668       1.63        ad 		 * If the process is exiting (and this LWP is not the one
    669       1.63        ad 		 * that is coordinating the exit) then bail out now.
    670       1.63        ad 		 */
    671       1.52        ad 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    672       1.63        ad 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    673       1.52        ad 			error = EDEADLK;
    674       1.52        ad 			break;
    675        1.2   thorpej 		}
    676       1.63        ad 
    677       1.63        ad 		/*
    678       1.63        ad 		 * Sit around and wait for something to happen.  We'll be
    679       1.63        ad 		 * awoken if any of the conditions examined change: if an
    680       1.63        ad 		 * LWP exits, is collected, or is detached.
    681       1.63        ad 		 */
    682      1.103        ad 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    683       1.52        ad 			break;
    684        1.2   thorpej 	}
    685        1.2   thorpej 
    686       1.63        ad 	/*
    687       1.63        ad 	 * We didn't find any LWPs to collect, we may have received a
    688       1.63        ad 	 * signal, or some other condition has caused us to bail out.
    689       1.63        ad 	 *
    690       1.63        ad 	 * If waiting on a specific LWP, clear the waiters marker: some
    691       1.63        ad 	 * other LWP may want it.  Then, kick all the remaining waiters
    692       1.63        ad 	 * so that they can re-check for zombies and for deadlock.
    693       1.63        ad 	 */
    694       1.63        ad 	if (lid != 0) {
    695       1.63        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    696       1.63        ad 			if (l2->l_lid == lid) {
    697       1.63        ad 				if (l2->l_waiter == curlid)
    698       1.63        ad 					l2->l_waiter = 0;
    699       1.63        ad 				break;
    700       1.63        ad 			}
    701       1.63        ad 		}
    702       1.63        ad 	}
    703       1.52        ad 	p->p_nlwpwait--;
    704       1.63        ad 	l->l_waitingfor = 0;
    705       1.63        ad 	cv_broadcast(&p->p_lwpcv);
    706       1.63        ad 
    707       1.52        ad 	return error;
    708        1.2   thorpej }
    709        1.2   thorpej 
    710      1.174       dsl static lwpid_t
    711      1.174       dsl lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
    712      1.174       dsl {
    713      1.174       dsl 	#define LID_SCAN (1u << 31)
    714      1.174       dsl 	lwp_t *scan, *free_before;
    715      1.174       dsl 	lwpid_t nxt_lid;
    716      1.174       dsl 
    717      1.174       dsl 	/*
    718      1.174       dsl 	 * We want the first unused lid greater than or equal to
    719      1.174       dsl 	 * try_lid (modulo 2^31).
    720      1.174       dsl 	 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
    721      1.174       dsl 	 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
    722      1.174       dsl 	 * the outer test easier.
    723      1.174       dsl 	 * This would be much easier if the list were sorted in
    724      1.174       dsl 	 * increasing order.
    725      1.174       dsl 	 * The list is kept sorted in decreasing order.
    726      1.174       dsl 	 * This code is only used after a process has generated 2^31 lwp.
    727      1.174       dsl 	 *
    728      1.174       dsl 	 * Code assumes it can always find an id.
    729      1.174       dsl 	 */
    730      1.174       dsl 
    731      1.174       dsl 	try_lid &= LID_SCAN - 1;
    732      1.174       dsl 	if (try_lid <= 1)
    733      1.174       dsl 		try_lid = 2;
    734      1.174       dsl 
    735      1.174       dsl 	free_before = NULL;
    736      1.174       dsl 	nxt_lid = LID_SCAN - 1;
    737      1.174       dsl 	LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
    738      1.174       dsl 		if (scan->l_lid != nxt_lid) {
    739      1.174       dsl 			/* There are available lid before this entry */
    740      1.174       dsl 			free_before = scan;
    741      1.174       dsl 			if (try_lid > scan->l_lid)
    742      1.174       dsl 				break;
    743      1.174       dsl 		}
    744      1.174       dsl 		if (try_lid == scan->l_lid) {
    745      1.174       dsl 			/* The ideal lid is busy, take a higher one */
    746      1.174       dsl 			if (free_before != NULL) {
    747      1.174       dsl 				try_lid = free_before->l_lid + 1;
    748      1.174       dsl 				break;
    749      1.174       dsl 			}
    750      1.174       dsl 			/* No higher ones, reuse low numbers */
    751      1.174       dsl 			try_lid = 2;
    752      1.174       dsl 		}
    753      1.174       dsl 
    754      1.174       dsl 		nxt_lid = scan->l_lid - 1;
    755      1.174       dsl 		if (LIST_NEXT(scan, l_sibling) == NULL) {
    756      1.174       dsl 		    /* The value we have is lower than any existing lwp */
    757      1.174       dsl 		    LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
    758      1.174       dsl 		    return try_lid;
    759      1.174       dsl 		}
    760      1.174       dsl 	}
    761      1.174       dsl 
    762      1.174       dsl 	LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
    763      1.174       dsl 	return try_lid;
    764      1.174       dsl }
    765      1.174       dsl 
    766       1.52        ad /*
    767       1.52        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    768       1.52        ad  * The new LWP is created in state LSIDL and must be set running,
    769       1.52        ad  * suspended, or stopped by the caller.
    770       1.52        ad  */
    771        1.2   thorpej int
    772      1.134     rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    773      1.188  christos     void *stack, size_t stacksize, void (*func)(void *), void *arg,
    774      1.188  christos     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
    775      1.188  christos     const stack_t *sigstk)
    776        1.2   thorpej {
    777       1.52        ad 	struct lwp *l2, *isfree;
    778       1.52        ad 	turnstile_t *ts;
    779      1.151       chs 	lwpid_t lid;
    780        1.2   thorpej 
    781      1.107        ad 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    782      1.107        ad 
    783       1.52        ad 	/*
    784      1.169  christos 	 * Enforce limits, excluding the first lwp and kthreads.
    785      1.169  christos 	 */
    786      1.169  christos 	if (p2->p_nlwps != 0 && p2 != &proc0) {
    787      1.169  christos 		uid_t uid = kauth_cred_getuid(l1->l_cred);
    788      1.169  christos 		int count = chglwpcnt(uid, 1);
    789      1.169  christos 		if (__predict_false(count >
    790      1.169  christos 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
    791      1.169  christos 			if (kauth_authorize_process(l1->l_cred,
    792      1.169  christos 			    KAUTH_PROCESS_RLIMIT, p2,
    793      1.169  christos 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    794      1.169  christos 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
    795      1.169  christos 			    != 0) {
    796      1.170  christos 				(void)chglwpcnt(uid, -1);
    797      1.170  christos 				return EAGAIN;
    798      1.169  christos 			}
    799      1.169  christos 		}
    800      1.169  christos 	}
    801      1.169  christos 
    802      1.169  christos 	/*
    803       1.52        ad 	 * First off, reap any detached LWP waiting to be collected.
    804       1.52        ad 	 * We can re-use its LWP structure and turnstile.
    805       1.52        ad 	 */
    806       1.52        ad 	isfree = NULL;
    807       1.52        ad 	if (p2->p_zomblwp != NULL) {
    808      1.103        ad 		mutex_enter(p2->p_lock);
    809       1.52        ad 		if ((isfree = p2->p_zomblwp) != NULL) {
    810       1.52        ad 			p2->p_zomblwp = NULL;
    811       1.63        ad 			lwp_free(isfree, true, false);/* releases proc mutex */
    812       1.52        ad 		} else
    813      1.103        ad 			mutex_exit(p2->p_lock);
    814       1.52        ad 	}
    815       1.52        ad 	if (isfree == NULL) {
    816       1.87        ad 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    817       1.52        ad 		memset(l2, 0, sizeof(*l2));
    818       1.76        ad 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    819       1.60      yamt 		SLIST_INIT(&l2->l_pi_lenders);
    820       1.52        ad 	} else {
    821       1.52        ad 		l2 = isfree;
    822       1.52        ad 		ts = l2->l_ts;
    823       1.75        ad 		KASSERT(l2->l_inheritedprio == -1);
    824       1.60      yamt 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    825       1.52        ad 		memset(l2, 0, sizeof(*l2));
    826       1.52        ad 		l2->l_ts = ts;
    827       1.52        ad 	}
    828        1.2   thorpej 
    829        1.2   thorpej 	l2->l_stat = LSIDL;
    830        1.2   thorpej 	l2->l_proc = p2;
    831       1.52        ad 	l2->l_refcnt = 1;
    832       1.75        ad 	l2->l_class = sclass;
    833      1.116        ad 
    834      1.116        ad 	/*
    835      1.116        ad 	 * If vfork(), we want the LWP to run fast and on the same CPU
    836      1.116        ad 	 * as its parent, so that it can reuse the VM context and cache
    837      1.116        ad 	 * footprint on the local CPU.
    838      1.116        ad 	 */
    839      1.116        ad 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    840       1.82        ad 	l2->l_kpribase = PRI_KERNEL;
    841       1.52        ad 	l2->l_priority = l1->l_priority;
    842       1.75        ad 	l2->l_inheritedprio = -1;
    843      1.185  christos 	l2->l_protectprio = -1;
    844      1.185  christos 	l2->l_auxprio = -1;
    845      1.134     rmind 	l2->l_flag = 0;
    846       1.88        ad 	l2->l_pflag = LP_MPSAFE;
    847      1.131        ad 	TAILQ_INIT(&l2->l_ld_locks);
    848      1.197     ozaki 	l2->l_psrefs = 0;
    849      1.131        ad 
    850      1.131        ad 	/*
    851      1.156     pooka 	 * For vfork, borrow parent's lwpctl context if it exists.
    852      1.156     pooka 	 * This also causes us to return via lwp_userret.
    853      1.156     pooka 	 */
    854      1.156     pooka 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    855      1.156     pooka 		l2->l_lwpctl = l1->l_lwpctl;
    856      1.156     pooka 		l2->l_flag |= LW_LWPCTL;
    857      1.156     pooka 	}
    858      1.156     pooka 
    859      1.156     pooka 	/*
    860      1.131        ad 	 * If not the first LWP in the process, grab a reference to the
    861      1.131        ad 	 * descriptor table.
    862      1.131        ad 	 */
    863       1.97        ad 	l2->l_fd = p2->p_fd;
    864      1.131        ad 	if (p2->p_nlwps != 0) {
    865      1.131        ad 		KASSERT(l1->l_proc == p2);
    866      1.136     rmind 		fd_hold(l2);
    867      1.131        ad 	} else {
    868      1.131        ad 		KASSERT(l1->l_proc != p2);
    869      1.131        ad 	}
    870       1.41   thorpej 
    871       1.56     pavel 	if (p2->p_flag & PK_SYSTEM) {
    872      1.134     rmind 		/* Mark it as a system LWP. */
    873       1.56     pavel 		l2->l_flag |= LW_SYSTEM;
    874       1.52        ad 	}
    875        1.2   thorpej 
    876      1.107        ad 	kpreempt_disable();
    877      1.107        ad 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    878      1.107        ad 	l2->l_cpu = l1->l_cpu;
    879      1.107        ad 	kpreempt_enable();
    880      1.107        ad 
    881      1.138    darran 	kdtrace_thread_ctor(NULL, l2);
    882       1.73     rmind 	lwp_initspecific(l2);
    883       1.75        ad 	sched_lwp_fork(l1, l2);
    884       1.37        ad 	lwp_update_creds(l2);
    885       1.70        ad 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    886       1.70        ad 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    887       1.52        ad 	cv_init(&l2->l_sigcv, "sigwait");
    888      1.171     rmind 	cv_init(&l2->l_waitcv, "vfork");
    889       1.52        ad 	l2->l_syncobj = &sched_syncobj;
    890      1.201     ozaki 	PSREF_DEBUG_INIT_LWP(l2);
    891        1.2   thorpej 
    892        1.2   thorpej 	if (rnewlwpp != NULL)
    893        1.2   thorpej 		*rnewlwpp = l2;
    894        1.2   thorpej 
    895      1.158      matt 	/*
    896      1.158      matt 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    897      1.158      matt 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    898      1.158      matt 	 */
    899      1.158      matt 	pcu_save_all(l1);
    900  1.202.2.3    martin #if PCU_UNIT_COUNT > 0
    901  1.202.2.3    martin 	l2->l_pcu_valid = l1->l_pcu_valid;
    902  1.202.2.3    martin #endif
    903      1.158      matt 
    904      1.137     rmind 	uvm_lwp_setuarea(l2, uaddr);
    905      1.190     skrll 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
    906        1.2   thorpej 
    907      1.151       chs 	if ((flags & LWP_PIDLID) != 0) {
    908      1.151       chs 		lid = proc_alloc_pid(p2);
    909      1.151       chs 		l2->l_pflag |= LP_PIDLID;
    910      1.151       chs 	} else {
    911      1.151       chs 		lid = 0;
    912      1.151       chs 	}
    913      1.151       chs 
    914      1.103        ad 	mutex_enter(p2->p_lock);
    915       1.52        ad 
    916       1.52        ad 	if ((flags & LWP_DETACHED) != 0) {
    917       1.52        ad 		l2->l_prflag = LPR_DETACHED;
    918       1.52        ad 		p2->p_ndlwps++;
    919       1.52        ad 	} else
    920       1.52        ad 		l2->l_prflag = 0;
    921       1.52        ad 
    922      1.188  christos 	l2->l_sigstk = *sigstk;
    923      1.188  christos 	l2->l_sigmask = *sigmask;
    924      1.176  christos 	TAILQ_INIT(&l2->l_sigpend.sp_info);
    925       1.52        ad 	sigemptyset(&l2->l_sigpend.sp_set);
    926       1.52        ad 
    927      1.174       dsl 	if (__predict_true(lid == 0)) {
    928      1.174       dsl 		/*
    929      1.174       dsl 		 * XXX: l_lid are expected to be unique (for a process)
    930      1.174       dsl 		 * if LWP_PIDLID is sometimes set this won't be true.
    931      1.174       dsl 		 * Once 2^31 threads have been allocated we have to
    932      1.174       dsl 		 * scan to ensure we allocate a unique value.
    933      1.174       dsl 		 */
    934      1.174       dsl 		lid = ++p2->p_nlwpid;
    935      1.174       dsl 		if (__predict_false(lid & LID_SCAN)) {
    936      1.174       dsl 			lid = lwp_find_free_lid(lid, l2, p2);
    937      1.174       dsl 			p2->p_nlwpid = lid | LID_SCAN;
    938      1.174       dsl 			/* l2 as been inserted into p_lwps in order */
    939      1.174       dsl 			goto skip_insert;
    940      1.174       dsl 		}
    941      1.174       dsl 		p2->p_nlwpid = lid;
    942      1.151       chs 	}
    943      1.174       dsl 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    944      1.174       dsl     skip_insert:
    945      1.151       chs 	l2->l_lid = lid;
    946        1.2   thorpej 	p2->p_nlwps++;
    947      1.149      yamt 	p2->p_nrlwps++;
    948        1.2   thorpej 
    949      1.162     rmind 	KASSERT(l2->l_affinity == NULL);
    950      1.162     rmind 
    951       1.91     rmind 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    952      1.162     rmind 		/* Inherit the affinity mask. */
    953      1.162     rmind 		if (l1->l_affinity) {
    954      1.128     rmind 			/*
    955      1.128     rmind 			 * Note that we hold the state lock while inheriting
    956      1.128     rmind 			 * the affinity to avoid race with sched_setaffinity().
    957      1.128     rmind 			 */
    958      1.128     rmind 			lwp_lock(l1);
    959      1.162     rmind 			if (l1->l_affinity) {
    960      1.122     rmind 				kcpuset_use(l1->l_affinity);
    961      1.122     rmind 				l2->l_affinity = l1->l_affinity;
    962      1.122     rmind 			}
    963      1.128     rmind 			lwp_unlock(l1);
    964      1.117  christos 		}
    965      1.128     rmind 		lwp_lock(l2);
    966      1.128     rmind 		/* Inherit a processor-set */
    967      1.128     rmind 		l2->l_psid = l1->l_psid;
    968       1.91     rmind 		/* Look for a CPU to start */
    969       1.91     rmind 		l2->l_cpu = sched_takecpu(l2);
    970       1.91     rmind 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    971       1.91     rmind 	}
    972      1.128     rmind 	mutex_exit(p2->p_lock);
    973      1.128     rmind 
    974      1.180  christos 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
    975      1.141    darran 
    976      1.128     rmind 	mutex_enter(proc_lock);
    977      1.128     rmind 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    978      1.128     rmind 	mutex_exit(proc_lock);
    979       1.91     rmind 
    980       1.57       dsl 	SYSCALL_TIME_LWP_INIT(l2);
    981       1.57       dsl 
    982       1.16      manu 	if (p2->p_emul->e_lwp_fork)
    983       1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    984       1.16      manu 
    985        1.2   thorpej 	return (0);
    986        1.2   thorpej }
    987        1.2   thorpej 
    988        1.2   thorpej /*
    989       1.64      yamt  * Called by MD code when a new LWP begins execution.  Must be called
    990       1.64      yamt  * with the previous LWP locked (so at splsched), or if there is no
    991       1.64      yamt  * previous LWP, at splsched.
    992       1.64      yamt  */
    993       1.64      yamt void
    994      1.178      matt lwp_startup(struct lwp *prev, struct lwp *new_lwp)
    995       1.64      yamt {
    996      1.178      matt 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
    997       1.64      yamt 
    998      1.180  christos 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
    999      1.141    darran 
   1000      1.107        ad 	KASSERT(kpreempt_disabled());
   1001       1.64      yamt 	if (prev != NULL) {
   1002       1.81        ad 		/*
   1003       1.81        ad 		 * Normalize the count of the spin-mutexes, it was
   1004       1.81        ad 		 * increased in mi_switch().  Unmark the state of
   1005       1.81        ad 		 * context switch - it is finished for previous LWP.
   1006       1.81        ad 		 */
   1007       1.81        ad 		curcpu()->ci_mtx_count++;
   1008       1.81        ad 		membar_exit();
   1009       1.81        ad 		prev->l_ctxswtch = 0;
   1010       1.64      yamt 	}
   1011      1.178      matt 	KPREEMPT_DISABLE(new_lwp);
   1012      1.178      matt 	if (__predict_true(new_lwp->l_proc->p_vmspace))
   1013      1.178      matt 		pmap_activate(new_lwp);
   1014      1.181     skrll 	spl0();
   1015      1.161  christos 
   1016      1.161  christos 	/* Note trip through cpu_switchto(). */
   1017      1.161  christos 	pserialize_switchpoint();
   1018      1.161  christos 
   1019       1.64      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
   1020      1.178      matt 	KPREEMPT_ENABLE(new_lwp);
   1021      1.178      matt 	if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
   1022      1.178      matt 		KERNEL_LOCK(1, new_lwp);
   1023       1.65        ad 	}
   1024       1.64      yamt }
   1025       1.64      yamt 
   1026       1.64      yamt /*
   1027       1.65        ad  * Exit an LWP.
   1028        1.2   thorpej  */
   1029        1.2   thorpej void
   1030        1.2   thorpej lwp_exit(struct lwp *l)
   1031        1.2   thorpej {
   1032        1.2   thorpej 	struct proc *p = l->l_proc;
   1033       1.52        ad 	struct lwp *l2;
   1034       1.65        ad 	bool current;
   1035       1.65        ad 
   1036       1.65        ad 	current = (l == curlwp);
   1037        1.2   thorpej 
   1038      1.114     rmind 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
   1039      1.131        ad 	KASSERT(p == curproc);
   1040        1.2   thorpej 
   1041      1.180  christos 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
   1042      1.141    darran 
   1043       1.52        ad 	/*
   1044       1.52        ad 	 * Verify that we hold no locks other than the kernel lock.
   1045       1.52        ad 	 */
   1046       1.52        ad 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
   1047       1.16      manu 
   1048        1.2   thorpej 	/*
   1049       1.52        ad 	 * If we are the last live LWP in a process, we need to exit the
   1050       1.52        ad 	 * entire process.  We do so with an exit status of zero, because
   1051       1.52        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
   1052       1.52        ad 	 *
   1053       1.52        ad 	 * We are not quite a zombie yet, but for accounting purposes we
   1054       1.52        ad 	 * must increment the count of zombies here.
   1055       1.45   thorpej 	 *
   1056       1.45   thorpej 	 * Note: the last LWP's specificdata will be deleted here.
   1057        1.2   thorpej 	 */
   1058      1.103        ad 	mutex_enter(p->p_lock);
   1059       1.52        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
   1060       1.65        ad 		KASSERT(current == true);
   1061      1.172      matt 		KASSERT(p != &proc0);
   1062       1.88        ad 		/* XXXSMP kernel_lock not held */
   1063      1.184  christos 		exit1(l, 0, 0);
   1064       1.19  jdolecek 		/* NOTREACHED */
   1065        1.2   thorpej 	}
   1066       1.52        ad 	p->p_nzlwps++;
   1067      1.103        ad 	mutex_exit(p->p_lock);
   1068       1.52        ad 
   1069       1.52        ad 	if (p->p_emul->e_lwp_exit)
   1070       1.52        ad 		(*p->p_emul->e_lwp_exit)(l);
   1071        1.2   thorpej 
   1072      1.131        ad 	/* Drop filedesc reference. */
   1073      1.131        ad 	fd_free();
   1074      1.131        ad 
   1075      1.196   hannken 	/* Release fstrans private data. */
   1076      1.196   hannken 	fstrans_lwp_dtor(l);
   1077      1.196   hannken 
   1078       1.45   thorpej 	/* Delete the specificdata while it's still safe to sleep. */
   1079      1.145     pooka 	lwp_finispecific(l);
   1080       1.45   thorpej 
   1081       1.52        ad 	/*
   1082       1.52        ad 	 * Release our cached credentials.
   1083       1.52        ad 	 */
   1084       1.37        ad 	kauth_cred_free(l->l_cred);
   1085       1.70        ad 	callout_destroy(&l->l_timeout_ch);
   1086       1.65        ad 
   1087       1.65        ad 	/*
   1088      1.198     kamil 	 * If traced, report LWP exit event to the debugger.
   1089      1.198     kamil 	 *
   1090       1.52        ad 	 * Remove the LWP from the global list.
   1091      1.151       chs 	 * Free its LID from the PID namespace if needed.
   1092       1.52        ad 	 */
   1093      1.102        ad 	mutex_enter(proc_lock);
   1094      1.198     kamil 
   1095      1.199     kamil 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
   1096      1.198     kamil 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
   1097      1.198     kamil 		mutex_enter(p->p_lock);
   1098      1.202     kamil 		if (ISSET(p->p_sflag, PS_WEXIT)) {
   1099      1.202     kamil 			mutex_exit(p->p_lock);
   1100      1.202     kamil 			/*
   1101      1.202     kamil 			 * We are exiting, bail out without informing parent
   1102      1.202     kamil 			 * about a terminating LWP as it would deadlock.
   1103      1.202     kamil 			 */
   1104      1.202     kamil 		} else {
   1105  1.202.2.1    martin 			eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
   1106      1.202     kamil 			mutex_enter(proc_lock);
   1107      1.202     kamil 		}
   1108      1.198     kamil 	}
   1109      1.198     kamil 
   1110       1.52        ad 	LIST_REMOVE(l, l_list);
   1111      1.151       chs 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
   1112      1.151       chs 		proc_free_pid(l->l_lid);
   1113      1.151       chs 	}
   1114      1.102        ad 	mutex_exit(proc_lock);
   1115       1.19  jdolecek 
   1116       1.52        ad 	/*
   1117       1.52        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
   1118       1.52        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
   1119       1.52        ad 	 * mark it waiting for collection in the proc structure.  Note that
   1120       1.52        ad 	 * before we can do that, we need to free any other dead, deatched
   1121       1.52        ad 	 * LWP waiting to meet its maker.
   1122       1.52        ad 	 */
   1123      1.103        ad 	mutex_enter(p->p_lock);
   1124       1.52        ad 	lwp_drainrefs(l);
   1125       1.31      yamt 
   1126       1.52        ad 	if ((l->l_prflag & LPR_DETACHED) != 0) {
   1127       1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
   1128       1.52        ad 			p->p_zomblwp = NULL;
   1129       1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
   1130      1.103        ad 			mutex_enter(p->p_lock);
   1131       1.72        ad 			l->l_refcnt++;
   1132       1.72        ad 			lwp_drainrefs(l);
   1133       1.52        ad 		}
   1134       1.52        ad 		p->p_zomblwp = l;
   1135       1.52        ad 	}
   1136       1.31      yamt 
   1137       1.52        ad 	/*
   1138       1.52        ad 	 * If we find a pending signal for the process and we have been
   1139      1.151       chs 	 * asked to check for signals, then we lose: arrange to have
   1140       1.52        ad 	 * all other LWPs in the process check for signals.
   1141       1.52        ad 	 */
   1142       1.56     pavel 	if ((l->l_flag & LW_PENDSIG) != 0 &&
   1143       1.52        ad 	    firstsig(&p->p_sigpend.sp_set) != 0) {
   1144       1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1145       1.52        ad 			lwp_lock(l2);
   1146       1.56     pavel 			l2->l_flag |= LW_PENDSIG;
   1147       1.52        ad 			lwp_unlock(l2);
   1148       1.52        ad 		}
   1149       1.31      yamt 	}
   1150       1.31      yamt 
   1151      1.158      matt 	/*
   1152      1.158      matt 	 * Release any PCU resources before becoming a zombie.
   1153      1.158      matt 	 */
   1154      1.158      matt 	pcu_discard_all(l);
   1155      1.158      matt 
   1156       1.52        ad 	lwp_lock(l);
   1157       1.52        ad 	l->l_stat = LSZOMB;
   1158      1.162     rmind 	if (l->l_name != NULL) {
   1159       1.90        ad 		strcpy(l->l_name, "(zombie)");
   1160      1.128     rmind 	}
   1161       1.52        ad 	lwp_unlock(l);
   1162        1.2   thorpej 	p->p_nrlwps--;
   1163       1.52        ad 	cv_broadcast(&p->p_lwpcv);
   1164       1.78        ad 	if (l->l_lwpctl != NULL)
   1165       1.78        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1166      1.103        ad 	mutex_exit(p->p_lock);
   1167       1.52        ad 
   1168       1.52        ad 	/*
   1169       1.52        ad 	 * We can no longer block.  At this point, lwp_free() may already
   1170       1.52        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1171       1.52        ad 	 *
   1172       1.52        ad 	 * Free MD LWP resources.
   1173       1.52        ad 	 */
   1174       1.52        ad 	cpu_lwp_free(l, 0);
   1175        1.2   thorpej 
   1176       1.65        ad 	if (current) {
   1177       1.65        ad 		pmap_deactivate(l);
   1178       1.65        ad 
   1179       1.65        ad 		/*
   1180       1.65        ad 		 * Release the kernel lock, and switch away into
   1181       1.65        ad 		 * oblivion.
   1182       1.65        ad 		 */
   1183       1.52        ad #ifdef notyet
   1184       1.65        ad 		/* XXXSMP hold in lwp_userret() */
   1185       1.65        ad 		KERNEL_UNLOCK_LAST(l);
   1186       1.52        ad #else
   1187       1.65        ad 		KERNEL_UNLOCK_ALL(l, NULL);
   1188       1.52        ad #endif
   1189       1.65        ad 		lwp_exit_switchaway(l);
   1190       1.65        ad 	}
   1191        1.2   thorpej }
   1192        1.2   thorpej 
   1193       1.52        ad /*
   1194       1.52        ad  * Free a dead LWP's remaining resources.
   1195       1.52        ad  *
   1196       1.52        ad  * XXXLWP limits.
   1197       1.52        ad  */
   1198       1.52        ad void
   1199       1.63        ad lwp_free(struct lwp *l, bool recycle, bool last)
   1200       1.52        ad {
   1201       1.52        ad 	struct proc *p = l->l_proc;
   1202      1.100        ad 	struct rusage *ru;
   1203       1.52        ad 	ksiginfoq_t kq;
   1204       1.52        ad 
   1205       1.92      yamt 	KASSERT(l != curlwp);
   1206      1.160      yamt 	KASSERT(last || mutex_owned(p->p_lock));
   1207       1.92      yamt 
   1208      1.177  christos 	/*
   1209      1.177  christos 	 * We use the process credentials instead of the lwp credentials here
   1210      1.177  christos 	 * because the lwp credentials maybe cached (just after a setuid call)
   1211      1.177  christos 	 * and we don't want pay for syncing, since the lwp is going away
   1212      1.177  christos 	 * anyway
   1213      1.177  christos 	 */
   1214      1.169  christos 	if (p != &proc0 && p->p_nlwps != 1)
   1215      1.177  christos 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
   1216       1.52        ad 	/*
   1217       1.52        ad 	 * If this was not the last LWP in the process, then adjust
   1218       1.52        ad 	 * counters and unlock.
   1219       1.52        ad 	 */
   1220       1.52        ad 	if (!last) {
   1221       1.52        ad 		/*
   1222       1.52        ad 		 * Add the LWP's run time to the process' base value.
   1223       1.52        ad 		 * This needs to co-incide with coming off p_lwps.
   1224       1.52        ad 		 */
   1225       1.86      yamt 		bintime_add(&p->p_rtime, &l->l_rtime);
   1226       1.64      yamt 		p->p_pctcpu += l->l_pctcpu;
   1227      1.100        ad 		ru = &p->p_stats->p_ru;
   1228      1.100        ad 		ruadd(ru, &l->l_ru);
   1229      1.100        ad 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1230      1.100        ad 		ru->ru_nivcsw += l->l_nivcsw;
   1231       1.52        ad 		LIST_REMOVE(l, l_sibling);
   1232       1.52        ad 		p->p_nlwps--;
   1233       1.52        ad 		p->p_nzlwps--;
   1234       1.52        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1235       1.52        ad 			p->p_ndlwps--;
   1236       1.63        ad 
   1237       1.63        ad 		/*
   1238       1.63        ad 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1239       1.63        ad 		 * deadlock.
   1240       1.63        ad 		 */
   1241       1.63        ad 		cv_broadcast(&p->p_lwpcv);
   1242      1.103        ad 		mutex_exit(p->p_lock);
   1243       1.63        ad 	}
   1244       1.52        ad 
   1245       1.52        ad #ifdef MULTIPROCESSOR
   1246       1.63        ad 	/*
   1247       1.63        ad 	 * In the unlikely event that the LWP is still on the CPU,
   1248       1.63        ad 	 * then spin until it has switched away.  We need to release
   1249       1.63        ad 	 * all locks to avoid deadlock against interrupt handlers on
   1250       1.63        ad 	 * the target CPU.
   1251       1.63        ad 	 */
   1252      1.115        ad 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
   1253       1.63        ad 		int count;
   1254       1.64      yamt 		(void)count; /* XXXgcc */
   1255       1.63        ad 		KERNEL_UNLOCK_ALL(curlwp, &count);
   1256      1.115        ad 		while ((l->l_pflag & LP_RUNNING) != 0 ||
   1257       1.64      yamt 		    l->l_cpu->ci_curlwp == l)
   1258       1.63        ad 			SPINLOCK_BACKOFF_HOOK;
   1259       1.63        ad 		KERNEL_LOCK(count, curlwp);
   1260       1.63        ad 	}
   1261       1.52        ad #endif
   1262       1.52        ad 
   1263       1.52        ad 	/*
   1264       1.52        ad 	 * Destroy the LWP's remaining signal information.
   1265       1.52        ad 	 */
   1266       1.52        ad 	ksiginfo_queue_init(&kq);
   1267       1.52        ad 	sigclear(&l->l_sigpend, NULL, &kq);
   1268       1.52        ad 	ksiginfo_queue_drain(&kq);
   1269       1.52        ad 	cv_destroy(&l->l_sigcv);
   1270      1.171     rmind 	cv_destroy(&l->l_waitcv);
   1271        1.2   thorpej 
   1272       1.19  jdolecek 	/*
   1273      1.162     rmind 	 * Free lwpctl structure and affinity.
   1274      1.162     rmind 	 */
   1275      1.162     rmind 	if (l->l_lwpctl) {
   1276      1.162     rmind 		lwp_ctl_free(l);
   1277      1.162     rmind 	}
   1278      1.162     rmind 	if (l->l_affinity) {
   1279      1.162     rmind 		kcpuset_unuse(l->l_affinity, NULL);
   1280      1.162     rmind 		l->l_affinity = NULL;
   1281      1.162     rmind 	}
   1282      1.162     rmind 
   1283      1.162     rmind 	/*
   1284       1.52        ad 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1285       1.93      yamt 	 * caller wants to recycle them.  Also, free the scheduler specific
   1286       1.93      yamt 	 * data.
   1287       1.52        ad 	 *
   1288       1.52        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1289       1.52        ad 	 * so if it comes up just drop it quietly and move on.
   1290       1.52        ad 	 *
   1291       1.52        ad 	 * We don't recycle the VM resources at this time.
   1292       1.19  jdolecek 	 */
   1293       1.64      yamt 
   1294       1.52        ad 	if (!recycle && l->l_ts != &turnstile0)
   1295       1.76        ad 		pool_cache_put(turnstile_cache, l->l_ts);
   1296       1.90        ad 	if (l->l_name != NULL)
   1297       1.90        ad 		kmem_free(l->l_name, MAXCOMLEN);
   1298      1.135     rmind 
   1299       1.52        ad 	cpu_lwp_free2(l);
   1300       1.19  jdolecek 	uvm_lwp_exit(l);
   1301      1.134     rmind 
   1302       1.60      yamt 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1303       1.75        ad 	KASSERT(l->l_inheritedprio == -1);
   1304      1.155      matt 	KASSERT(l->l_blcnt == 0);
   1305      1.138    darran 	kdtrace_thread_dtor(NULL, l);
   1306       1.52        ad 	if (!recycle)
   1307       1.87        ad 		pool_cache_put(lwp_cache, l);
   1308        1.2   thorpej }
   1309        1.2   thorpej 
   1310        1.2   thorpej /*
   1311       1.91     rmind  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1312       1.91     rmind  */
   1313       1.91     rmind void
   1314      1.114     rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1315       1.91     rmind {
   1316      1.114     rmind 	struct schedstate_percpu *tspc;
   1317      1.121     rmind 	int lstat = l->l_stat;
   1318      1.121     rmind 
   1319       1.91     rmind 	KASSERT(lwp_locked(l, NULL));
   1320      1.114     rmind 	KASSERT(tci != NULL);
   1321      1.114     rmind 
   1322      1.121     rmind 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1323      1.121     rmind 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1324      1.121     rmind 		lstat = LSONPROC;
   1325      1.121     rmind 	}
   1326      1.121     rmind 
   1327      1.114     rmind 	/*
   1328      1.114     rmind 	 * The destination CPU could be changed while previous migration
   1329      1.114     rmind 	 * was not finished.
   1330      1.114     rmind 	 */
   1331      1.121     rmind 	if (l->l_target_cpu != NULL) {
   1332      1.114     rmind 		l->l_target_cpu = tci;
   1333      1.114     rmind 		lwp_unlock(l);
   1334      1.114     rmind 		return;
   1335      1.114     rmind 	}
   1336       1.91     rmind 
   1337      1.114     rmind 	/* Nothing to do if trying to migrate to the same CPU */
   1338      1.114     rmind 	if (l->l_cpu == tci) {
   1339       1.91     rmind 		lwp_unlock(l);
   1340       1.91     rmind 		return;
   1341       1.91     rmind 	}
   1342       1.91     rmind 
   1343      1.114     rmind 	KASSERT(l->l_target_cpu == NULL);
   1344      1.114     rmind 	tspc = &tci->ci_schedstate;
   1345      1.121     rmind 	switch (lstat) {
   1346       1.91     rmind 	case LSRUN:
   1347      1.134     rmind 		l->l_target_cpu = tci;
   1348      1.134     rmind 		break;
   1349       1.91     rmind 	case LSIDL:
   1350      1.114     rmind 		l->l_cpu = tci;
   1351      1.114     rmind 		lwp_unlock_to(l, tspc->spc_mutex);
   1352       1.91     rmind 		return;
   1353       1.91     rmind 	case LSSLEEP:
   1354      1.114     rmind 		l->l_cpu = tci;
   1355       1.91     rmind 		break;
   1356       1.91     rmind 	case LSSTOP:
   1357       1.91     rmind 	case LSSUSPENDED:
   1358      1.114     rmind 		l->l_cpu = tci;
   1359      1.114     rmind 		if (l->l_wchan == NULL) {
   1360      1.114     rmind 			lwp_unlock_to(l, tspc->spc_lwplock);
   1361      1.114     rmind 			return;
   1362       1.91     rmind 		}
   1363      1.114     rmind 		break;
   1364       1.91     rmind 	case LSONPROC:
   1365      1.114     rmind 		l->l_target_cpu = tci;
   1366      1.114     rmind 		spc_lock(l->l_cpu);
   1367      1.114     rmind 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1368      1.114     rmind 		spc_unlock(l->l_cpu);
   1369       1.91     rmind 		break;
   1370       1.91     rmind 	}
   1371       1.91     rmind 	lwp_unlock(l);
   1372       1.91     rmind }
   1373       1.91     rmind 
   1374       1.91     rmind /*
   1375       1.94     rmind  * Find the LWP in the process.  Arguments may be zero, in such case,
   1376       1.94     rmind  * the calling process and first LWP in the list will be used.
   1377      1.103        ad  * On success - returns proc locked.
   1378       1.91     rmind  */
   1379       1.91     rmind struct lwp *
   1380       1.91     rmind lwp_find2(pid_t pid, lwpid_t lid)
   1381       1.91     rmind {
   1382       1.91     rmind 	proc_t *p;
   1383       1.91     rmind 	lwp_t *l;
   1384       1.91     rmind 
   1385      1.150     rmind 	/* Find the process. */
   1386       1.94     rmind 	if (pid != 0) {
   1387      1.150     rmind 		mutex_enter(proc_lock);
   1388      1.150     rmind 		p = proc_find(pid);
   1389      1.150     rmind 		if (p == NULL) {
   1390      1.150     rmind 			mutex_exit(proc_lock);
   1391      1.150     rmind 			return NULL;
   1392      1.150     rmind 		}
   1393      1.150     rmind 		mutex_enter(p->p_lock);
   1394      1.102        ad 		mutex_exit(proc_lock);
   1395      1.150     rmind 	} else {
   1396      1.150     rmind 		p = curlwp->l_proc;
   1397      1.150     rmind 		mutex_enter(p->p_lock);
   1398      1.150     rmind 	}
   1399      1.150     rmind 	/* Find the thread. */
   1400      1.150     rmind 	if (lid != 0) {
   1401      1.150     rmind 		l = lwp_find(p, lid);
   1402      1.150     rmind 	} else {
   1403      1.150     rmind 		l = LIST_FIRST(&p->p_lwps);
   1404       1.94     rmind 	}
   1405      1.103        ad 	if (l == NULL) {
   1406      1.103        ad 		mutex_exit(p->p_lock);
   1407      1.103        ad 	}
   1408       1.91     rmind 	return l;
   1409       1.91     rmind }
   1410       1.91     rmind 
   1411       1.91     rmind /*
   1412      1.168      yamt  * Look up a live LWP within the specified process.
   1413       1.52        ad  *
   1414      1.103        ad  * Must be called with p->p_lock held.
   1415       1.52        ad  */
   1416       1.52        ad struct lwp *
   1417      1.151       chs lwp_find(struct proc *p, lwpid_t id)
   1418       1.52        ad {
   1419       1.52        ad 	struct lwp *l;
   1420       1.52        ad 
   1421      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1422       1.52        ad 
   1423       1.52        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1424       1.52        ad 		if (l->l_lid == id)
   1425       1.52        ad 			break;
   1426       1.52        ad 	}
   1427       1.52        ad 
   1428       1.52        ad 	/*
   1429       1.52        ad 	 * No need to lock - all of these conditions will
   1430       1.52        ad 	 * be visible with the process level mutex held.
   1431       1.52        ad 	 */
   1432       1.52        ad 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1433       1.52        ad 		l = NULL;
   1434       1.52        ad 
   1435       1.52        ad 	return l;
   1436       1.52        ad }
   1437       1.52        ad 
   1438       1.52        ad /*
   1439       1.37        ad  * Update an LWP's cached credentials to mirror the process' master copy.
   1440       1.37        ad  *
   1441       1.37        ad  * This happens early in the syscall path, on user trap, and on LWP
   1442       1.37        ad  * creation.  A long-running LWP can also voluntarily choose to update
   1443      1.179       snj  * its credentials by calling this routine.  This may be called from
   1444       1.37        ad  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1445       1.37        ad  */
   1446       1.37        ad void
   1447       1.37        ad lwp_update_creds(struct lwp *l)
   1448       1.37        ad {
   1449       1.37        ad 	kauth_cred_t oc;
   1450       1.37        ad 	struct proc *p;
   1451       1.37        ad 
   1452       1.37        ad 	p = l->l_proc;
   1453       1.37        ad 	oc = l->l_cred;
   1454       1.37        ad 
   1455      1.103        ad 	mutex_enter(p->p_lock);
   1456       1.37        ad 	kauth_cred_hold(p->p_cred);
   1457       1.37        ad 	l->l_cred = p->p_cred;
   1458       1.98        ad 	l->l_prflag &= ~LPR_CRMOD;
   1459      1.103        ad 	mutex_exit(p->p_lock);
   1460       1.88        ad 	if (oc != NULL)
   1461       1.37        ad 		kauth_cred_free(oc);
   1462       1.52        ad }
   1463       1.52        ad 
   1464       1.52        ad /*
   1465       1.52        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
   1466       1.52        ad  * one we specify.
   1467       1.52        ad  */
   1468       1.52        ad int
   1469       1.52        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
   1470       1.52        ad {
   1471       1.52        ad 	kmutex_t *cur = l->l_mutex;
   1472       1.52        ad 
   1473       1.52        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1474       1.52        ad }
   1475       1.52        ad 
   1476       1.52        ad /*
   1477       1.52        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
   1478       1.52        ad  */
   1479       1.52        ad void
   1480      1.178      matt lwp_setlock(struct lwp *l, kmutex_t *mtx)
   1481       1.52        ad {
   1482       1.52        ad 
   1483       1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1484       1.52        ad 
   1485      1.107        ad 	membar_exit();
   1486      1.178      matt 	l->l_mutex = mtx;
   1487       1.52        ad }
   1488       1.52        ad 
   1489       1.52        ad /*
   1490       1.52        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1491       1.52        ad  * must be held.
   1492       1.52        ad  */
   1493       1.52        ad void
   1494      1.178      matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
   1495       1.52        ad {
   1496       1.52        ad 	kmutex_t *old;
   1497       1.52        ad 
   1498      1.152     rmind 	KASSERT(lwp_locked(l, NULL));
   1499       1.52        ad 
   1500       1.52        ad 	old = l->l_mutex;
   1501      1.107        ad 	membar_exit();
   1502      1.178      matt 	l->l_mutex = mtx;
   1503       1.52        ad 	mutex_spin_exit(old);
   1504       1.52        ad }
   1505       1.52        ad 
   1506       1.60      yamt int
   1507       1.60      yamt lwp_trylock(struct lwp *l)
   1508       1.60      yamt {
   1509       1.60      yamt 	kmutex_t *old;
   1510       1.60      yamt 
   1511       1.60      yamt 	for (;;) {
   1512       1.60      yamt 		if (!mutex_tryenter(old = l->l_mutex))
   1513       1.60      yamt 			return 0;
   1514       1.60      yamt 		if (__predict_true(l->l_mutex == old))
   1515       1.60      yamt 			return 1;
   1516       1.60      yamt 		mutex_spin_exit(old);
   1517       1.60      yamt 	}
   1518       1.60      yamt }
   1519       1.60      yamt 
   1520      1.134     rmind void
   1521       1.96        ad lwp_unsleep(lwp_t *l, bool cleanup)
   1522       1.96        ad {
   1523       1.96        ad 
   1524       1.96        ad 	KASSERT(mutex_owned(l->l_mutex));
   1525      1.134     rmind 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1526       1.96        ad }
   1527       1.96        ad 
   1528       1.52        ad /*
   1529       1.56     pavel  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1530       1.52        ad  * set.
   1531       1.52        ad  */
   1532       1.52        ad void
   1533       1.52        ad lwp_userret(struct lwp *l)
   1534       1.52        ad {
   1535       1.52        ad 	struct proc *p;
   1536       1.52        ad 	int sig;
   1537       1.52        ad 
   1538      1.114     rmind 	KASSERT(l == curlwp);
   1539      1.114     rmind 	KASSERT(l->l_stat == LSONPROC);
   1540       1.52        ad 	p = l->l_proc;
   1541       1.52        ad 
   1542       1.75        ad #ifndef __HAVE_FAST_SOFTINTS
   1543       1.75        ad 	/* Run pending soft interrupts. */
   1544       1.75        ad 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1545       1.75        ad 		softint_overlay();
   1546       1.75        ad #endif
   1547       1.75        ad 
   1548       1.52        ad 	/*
   1549      1.167     rmind 	 * It is safe to do this read unlocked on a MP system..
   1550       1.52        ad 	 */
   1551      1.167     rmind 	while ((l->l_flag & LW_USERRET) != 0) {
   1552       1.52        ad 		/*
   1553       1.52        ad 		 * Process pending signals first, unless the process
   1554       1.61        ad 		 * is dumping core or exiting, where we will instead
   1555      1.101     rmind 		 * enter the LW_WSUSPEND case below.
   1556       1.52        ad 		 */
   1557       1.61        ad 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1558       1.61        ad 		    LW_PENDSIG) {
   1559      1.103        ad 			mutex_enter(p->p_lock);
   1560       1.52        ad 			while ((sig = issignal(l)) != 0)
   1561       1.52        ad 				postsig(sig);
   1562      1.103        ad 			mutex_exit(p->p_lock);
   1563       1.52        ad 		}
   1564       1.52        ad 
   1565       1.52        ad 		/*
   1566       1.52        ad 		 * Core-dump or suspend pending.
   1567       1.52        ad 		 *
   1568      1.159      matt 		 * In case of core dump, suspend ourselves, so that the kernel
   1569      1.159      matt 		 * stack and therefore the userland registers saved in the
   1570      1.159      matt 		 * trapframe are around for coredump() to write them out.
   1571      1.159      matt 		 * We also need to save any PCU resources that we have so that
   1572      1.159      matt 		 * they accessible for coredump().  We issue a wakeup on
   1573      1.159      matt 		 * p->p_lwpcv so that sigexit() will write the core file out
   1574      1.159      matt 		 * once all other LWPs are suspended.
   1575       1.52        ad 		 */
   1576       1.56     pavel 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1577      1.159      matt 			pcu_save_all(l);
   1578      1.103        ad 			mutex_enter(p->p_lock);
   1579       1.52        ad 			p->p_nrlwps--;
   1580       1.52        ad 			cv_broadcast(&p->p_lwpcv);
   1581       1.52        ad 			lwp_lock(l);
   1582       1.52        ad 			l->l_stat = LSSUSPENDED;
   1583      1.104        ad 			lwp_unlock(l);
   1584      1.103        ad 			mutex_exit(p->p_lock);
   1585      1.104        ad 			lwp_lock(l);
   1586       1.64      yamt 			mi_switch(l);
   1587       1.52        ad 		}
   1588       1.52        ad 
   1589       1.52        ad 		/* Process is exiting. */
   1590       1.56     pavel 		if ((l->l_flag & LW_WEXIT) != 0) {
   1591       1.52        ad 			lwp_exit(l);
   1592       1.52        ad 			KASSERT(0);
   1593       1.52        ad 			/* NOTREACHED */
   1594       1.52        ad 		}
   1595      1.156     pooka 
   1596      1.156     pooka 		/* update lwpctl processor (for vfork child_return) */
   1597      1.156     pooka 		if (l->l_flag & LW_LWPCTL) {
   1598      1.156     pooka 			lwp_lock(l);
   1599      1.156     pooka 			KASSERT(kpreempt_disabled());
   1600      1.156     pooka 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1601      1.156     pooka 			l->l_lwpctl->lc_pctr++;
   1602      1.156     pooka 			l->l_flag &= ~LW_LWPCTL;
   1603      1.156     pooka 			lwp_unlock(l);
   1604      1.156     pooka 		}
   1605       1.52        ad 	}
   1606       1.52        ad }
   1607       1.52        ad 
   1608       1.52        ad /*
   1609       1.52        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1610       1.52        ad  */
   1611       1.52        ad void
   1612       1.52        ad lwp_need_userret(struct lwp *l)
   1613       1.52        ad {
   1614       1.63        ad 	KASSERT(lwp_locked(l, NULL));
   1615       1.52        ad 
   1616       1.52        ad 	/*
   1617       1.52        ad 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1618       1.52        ad 	 * that the condition will be seen before forcing the LWP to enter
   1619       1.52        ad 	 * kernel mode.
   1620       1.52        ad 	 */
   1621       1.81        ad 	membar_producer();
   1622       1.52        ad 	cpu_signotify(l);
   1623       1.52        ad }
   1624       1.52        ad 
   1625       1.52        ad /*
   1626       1.52        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1627       1.52        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1628       1.52        ad  */
   1629       1.52        ad void
   1630       1.52        ad lwp_addref(struct lwp *l)
   1631       1.52        ad {
   1632       1.52        ad 
   1633      1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1634       1.52        ad 	KASSERT(l->l_stat != LSZOMB);
   1635       1.52        ad 	KASSERT(l->l_refcnt != 0);
   1636       1.52        ad 
   1637       1.52        ad 	l->l_refcnt++;
   1638       1.52        ad }
   1639       1.52        ad 
   1640       1.52        ad /*
   1641       1.52        ad  * Remove one reference to an LWP.  If this is the last reference,
   1642       1.52        ad  * then we must finalize the LWP's death.
   1643       1.52        ad  */
   1644       1.52        ad void
   1645       1.52        ad lwp_delref(struct lwp *l)
   1646       1.52        ad {
   1647       1.52        ad 	struct proc *p = l->l_proc;
   1648       1.52        ad 
   1649      1.103        ad 	mutex_enter(p->p_lock);
   1650      1.142  christos 	lwp_delref2(l);
   1651      1.142  christos 	mutex_exit(p->p_lock);
   1652      1.142  christos }
   1653      1.142  christos 
   1654      1.142  christos /*
   1655      1.142  christos  * Remove one reference to an LWP.  If this is the last reference,
   1656      1.142  christos  * then we must finalize the LWP's death.  The proc mutex is held
   1657      1.142  christos  * on entry.
   1658      1.142  christos  */
   1659      1.142  christos void
   1660      1.142  christos lwp_delref2(struct lwp *l)
   1661      1.142  christos {
   1662      1.142  christos 	struct proc *p = l->l_proc;
   1663      1.142  christos 
   1664      1.142  christos 	KASSERT(mutex_owned(p->p_lock));
   1665       1.72        ad 	KASSERT(l->l_stat != LSZOMB);
   1666       1.72        ad 	KASSERT(l->l_refcnt > 0);
   1667       1.52        ad 	if (--l->l_refcnt == 0)
   1668       1.76        ad 		cv_broadcast(&p->p_lwpcv);
   1669       1.52        ad }
   1670       1.52        ad 
   1671       1.52        ad /*
   1672       1.52        ad  * Drain all references to the current LWP.
   1673       1.52        ad  */
   1674       1.52        ad void
   1675       1.52        ad lwp_drainrefs(struct lwp *l)
   1676       1.52        ad {
   1677       1.52        ad 	struct proc *p = l->l_proc;
   1678       1.52        ad 
   1679      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1680       1.52        ad 	KASSERT(l->l_refcnt != 0);
   1681       1.52        ad 
   1682       1.52        ad 	l->l_refcnt--;
   1683       1.52        ad 	while (l->l_refcnt != 0)
   1684      1.103        ad 		cv_wait(&p->p_lwpcv, p->p_lock);
   1685       1.37        ad }
   1686       1.41   thorpej 
   1687       1.41   thorpej /*
   1688      1.127        ad  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1689      1.127        ad  * be held.
   1690      1.127        ad  */
   1691      1.127        ad bool
   1692      1.127        ad lwp_alive(lwp_t *l)
   1693      1.127        ad {
   1694      1.127        ad 
   1695      1.127        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1696      1.127        ad 
   1697      1.127        ad 	switch (l->l_stat) {
   1698      1.127        ad 	case LSSLEEP:
   1699      1.127        ad 	case LSRUN:
   1700      1.127        ad 	case LSONPROC:
   1701      1.127        ad 	case LSSTOP:
   1702      1.127        ad 	case LSSUSPENDED:
   1703      1.127        ad 		return true;
   1704      1.127        ad 	default:
   1705      1.127        ad 		return false;
   1706      1.127        ad 	}
   1707      1.127        ad }
   1708      1.127        ad 
   1709      1.127        ad /*
   1710      1.127        ad  * Return first live LWP in the process.
   1711      1.127        ad  */
   1712      1.127        ad lwp_t *
   1713      1.127        ad lwp_find_first(proc_t *p)
   1714      1.127        ad {
   1715      1.127        ad 	lwp_t *l;
   1716      1.127        ad 
   1717      1.127        ad 	KASSERT(mutex_owned(p->p_lock));
   1718      1.127        ad 
   1719      1.127        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1720      1.127        ad 		if (lwp_alive(l)) {
   1721      1.127        ad 			return l;
   1722      1.127        ad 		}
   1723      1.127        ad 	}
   1724      1.127        ad 
   1725      1.127        ad 	return NULL;
   1726      1.127        ad }
   1727      1.127        ad 
   1728      1.127        ad /*
   1729       1.78        ad  * Allocate a new lwpctl structure for a user LWP.
   1730       1.78        ad  */
   1731       1.78        ad int
   1732       1.78        ad lwp_ctl_alloc(vaddr_t *uaddr)
   1733       1.78        ad {
   1734       1.78        ad 	lcproc_t *lp;
   1735       1.78        ad 	u_int bit, i, offset;
   1736       1.78        ad 	struct uvm_object *uao;
   1737       1.78        ad 	int error;
   1738       1.78        ad 	lcpage_t *lcp;
   1739       1.78        ad 	proc_t *p;
   1740       1.78        ad 	lwp_t *l;
   1741       1.78        ad 
   1742       1.78        ad 	l = curlwp;
   1743       1.78        ad 	p = l->l_proc;
   1744       1.78        ad 
   1745      1.156     pooka 	/* don't allow a vforked process to create lwp ctls */
   1746      1.156     pooka 	if (p->p_lflag & PL_PPWAIT)
   1747      1.156     pooka 		return EBUSY;
   1748      1.156     pooka 
   1749       1.81        ad 	if (l->l_lcpage != NULL) {
   1750       1.81        ad 		lcp = l->l_lcpage;
   1751       1.81        ad 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1752      1.143     njoly 		return 0;
   1753       1.81        ad 	}
   1754       1.78        ad 
   1755       1.78        ad 	/* First time around, allocate header structure for the process. */
   1756       1.78        ad 	if ((lp = p->p_lwpctl) == NULL) {
   1757       1.78        ad 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1758       1.78        ad 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1759       1.78        ad 		lp->lp_uao = NULL;
   1760       1.78        ad 		TAILQ_INIT(&lp->lp_pages);
   1761      1.103        ad 		mutex_enter(p->p_lock);
   1762       1.78        ad 		if (p->p_lwpctl == NULL) {
   1763       1.78        ad 			p->p_lwpctl = lp;
   1764      1.103        ad 			mutex_exit(p->p_lock);
   1765       1.78        ad 		} else {
   1766      1.103        ad 			mutex_exit(p->p_lock);
   1767       1.78        ad 			mutex_destroy(&lp->lp_lock);
   1768       1.78        ad 			kmem_free(lp, sizeof(*lp));
   1769       1.78        ad 			lp = p->p_lwpctl;
   1770       1.78        ad 		}
   1771       1.78        ad 	}
   1772       1.78        ad 
   1773       1.78        ad  	/*
   1774       1.78        ad  	 * Set up an anonymous memory region to hold the shared pages.
   1775       1.78        ad  	 * Map them into the process' address space.  The user vmspace
   1776       1.78        ad  	 * gets the first reference on the UAO.
   1777       1.78        ad  	 */
   1778       1.78        ad 	mutex_enter(&lp->lp_lock);
   1779       1.78        ad 	if (lp->lp_uao == NULL) {
   1780       1.78        ad 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1781       1.78        ad 		lp->lp_cur = 0;
   1782       1.78        ad 		lp->lp_max = LWPCTL_UAREA_SZ;
   1783       1.78        ad 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1784      1.182    martin 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
   1785      1.182    martin 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1786       1.78        ad 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1787       1.78        ad 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1788       1.78        ad 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1789       1.78        ad 		if (error != 0) {
   1790       1.78        ad 			uao_detach(lp->lp_uao);
   1791       1.78        ad 			lp->lp_uao = NULL;
   1792       1.78        ad 			mutex_exit(&lp->lp_lock);
   1793       1.78        ad 			return error;
   1794       1.78        ad 		}
   1795       1.78        ad 	}
   1796       1.78        ad 
   1797       1.78        ad 	/* Get a free block and allocate for this LWP. */
   1798       1.78        ad 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1799       1.78        ad 		if (lcp->lcp_nfree != 0)
   1800       1.78        ad 			break;
   1801       1.78        ad 	}
   1802       1.78        ad 	if (lcp == NULL) {
   1803       1.78        ad 		/* Nothing available - try to set up a free page. */
   1804       1.78        ad 		if (lp->lp_cur == lp->lp_max) {
   1805       1.78        ad 			mutex_exit(&lp->lp_lock);
   1806       1.78        ad 			return ENOMEM;
   1807       1.78        ad 		}
   1808       1.78        ad 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1809      1.189       chs 
   1810       1.78        ad 		/*
   1811       1.78        ad 		 * Wire the next page down in kernel space.  Since this
   1812       1.78        ad 		 * is a new mapping, we must add a reference.
   1813       1.78        ad 		 */
   1814       1.78        ad 		uao = lp->lp_uao;
   1815       1.78        ad 		(*uao->pgops->pgo_reference)(uao);
   1816       1.99        ad 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1817       1.78        ad 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1818       1.78        ad 		    uao, lp->lp_cur, PAGE_SIZE,
   1819       1.78        ad 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1820       1.78        ad 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1821       1.78        ad 		if (error != 0) {
   1822       1.78        ad 			mutex_exit(&lp->lp_lock);
   1823       1.78        ad 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1824       1.78        ad 			(*uao->pgops->pgo_detach)(uao);
   1825       1.78        ad 			return error;
   1826       1.78        ad 		}
   1827       1.89      yamt 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1828       1.89      yamt 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1829       1.89      yamt 		if (error != 0) {
   1830       1.89      yamt 			mutex_exit(&lp->lp_lock);
   1831       1.89      yamt 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1832       1.89      yamt 			    lcp->lcp_kaddr + PAGE_SIZE);
   1833       1.89      yamt 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1834       1.89      yamt 			return error;
   1835       1.89      yamt 		}
   1836       1.78        ad 		/* Prepare the page descriptor and link into the list. */
   1837       1.78        ad 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1838       1.78        ad 		lp->lp_cur += PAGE_SIZE;
   1839       1.78        ad 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1840       1.78        ad 		lcp->lcp_rotor = 0;
   1841       1.78        ad 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1842       1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1843       1.78        ad 	}
   1844       1.78        ad 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1845       1.78        ad 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1846       1.78        ad 			i = 0;
   1847       1.78        ad 	}
   1848       1.78        ad 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1849      1.193     kamil 	lcp->lcp_bitmap[i] ^= (1U << bit);
   1850       1.78        ad 	lcp->lcp_rotor = i;
   1851       1.78        ad 	lcp->lcp_nfree--;
   1852       1.78        ad 	l->l_lcpage = lcp;
   1853       1.78        ad 	offset = (i << 5) + bit;
   1854       1.78        ad 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1855       1.78        ad 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1856       1.78        ad 	mutex_exit(&lp->lp_lock);
   1857       1.78        ad 
   1858      1.107        ad 	KPREEMPT_DISABLE(l);
   1859      1.195     skrll 	l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
   1860      1.107        ad 	KPREEMPT_ENABLE(l);
   1861       1.78        ad 
   1862       1.78        ad 	return 0;
   1863       1.78        ad }
   1864       1.78        ad 
   1865       1.78        ad /*
   1866       1.78        ad  * Free an lwpctl structure back to the per-process list.
   1867       1.78        ad  */
   1868       1.78        ad void
   1869       1.78        ad lwp_ctl_free(lwp_t *l)
   1870       1.78        ad {
   1871      1.156     pooka 	struct proc *p = l->l_proc;
   1872       1.78        ad 	lcproc_t *lp;
   1873       1.78        ad 	lcpage_t *lcp;
   1874       1.78        ad 	u_int map, offset;
   1875       1.78        ad 
   1876      1.156     pooka 	/* don't free a lwp context we borrowed for vfork */
   1877      1.156     pooka 	if (p->p_lflag & PL_PPWAIT) {
   1878      1.156     pooka 		l->l_lwpctl = NULL;
   1879      1.156     pooka 		return;
   1880      1.156     pooka 	}
   1881      1.156     pooka 
   1882      1.156     pooka 	lp = p->p_lwpctl;
   1883       1.78        ad 	KASSERT(lp != NULL);
   1884       1.78        ad 
   1885       1.78        ad 	lcp = l->l_lcpage;
   1886       1.78        ad 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1887       1.78        ad 	KASSERT(offset < LWPCTL_PER_PAGE);
   1888       1.78        ad 
   1889       1.78        ad 	mutex_enter(&lp->lp_lock);
   1890       1.78        ad 	lcp->lcp_nfree++;
   1891       1.78        ad 	map = offset >> 5;
   1892      1.194     kamil 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
   1893       1.78        ad 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1894       1.78        ad 		lcp->lcp_rotor = map;
   1895       1.78        ad 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1896       1.78        ad 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1897       1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1898       1.78        ad 	}
   1899       1.78        ad 	mutex_exit(&lp->lp_lock);
   1900       1.78        ad }
   1901       1.78        ad 
   1902       1.78        ad /*
   1903       1.78        ad  * Process is exiting; tear down lwpctl state.  This can only be safely
   1904       1.78        ad  * called by the last LWP in the process.
   1905       1.78        ad  */
   1906       1.78        ad void
   1907       1.78        ad lwp_ctl_exit(void)
   1908       1.78        ad {
   1909       1.78        ad 	lcpage_t *lcp, *next;
   1910       1.78        ad 	lcproc_t *lp;
   1911       1.78        ad 	proc_t *p;
   1912       1.78        ad 	lwp_t *l;
   1913       1.78        ad 
   1914       1.78        ad 	l = curlwp;
   1915       1.78        ad 	l->l_lwpctl = NULL;
   1916       1.95        ad 	l->l_lcpage = NULL;
   1917       1.78        ad 	p = l->l_proc;
   1918       1.78        ad 	lp = p->p_lwpctl;
   1919       1.78        ad 
   1920       1.78        ad 	KASSERT(lp != NULL);
   1921       1.78        ad 	KASSERT(p->p_nlwps == 1);
   1922       1.78        ad 
   1923       1.78        ad 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1924       1.78        ad 		next = TAILQ_NEXT(lcp, lcp_chain);
   1925       1.78        ad 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1926       1.78        ad 		    lcp->lcp_kaddr + PAGE_SIZE);
   1927       1.78        ad 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1928       1.78        ad 	}
   1929       1.78        ad 
   1930       1.78        ad 	if (lp->lp_uao != NULL) {
   1931       1.78        ad 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1932       1.78        ad 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1933       1.78        ad 	}
   1934       1.78        ad 
   1935       1.78        ad 	mutex_destroy(&lp->lp_lock);
   1936       1.78        ad 	kmem_free(lp, sizeof(*lp));
   1937       1.78        ad 	p->p_lwpctl = NULL;
   1938       1.78        ad }
   1939       1.84      yamt 
   1940      1.130        ad /*
   1941      1.130        ad  * Return the current LWP's "preemption counter".  Used to detect
   1942      1.130        ad  * preemption across operations that can tolerate preemption without
   1943      1.130        ad  * crashing, but which may generate incorrect results if preempted.
   1944      1.130        ad  */
   1945      1.130        ad uint64_t
   1946      1.130        ad lwp_pctr(void)
   1947      1.130        ad {
   1948      1.130        ad 
   1949      1.130        ad 	return curlwp->l_ncsw;
   1950      1.130        ad }
   1951      1.130        ad 
   1952      1.151       chs /*
   1953      1.151       chs  * Set an LWP's private data pointer.
   1954      1.151       chs  */
   1955      1.151       chs int
   1956      1.151       chs lwp_setprivate(struct lwp *l, void *ptr)
   1957      1.151       chs {
   1958      1.151       chs 	int error = 0;
   1959      1.151       chs 
   1960      1.151       chs 	l->l_private = ptr;
   1961      1.151       chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
   1962      1.151       chs 	error = cpu_lwp_setprivate(l, ptr);
   1963      1.151       chs #endif
   1964      1.151       chs 	return error;
   1965      1.151       chs }
   1966      1.151       chs 
   1967       1.84      yamt #if defined(DDB)
   1968      1.153     rmind #include <machine/pcb.h>
   1969      1.153     rmind 
   1970       1.84      yamt void
   1971       1.84      yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1972       1.84      yamt {
   1973       1.84      yamt 	lwp_t *l;
   1974       1.84      yamt 
   1975       1.84      yamt 	LIST_FOREACH(l, &alllwp, l_list) {
   1976       1.84      yamt 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1977       1.84      yamt 
   1978       1.84      yamt 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1979       1.84      yamt 			continue;
   1980       1.84      yamt 		}
   1981       1.84      yamt 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1982       1.84      yamt 		    (void *)addr, (void *)stack,
   1983       1.84      yamt 		    (size_t)(addr - stack), l);
   1984       1.84      yamt 	}
   1985       1.84      yamt }
   1986       1.84      yamt #endif /* defined(DDB) */
   1987