kern_lwp.c revision 1.205 1 1.205 uwe /* $NetBSD: kern_lwp.c,v 1.205 2019/10/06 15:11:17 uwe Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.127 ad * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.9 lukem
32 1.52 ad /*
33 1.52 ad * Overview
34 1.52 ad *
35 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of
36 1.52 ad * execution within the kernel. The core state of an LWP is described
37 1.66 ad * by "struct lwp", also known as lwp_t.
38 1.52 ad *
39 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
40 1.52 ad * Every process contains at least one LWP, but may contain more. The
41 1.52 ad * process describes attributes shared among all of its LWPs such as a
42 1.52 ad * private address space, global execution state (stopped, active,
43 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
44 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel.
45 1.52 ad *
46 1.52 ad * Execution states
47 1.52 ad *
48 1.52 ad * At any given time, an LWP has overall state that is described by
49 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
50 1.52 ad * set is guaranteed to represent the absolute, current state of the
51 1.52 ad * LWP:
52 1.101 rmind *
53 1.101 rmind * LSONPROC
54 1.101 rmind *
55 1.101 rmind * On processor: the LWP is executing on a CPU, either in the
56 1.101 rmind * kernel or in user space.
57 1.101 rmind *
58 1.101 rmind * LSRUN
59 1.101 rmind *
60 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be
61 1.101 rmind * chosen to run by an idle processor, or by a processor that
62 1.101 rmind * has been asked to preempt a currently runnning but lower
63 1.134 rmind * priority LWP.
64 1.101 rmind *
65 1.101 rmind * LSIDL
66 1.101 rmind *
67 1.101 rmind * Idle: the LWP has been created but has not yet executed,
68 1.66 ad * or it has ceased executing a unit of work and is waiting
69 1.66 ad * to be started again.
70 1.101 rmind *
71 1.101 rmind * LSSUSPENDED:
72 1.101 rmind *
73 1.101 rmind * Suspended: the LWP has had its execution suspended by
74 1.52 ad * another LWP in the same process using the _lwp_suspend()
75 1.52 ad * system call. User-level LWPs also enter the suspended
76 1.52 ad * state when the system is shutting down.
77 1.52 ad *
78 1.52 ad * The second set represent a "statement of intent" on behalf of the
79 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
80 1.66 ad * sleeping or idle. It is expected to take the necessary action to
81 1.101 rmind * stop executing or become "running" again within a short timeframe.
82 1.115 ad * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 1.101 rmind * Importantly, it indicates that its state is tied to a CPU.
84 1.101 rmind *
85 1.101 rmind * LSZOMB:
86 1.101 rmind *
87 1.101 rmind * Dead or dying: the LWP has released most of its resources
88 1.129 ad * and is about to switch away into oblivion, or has already
89 1.66 ad * switched away. When it switches away, its few remaining
90 1.66 ad * resources can be collected.
91 1.101 rmind *
92 1.101 rmind * LSSLEEP:
93 1.101 rmind *
94 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and
95 1.101 rmind * has switched away or will switch away shortly to allow other
96 1.66 ad * LWPs to run on the CPU.
97 1.101 rmind *
98 1.101 rmind * LSSTOP:
99 1.101 rmind *
100 1.101 rmind * Stopped: the LWP has been stopped as a result of a job
101 1.101 rmind * control signal, or as a result of the ptrace() interface.
102 1.101 rmind *
103 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle
104 1.101 rmind * signals that they receive, but will not return to user space
105 1.101 rmind * until their process' state is changed away from stopped.
106 1.101 rmind *
107 1.101 rmind * Single LWPs within a process can not be set stopped
108 1.101 rmind * selectively: all actions that can stop or continue LWPs
109 1.101 rmind * occur at the process level.
110 1.101 rmind *
111 1.52 ad * State transitions
112 1.52 ad *
113 1.66 ad * Note that the LSSTOP state may only be set when returning to
114 1.66 ad * user space in userret(), or when sleeping interruptably. The
115 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting
116 1.66 ad * those states, we try to ensure that the LWPs will release all
117 1.66 ad * locks that they hold, and at a minimum try to ensure that the
118 1.66 ad * LWP can be set runnable again by a signal.
119 1.52 ad *
120 1.52 ad * LWPs may transition states in the following ways:
121 1.52 ad *
122 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
123 1.129 ad * > SLEEP
124 1.129 ad * > STOPPED
125 1.52 ad * > SUSPENDED
126 1.52 ad * > ZOMB
127 1.129 ad * > IDL (special cases)
128 1.52 ad *
129 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
130 1.129 ad * > SLEEP
131 1.52 ad *
132 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
133 1.101 rmind * > RUN > SUSPENDED
134 1.101 rmind * > STOPPED > STOPPED
135 1.129 ad * > ONPROC (special cases)
136 1.52 ad *
137 1.129 ad * Some state transitions are only possible with kernel threads (eg
138 1.129 ad * ONPROC -> IDL) and happen under tightly controlled circumstances
139 1.129 ad * free of unwanted side effects.
140 1.66 ad *
141 1.114 rmind * Migration
142 1.114 rmind *
143 1.114 rmind * Migration of threads from one CPU to another could be performed
144 1.114 rmind * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 1.114 rmind * functions. The universal lwp_migrate() function should be used for
146 1.114 rmind * any other cases. Subsystems in the kernel must be aware that CPU
147 1.114 rmind * of LWP may change, while it is not locked.
148 1.114 rmind *
149 1.52 ad * Locking
150 1.52 ad *
151 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
152 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering
153 1.52 ad * each field are documented in sys/lwp.h.
154 1.52 ad *
155 1.66 ad * State transitions must be made with the LWP's general lock held,
156 1.152 rmind * and may cause the LWP's lock pointer to change. Manipulation of
157 1.66 ad * the general lock is not performed directly, but through calls to
158 1.152 rmind * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 1.152 rmind * adaptive locks are not allowed to be released while the LWP's lock
160 1.152 rmind * is being held (unlike for other spin-locks).
161 1.52 ad *
162 1.52 ad * States and their associated locks:
163 1.52 ad *
164 1.74 rmind * LSONPROC, LSZOMB:
165 1.52 ad *
166 1.64 yamt * Always covered by spc_lwplock, which protects running LWPs.
167 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
168 1.52 ad *
169 1.74 rmind * LSIDL, LSRUN:
170 1.52 ad *
171 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
172 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
173 1.52 ad *
174 1.52 ad * LSSLEEP:
175 1.52 ad *
176 1.66 ad * Covered by a lock associated with the sleep queue that the
177 1.129 ad * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 1.52 ad *
179 1.52 ad * LSSTOP, LSSUSPENDED:
180 1.101 rmind *
181 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
182 1.66 ad * l_mutex references the sleep queue lock. If the LWP was
183 1.52 ad * runnable or on the CPU when halted, or has been removed from
184 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock.
185 1.52 ad *
186 1.52 ad * The lock order is as follows:
187 1.52 ad *
188 1.64 yamt * spc::spc_lwplock ->
189 1.112 ad * sleeptab::st_mutex ->
190 1.64 yamt * tschain_t::tc_mutex ->
191 1.64 yamt * spc::spc_mutex
192 1.52 ad *
193 1.103 ad * Each process has an scheduler state lock (proc::p_lock), and a
194 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
196 1.103 ad * following states, p_lock must be held and the process wide counters
197 1.52 ad * adjusted:
198 1.52 ad *
199 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 1.52 ad *
201 1.129 ad * (But not always for kernel threads. There are some special cases
202 1.129 ad * as mentioned above. See kern_softint.c.)
203 1.129 ad *
204 1.52 ad * Note that an LWP is considered running or likely to run soon if in
205 1.52 ad * one of the following states. This affects the value of p_nrlwps:
206 1.52 ad *
207 1.52 ad * LSRUN, LSONPROC, LSSLEEP
208 1.52 ad *
209 1.103 ad * p_lock does not need to be held when transitioning among these
210 1.129 ad * three states, hence p_lock is rarely taken for state transitions.
211 1.52 ad */
212 1.52 ad
213 1.9 lukem #include <sys/cdefs.h>
214 1.205 uwe __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.205 2019/10/06 15:11:17 uwe Exp $");
215 1.8 martin
216 1.84 yamt #include "opt_ddb.h"
217 1.52 ad #include "opt_lockdebug.h"
218 1.139 darran #include "opt_dtrace.h"
219 1.2 thorpej
220 1.47 hannken #define _LWP_API_PRIVATE
221 1.47 hannken
222 1.2 thorpej #include <sys/param.h>
223 1.2 thorpej #include <sys/systm.h>
224 1.64 yamt #include <sys/cpu.h>
225 1.2 thorpej #include <sys/pool.h>
226 1.2 thorpej #include <sys/proc.h>
227 1.2 thorpej #include <sys/syscallargs.h>
228 1.57 dsl #include <sys/syscall_stats.h>
229 1.37 ad #include <sys/kauth.h>
230 1.161 christos #include <sys/pserialize.h>
231 1.52 ad #include <sys/sleepq.h>
232 1.52 ad #include <sys/lockdebug.h>
233 1.52 ad #include <sys/kmem.h>
234 1.91 rmind #include <sys/pset.h>
235 1.75 ad #include <sys/intr.h>
236 1.78 ad #include <sys/lwpctl.h>
237 1.81 ad #include <sys/atomic.h>
238 1.131 ad #include <sys/filedesc.h>
239 1.196 hannken #include <sys/fstrans.h>
240 1.138 darran #include <sys/dtrace_bsd.h>
241 1.141 darran #include <sys/sdt.h>
242 1.203 kamil #include <sys/ptrace.h>
243 1.157 rmind #include <sys/xcall.h>
244 1.169 christos #include <sys/uidinfo.h>
245 1.169 christos #include <sys/sysctl.h>
246 1.201 ozaki #include <sys/psref.h>
247 1.138 darran
248 1.2 thorpej #include <uvm/uvm_extern.h>
249 1.80 skrll #include <uvm/uvm_object.h>
250 1.2 thorpej
251 1.152 rmind static pool_cache_t lwp_cache __read_mostly;
252 1.152 rmind struct lwplist alllwp __cacheline_aligned;
253 1.41 thorpej
254 1.157 rmind static void lwp_dtor(void *, void *);
255 1.157 rmind
256 1.141 darran /* DTrace proc provider probes */
257 1.180 christos SDT_PROVIDER_DEFINE(proc);
258 1.180 christos
259 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
260 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
261 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
262 1.141 darran
263 1.147 pooka struct turnstile turnstile0;
264 1.147 pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
265 1.147 pooka #ifdef LWP0_CPU_INFO
266 1.147 pooka .l_cpu = LWP0_CPU_INFO,
267 1.147 pooka #endif
268 1.154 matt #ifdef LWP0_MD_INITIALIZER
269 1.154 matt .l_md = LWP0_MD_INITIALIZER,
270 1.154 matt #endif
271 1.147 pooka .l_proc = &proc0,
272 1.147 pooka .l_lid = 1,
273 1.147 pooka .l_flag = LW_SYSTEM,
274 1.147 pooka .l_stat = LSONPROC,
275 1.147 pooka .l_ts = &turnstile0,
276 1.147 pooka .l_syncobj = &sched_syncobj,
277 1.147 pooka .l_refcnt = 1,
278 1.147 pooka .l_priority = PRI_USER + NPRI_USER - 1,
279 1.147 pooka .l_inheritedprio = -1,
280 1.147 pooka .l_class = SCHED_OTHER,
281 1.147 pooka .l_psid = PS_NONE,
282 1.147 pooka .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
283 1.147 pooka .l_name = __UNCONST("swapper"),
284 1.147 pooka .l_fd = &filedesc0,
285 1.147 pooka };
286 1.147 pooka
287 1.169 christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
288 1.169 christos
289 1.169 christos /*
290 1.169 christos * sysctl helper routine for kern.maxlwp. Ensures that the new
291 1.169 christos * values are not too low or too high.
292 1.169 christos */
293 1.169 christos static int
294 1.169 christos sysctl_kern_maxlwp(SYSCTLFN_ARGS)
295 1.169 christos {
296 1.169 christos int error, nmaxlwp;
297 1.169 christos struct sysctlnode node;
298 1.169 christos
299 1.169 christos nmaxlwp = maxlwp;
300 1.169 christos node = *rnode;
301 1.169 christos node.sysctl_data = &nmaxlwp;
302 1.169 christos error = sysctl_lookup(SYSCTLFN_CALL(&node));
303 1.169 christos if (error || newp == NULL)
304 1.169 christos return error;
305 1.169 christos
306 1.169 christos if (nmaxlwp < 0 || nmaxlwp >= 65536)
307 1.169 christos return EINVAL;
308 1.169 christos if (nmaxlwp > cpu_maxlwp())
309 1.169 christos return EINVAL;
310 1.169 christos maxlwp = nmaxlwp;
311 1.169 christos
312 1.169 christos return 0;
313 1.169 christos }
314 1.169 christos
315 1.169 christos static void
316 1.169 christos sysctl_kern_lwp_setup(void)
317 1.169 christos {
318 1.169 christos struct sysctllog *clog = NULL;
319 1.169 christos
320 1.169 christos sysctl_createv(&clog, 0, NULL, NULL,
321 1.169 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
322 1.169 christos CTLTYPE_INT, "maxlwp",
323 1.169 christos SYSCTL_DESCR("Maximum number of simultaneous threads"),
324 1.169 christos sysctl_kern_maxlwp, 0, NULL, 0,
325 1.169 christos CTL_KERN, CTL_CREATE, CTL_EOL);
326 1.169 christos }
327 1.169 christos
328 1.41 thorpej void
329 1.41 thorpej lwpinit(void)
330 1.41 thorpej {
331 1.41 thorpej
332 1.152 rmind LIST_INIT(&alllwp);
333 1.144 pooka lwpinit_specificdata();
334 1.52 ad lwp_sys_init();
335 1.87 ad lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
336 1.157 rmind "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
337 1.169 christos
338 1.169 christos maxlwp = cpu_maxlwp();
339 1.169 christos sysctl_kern_lwp_setup();
340 1.41 thorpej }
341 1.41 thorpej
342 1.147 pooka void
343 1.147 pooka lwp0_init(void)
344 1.147 pooka {
345 1.147 pooka struct lwp *l = &lwp0;
346 1.147 pooka
347 1.147 pooka KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
348 1.148 pooka KASSERT(l->l_lid == proc0.p_nlwpid);
349 1.147 pooka
350 1.147 pooka LIST_INSERT_HEAD(&alllwp, l, l_list);
351 1.147 pooka
352 1.147 pooka callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
353 1.147 pooka callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
354 1.147 pooka cv_init(&l->l_sigcv, "sigwait");
355 1.171 rmind cv_init(&l->l_waitcv, "vfork");
356 1.147 pooka
357 1.147 pooka kauth_cred_hold(proc0.p_cred);
358 1.147 pooka l->l_cred = proc0.p_cred;
359 1.147 pooka
360 1.164 yamt kdtrace_thread_ctor(NULL, l);
361 1.147 pooka lwp_initspecific(l);
362 1.147 pooka
363 1.147 pooka SYSCALL_TIME_LWP_INIT(l);
364 1.147 pooka }
365 1.147 pooka
366 1.157 rmind static void
367 1.157 rmind lwp_dtor(void *arg, void *obj)
368 1.157 rmind {
369 1.157 rmind lwp_t *l = obj;
370 1.157 rmind (void)l;
371 1.157 rmind
372 1.157 rmind /*
373 1.157 rmind * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
374 1.157 rmind * calls will exit before memory of LWP is returned to the pool, where
375 1.157 rmind * KVA of LWP structure might be freed and re-used for other purposes.
376 1.157 rmind * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
377 1.157 rmind * callers, therefore cross-call to all CPUs will do the job. Also,
378 1.157 rmind * the value of l->l_cpu must be still valid at this point.
379 1.157 rmind */
380 1.157 rmind KASSERT(l->l_cpu != NULL);
381 1.205 uwe xc_barrier(0);
382 1.157 rmind }
383 1.157 rmind
384 1.52 ad /*
385 1.52 ad * Set an suspended.
386 1.52 ad *
387 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
388 1.52 ad * LWP before return.
389 1.52 ad */
390 1.2 thorpej int
391 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
392 1.2 thorpej {
393 1.52 ad int error;
394 1.2 thorpej
395 1.103 ad KASSERT(mutex_owned(t->l_proc->p_lock));
396 1.63 ad KASSERT(lwp_locked(t, NULL));
397 1.33 chs
398 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
399 1.2 thorpej
400 1.52 ad /*
401 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
402 1.52 ad * else or deadlock could occur. We won't return to userspace.
403 1.2 thorpej */
404 1.109 rmind if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
405 1.52 ad lwp_unlock(t);
406 1.52 ad return (EDEADLK);
407 1.2 thorpej }
408 1.2 thorpej
409 1.204 kamil if ((t->l_flag & LW_DBGSUSPEND) != 0) {
410 1.204 kamil lwp_unlock(t);
411 1.204 kamil return 0;
412 1.204 kamil }
413 1.204 kamil
414 1.52 ad error = 0;
415 1.2 thorpej
416 1.52 ad switch (t->l_stat) {
417 1.52 ad case LSRUN:
418 1.52 ad case LSONPROC:
419 1.56 pavel t->l_flag |= LW_WSUSPEND;
420 1.52 ad lwp_need_userret(t);
421 1.52 ad lwp_unlock(t);
422 1.52 ad break;
423 1.2 thorpej
424 1.52 ad case LSSLEEP:
425 1.56 pavel t->l_flag |= LW_WSUSPEND;
426 1.2 thorpej
427 1.2 thorpej /*
428 1.52 ad * Kick the LWP and try to get it to the kernel boundary
429 1.52 ad * so that it will release any locks that it holds.
430 1.52 ad * setrunnable() will release the lock.
431 1.2 thorpej */
432 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
433 1.52 ad setrunnable(t);
434 1.52 ad else
435 1.52 ad lwp_unlock(t);
436 1.52 ad break;
437 1.2 thorpej
438 1.52 ad case LSSUSPENDED:
439 1.52 ad lwp_unlock(t);
440 1.52 ad break;
441 1.17 manu
442 1.52 ad case LSSTOP:
443 1.56 pavel t->l_flag |= LW_WSUSPEND;
444 1.52 ad setrunnable(t);
445 1.52 ad break;
446 1.2 thorpej
447 1.52 ad case LSIDL:
448 1.52 ad case LSZOMB:
449 1.52 ad error = EINTR; /* It's what Solaris does..... */
450 1.52 ad lwp_unlock(t);
451 1.52 ad break;
452 1.2 thorpej }
453 1.2 thorpej
454 1.69 rmind return (error);
455 1.2 thorpej }
456 1.2 thorpej
457 1.52 ad /*
458 1.52 ad * Restart a suspended LWP.
459 1.52 ad *
460 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
461 1.52 ad * LWP before return.
462 1.52 ad */
463 1.2 thorpej void
464 1.2 thorpej lwp_continue(struct lwp *l)
465 1.2 thorpej {
466 1.2 thorpej
467 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
468 1.63 ad KASSERT(lwp_locked(l, NULL));
469 1.52 ad
470 1.52 ad /* If rebooting or not suspended, then just bail out. */
471 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
472 1.52 ad lwp_unlock(l);
473 1.2 thorpej return;
474 1.10 fvdl }
475 1.2 thorpej
476 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
477 1.2 thorpej
478 1.204 kamil if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
479 1.52 ad lwp_unlock(l);
480 1.52 ad return;
481 1.2 thorpej }
482 1.2 thorpej
483 1.52 ad /* setrunnable() will release the lock. */
484 1.52 ad setrunnable(l);
485 1.2 thorpej }
486 1.2 thorpej
487 1.52 ad /*
488 1.142 christos * Restart a stopped LWP.
489 1.142 christos *
490 1.142 christos * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
491 1.142 christos * LWP before return.
492 1.142 christos */
493 1.142 christos void
494 1.142 christos lwp_unstop(struct lwp *l)
495 1.142 christos {
496 1.142 christos struct proc *p = l->l_proc;
497 1.167 rmind
498 1.142 christos KASSERT(mutex_owned(proc_lock));
499 1.142 christos KASSERT(mutex_owned(p->p_lock));
500 1.142 christos
501 1.142 christos lwp_lock(l);
502 1.142 christos
503 1.204 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
504 1.204 kamil
505 1.142 christos /* If not stopped, then just bail out. */
506 1.142 christos if (l->l_stat != LSSTOP) {
507 1.142 christos lwp_unlock(l);
508 1.142 christos return;
509 1.142 christos }
510 1.142 christos
511 1.142 christos p->p_stat = SACTIVE;
512 1.142 christos p->p_sflag &= ~PS_STOPPING;
513 1.142 christos
514 1.142 christos if (!p->p_waited)
515 1.142 christos p->p_pptr->p_nstopchild--;
516 1.142 christos
517 1.142 christos if (l->l_wchan == NULL) {
518 1.142 christos /* setrunnable() will release the lock. */
519 1.142 christos setrunnable(l);
520 1.183 christos } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
521 1.163 christos /* setrunnable() so we can receive the signal */
522 1.163 christos setrunnable(l);
523 1.142 christos } else {
524 1.142 christos l->l_stat = LSSLEEP;
525 1.142 christos p->p_nrlwps++;
526 1.142 christos lwp_unlock(l);
527 1.142 christos }
528 1.142 christos }
529 1.142 christos
530 1.142 christos /*
531 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
532 1.52 ad * non-zero, we are waiting for a specific LWP.
533 1.52 ad *
534 1.103 ad * Must be called with p->p_lock held.
535 1.52 ad */
536 1.2 thorpej int
537 1.173 rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
538 1.2 thorpej {
539 1.173 rmind const lwpid_t curlid = l->l_lid;
540 1.173 rmind proc_t *p = l->l_proc;
541 1.173 rmind lwp_t *l2;
542 1.173 rmind int error;
543 1.2 thorpej
544 1.103 ad KASSERT(mutex_owned(p->p_lock));
545 1.52 ad
546 1.52 ad p->p_nlwpwait++;
547 1.63 ad l->l_waitingfor = lid;
548 1.52 ad
549 1.52 ad for (;;) {
550 1.173 rmind int nfound;
551 1.173 rmind
552 1.52 ad /*
553 1.52 ad * Avoid a race between exit1() and sigexit(): if the
554 1.52 ad * process is dumping core, then we need to bail out: call
555 1.52 ad * into lwp_userret() where we will be suspended until the
556 1.52 ad * deed is done.
557 1.52 ad */
558 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
559 1.103 ad mutex_exit(p->p_lock);
560 1.52 ad lwp_userret(l);
561 1.173 rmind KASSERT(false);
562 1.52 ad }
563 1.52 ad
564 1.52 ad /*
565 1.52 ad * First off, drain any detached LWP that is waiting to be
566 1.52 ad * reaped.
567 1.52 ad */
568 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
569 1.52 ad p->p_zomblwp = NULL;
570 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
571 1.103 ad mutex_enter(p->p_lock);
572 1.52 ad }
573 1.52 ad
574 1.52 ad /*
575 1.52 ad * Now look for an LWP to collect. If the whole process is
576 1.52 ad * exiting, count detached LWPs as eligible to be collected,
577 1.52 ad * but don't drain them here.
578 1.52 ad */
579 1.52 ad nfound = 0;
580 1.63 ad error = 0;
581 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
582 1.63 ad /*
583 1.63 ad * If a specific wait and the target is waiting on
584 1.63 ad * us, then avoid deadlock. This also traps LWPs
585 1.63 ad * that try to wait on themselves.
586 1.63 ad *
587 1.63 ad * Note that this does not handle more complicated
588 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
589 1.63 ad * can still be killed so it is not a major problem.
590 1.63 ad */
591 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
592 1.63 ad error = EDEADLK;
593 1.63 ad break;
594 1.63 ad }
595 1.63 ad if (l2 == l)
596 1.52 ad continue;
597 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
598 1.63 ad nfound += exiting;
599 1.63 ad continue;
600 1.63 ad }
601 1.63 ad if (lid != 0) {
602 1.63 ad if (l2->l_lid != lid)
603 1.63 ad continue;
604 1.63 ad /*
605 1.63 ad * Mark this LWP as the first waiter, if there
606 1.63 ad * is no other.
607 1.63 ad */
608 1.63 ad if (l2->l_waiter == 0)
609 1.63 ad l2->l_waiter = curlid;
610 1.63 ad } else if (l2->l_waiter != 0) {
611 1.63 ad /*
612 1.63 ad * It already has a waiter - so don't
613 1.63 ad * collect it. If the waiter doesn't
614 1.63 ad * grab it we'll get another chance
615 1.63 ad * later.
616 1.63 ad */
617 1.63 ad nfound++;
618 1.52 ad continue;
619 1.52 ad }
620 1.52 ad nfound++;
621 1.2 thorpej
622 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
623 1.52 ad if (l2->l_stat != LSZOMB)
624 1.52 ad continue;
625 1.2 thorpej
626 1.63 ad /*
627 1.63 ad * We're no longer waiting. Reset the "first waiter"
628 1.63 ad * pointer on the target, in case it was us.
629 1.63 ad */
630 1.63 ad l->l_waitingfor = 0;
631 1.63 ad l2->l_waiter = 0;
632 1.63 ad p->p_nlwpwait--;
633 1.2 thorpej if (departed)
634 1.2 thorpej *departed = l2->l_lid;
635 1.75 ad sched_lwp_collect(l2);
636 1.63 ad
637 1.63 ad /* lwp_free() releases the proc lock. */
638 1.63 ad lwp_free(l2, false, false);
639 1.103 ad mutex_enter(p->p_lock);
640 1.52 ad return 0;
641 1.52 ad }
642 1.2 thorpej
643 1.63 ad if (error != 0)
644 1.63 ad break;
645 1.52 ad if (nfound == 0) {
646 1.52 ad error = ESRCH;
647 1.52 ad break;
648 1.52 ad }
649 1.63 ad
650 1.63 ad /*
651 1.173 rmind * Note: since the lock will be dropped, need to restart on
652 1.173 rmind * wakeup to run all LWPs again, e.g. there may be new LWPs.
653 1.63 ad */
654 1.63 ad if (exiting) {
655 1.52 ad KASSERT(p->p_nlwps > 1);
656 1.192 christos cv_wait(&p->p_lwpcv, p->p_lock);
657 1.192 christos error = EAGAIN;
658 1.173 rmind break;
659 1.52 ad }
660 1.63 ad
661 1.63 ad /*
662 1.63 ad * If all other LWPs are waiting for exits or suspends
663 1.63 ad * and the supply of zombies and potential zombies is
664 1.63 ad * exhausted, then we are about to deadlock.
665 1.63 ad *
666 1.63 ad * If the process is exiting (and this LWP is not the one
667 1.63 ad * that is coordinating the exit) then bail out now.
668 1.63 ad */
669 1.52 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
670 1.63 ad p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
671 1.52 ad error = EDEADLK;
672 1.52 ad break;
673 1.2 thorpej }
674 1.63 ad
675 1.63 ad /*
676 1.63 ad * Sit around and wait for something to happen. We'll be
677 1.63 ad * awoken if any of the conditions examined change: if an
678 1.63 ad * LWP exits, is collected, or is detached.
679 1.63 ad */
680 1.103 ad if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
681 1.52 ad break;
682 1.2 thorpej }
683 1.2 thorpej
684 1.63 ad /*
685 1.63 ad * We didn't find any LWPs to collect, we may have received a
686 1.63 ad * signal, or some other condition has caused us to bail out.
687 1.63 ad *
688 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
689 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
690 1.63 ad * so that they can re-check for zombies and for deadlock.
691 1.63 ad */
692 1.63 ad if (lid != 0) {
693 1.63 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
694 1.63 ad if (l2->l_lid == lid) {
695 1.63 ad if (l2->l_waiter == curlid)
696 1.63 ad l2->l_waiter = 0;
697 1.63 ad break;
698 1.63 ad }
699 1.63 ad }
700 1.63 ad }
701 1.52 ad p->p_nlwpwait--;
702 1.63 ad l->l_waitingfor = 0;
703 1.63 ad cv_broadcast(&p->p_lwpcv);
704 1.63 ad
705 1.52 ad return error;
706 1.2 thorpej }
707 1.2 thorpej
708 1.174 dsl static lwpid_t
709 1.174 dsl lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
710 1.174 dsl {
711 1.174 dsl #define LID_SCAN (1u << 31)
712 1.174 dsl lwp_t *scan, *free_before;
713 1.174 dsl lwpid_t nxt_lid;
714 1.174 dsl
715 1.174 dsl /*
716 1.174 dsl * We want the first unused lid greater than or equal to
717 1.174 dsl * try_lid (modulo 2^31).
718 1.174 dsl * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
719 1.174 dsl * We must not return 0, and avoiding 'LID_SCAN - 1' makes
720 1.174 dsl * the outer test easier.
721 1.174 dsl * This would be much easier if the list were sorted in
722 1.174 dsl * increasing order.
723 1.174 dsl * The list is kept sorted in decreasing order.
724 1.174 dsl * This code is only used after a process has generated 2^31 lwp.
725 1.174 dsl *
726 1.174 dsl * Code assumes it can always find an id.
727 1.174 dsl */
728 1.174 dsl
729 1.174 dsl try_lid &= LID_SCAN - 1;
730 1.174 dsl if (try_lid <= 1)
731 1.174 dsl try_lid = 2;
732 1.174 dsl
733 1.174 dsl free_before = NULL;
734 1.174 dsl nxt_lid = LID_SCAN - 1;
735 1.174 dsl LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
736 1.174 dsl if (scan->l_lid != nxt_lid) {
737 1.174 dsl /* There are available lid before this entry */
738 1.174 dsl free_before = scan;
739 1.174 dsl if (try_lid > scan->l_lid)
740 1.174 dsl break;
741 1.174 dsl }
742 1.174 dsl if (try_lid == scan->l_lid) {
743 1.174 dsl /* The ideal lid is busy, take a higher one */
744 1.174 dsl if (free_before != NULL) {
745 1.174 dsl try_lid = free_before->l_lid + 1;
746 1.174 dsl break;
747 1.174 dsl }
748 1.174 dsl /* No higher ones, reuse low numbers */
749 1.174 dsl try_lid = 2;
750 1.174 dsl }
751 1.174 dsl
752 1.174 dsl nxt_lid = scan->l_lid - 1;
753 1.174 dsl if (LIST_NEXT(scan, l_sibling) == NULL) {
754 1.174 dsl /* The value we have is lower than any existing lwp */
755 1.174 dsl LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
756 1.174 dsl return try_lid;
757 1.174 dsl }
758 1.174 dsl }
759 1.174 dsl
760 1.174 dsl LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
761 1.174 dsl return try_lid;
762 1.174 dsl }
763 1.174 dsl
764 1.52 ad /*
765 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
766 1.52 ad * The new LWP is created in state LSIDL and must be set running,
767 1.52 ad * suspended, or stopped by the caller.
768 1.52 ad */
769 1.2 thorpej int
770 1.134 rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
771 1.188 christos void *stack, size_t stacksize, void (*func)(void *), void *arg,
772 1.188 christos lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
773 1.188 christos const stack_t *sigstk)
774 1.2 thorpej {
775 1.52 ad struct lwp *l2, *isfree;
776 1.52 ad turnstile_t *ts;
777 1.151 chs lwpid_t lid;
778 1.2 thorpej
779 1.107 ad KASSERT(l1 == curlwp || l1->l_proc == &proc0);
780 1.107 ad
781 1.52 ad /*
782 1.169 christos * Enforce limits, excluding the first lwp and kthreads.
783 1.169 christos */
784 1.169 christos if (p2->p_nlwps != 0 && p2 != &proc0) {
785 1.169 christos uid_t uid = kauth_cred_getuid(l1->l_cred);
786 1.169 christos int count = chglwpcnt(uid, 1);
787 1.169 christos if (__predict_false(count >
788 1.169 christos p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
789 1.169 christos if (kauth_authorize_process(l1->l_cred,
790 1.169 christos KAUTH_PROCESS_RLIMIT, p2,
791 1.169 christos KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
792 1.169 christos &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
793 1.169 christos != 0) {
794 1.170 christos (void)chglwpcnt(uid, -1);
795 1.170 christos return EAGAIN;
796 1.169 christos }
797 1.169 christos }
798 1.169 christos }
799 1.169 christos
800 1.169 christos /*
801 1.52 ad * First off, reap any detached LWP waiting to be collected.
802 1.52 ad * We can re-use its LWP structure and turnstile.
803 1.52 ad */
804 1.52 ad isfree = NULL;
805 1.52 ad if (p2->p_zomblwp != NULL) {
806 1.103 ad mutex_enter(p2->p_lock);
807 1.52 ad if ((isfree = p2->p_zomblwp) != NULL) {
808 1.52 ad p2->p_zomblwp = NULL;
809 1.63 ad lwp_free(isfree, true, false);/* releases proc mutex */
810 1.52 ad } else
811 1.103 ad mutex_exit(p2->p_lock);
812 1.52 ad }
813 1.52 ad if (isfree == NULL) {
814 1.87 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK);
815 1.52 ad memset(l2, 0, sizeof(*l2));
816 1.76 ad l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
817 1.60 yamt SLIST_INIT(&l2->l_pi_lenders);
818 1.52 ad } else {
819 1.52 ad l2 = isfree;
820 1.52 ad ts = l2->l_ts;
821 1.75 ad KASSERT(l2->l_inheritedprio == -1);
822 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
823 1.52 ad memset(l2, 0, sizeof(*l2));
824 1.52 ad l2->l_ts = ts;
825 1.52 ad }
826 1.2 thorpej
827 1.2 thorpej l2->l_stat = LSIDL;
828 1.2 thorpej l2->l_proc = p2;
829 1.52 ad l2->l_refcnt = 1;
830 1.75 ad l2->l_class = sclass;
831 1.116 ad
832 1.116 ad /*
833 1.116 ad * If vfork(), we want the LWP to run fast and on the same CPU
834 1.116 ad * as its parent, so that it can reuse the VM context and cache
835 1.116 ad * footprint on the local CPU.
836 1.116 ad */
837 1.116 ad l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
838 1.82 ad l2->l_kpribase = PRI_KERNEL;
839 1.52 ad l2->l_priority = l1->l_priority;
840 1.75 ad l2->l_inheritedprio = -1;
841 1.185 christos l2->l_protectprio = -1;
842 1.185 christos l2->l_auxprio = -1;
843 1.134 rmind l2->l_flag = 0;
844 1.88 ad l2->l_pflag = LP_MPSAFE;
845 1.131 ad TAILQ_INIT(&l2->l_ld_locks);
846 1.197 ozaki l2->l_psrefs = 0;
847 1.131 ad
848 1.131 ad /*
849 1.156 pooka * For vfork, borrow parent's lwpctl context if it exists.
850 1.156 pooka * This also causes us to return via lwp_userret.
851 1.156 pooka */
852 1.156 pooka if (flags & LWP_VFORK && l1->l_lwpctl) {
853 1.156 pooka l2->l_lwpctl = l1->l_lwpctl;
854 1.156 pooka l2->l_flag |= LW_LWPCTL;
855 1.156 pooka }
856 1.156 pooka
857 1.156 pooka /*
858 1.131 ad * If not the first LWP in the process, grab a reference to the
859 1.131 ad * descriptor table.
860 1.131 ad */
861 1.97 ad l2->l_fd = p2->p_fd;
862 1.131 ad if (p2->p_nlwps != 0) {
863 1.131 ad KASSERT(l1->l_proc == p2);
864 1.136 rmind fd_hold(l2);
865 1.131 ad } else {
866 1.131 ad KASSERT(l1->l_proc != p2);
867 1.131 ad }
868 1.41 thorpej
869 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
870 1.134 rmind /* Mark it as a system LWP. */
871 1.56 pavel l2->l_flag |= LW_SYSTEM;
872 1.52 ad }
873 1.2 thorpej
874 1.107 ad kpreempt_disable();
875 1.107 ad l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
876 1.107 ad l2->l_cpu = l1->l_cpu;
877 1.107 ad kpreempt_enable();
878 1.107 ad
879 1.138 darran kdtrace_thread_ctor(NULL, l2);
880 1.73 rmind lwp_initspecific(l2);
881 1.75 ad sched_lwp_fork(l1, l2);
882 1.37 ad lwp_update_creds(l2);
883 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
884 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
885 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
886 1.171 rmind cv_init(&l2->l_waitcv, "vfork");
887 1.52 ad l2->l_syncobj = &sched_syncobj;
888 1.201 ozaki PSREF_DEBUG_INIT_LWP(l2);
889 1.2 thorpej
890 1.2 thorpej if (rnewlwpp != NULL)
891 1.2 thorpej *rnewlwpp = l2;
892 1.2 thorpej
893 1.158 matt /*
894 1.158 matt * PCU state needs to be saved before calling uvm_lwp_fork() so that
895 1.158 matt * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
896 1.158 matt */
897 1.158 matt pcu_save_all(l1);
898 1.158 matt
899 1.137 rmind uvm_lwp_setuarea(l2, uaddr);
900 1.190 skrll uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
901 1.2 thorpej
902 1.151 chs if ((flags & LWP_PIDLID) != 0) {
903 1.151 chs lid = proc_alloc_pid(p2);
904 1.151 chs l2->l_pflag |= LP_PIDLID;
905 1.151 chs } else {
906 1.151 chs lid = 0;
907 1.151 chs }
908 1.151 chs
909 1.103 ad mutex_enter(p2->p_lock);
910 1.52 ad
911 1.52 ad if ((flags & LWP_DETACHED) != 0) {
912 1.52 ad l2->l_prflag = LPR_DETACHED;
913 1.52 ad p2->p_ndlwps++;
914 1.52 ad } else
915 1.52 ad l2->l_prflag = 0;
916 1.52 ad
917 1.188 christos l2->l_sigstk = *sigstk;
918 1.188 christos l2->l_sigmask = *sigmask;
919 1.176 christos TAILQ_INIT(&l2->l_sigpend.sp_info);
920 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
921 1.52 ad
922 1.174 dsl if (__predict_true(lid == 0)) {
923 1.174 dsl /*
924 1.174 dsl * XXX: l_lid are expected to be unique (for a process)
925 1.174 dsl * if LWP_PIDLID is sometimes set this won't be true.
926 1.174 dsl * Once 2^31 threads have been allocated we have to
927 1.174 dsl * scan to ensure we allocate a unique value.
928 1.174 dsl */
929 1.174 dsl lid = ++p2->p_nlwpid;
930 1.174 dsl if (__predict_false(lid & LID_SCAN)) {
931 1.174 dsl lid = lwp_find_free_lid(lid, l2, p2);
932 1.174 dsl p2->p_nlwpid = lid | LID_SCAN;
933 1.174 dsl /* l2 as been inserted into p_lwps in order */
934 1.174 dsl goto skip_insert;
935 1.174 dsl }
936 1.174 dsl p2->p_nlwpid = lid;
937 1.151 chs }
938 1.174 dsl LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
939 1.174 dsl skip_insert:
940 1.151 chs l2->l_lid = lid;
941 1.2 thorpej p2->p_nlwps++;
942 1.149 yamt p2->p_nrlwps++;
943 1.2 thorpej
944 1.162 rmind KASSERT(l2->l_affinity == NULL);
945 1.162 rmind
946 1.91 rmind if ((p2->p_flag & PK_SYSTEM) == 0) {
947 1.162 rmind /* Inherit the affinity mask. */
948 1.162 rmind if (l1->l_affinity) {
949 1.128 rmind /*
950 1.128 rmind * Note that we hold the state lock while inheriting
951 1.128 rmind * the affinity to avoid race with sched_setaffinity().
952 1.128 rmind */
953 1.128 rmind lwp_lock(l1);
954 1.162 rmind if (l1->l_affinity) {
955 1.122 rmind kcpuset_use(l1->l_affinity);
956 1.122 rmind l2->l_affinity = l1->l_affinity;
957 1.122 rmind }
958 1.128 rmind lwp_unlock(l1);
959 1.117 christos }
960 1.128 rmind lwp_lock(l2);
961 1.128 rmind /* Inherit a processor-set */
962 1.128 rmind l2->l_psid = l1->l_psid;
963 1.91 rmind /* Look for a CPU to start */
964 1.91 rmind l2->l_cpu = sched_takecpu(l2);
965 1.91 rmind lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
966 1.91 rmind }
967 1.128 rmind mutex_exit(p2->p_lock);
968 1.128 rmind
969 1.180 christos SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
970 1.141 darran
971 1.128 rmind mutex_enter(proc_lock);
972 1.128 rmind LIST_INSERT_HEAD(&alllwp, l2, l_list);
973 1.128 rmind mutex_exit(proc_lock);
974 1.91 rmind
975 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
976 1.57 dsl
977 1.16 manu if (p2->p_emul->e_lwp_fork)
978 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
979 1.16 manu
980 1.2 thorpej return (0);
981 1.2 thorpej }
982 1.2 thorpej
983 1.2 thorpej /*
984 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
985 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
986 1.64 yamt * previous LWP, at splsched.
987 1.64 yamt */
988 1.64 yamt void
989 1.178 matt lwp_startup(struct lwp *prev, struct lwp *new_lwp)
990 1.64 yamt {
991 1.178 matt KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
992 1.64 yamt
993 1.180 christos SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
994 1.141 darran
995 1.107 ad KASSERT(kpreempt_disabled());
996 1.64 yamt if (prev != NULL) {
997 1.81 ad /*
998 1.81 ad * Normalize the count of the spin-mutexes, it was
999 1.81 ad * increased in mi_switch(). Unmark the state of
1000 1.81 ad * context switch - it is finished for previous LWP.
1001 1.81 ad */
1002 1.81 ad curcpu()->ci_mtx_count++;
1003 1.81 ad membar_exit();
1004 1.81 ad prev->l_ctxswtch = 0;
1005 1.64 yamt }
1006 1.178 matt KPREEMPT_DISABLE(new_lwp);
1007 1.178 matt if (__predict_true(new_lwp->l_proc->p_vmspace))
1008 1.178 matt pmap_activate(new_lwp);
1009 1.181 skrll spl0();
1010 1.161 christos
1011 1.161 christos /* Note trip through cpu_switchto(). */
1012 1.161 christos pserialize_switchpoint();
1013 1.161 christos
1014 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
1015 1.178 matt KPREEMPT_ENABLE(new_lwp);
1016 1.178 matt if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1017 1.178 matt KERNEL_LOCK(1, new_lwp);
1018 1.65 ad }
1019 1.64 yamt }
1020 1.64 yamt
1021 1.64 yamt /*
1022 1.65 ad * Exit an LWP.
1023 1.2 thorpej */
1024 1.2 thorpej void
1025 1.2 thorpej lwp_exit(struct lwp *l)
1026 1.2 thorpej {
1027 1.2 thorpej struct proc *p = l->l_proc;
1028 1.52 ad struct lwp *l2;
1029 1.65 ad bool current;
1030 1.65 ad
1031 1.65 ad current = (l == curlwp);
1032 1.2 thorpej
1033 1.114 rmind KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1034 1.131 ad KASSERT(p == curproc);
1035 1.2 thorpej
1036 1.180 christos SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1037 1.141 darran
1038 1.52 ad /*
1039 1.52 ad * Verify that we hold no locks other than the kernel lock.
1040 1.52 ad */
1041 1.52 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
1042 1.16 manu
1043 1.2 thorpej /*
1044 1.52 ad * If we are the last live LWP in a process, we need to exit the
1045 1.52 ad * entire process. We do so with an exit status of zero, because
1046 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
1047 1.52 ad *
1048 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
1049 1.52 ad * must increment the count of zombies here.
1050 1.45 thorpej *
1051 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
1052 1.2 thorpej */
1053 1.103 ad mutex_enter(p->p_lock);
1054 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
1055 1.65 ad KASSERT(current == true);
1056 1.172 matt KASSERT(p != &proc0);
1057 1.88 ad /* XXXSMP kernel_lock not held */
1058 1.184 christos exit1(l, 0, 0);
1059 1.19 jdolecek /* NOTREACHED */
1060 1.2 thorpej }
1061 1.52 ad p->p_nzlwps++;
1062 1.103 ad mutex_exit(p->p_lock);
1063 1.52 ad
1064 1.52 ad if (p->p_emul->e_lwp_exit)
1065 1.52 ad (*p->p_emul->e_lwp_exit)(l);
1066 1.2 thorpej
1067 1.131 ad /* Drop filedesc reference. */
1068 1.131 ad fd_free();
1069 1.131 ad
1070 1.196 hannken /* Release fstrans private data. */
1071 1.196 hannken fstrans_lwp_dtor(l);
1072 1.196 hannken
1073 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
1074 1.145 pooka lwp_finispecific(l);
1075 1.45 thorpej
1076 1.52 ad /*
1077 1.52 ad * Release our cached credentials.
1078 1.52 ad */
1079 1.37 ad kauth_cred_free(l->l_cred);
1080 1.70 ad callout_destroy(&l->l_timeout_ch);
1081 1.65 ad
1082 1.65 ad /*
1083 1.198 kamil * If traced, report LWP exit event to the debugger.
1084 1.198 kamil *
1085 1.52 ad * Remove the LWP from the global list.
1086 1.151 chs * Free its LID from the PID namespace if needed.
1087 1.52 ad */
1088 1.102 ad mutex_enter(proc_lock);
1089 1.198 kamil
1090 1.199 kamil if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1091 1.198 kamil (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1092 1.198 kamil mutex_enter(p->p_lock);
1093 1.202 kamil if (ISSET(p->p_sflag, PS_WEXIT)) {
1094 1.202 kamil mutex_exit(p->p_lock);
1095 1.202 kamil /*
1096 1.202 kamil * We are exiting, bail out without informing parent
1097 1.202 kamil * about a terminating LWP as it would deadlock.
1098 1.202 kamil */
1099 1.202 kamil } else {
1100 1.203 kamil eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1101 1.202 kamil mutex_enter(proc_lock);
1102 1.202 kamil }
1103 1.198 kamil }
1104 1.198 kamil
1105 1.52 ad LIST_REMOVE(l, l_list);
1106 1.151 chs if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1107 1.151 chs proc_free_pid(l->l_lid);
1108 1.151 chs }
1109 1.102 ad mutex_exit(proc_lock);
1110 1.19 jdolecek
1111 1.52 ad /*
1112 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
1113 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
1114 1.52 ad * mark it waiting for collection in the proc structure. Note that
1115 1.52 ad * before we can do that, we need to free any other dead, deatched
1116 1.52 ad * LWP waiting to meet its maker.
1117 1.52 ad */
1118 1.103 ad mutex_enter(p->p_lock);
1119 1.52 ad lwp_drainrefs(l);
1120 1.31 yamt
1121 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
1122 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
1123 1.52 ad p->p_zomblwp = NULL;
1124 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
1125 1.103 ad mutex_enter(p->p_lock);
1126 1.72 ad l->l_refcnt++;
1127 1.72 ad lwp_drainrefs(l);
1128 1.52 ad }
1129 1.52 ad p->p_zomblwp = l;
1130 1.52 ad }
1131 1.31 yamt
1132 1.52 ad /*
1133 1.52 ad * If we find a pending signal for the process and we have been
1134 1.151 chs * asked to check for signals, then we lose: arrange to have
1135 1.52 ad * all other LWPs in the process check for signals.
1136 1.52 ad */
1137 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
1138 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
1139 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1140 1.52 ad lwp_lock(l2);
1141 1.56 pavel l2->l_flag |= LW_PENDSIG;
1142 1.52 ad lwp_unlock(l2);
1143 1.52 ad }
1144 1.31 yamt }
1145 1.31 yamt
1146 1.158 matt /*
1147 1.158 matt * Release any PCU resources before becoming a zombie.
1148 1.158 matt */
1149 1.158 matt pcu_discard_all(l);
1150 1.158 matt
1151 1.52 ad lwp_lock(l);
1152 1.52 ad l->l_stat = LSZOMB;
1153 1.162 rmind if (l->l_name != NULL) {
1154 1.90 ad strcpy(l->l_name, "(zombie)");
1155 1.128 rmind }
1156 1.52 ad lwp_unlock(l);
1157 1.2 thorpej p->p_nrlwps--;
1158 1.52 ad cv_broadcast(&p->p_lwpcv);
1159 1.78 ad if (l->l_lwpctl != NULL)
1160 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1161 1.103 ad mutex_exit(p->p_lock);
1162 1.52 ad
1163 1.52 ad /*
1164 1.52 ad * We can no longer block. At this point, lwp_free() may already
1165 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1166 1.52 ad *
1167 1.52 ad * Free MD LWP resources.
1168 1.52 ad */
1169 1.52 ad cpu_lwp_free(l, 0);
1170 1.2 thorpej
1171 1.65 ad if (current) {
1172 1.65 ad pmap_deactivate(l);
1173 1.65 ad
1174 1.65 ad /*
1175 1.65 ad * Release the kernel lock, and switch away into
1176 1.65 ad * oblivion.
1177 1.65 ad */
1178 1.52 ad #ifdef notyet
1179 1.65 ad /* XXXSMP hold in lwp_userret() */
1180 1.65 ad KERNEL_UNLOCK_LAST(l);
1181 1.52 ad #else
1182 1.65 ad KERNEL_UNLOCK_ALL(l, NULL);
1183 1.52 ad #endif
1184 1.65 ad lwp_exit_switchaway(l);
1185 1.65 ad }
1186 1.2 thorpej }
1187 1.2 thorpej
1188 1.52 ad /*
1189 1.52 ad * Free a dead LWP's remaining resources.
1190 1.52 ad *
1191 1.52 ad * XXXLWP limits.
1192 1.52 ad */
1193 1.52 ad void
1194 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
1195 1.52 ad {
1196 1.52 ad struct proc *p = l->l_proc;
1197 1.100 ad struct rusage *ru;
1198 1.52 ad ksiginfoq_t kq;
1199 1.52 ad
1200 1.92 yamt KASSERT(l != curlwp);
1201 1.160 yamt KASSERT(last || mutex_owned(p->p_lock));
1202 1.92 yamt
1203 1.177 christos /*
1204 1.177 christos * We use the process credentials instead of the lwp credentials here
1205 1.177 christos * because the lwp credentials maybe cached (just after a setuid call)
1206 1.177 christos * and we don't want pay for syncing, since the lwp is going away
1207 1.177 christos * anyway
1208 1.177 christos */
1209 1.169 christos if (p != &proc0 && p->p_nlwps != 1)
1210 1.177 christos (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1211 1.52 ad /*
1212 1.52 ad * If this was not the last LWP in the process, then adjust
1213 1.52 ad * counters and unlock.
1214 1.52 ad */
1215 1.52 ad if (!last) {
1216 1.52 ad /*
1217 1.52 ad * Add the LWP's run time to the process' base value.
1218 1.52 ad * This needs to co-incide with coming off p_lwps.
1219 1.52 ad */
1220 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime);
1221 1.64 yamt p->p_pctcpu += l->l_pctcpu;
1222 1.100 ad ru = &p->p_stats->p_ru;
1223 1.100 ad ruadd(ru, &l->l_ru);
1224 1.100 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1225 1.100 ad ru->ru_nivcsw += l->l_nivcsw;
1226 1.52 ad LIST_REMOVE(l, l_sibling);
1227 1.52 ad p->p_nlwps--;
1228 1.52 ad p->p_nzlwps--;
1229 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
1230 1.52 ad p->p_ndlwps--;
1231 1.63 ad
1232 1.63 ad /*
1233 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
1234 1.63 ad * deadlock.
1235 1.63 ad */
1236 1.63 ad cv_broadcast(&p->p_lwpcv);
1237 1.103 ad mutex_exit(p->p_lock);
1238 1.63 ad }
1239 1.52 ad
1240 1.52 ad #ifdef MULTIPROCESSOR
1241 1.63 ad /*
1242 1.63 ad * In the unlikely event that the LWP is still on the CPU,
1243 1.63 ad * then spin until it has switched away. We need to release
1244 1.63 ad * all locks to avoid deadlock against interrupt handlers on
1245 1.63 ad * the target CPU.
1246 1.63 ad */
1247 1.115 ad if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1248 1.63 ad int count;
1249 1.64 yamt (void)count; /* XXXgcc */
1250 1.63 ad KERNEL_UNLOCK_ALL(curlwp, &count);
1251 1.115 ad while ((l->l_pflag & LP_RUNNING) != 0 ||
1252 1.64 yamt l->l_cpu->ci_curlwp == l)
1253 1.63 ad SPINLOCK_BACKOFF_HOOK;
1254 1.63 ad KERNEL_LOCK(count, curlwp);
1255 1.63 ad }
1256 1.52 ad #endif
1257 1.52 ad
1258 1.52 ad /*
1259 1.52 ad * Destroy the LWP's remaining signal information.
1260 1.52 ad */
1261 1.52 ad ksiginfo_queue_init(&kq);
1262 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
1263 1.52 ad ksiginfo_queue_drain(&kq);
1264 1.52 ad cv_destroy(&l->l_sigcv);
1265 1.171 rmind cv_destroy(&l->l_waitcv);
1266 1.2 thorpej
1267 1.19 jdolecek /*
1268 1.162 rmind * Free lwpctl structure and affinity.
1269 1.162 rmind */
1270 1.162 rmind if (l->l_lwpctl) {
1271 1.162 rmind lwp_ctl_free(l);
1272 1.162 rmind }
1273 1.162 rmind if (l->l_affinity) {
1274 1.162 rmind kcpuset_unuse(l->l_affinity, NULL);
1275 1.162 rmind l->l_affinity = NULL;
1276 1.162 rmind }
1277 1.162 rmind
1278 1.162 rmind /*
1279 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
1280 1.93 yamt * caller wants to recycle them. Also, free the scheduler specific
1281 1.93 yamt * data.
1282 1.52 ad *
1283 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
1284 1.52 ad * so if it comes up just drop it quietly and move on.
1285 1.52 ad *
1286 1.52 ad * We don't recycle the VM resources at this time.
1287 1.19 jdolecek */
1288 1.64 yamt
1289 1.52 ad if (!recycle && l->l_ts != &turnstile0)
1290 1.76 ad pool_cache_put(turnstile_cache, l->l_ts);
1291 1.90 ad if (l->l_name != NULL)
1292 1.90 ad kmem_free(l->l_name, MAXCOMLEN);
1293 1.135 rmind
1294 1.52 ad cpu_lwp_free2(l);
1295 1.19 jdolecek uvm_lwp_exit(l);
1296 1.134 rmind
1297 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1298 1.75 ad KASSERT(l->l_inheritedprio == -1);
1299 1.155 matt KASSERT(l->l_blcnt == 0);
1300 1.138 darran kdtrace_thread_dtor(NULL, l);
1301 1.52 ad if (!recycle)
1302 1.87 ad pool_cache_put(lwp_cache, l);
1303 1.2 thorpej }
1304 1.2 thorpej
1305 1.2 thorpej /*
1306 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP.
1307 1.91 rmind */
1308 1.91 rmind void
1309 1.114 rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
1310 1.91 rmind {
1311 1.114 rmind struct schedstate_percpu *tspc;
1312 1.121 rmind int lstat = l->l_stat;
1313 1.121 rmind
1314 1.91 rmind KASSERT(lwp_locked(l, NULL));
1315 1.114 rmind KASSERT(tci != NULL);
1316 1.114 rmind
1317 1.121 rmind /* If LWP is still on the CPU, it must be handled like LSONPROC */
1318 1.121 rmind if ((l->l_pflag & LP_RUNNING) != 0) {
1319 1.121 rmind lstat = LSONPROC;
1320 1.121 rmind }
1321 1.121 rmind
1322 1.114 rmind /*
1323 1.114 rmind * The destination CPU could be changed while previous migration
1324 1.114 rmind * was not finished.
1325 1.114 rmind */
1326 1.121 rmind if (l->l_target_cpu != NULL) {
1327 1.114 rmind l->l_target_cpu = tci;
1328 1.114 rmind lwp_unlock(l);
1329 1.114 rmind return;
1330 1.114 rmind }
1331 1.91 rmind
1332 1.114 rmind /* Nothing to do if trying to migrate to the same CPU */
1333 1.114 rmind if (l->l_cpu == tci) {
1334 1.91 rmind lwp_unlock(l);
1335 1.91 rmind return;
1336 1.91 rmind }
1337 1.91 rmind
1338 1.114 rmind KASSERT(l->l_target_cpu == NULL);
1339 1.114 rmind tspc = &tci->ci_schedstate;
1340 1.121 rmind switch (lstat) {
1341 1.91 rmind case LSRUN:
1342 1.134 rmind l->l_target_cpu = tci;
1343 1.134 rmind break;
1344 1.91 rmind case LSIDL:
1345 1.114 rmind l->l_cpu = tci;
1346 1.114 rmind lwp_unlock_to(l, tspc->spc_mutex);
1347 1.91 rmind return;
1348 1.91 rmind case LSSLEEP:
1349 1.114 rmind l->l_cpu = tci;
1350 1.91 rmind break;
1351 1.91 rmind case LSSTOP:
1352 1.91 rmind case LSSUSPENDED:
1353 1.114 rmind l->l_cpu = tci;
1354 1.114 rmind if (l->l_wchan == NULL) {
1355 1.114 rmind lwp_unlock_to(l, tspc->spc_lwplock);
1356 1.114 rmind return;
1357 1.91 rmind }
1358 1.114 rmind break;
1359 1.91 rmind case LSONPROC:
1360 1.114 rmind l->l_target_cpu = tci;
1361 1.114 rmind spc_lock(l->l_cpu);
1362 1.114 rmind cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1363 1.114 rmind spc_unlock(l->l_cpu);
1364 1.91 rmind break;
1365 1.91 rmind }
1366 1.91 rmind lwp_unlock(l);
1367 1.91 rmind }
1368 1.91 rmind
1369 1.91 rmind /*
1370 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case,
1371 1.94 rmind * the calling process and first LWP in the list will be used.
1372 1.103 ad * On success - returns proc locked.
1373 1.91 rmind */
1374 1.91 rmind struct lwp *
1375 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid)
1376 1.91 rmind {
1377 1.91 rmind proc_t *p;
1378 1.91 rmind lwp_t *l;
1379 1.91 rmind
1380 1.150 rmind /* Find the process. */
1381 1.94 rmind if (pid != 0) {
1382 1.150 rmind mutex_enter(proc_lock);
1383 1.150 rmind p = proc_find(pid);
1384 1.150 rmind if (p == NULL) {
1385 1.150 rmind mutex_exit(proc_lock);
1386 1.150 rmind return NULL;
1387 1.150 rmind }
1388 1.150 rmind mutex_enter(p->p_lock);
1389 1.102 ad mutex_exit(proc_lock);
1390 1.150 rmind } else {
1391 1.150 rmind p = curlwp->l_proc;
1392 1.150 rmind mutex_enter(p->p_lock);
1393 1.150 rmind }
1394 1.150 rmind /* Find the thread. */
1395 1.150 rmind if (lid != 0) {
1396 1.150 rmind l = lwp_find(p, lid);
1397 1.150 rmind } else {
1398 1.150 rmind l = LIST_FIRST(&p->p_lwps);
1399 1.94 rmind }
1400 1.103 ad if (l == NULL) {
1401 1.103 ad mutex_exit(p->p_lock);
1402 1.103 ad }
1403 1.91 rmind return l;
1404 1.91 rmind }
1405 1.91 rmind
1406 1.91 rmind /*
1407 1.168 yamt * Look up a live LWP within the specified process.
1408 1.52 ad *
1409 1.103 ad * Must be called with p->p_lock held.
1410 1.52 ad */
1411 1.52 ad struct lwp *
1412 1.151 chs lwp_find(struct proc *p, lwpid_t id)
1413 1.52 ad {
1414 1.52 ad struct lwp *l;
1415 1.52 ad
1416 1.103 ad KASSERT(mutex_owned(p->p_lock));
1417 1.52 ad
1418 1.52 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1419 1.52 ad if (l->l_lid == id)
1420 1.52 ad break;
1421 1.52 ad }
1422 1.52 ad
1423 1.52 ad /*
1424 1.52 ad * No need to lock - all of these conditions will
1425 1.52 ad * be visible with the process level mutex held.
1426 1.52 ad */
1427 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1428 1.52 ad l = NULL;
1429 1.52 ad
1430 1.52 ad return l;
1431 1.52 ad }
1432 1.52 ad
1433 1.52 ad /*
1434 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1435 1.37 ad *
1436 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1437 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1438 1.179 snj * its credentials by calling this routine. This may be called from
1439 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1440 1.37 ad */
1441 1.37 ad void
1442 1.37 ad lwp_update_creds(struct lwp *l)
1443 1.37 ad {
1444 1.37 ad kauth_cred_t oc;
1445 1.37 ad struct proc *p;
1446 1.37 ad
1447 1.37 ad p = l->l_proc;
1448 1.37 ad oc = l->l_cred;
1449 1.37 ad
1450 1.103 ad mutex_enter(p->p_lock);
1451 1.37 ad kauth_cred_hold(p->p_cred);
1452 1.37 ad l->l_cred = p->p_cred;
1453 1.98 ad l->l_prflag &= ~LPR_CRMOD;
1454 1.103 ad mutex_exit(p->p_lock);
1455 1.88 ad if (oc != NULL)
1456 1.37 ad kauth_cred_free(oc);
1457 1.52 ad }
1458 1.52 ad
1459 1.52 ad /*
1460 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1461 1.52 ad * one we specify.
1462 1.52 ad */
1463 1.52 ad int
1464 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1465 1.52 ad {
1466 1.52 ad kmutex_t *cur = l->l_mutex;
1467 1.52 ad
1468 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1469 1.52 ad }
1470 1.52 ad
1471 1.52 ad /*
1472 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1473 1.52 ad */
1474 1.52 ad void
1475 1.178 matt lwp_setlock(struct lwp *l, kmutex_t *mtx)
1476 1.52 ad {
1477 1.52 ad
1478 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1479 1.52 ad
1480 1.107 ad membar_exit();
1481 1.178 matt l->l_mutex = mtx;
1482 1.52 ad }
1483 1.52 ad
1484 1.52 ad /*
1485 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1486 1.52 ad * must be held.
1487 1.52 ad */
1488 1.52 ad void
1489 1.178 matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1490 1.52 ad {
1491 1.52 ad kmutex_t *old;
1492 1.52 ad
1493 1.152 rmind KASSERT(lwp_locked(l, NULL));
1494 1.52 ad
1495 1.52 ad old = l->l_mutex;
1496 1.107 ad membar_exit();
1497 1.178 matt l->l_mutex = mtx;
1498 1.52 ad mutex_spin_exit(old);
1499 1.52 ad }
1500 1.52 ad
1501 1.60 yamt int
1502 1.60 yamt lwp_trylock(struct lwp *l)
1503 1.60 yamt {
1504 1.60 yamt kmutex_t *old;
1505 1.60 yamt
1506 1.60 yamt for (;;) {
1507 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1508 1.60 yamt return 0;
1509 1.60 yamt if (__predict_true(l->l_mutex == old))
1510 1.60 yamt return 1;
1511 1.60 yamt mutex_spin_exit(old);
1512 1.60 yamt }
1513 1.60 yamt }
1514 1.60 yamt
1515 1.134 rmind void
1516 1.96 ad lwp_unsleep(lwp_t *l, bool cleanup)
1517 1.96 ad {
1518 1.96 ad
1519 1.96 ad KASSERT(mutex_owned(l->l_mutex));
1520 1.134 rmind (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1521 1.96 ad }
1522 1.96 ad
1523 1.52 ad /*
1524 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1525 1.52 ad * set.
1526 1.52 ad */
1527 1.52 ad void
1528 1.52 ad lwp_userret(struct lwp *l)
1529 1.52 ad {
1530 1.52 ad struct proc *p;
1531 1.52 ad int sig;
1532 1.52 ad
1533 1.114 rmind KASSERT(l == curlwp);
1534 1.114 rmind KASSERT(l->l_stat == LSONPROC);
1535 1.52 ad p = l->l_proc;
1536 1.52 ad
1537 1.75 ad #ifndef __HAVE_FAST_SOFTINTS
1538 1.75 ad /* Run pending soft interrupts. */
1539 1.75 ad if (l->l_cpu->ci_data.cpu_softints != 0)
1540 1.75 ad softint_overlay();
1541 1.75 ad #endif
1542 1.75 ad
1543 1.52 ad /*
1544 1.167 rmind * It is safe to do this read unlocked on a MP system..
1545 1.52 ad */
1546 1.167 rmind while ((l->l_flag & LW_USERRET) != 0) {
1547 1.52 ad /*
1548 1.52 ad * Process pending signals first, unless the process
1549 1.61 ad * is dumping core or exiting, where we will instead
1550 1.101 rmind * enter the LW_WSUSPEND case below.
1551 1.52 ad */
1552 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1553 1.61 ad LW_PENDSIG) {
1554 1.103 ad mutex_enter(p->p_lock);
1555 1.52 ad while ((sig = issignal(l)) != 0)
1556 1.52 ad postsig(sig);
1557 1.103 ad mutex_exit(p->p_lock);
1558 1.52 ad }
1559 1.52 ad
1560 1.52 ad /*
1561 1.52 ad * Core-dump or suspend pending.
1562 1.52 ad *
1563 1.159 matt * In case of core dump, suspend ourselves, so that the kernel
1564 1.159 matt * stack and therefore the userland registers saved in the
1565 1.159 matt * trapframe are around for coredump() to write them out.
1566 1.159 matt * We also need to save any PCU resources that we have so that
1567 1.159 matt * they accessible for coredump(). We issue a wakeup on
1568 1.159 matt * p->p_lwpcv so that sigexit() will write the core file out
1569 1.159 matt * once all other LWPs are suspended.
1570 1.52 ad */
1571 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1572 1.159 matt pcu_save_all(l);
1573 1.103 ad mutex_enter(p->p_lock);
1574 1.52 ad p->p_nrlwps--;
1575 1.52 ad cv_broadcast(&p->p_lwpcv);
1576 1.52 ad lwp_lock(l);
1577 1.52 ad l->l_stat = LSSUSPENDED;
1578 1.104 ad lwp_unlock(l);
1579 1.103 ad mutex_exit(p->p_lock);
1580 1.104 ad lwp_lock(l);
1581 1.64 yamt mi_switch(l);
1582 1.52 ad }
1583 1.52 ad
1584 1.52 ad /* Process is exiting. */
1585 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1586 1.52 ad lwp_exit(l);
1587 1.52 ad KASSERT(0);
1588 1.52 ad /* NOTREACHED */
1589 1.52 ad }
1590 1.156 pooka
1591 1.156 pooka /* update lwpctl processor (for vfork child_return) */
1592 1.156 pooka if (l->l_flag & LW_LWPCTL) {
1593 1.156 pooka lwp_lock(l);
1594 1.156 pooka KASSERT(kpreempt_disabled());
1595 1.156 pooka l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1596 1.156 pooka l->l_lwpctl->lc_pctr++;
1597 1.156 pooka l->l_flag &= ~LW_LWPCTL;
1598 1.156 pooka lwp_unlock(l);
1599 1.156 pooka }
1600 1.52 ad }
1601 1.52 ad }
1602 1.52 ad
1603 1.52 ad /*
1604 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1605 1.52 ad */
1606 1.52 ad void
1607 1.52 ad lwp_need_userret(struct lwp *l)
1608 1.52 ad {
1609 1.63 ad KASSERT(lwp_locked(l, NULL));
1610 1.52 ad
1611 1.52 ad /*
1612 1.52 ad * Since the tests in lwp_userret() are done unlocked, make sure
1613 1.52 ad * that the condition will be seen before forcing the LWP to enter
1614 1.52 ad * kernel mode.
1615 1.52 ad */
1616 1.81 ad membar_producer();
1617 1.52 ad cpu_signotify(l);
1618 1.52 ad }
1619 1.52 ad
1620 1.52 ad /*
1621 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1622 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1623 1.52 ad */
1624 1.52 ad void
1625 1.52 ad lwp_addref(struct lwp *l)
1626 1.52 ad {
1627 1.52 ad
1628 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1629 1.52 ad KASSERT(l->l_stat != LSZOMB);
1630 1.52 ad KASSERT(l->l_refcnt != 0);
1631 1.52 ad
1632 1.52 ad l->l_refcnt++;
1633 1.52 ad }
1634 1.52 ad
1635 1.52 ad /*
1636 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1637 1.52 ad * then we must finalize the LWP's death.
1638 1.52 ad */
1639 1.52 ad void
1640 1.52 ad lwp_delref(struct lwp *l)
1641 1.52 ad {
1642 1.52 ad struct proc *p = l->l_proc;
1643 1.52 ad
1644 1.103 ad mutex_enter(p->p_lock);
1645 1.142 christos lwp_delref2(l);
1646 1.142 christos mutex_exit(p->p_lock);
1647 1.142 christos }
1648 1.142 christos
1649 1.142 christos /*
1650 1.142 christos * Remove one reference to an LWP. If this is the last reference,
1651 1.142 christos * then we must finalize the LWP's death. The proc mutex is held
1652 1.142 christos * on entry.
1653 1.142 christos */
1654 1.142 christos void
1655 1.142 christos lwp_delref2(struct lwp *l)
1656 1.142 christos {
1657 1.142 christos struct proc *p = l->l_proc;
1658 1.142 christos
1659 1.142 christos KASSERT(mutex_owned(p->p_lock));
1660 1.72 ad KASSERT(l->l_stat != LSZOMB);
1661 1.72 ad KASSERT(l->l_refcnt > 0);
1662 1.52 ad if (--l->l_refcnt == 0)
1663 1.76 ad cv_broadcast(&p->p_lwpcv);
1664 1.52 ad }
1665 1.52 ad
1666 1.52 ad /*
1667 1.52 ad * Drain all references to the current LWP.
1668 1.52 ad */
1669 1.52 ad void
1670 1.52 ad lwp_drainrefs(struct lwp *l)
1671 1.52 ad {
1672 1.52 ad struct proc *p = l->l_proc;
1673 1.52 ad
1674 1.103 ad KASSERT(mutex_owned(p->p_lock));
1675 1.52 ad KASSERT(l->l_refcnt != 0);
1676 1.52 ad
1677 1.52 ad l->l_refcnt--;
1678 1.52 ad while (l->l_refcnt != 0)
1679 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
1680 1.37 ad }
1681 1.41 thorpej
1682 1.41 thorpej /*
1683 1.127 ad * Return true if the specified LWP is 'alive'. Only p->p_lock need
1684 1.127 ad * be held.
1685 1.127 ad */
1686 1.127 ad bool
1687 1.127 ad lwp_alive(lwp_t *l)
1688 1.127 ad {
1689 1.127 ad
1690 1.127 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1691 1.127 ad
1692 1.127 ad switch (l->l_stat) {
1693 1.127 ad case LSSLEEP:
1694 1.127 ad case LSRUN:
1695 1.127 ad case LSONPROC:
1696 1.127 ad case LSSTOP:
1697 1.127 ad case LSSUSPENDED:
1698 1.127 ad return true;
1699 1.127 ad default:
1700 1.127 ad return false;
1701 1.127 ad }
1702 1.127 ad }
1703 1.127 ad
1704 1.127 ad /*
1705 1.127 ad * Return first live LWP in the process.
1706 1.127 ad */
1707 1.127 ad lwp_t *
1708 1.127 ad lwp_find_first(proc_t *p)
1709 1.127 ad {
1710 1.127 ad lwp_t *l;
1711 1.127 ad
1712 1.127 ad KASSERT(mutex_owned(p->p_lock));
1713 1.127 ad
1714 1.127 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1715 1.127 ad if (lwp_alive(l)) {
1716 1.127 ad return l;
1717 1.127 ad }
1718 1.127 ad }
1719 1.127 ad
1720 1.127 ad return NULL;
1721 1.127 ad }
1722 1.127 ad
1723 1.127 ad /*
1724 1.78 ad * Allocate a new lwpctl structure for a user LWP.
1725 1.78 ad */
1726 1.78 ad int
1727 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr)
1728 1.78 ad {
1729 1.78 ad lcproc_t *lp;
1730 1.78 ad u_int bit, i, offset;
1731 1.78 ad struct uvm_object *uao;
1732 1.78 ad int error;
1733 1.78 ad lcpage_t *lcp;
1734 1.78 ad proc_t *p;
1735 1.78 ad lwp_t *l;
1736 1.78 ad
1737 1.78 ad l = curlwp;
1738 1.78 ad p = l->l_proc;
1739 1.78 ad
1740 1.156 pooka /* don't allow a vforked process to create lwp ctls */
1741 1.156 pooka if (p->p_lflag & PL_PPWAIT)
1742 1.156 pooka return EBUSY;
1743 1.156 pooka
1744 1.81 ad if (l->l_lcpage != NULL) {
1745 1.81 ad lcp = l->l_lcpage;
1746 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1747 1.143 njoly return 0;
1748 1.81 ad }
1749 1.78 ad
1750 1.78 ad /* First time around, allocate header structure for the process. */
1751 1.78 ad if ((lp = p->p_lwpctl) == NULL) {
1752 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1753 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1754 1.78 ad lp->lp_uao = NULL;
1755 1.78 ad TAILQ_INIT(&lp->lp_pages);
1756 1.103 ad mutex_enter(p->p_lock);
1757 1.78 ad if (p->p_lwpctl == NULL) {
1758 1.78 ad p->p_lwpctl = lp;
1759 1.103 ad mutex_exit(p->p_lock);
1760 1.78 ad } else {
1761 1.103 ad mutex_exit(p->p_lock);
1762 1.78 ad mutex_destroy(&lp->lp_lock);
1763 1.78 ad kmem_free(lp, sizeof(*lp));
1764 1.78 ad lp = p->p_lwpctl;
1765 1.78 ad }
1766 1.78 ad }
1767 1.78 ad
1768 1.78 ad /*
1769 1.78 ad * Set up an anonymous memory region to hold the shared pages.
1770 1.78 ad * Map them into the process' address space. The user vmspace
1771 1.78 ad * gets the first reference on the UAO.
1772 1.78 ad */
1773 1.78 ad mutex_enter(&lp->lp_lock);
1774 1.78 ad if (lp->lp_uao == NULL) {
1775 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1776 1.78 ad lp->lp_cur = 0;
1777 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ;
1778 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1779 1.182 martin (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1780 1.182 martin p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1781 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1782 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1783 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1784 1.78 ad if (error != 0) {
1785 1.78 ad uao_detach(lp->lp_uao);
1786 1.78 ad lp->lp_uao = NULL;
1787 1.78 ad mutex_exit(&lp->lp_lock);
1788 1.78 ad return error;
1789 1.78 ad }
1790 1.78 ad }
1791 1.78 ad
1792 1.78 ad /* Get a free block and allocate for this LWP. */
1793 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1794 1.78 ad if (lcp->lcp_nfree != 0)
1795 1.78 ad break;
1796 1.78 ad }
1797 1.78 ad if (lcp == NULL) {
1798 1.78 ad /* Nothing available - try to set up a free page. */
1799 1.78 ad if (lp->lp_cur == lp->lp_max) {
1800 1.78 ad mutex_exit(&lp->lp_lock);
1801 1.78 ad return ENOMEM;
1802 1.78 ad }
1803 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1804 1.189 chs
1805 1.78 ad /*
1806 1.78 ad * Wire the next page down in kernel space. Since this
1807 1.78 ad * is a new mapping, we must add a reference.
1808 1.78 ad */
1809 1.78 ad uao = lp->lp_uao;
1810 1.78 ad (*uao->pgops->pgo_reference)(uao);
1811 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map);
1812 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1813 1.78 ad uao, lp->lp_cur, PAGE_SIZE,
1814 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1815 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1816 1.78 ad if (error != 0) {
1817 1.78 ad mutex_exit(&lp->lp_lock);
1818 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1819 1.78 ad (*uao->pgops->pgo_detach)(uao);
1820 1.78 ad return error;
1821 1.78 ad }
1822 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1823 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1824 1.89 yamt if (error != 0) {
1825 1.89 yamt mutex_exit(&lp->lp_lock);
1826 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr,
1827 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE);
1828 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1829 1.89 yamt return error;
1830 1.89 yamt }
1831 1.78 ad /* Prepare the page descriptor and link into the list. */
1832 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1833 1.78 ad lp->lp_cur += PAGE_SIZE;
1834 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE;
1835 1.78 ad lcp->lcp_rotor = 0;
1836 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1837 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1838 1.78 ad }
1839 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1840 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES)
1841 1.78 ad i = 0;
1842 1.78 ad }
1843 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1;
1844 1.193 kamil lcp->lcp_bitmap[i] ^= (1U << bit);
1845 1.78 ad lcp->lcp_rotor = i;
1846 1.78 ad lcp->lcp_nfree--;
1847 1.78 ad l->l_lcpage = lcp;
1848 1.78 ad offset = (i << 5) + bit;
1849 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1850 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1851 1.78 ad mutex_exit(&lp->lp_lock);
1852 1.78 ad
1853 1.107 ad KPREEMPT_DISABLE(l);
1854 1.195 skrll l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1855 1.107 ad KPREEMPT_ENABLE(l);
1856 1.78 ad
1857 1.78 ad return 0;
1858 1.78 ad }
1859 1.78 ad
1860 1.78 ad /*
1861 1.78 ad * Free an lwpctl structure back to the per-process list.
1862 1.78 ad */
1863 1.78 ad void
1864 1.78 ad lwp_ctl_free(lwp_t *l)
1865 1.78 ad {
1866 1.156 pooka struct proc *p = l->l_proc;
1867 1.78 ad lcproc_t *lp;
1868 1.78 ad lcpage_t *lcp;
1869 1.78 ad u_int map, offset;
1870 1.78 ad
1871 1.156 pooka /* don't free a lwp context we borrowed for vfork */
1872 1.156 pooka if (p->p_lflag & PL_PPWAIT) {
1873 1.156 pooka l->l_lwpctl = NULL;
1874 1.156 pooka return;
1875 1.156 pooka }
1876 1.156 pooka
1877 1.156 pooka lp = p->p_lwpctl;
1878 1.78 ad KASSERT(lp != NULL);
1879 1.78 ad
1880 1.78 ad lcp = l->l_lcpage;
1881 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1882 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE);
1883 1.78 ad
1884 1.78 ad mutex_enter(&lp->lp_lock);
1885 1.78 ad lcp->lcp_nfree++;
1886 1.78 ad map = offset >> 5;
1887 1.194 kamil lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1888 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1889 1.78 ad lcp->lcp_rotor = map;
1890 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1891 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1892 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1893 1.78 ad }
1894 1.78 ad mutex_exit(&lp->lp_lock);
1895 1.78 ad }
1896 1.78 ad
1897 1.78 ad /*
1898 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely
1899 1.78 ad * called by the last LWP in the process.
1900 1.78 ad */
1901 1.78 ad void
1902 1.78 ad lwp_ctl_exit(void)
1903 1.78 ad {
1904 1.78 ad lcpage_t *lcp, *next;
1905 1.78 ad lcproc_t *lp;
1906 1.78 ad proc_t *p;
1907 1.78 ad lwp_t *l;
1908 1.78 ad
1909 1.78 ad l = curlwp;
1910 1.78 ad l->l_lwpctl = NULL;
1911 1.95 ad l->l_lcpage = NULL;
1912 1.78 ad p = l->l_proc;
1913 1.78 ad lp = p->p_lwpctl;
1914 1.78 ad
1915 1.78 ad KASSERT(lp != NULL);
1916 1.78 ad KASSERT(p->p_nlwps == 1);
1917 1.78 ad
1918 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1919 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain);
1920 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr,
1921 1.78 ad lcp->lcp_kaddr + PAGE_SIZE);
1922 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1923 1.78 ad }
1924 1.78 ad
1925 1.78 ad if (lp->lp_uao != NULL) {
1926 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1927 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ);
1928 1.78 ad }
1929 1.78 ad
1930 1.78 ad mutex_destroy(&lp->lp_lock);
1931 1.78 ad kmem_free(lp, sizeof(*lp));
1932 1.78 ad p->p_lwpctl = NULL;
1933 1.78 ad }
1934 1.84 yamt
1935 1.130 ad /*
1936 1.130 ad * Return the current LWP's "preemption counter". Used to detect
1937 1.130 ad * preemption across operations that can tolerate preemption without
1938 1.130 ad * crashing, but which may generate incorrect results if preempted.
1939 1.130 ad */
1940 1.130 ad uint64_t
1941 1.130 ad lwp_pctr(void)
1942 1.130 ad {
1943 1.130 ad
1944 1.130 ad return curlwp->l_ncsw;
1945 1.130 ad }
1946 1.130 ad
1947 1.151 chs /*
1948 1.151 chs * Set an LWP's private data pointer.
1949 1.151 chs */
1950 1.151 chs int
1951 1.151 chs lwp_setprivate(struct lwp *l, void *ptr)
1952 1.151 chs {
1953 1.151 chs int error = 0;
1954 1.151 chs
1955 1.151 chs l->l_private = ptr;
1956 1.151 chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
1957 1.151 chs error = cpu_lwp_setprivate(l, ptr);
1958 1.151 chs #endif
1959 1.151 chs return error;
1960 1.151 chs }
1961 1.151 chs
1962 1.84 yamt #if defined(DDB)
1963 1.153 rmind #include <machine/pcb.h>
1964 1.153 rmind
1965 1.84 yamt void
1966 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1967 1.84 yamt {
1968 1.84 yamt lwp_t *l;
1969 1.84 yamt
1970 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) {
1971 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1972 1.84 yamt
1973 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) {
1974 1.84 yamt continue;
1975 1.84 yamt }
1976 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n",
1977 1.84 yamt (void *)addr, (void *)stack,
1978 1.84 yamt (size_t)(addr - stack), l);
1979 1.84 yamt }
1980 1.84 yamt }
1981 1.84 yamt #endif /* defined(DDB) */
1982