kern_lwp.c revision 1.208 1 1.208 maxv /* $NetBSD: kern_lwp.c,v 1.208 2019/11/14 16:23:52 maxv Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.127 ad * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.9 lukem
32 1.52 ad /*
33 1.52 ad * Overview
34 1.52 ad *
35 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of
36 1.52 ad * execution within the kernel. The core state of an LWP is described
37 1.66 ad * by "struct lwp", also known as lwp_t.
38 1.52 ad *
39 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
40 1.52 ad * Every process contains at least one LWP, but may contain more. The
41 1.52 ad * process describes attributes shared among all of its LWPs such as a
42 1.52 ad * private address space, global execution state (stopped, active,
43 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
44 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel.
45 1.52 ad *
46 1.52 ad * Execution states
47 1.52 ad *
48 1.52 ad * At any given time, an LWP has overall state that is described by
49 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
50 1.52 ad * set is guaranteed to represent the absolute, current state of the
51 1.52 ad * LWP:
52 1.101 rmind *
53 1.101 rmind * LSONPROC
54 1.101 rmind *
55 1.101 rmind * On processor: the LWP is executing on a CPU, either in the
56 1.101 rmind * kernel or in user space.
57 1.101 rmind *
58 1.101 rmind * LSRUN
59 1.101 rmind *
60 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be
61 1.101 rmind * chosen to run by an idle processor, or by a processor that
62 1.101 rmind * has been asked to preempt a currently runnning but lower
63 1.134 rmind * priority LWP.
64 1.101 rmind *
65 1.101 rmind * LSIDL
66 1.101 rmind *
67 1.101 rmind * Idle: the LWP has been created but has not yet executed,
68 1.66 ad * or it has ceased executing a unit of work and is waiting
69 1.66 ad * to be started again.
70 1.101 rmind *
71 1.101 rmind * LSSUSPENDED:
72 1.101 rmind *
73 1.101 rmind * Suspended: the LWP has had its execution suspended by
74 1.52 ad * another LWP in the same process using the _lwp_suspend()
75 1.52 ad * system call. User-level LWPs also enter the suspended
76 1.52 ad * state when the system is shutting down.
77 1.52 ad *
78 1.52 ad * The second set represent a "statement of intent" on behalf of the
79 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
80 1.66 ad * sleeping or idle. It is expected to take the necessary action to
81 1.101 rmind * stop executing or become "running" again within a short timeframe.
82 1.115 ad * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 1.101 rmind * Importantly, it indicates that its state is tied to a CPU.
84 1.101 rmind *
85 1.101 rmind * LSZOMB:
86 1.101 rmind *
87 1.101 rmind * Dead or dying: the LWP has released most of its resources
88 1.129 ad * and is about to switch away into oblivion, or has already
89 1.66 ad * switched away. When it switches away, its few remaining
90 1.66 ad * resources can be collected.
91 1.101 rmind *
92 1.101 rmind * LSSLEEP:
93 1.101 rmind *
94 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and
95 1.101 rmind * has switched away or will switch away shortly to allow other
96 1.66 ad * LWPs to run on the CPU.
97 1.101 rmind *
98 1.101 rmind * LSSTOP:
99 1.101 rmind *
100 1.101 rmind * Stopped: the LWP has been stopped as a result of a job
101 1.101 rmind * control signal, or as a result of the ptrace() interface.
102 1.101 rmind *
103 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle
104 1.101 rmind * signals that they receive, but will not return to user space
105 1.101 rmind * until their process' state is changed away from stopped.
106 1.101 rmind *
107 1.101 rmind * Single LWPs within a process can not be set stopped
108 1.101 rmind * selectively: all actions that can stop or continue LWPs
109 1.101 rmind * occur at the process level.
110 1.101 rmind *
111 1.52 ad * State transitions
112 1.52 ad *
113 1.66 ad * Note that the LSSTOP state may only be set when returning to
114 1.66 ad * user space in userret(), or when sleeping interruptably. The
115 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting
116 1.66 ad * those states, we try to ensure that the LWPs will release all
117 1.66 ad * locks that they hold, and at a minimum try to ensure that the
118 1.66 ad * LWP can be set runnable again by a signal.
119 1.52 ad *
120 1.52 ad * LWPs may transition states in the following ways:
121 1.52 ad *
122 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
123 1.129 ad * > SLEEP
124 1.129 ad * > STOPPED
125 1.52 ad * > SUSPENDED
126 1.52 ad * > ZOMB
127 1.129 ad * > IDL (special cases)
128 1.52 ad *
129 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
130 1.129 ad * > SLEEP
131 1.52 ad *
132 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
133 1.101 rmind * > RUN > SUSPENDED
134 1.101 rmind * > STOPPED > STOPPED
135 1.129 ad * > ONPROC (special cases)
136 1.52 ad *
137 1.129 ad * Some state transitions are only possible with kernel threads (eg
138 1.129 ad * ONPROC -> IDL) and happen under tightly controlled circumstances
139 1.129 ad * free of unwanted side effects.
140 1.66 ad *
141 1.114 rmind * Migration
142 1.114 rmind *
143 1.114 rmind * Migration of threads from one CPU to another could be performed
144 1.114 rmind * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 1.114 rmind * functions. The universal lwp_migrate() function should be used for
146 1.114 rmind * any other cases. Subsystems in the kernel must be aware that CPU
147 1.114 rmind * of LWP may change, while it is not locked.
148 1.114 rmind *
149 1.52 ad * Locking
150 1.52 ad *
151 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
152 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering
153 1.52 ad * each field are documented in sys/lwp.h.
154 1.52 ad *
155 1.66 ad * State transitions must be made with the LWP's general lock held,
156 1.152 rmind * and may cause the LWP's lock pointer to change. Manipulation of
157 1.66 ad * the general lock is not performed directly, but through calls to
158 1.152 rmind * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 1.152 rmind * adaptive locks are not allowed to be released while the LWP's lock
160 1.152 rmind * is being held (unlike for other spin-locks).
161 1.52 ad *
162 1.52 ad * States and their associated locks:
163 1.52 ad *
164 1.74 rmind * LSONPROC, LSZOMB:
165 1.52 ad *
166 1.64 yamt * Always covered by spc_lwplock, which protects running LWPs.
167 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
168 1.52 ad *
169 1.74 rmind * LSIDL, LSRUN:
170 1.52 ad *
171 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
172 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
173 1.52 ad *
174 1.52 ad * LSSLEEP:
175 1.52 ad *
176 1.66 ad * Covered by a lock associated with the sleep queue that the
177 1.129 ad * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 1.52 ad *
179 1.52 ad * LSSTOP, LSSUSPENDED:
180 1.101 rmind *
181 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
182 1.66 ad * l_mutex references the sleep queue lock. If the LWP was
183 1.52 ad * runnable or on the CPU when halted, or has been removed from
184 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock.
185 1.52 ad *
186 1.52 ad * The lock order is as follows:
187 1.52 ad *
188 1.64 yamt * spc::spc_lwplock ->
189 1.112 ad * sleeptab::st_mutex ->
190 1.64 yamt * tschain_t::tc_mutex ->
191 1.64 yamt * spc::spc_mutex
192 1.52 ad *
193 1.103 ad * Each process has an scheduler state lock (proc::p_lock), and a
194 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
196 1.103 ad * following states, p_lock must be held and the process wide counters
197 1.52 ad * adjusted:
198 1.52 ad *
199 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 1.52 ad *
201 1.129 ad * (But not always for kernel threads. There are some special cases
202 1.129 ad * as mentioned above. See kern_softint.c.)
203 1.129 ad *
204 1.52 ad * Note that an LWP is considered running or likely to run soon if in
205 1.52 ad * one of the following states. This affects the value of p_nrlwps:
206 1.52 ad *
207 1.52 ad * LSRUN, LSONPROC, LSSLEEP
208 1.52 ad *
209 1.103 ad * p_lock does not need to be held when transitioning among these
210 1.129 ad * three states, hence p_lock is rarely taken for state transitions.
211 1.52 ad */
212 1.52 ad
213 1.9 lukem #include <sys/cdefs.h>
214 1.208 maxv __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.208 2019/11/14 16:23:52 maxv Exp $");
215 1.8 martin
216 1.84 yamt #include "opt_ddb.h"
217 1.52 ad #include "opt_lockdebug.h"
218 1.139 darran #include "opt_dtrace.h"
219 1.2 thorpej
220 1.47 hannken #define _LWP_API_PRIVATE
221 1.47 hannken
222 1.2 thorpej #include <sys/param.h>
223 1.2 thorpej #include <sys/systm.h>
224 1.64 yamt #include <sys/cpu.h>
225 1.2 thorpej #include <sys/pool.h>
226 1.2 thorpej #include <sys/proc.h>
227 1.2 thorpej #include <sys/syscallargs.h>
228 1.57 dsl #include <sys/syscall_stats.h>
229 1.37 ad #include <sys/kauth.h>
230 1.161 christos #include <sys/pserialize.h>
231 1.52 ad #include <sys/sleepq.h>
232 1.52 ad #include <sys/lockdebug.h>
233 1.52 ad #include <sys/kmem.h>
234 1.91 rmind #include <sys/pset.h>
235 1.75 ad #include <sys/intr.h>
236 1.78 ad #include <sys/lwpctl.h>
237 1.81 ad #include <sys/atomic.h>
238 1.131 ad #include <sys/filedesc.h>
239 1.196 hannken #include <sys/fstrans.h>
240 1.138 darran #include <sys/dtrace_bsd.h>
241 1.141 darran #include <sys/sdt.h>
242 1.203 kamil #include <sys/ptrace.h>
243 1.157 rmind #include <sys/xcall.h>
244 1.169 christos #include <sys/uidinfo.h>
245 1.169 christos #include <sys/sysctl.h>
246 1.201 ozaki #include <sys/psref.h>
247 1.208 maxv #include <sys/msan.h>
248 1.138 darran
249 1.2 thorpej #include <uvm/uvm_extern.h>
250 1.80 skrll #include <uvm/uvm_object.h>
251 1.2 thorpej
252 1.152 rmind static pool_cache_t lwp_cache __read_mostly;
253 1.152 rmind struct lwplist alllwp __cacheline_aligned;
254 1.41 thorpej
255 1.157 rmind static void lwp_dtor(void *, void *);
256 1.157 rmind
257 1.141 darran /* DTrace proc provider probes */
258 1.180 christos SDT_PROVIDER_DEFINE(proc);
259 1.180 christos
260 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
261 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
262 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
263 1.141 darran
264 1.147 pooka struct turnstile turnstile0;
265 1.147 pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
266 1.147 pooka #ifdef LWP0_CPU_INFO
267 1.147 pooka .l_cpu = LWP0_CPU_INFO,
268 1.147 pooka #endif
269 1.154 matt #ifdef LWP0_MD_INITIALIZER
270 1.154 matt .l_md = LWP0_MD_INITIALIZER,
271 1.154 matt #endif
272 1.147 pooka .l_proc = &proc0,
273 1.147 pooka .l_lid = 1,
274 1.147 pooka .l_flag = LW_SYSTEM,
275 1.147 pooka .l_stat = LSONPROC,
276 1.147 pooka .l_ts = &turnstile0,
277 1.147 pooka .l_syncobj = &sched_syncobj,
278 1.147 pooka .l_refcnt = 1,
279 1.147 pooka .l_priority = PRI_USER + NPRI_USER - 1,
280 1.147 pooka .l_inheritedprio = -1,
281 1.147 pooka .l_class = SCHED_OTHER,
282 1.147 pooka .l_psid = PS_NONE,
283 1.147 pooka .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
284 1.147 pooka .l_name = __UNCONST("swapper"),
285 1.147 pooka .l_fd = &filedesc0,
286 1.147 pooka };
287 1.147 pooka
288 1.169 christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
289 1.169 christos
290 1.169 christos /*
291 1.169 christos * sysctl helper routine for kern.maxlwp. Ensures that the new
292 1.169 christos * values are not too low or too high.
293 1.169 christos */
294 1.169 christos static int
295 1.169 christos sysctl_kern_maxlwp(SYSCTLFN_ARGS)
296 1.169 christos {
297 1.169 christos int error, nmaxlwp;
298 1.169 christos struct sysctlnode node;
299 1.169 christos
300 1.169 christos nmaxlwp = maxlwp;
301 1.169 christos node = *rnode;
302 1.169 christos node.sysctl_data = &nmaxlwp;
303 1.169 christos error = sysctl_lookup(SYSCTLFN_CALL(&node));
304 1.169 christos if (error || newp == NULL)
305 1.169 christos return error;
306 1.169 christos
307 1.169 christos if (nmaxlwp < 0 || nmaxlwp >= 65536)
308 1.169 christos return EINVAL;
309 1.169 christos if (nmaxlwp > cpu_maxlwp())
310 1.169 christos return EINVAL;
311 1.169 christos maxlwp = nmaxlwp;
312 1.169 christos
313 1.169 christos return 0;
314 1.169 christos }
315 1.169 christos
316 1.169 christos static void
317 1.169 christos sysctl_kern_lwp_setup(void)
318 1.169 christos {
319 1.169 christos struct sysctllog *clog = NULL;
320 1.169 christos
321 1.169 christos sysctl_createv(&clog, 0, NULL, NULL,
322 1.169 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
323 1.169 christos CTLTYPE_INT, "maxlwp",
324 1.169 christos SYSCTL_DESCR("Maximum number of simultaneous threads"),
325 1.169 christos sysctl_kern_maxlwp, 0, NULL, 0,
326 1.169 christos CTL_KERN, CTL_CREATE, CTL_EOL);
327 1.169 christos }
328 1.169 christos
329 1.41 thorpej void
330 1.41 thorpej lwpinit(void)
331 1.41 thorpej {
332 1.41 thorpej
333 1.152 rmind LIST_INIT(&alllwp);
334 1.144 pooka lwpinit_specificdata();
335 1.52 ad lwp_sys_init();
336 1.87 ad lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
337 1.157 rmind "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
338 1.169 christos
339 1.169 christos maxlwp = cpu_maxlwp();
340 1.169 christos sysctl_kern_lwp_setup();
341 1.41 thorpej }
342 1.41 thorpej
343 1.147 pooka void
344 1.147 pooka lwp0_init(void)
345 1.147 pooka {
346 1.147 pooka struct lwp *l = &lwp0;
347 1.147 pooka
348 1.147 pooka KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
349 1.148 pooka KASSERT(l->l_lid == proc0.p_nlwpid);
350 1.147 pooka
351 1.147 pooka LIST_INSERT_HEAD(&alllwp, l, l_list);
352 1.147 pooka
353 1.147 pooka callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
354 1.147 pooka callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
355 1.147 pooka cv_init(&l->l_sigcv, "sigwait");
356 1.171 rmind cv_init(&l->l_waitcv, "vfork");
357 1.147 pooka
358 1.147 pooka kauth_cred_hold(proc0.p_cred);
359 1.147 pooka l->l_cred = proc0.p_cred;
360 1.147 pooka
361 1.164 yamt kdtrace_thread_ctor(NULL, l);
362 1.147 pooka lwp_initspecific(l);
363 1.147 pooka
364 1.147 pooka SYSCALL_TIME_LWP_INIT(l);
365 1.147 pooka }
366 1.147 pooka
367 1.157 rmind static void
368 1.157 rmind lwp_dtor(void *arg, void *obj)
369 1.157 rmind {
370 1.157 rmind lwp_t *l = obj;
371 1.157 rmind (void)l;
372 1.157 rmind
373 1.157 rmind /*
374 1.157 rmind * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
375 1.157 rmind * calls will exit before memory of LWP is returned to the pool, where
376 1.157 rmind * KVA of LWP structure might be freed and re-used for other purposes.
377 1.157 rmind * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
378 1.157 rmind * callers, therefore cross-call to all CPUs will do the job. Also,
379 1.157 rmind * the value of l->l_cpu must be still valid at this point.
380 1.157 rmind */
381 1.157 rmind KASSERT(l->l_cpu != NULL);
382 1.205 uwe xc_barrier(0);
383 1.157 rmind }
384 1.157 rmind
385 1.52 ad /*
386 1.52 ad * Set an suspended.
387 1.52 ad *
388 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
389 1.52 ad * LWP before return.
390 1.52 ad */
391 1.2 thorpej int
392 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
393 1.2 thorpej {
394 1.52 ad int error;
395 1.2 thorpej
396 1.103 ad KASSERT(mutex_owned(t->l_proc->p_lock));
397 1.63 ad KASSERT(lwp_locked(t, NULL));
398 1.33 chs
399 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
400 1.2 thorpej
401 1.52 ad /*
402 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
403 1.52 ad * else or deadlock could occur. We won't return to userspace.
404 1.2 thorpej */
405 1.109 rmind if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
406 1.52 ad lwp_unlock(t);
407 1.52 ad return (EDEADLK);
408 1.2 thorpej }
409 1.2 thorpej
410 1.204 kamil if ((t->l_flag & LW_DBGSUSPEND) != 0) {
411 1.204 kamil lwp_unlock(t);
412 1.204 kamil return 0;
413 1.204 kamil }
414 1.204 kamil
415 1.52 ad error = 0;
416 1.2 thorpej
417 1.52 ad switch (t->l_stat) {
418 1.52 ad case LSRUN:
419 1.52 ad case LSONPROC:
420 1.56 pavel t->l_flag |= LW_WSUSPEND;
421 1.52 ad lwp_need_userret(t);
422 1.52 ad lwp_unlock(t);
423 1.52 ad break;
424 1.2 thorpej
425 1.52 ad case LSSLEEP:
426 1.56 pavel t->l_flag |= LW_WSUSPEND;
427 1.2 thorpej
428 1.2 thorpej /*
429 1.52 ad * Kick the LWP and try to get it to the kernel boundary
430 1.52 ad * so that it will release any locks that it holds.
431 1.52 ad * setrunnable() will release the lock.
432 1.2 thorpej */
433 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
434 1.52 ad setrunnable(t);
435 1.52 ad else
436 1.52 ad lwp_unlock(t);
437 1.52 ad break;
438 1.2 thorpej
439 1.52 ad case LSSUSPENDED:
440 1.52 ad lwp_unlock(t);
441 1.52 ad break;
442 1.17 manu
443 1.52 ad case LSSTOP:
444 1.56 pavel t->l_flag |= LW_WSUSPEND;
445 1.52 ad setrunnable(t);
446 1.52 ad break;
447 1.2 thorpej
448 1.52 ad case LSIDL:
449 1.52 ad case LSZOMB:
450 1.52 ad error = EINTR; /* It's what Solaris does..... */
451 1.52 ad lwp_unlock(t);
452 1.52 ad break;
453 1.2 thorpej }
454 1.2 thorpej
455 1.69 rmind return (error);
456 1.2 thorpej }
457 1.2 thorpej
458 1.52 ad /*
459 1.52 ad * Restart a suspended LWP.
460 1.52 ad *
461 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
462 1.52 ad * LWP before return.
463 1.52 ad */
464 1.2 thorpej void
465 1.2 thorpej lwp_continue(struct lwp *l)
466 1.2 thorpej {
467 1.2 thorpej
468 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
469 1.63 ad KASSERT(lwp_locked(l, NULL));
470 1.52 ad
471 1.52 ad /* If rebooting or not suspended, then just bail out. */
472 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
473 1.52 ad lwp_unlock(l);
474 1.2 thorpej return;
475 1.10 fvdl }
476 1.2 thorpej
477 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
478 1.2 thorpej
479 1.204 kamil if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
480 1.52 ad lwp_unlock(l);
481 1.52 ad return;
482 1.2 thorpej }
483 1.2 thorpej
484 1.52 ad /* setrunnable() will release the lock. */
485 1.52 ad setrunnable(l);
486 1.2 thorpej }
487 1.2 thorpej
488 1.52 ad /*
489 1.142 christos * Restart a stopped LWP.
490 1.142 christos *
491 1.142 christos * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
492 1.142 christos * LWP before return.
493 1.142 christos */
494 1.142 christos void
495 1.142 christos lwp_unstop(struct lwp *l)
496 1.142 christos {
497 1.142 christos struct proc *p = l->l_proc;
498 1.167 rmind
499 1.142 christos KASSERT(mutex_owned(proc_lock));
500 1.142 christos KASSERT(mutex_owned(p->p_lock));
501 1.142 christos
502 1.142 christos lwp_lock(l);
503 1.142 christos
504 1.204 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
505 1.204 kamil
506 1.142 christos /* If not stopped, then just bail out. */
507 1.142 christos if (l->l_stat != LSSTOP) {
508 1.142 christos lwp_unlock(l);
509 1.142 christos return;
510 1.142 christos }
511 1.142 christos
512 1.142 christos p->p_stat = SACTIVE;
513 1.142 christos p->p_sflag &= ~PS_STOPPING;
514 1.142 christos
515 1.142 christos if (!p->p_waited)
516 1.142 christos p->p_pptr->p_nstopchild--;
517 1.142 christos
518 1.142 christos if (l->l_wchan == NULL) {
519 1.142 christos /* setrunnable() will release the lock. */
520 1.142 christos setrunnable(l);
521 1.183 christos } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
522 1.163 christos /* setrunnable() so we can receive the signal */
523 1.163 christos setrunnable(l);
524 1.142 christos } else {
525 1.142 christos l->l_stat = LSSLEEP;
526 1.142 christos p->p_nrlwps++;
527 1.142 christos lwp_unlock(l);
528 1.142 christos }
529 1.142 christos }
530 1.142 christos
531 1.142 christos /*
532 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
533 1.52 ad * non-zero, we are waiting for a specific LWP.
534 1.52 ad *
535 1.103 ad * Must be called with p->p_lock held.
536 1.52 ad */
537 1.2 thorpej int
538 1.173 rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
539 1.2 thorpej {
540 1.173 rmind const lwpid_t curlid = l->l_lid;
541 1.173 rmind proc_t *p = l->l_proc;
542 1.173 rmind lwp_t *l2;
543 1.173 rmind int error;
544 1.2 thorpej
545 1.103 ad KASSERT(mutex_owned(p->p_lock));
546 1.52 ad
547 1.52 ad p->p_nlwpwait++;
548 1.63 ad l->l_waitingfor = lid;
549 1.52 ad
550 1.52 ad for (;;) {
551 1.173 rmind int nfound;
552 1.173 rmind
553 1.52 ad /*
554 1.52 ad * Avoid a race between exit1() and sigexit(): if the
555 1.52 ad * process is dumping core, then we need to bail out: call
556 1.52 ad * into lwp_userret() where we will be suspended until the
557 1.52 ad * deed is done.
558 1.52 ad */
559 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
560 1.103 ad mutex_exit(p->p_lock);
561 1.52 ad lwp_userret(l);
562 1.173 rmind KASSERT(false);
563 1.52 ad }
564 1.52 ad
565 1.52 ad /*
566 1.52 ad * First off, drain any detached LWP that is waiting to be
567 1.52 ad * reaped.
568 1.52 ad */
569 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
570 1.52 ad p->p_zomblwp = NULL;
571 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
572 1.103 ad mutex_enter(p->p_lock);
573 1.52 ad }
574 1.52 ad
575 1.52 ad /*
576 1.52 ad * Now look for an LWP to collect. If the whole process is
577 1.52 ad * exiting, count detached LWPs as eligible to be collected,
578 1.52 ad * but don't drain them here.
579 1.52 ad */
580 1.52 ad nfound = 0;
581 1.63 ad error = 0;
582 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
583 1.63 ad /*
584 1.63 ad * If a specific wait and the target is waiting on
585 1.63 ad * us, then avoid deadlock. This also traps LWPs
586 1.63 ad * that try to wait on themselves.
587 1.63 ad *
588 1.63 ad * Note that this does not handle more complicated
589 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
590 1.63 ad * can still be killed so it is not a major problem.
591 1.63 ad */
592 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
593 1.63 ad error = EDEADLK;
594 1.63 ad break;
595 1.63 ad }
596 1.63 ad if (l2 == l)
597 1.52 ad continue;
598 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
599 1.63 ad nfound += exiting;
600 1.63 ad continue;
601 1.63 ad }
602 1.63 ad if (lid != 0) {
603 1.63 ad if (l2->l_lid != lid)
604 1.63 ad continue;
605 1.63 ad /*
606 1.63 ad * Mark this LWP as the first waiter, if there
607 1.63 ad * is no other.
608 1.63 ad */
609 1.63 ad if (l2->l_waiter == 0)
610 1.63 ad l2->l_waiter = curlid;
611 1.63 ad } else if (l2->l_waiter != 0) {
612 1.63 ad /*
613 1.63 ad * It already has a waiter - so don't
614 1.63 ad * collect it. If the waiter doesn't
615 1.63 ad * grab it we'll get another chance
616 1.63 ad * later.
617 1.63 ad */
618 1.63 ad nfound++;
619 1.52 ad continue;
620 1.52 ad }
621 1.52 ad nfound++;
622 1.2 thorpej
623 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
624 1.52 ad if (l2->l_stat != LSZOMB)
625 1.52 ad continue;
626 1.2 thorpej
627 1.63 ad /*
628 1.63 ad * We're no longer waiting. Reset the "first waiter"
629 1.63 ad * pointer on the target, in case it was us.
630 1.63 ad */
631 1.63 ad l->l_waitingfor = 0;
632 1.63 ad l2->l_waiter = 0;
633 1.63 ad p->p_nlwpwait--;
634 1.2 thorpej if (departed)
635 1.2 thorpej *departed = l2->l_lid;
636 1.75 ad sched_lwp_collect(l2);
637 1.63 ad
638 1.63 ad /* lwp_free() releases the proc lock. */
639 1.63 ad lwp_free(l2, false, false);
640 1.103 ad mutex_enter(p->p_lock);
641 1.52 ad return 0;
642 1.52 ad }
643 1.2 thorpej
644 1.63 ad if (error != 0)
645 1.63 ad break;
646 1.52 ad if (nfound == 0) {
647 1.52 ad error = ESRCH;
648 1.52 ad break;
649 1.52 ad }
650 1.63 ad
651 1.63 ad /*
652 1.173 rmind * Note: since the lock will be dropped, need to restart on
653 1.173 rmind * wakeup to run all LWPs again, e.g. there may be new LWPs.
654 1.63 ad */
655 1.63 ad if (exiting) {
656 1.52 ad KASSERT(p->p_nlwps > 1);
657 1.192 christos cv_wait(&p->p_lwpcv, p->p_lock);
658 1.192 christos error = EAGAIN;
659 1.173 rmind break;
660 1.52 ad }
661 1.63 ad
662 1.63 ad /*
663 1.63 ad * If all other LWPs are waiting for exits or suspends
664 1.63 ad * and the supply of zombies and potential zombies is
665 1.63 ad * exhausted, then we are about to deadlock.
666 1.63 ad *
667 1.63 ad * If the process is exiting (and this LWP is not the one
668 1.63 ad * that is coordinating the exit) then bail out now.
669 1.63 ad */
670 1.52 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
671 1.63 ad p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
672 1.52 ad error = EDEADLK;
673 1.52 ad break;
674 1.2 thorpej }
675 1.63 ad
676 1.63 ad /*
677 1.63 ad * Sit around and wait for something to happen. We'll be
678 1.63 ad * awoken if any of the conditions examined change: if an
679 1.63 ad * LWP exits, is collected, or is detached.
680 1.63 ad */
681 1.103 ad if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
682 1.52 ad break;
683 1.2 thorpej }
684 1.2 thorpej
685 1.63 ad /*
686 1.63 ad * We didn't find any LWPs to collect, we may have received a
687 1.63 ad * signal, or some other condition has caused us to bail out.
688 1.63 ad *
689 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
690 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
691 1.63 ad * so that they can re-check for zombies and for deadlock.
692 1.63 ad */
693 1.63 ad if (lid != 0) {
694 1.63 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
695 1.63 ad if (l2->l_lid == lid) {
696 1.63 ad if (l2->l_waiter == curlid)
697 1.63 ad l2->l_waiter = 0;
698 1.63 ad break;
699 1.63 ad }
700 1.63 ad }
701 1.63 ad }
702 1.52 ad p->p_nlwpwait--;
703 1.63 ad l->l_waitingfor = 0;
704 1.63 ad cv_broadcast(&p->p_lwpcv);
705 1.63 ad
706 1.52 ad return error;
707 1.2 thorpej }
708 1.2 thorpej
709 1.174 dsl static lwpid_t
710 1.174 dsl lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
711 1.174 dsl {
712 1.174 dsl #define LID_SCAN (1u << 31)
713 1.174 dsl lwp_t *scan, *free_before;
714 1.174 dsl lwpid_t nxt_lid;
715 1.174 dsl
716 1.174 dsl /*
717 1.174 dsl * We want the first unused lid greater than or equal to
718 1.174 dsl * try_lid (modulo 2^31).
719 1.174 dsl * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
720 1.174 dsl * We must not return 0, and avoiding 'LID_SCAN - 1' makes
721 1.174 dsl * the outer test easier.
722 1.174 dsl * This would be much easier if the list were sorted in
723 1.174 dsl * increasing order.
724 1.174 dsl * The list is kept sorted in decreasing order.
725 1.174 dsl * This code is only used after a process has generated 2^31 lwp.
726 1.174 dsl *
727 1.174 dsl * Code assumes it can always find an id.
728 1.174 dsl */
729 1.174 dsl
730 1.174 dsl try_lid &= LID_SCAN - 1;
731 1.174 dsl if (try_lid <= 1)
732 1.174 dsl try_lid = 2;
733 1.174 dsl
734 1.174 dsl free_before = NULL;
735 1.174 dsl nxt_lid = LID_SCAN - 1;
736 1.174 dsl LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
737 1.174 dsl if (scan->l_lid != nxt_lid) {
738 1.174 dsl /* There are available lid before this entry */
739 1.174 dsl free_before = scan;
740 1.174 dsl if (try_lid > scan->l_lid)
741 1.174 dsl break;
742 1.174 dsl }
743 1.174 dsl if (try_lid == scan->l_lid) {
744 1.174 dsl /* The ideal lid is busy, take a higher one */
745 1.174 dsl if (free_before != NULL) {
746 1.174 dsl try_lid = free_before->l_lid + 1;
747 1.174 dsl break;
748 1.174 dsl }
749 1.174 dsl /* No higher ones, reuse low numbers */
750 1.174 dsl try_lid = 2;
751 1.174 dsl }
752 1.174 dsl
753 1.174 dsl nxt_lid = scan->l_lid - 1;
754 1.174 dsl if (LIST_NEXT(scan, l_sibling) == NULL) {
755 1.174 dsl /* The value we have is lower than any existing lwp */
756 1.174 dsl LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
757 1.174 dsl return try_lid;
758 1.174 dsl }
759 1.174 dsl }
760 1.174 dsl
761 1.174 dsl LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
762 1.174 dsl return try_lid;
763 1.174 dsl }
764 1.174 dsl
765 1.52 ad /*
766 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
767 1.52 ad * The new LWP is created in state LSIDL and must be set running,
768 1.52 ad * suspended, or stopped by the caller.
769 1.52 ad */
770 1.2 thorpej int
771 1.134 rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
772 1.188 christos void *stack, size_t stacksize, void (*func)(void *), void *arg,
773 1.188 christos lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
774 1.188 christos const stack_t *sigstk)
775 1.2 thorpej {
776 1.52 ad struct lwp *l2, *isfree;
777 1.52 ad turnstile_t *ts;
778 1.151 chs lwpid_t lid;
779 1.2 thorpej
780 1.107 ad KASSERT(l1 == curlwp || l1->l_proc == &proc0);
781 1.107 ad
782 1.52 ad /*
783 1.169 christos * Enforce limits, excluding the first lwp and kthreads.
784 1.169 christos */
785 1.169 christos if (p2->p_nlwps != 0 && p2 != &proc0) {
786 1.169 christos uid_t uid = kauth_cred_getuid(l1->l_cred);
787 1.169 christos int count = chglwpcnt(uid, 1);
788 1.169 christos if (__predict_false(count >
789 1.169 christos p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
790 1.169 christos if (kauth_authorize_process(l1->l_cred,
791 1.169 christos KAUTH_PROCESS_RLIMIT, p2,
792 1.169 christos KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
793 1.169 christos &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
794 1.169 christos != 0) {
795 1.170 christos (void)chglwpcnt(uid, -1);
796 1.170 christos return EAGAIN;
797 1.169 christos }
798 1.169 christos }
799 1.169 christos }
800 1.169 christos
801 1.169 christos /*
802 1.52 ad * First off, reap any detached LWP waiting to be collected.
803 1.52 ad * We can re-use its LWP structure and turnstile.
804 1.52 ad */
805 1.52 ad isfree = NULL;
806 1.52 ad if (p2->p_zomblwp != NULL) {
807 1.103 ad mutex_enter(p2->p_lock);
808 1.52 ad if ((isfree = p2->p_zomblwp) != NULL) {
809 1.52 ad p2->p_zomblwp = NULL;
810 1.63 ad lwp_free(isfree, true, false);/* releases proc mutex */
811 1.52 ad } else
812 1.103 ad mutex_exit(p2->p_lock);
813 1.52 ad }
814 1.52 ad if (isfree == NULL) {
815 1.87 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK);
816 1.52 ad memset(l2, 0, sizeof(*l2));
817 1.76 ad l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
818 1.60 yamt SLIST_INIT(&l2->l_pi_lenders);
819 1.52 ad } else {
820 1.52 ad l2 = isfree;
821 1.52 ad ts = l2->l_ts;
822 1.75 ad KASSERT(l2->l_inheritedprio == -1);
823 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
824 1.52 ad memset(l2, 0, sizeof(*l2));
825 1.52 ad l2->l_ts = ts;
826 1.52 ad }
827 1.2 thorpej
828 1.2 thorpej l2->l_stat = LSIDL;
829 1.2 thorpej l2->l_proc = p2;
830 1.52 ad l2->l_refcnt = 1;
831 1.75 ad l2->l_class = sclass;
832 1.116 ad
833 1.116 ad /*
834 1.116 ad * If vfork(), we want the LWP to run fast and on the same CPU
835 1.116 ad * as its parent, so that it can reuse the VM context and cache
836 1.116 ad * footprint on the local CPU.
837 1.116 ad */
838 1.116 ad l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
839 1.82 ad l2->l_kpribase = PRI_KERNEL;
840 1.52 ad l2->l_priority = l1->l_priority;
841 1.75 ad l2->l_inheritedprio = -1;
842 1.185 christos l2->l_protectprio = -1;
843 1.185 christos l2->l_auxprio = -1;
844 1.134 rmind l2->l_flag = 0;
845 1.88 ad l2->l_pflag = LP_MPSAFE;
846 1.131 ad TAILQ_INIT(&l2->l_ld_locks);
847 1.197 ozaki l2->l_psrefs = 0;
848 1.208 maxv kmsan_lwp_alloc(l2);
849 1.131 ad
850 1.131 ad /*
851 1.156 pooka * For vfork, borrow parent's lwpctl context if it exists.
852 1.156 pooka * This also causes us to return via lwp_userret.
853 1.156 pooka */
854 1.156 pooka if (flags & LWP_VFORK && l1->l_lwpctl) {
855 1.156 pooka l2->l_lwpctl = l1->l_lwpctl;
856 1.156 pooka l2->l_flag |= LW_LWPCTL;
857 1.156 pooka }
858 1.156 pooka
859 1.156 pooka /*
860 1.131 ad * If not the first LWP in the process, grab a reference to the
861 1.131 ad * descriptor table.
862 1.131 ad */
863 1.97 ad l2->l_fd = p2->p_fd;
864 1.131 ad if (p2->p_nlwps != 0) {
865 1.131 ad KASSERT(l1->l_proc == p2);
866 1.136 rmind fd_hold(l2);
867 1.131 ad } else {
868 1.131 ad KASSERT(l1->l_proc != p2);
869 1.131 ad }
870 1.41 thorpej
871 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
872 1.134 rmind /* Mark it as a system LWP. */
873 1.56 pavel l2->l_flag |= LW_SYSTEM;
874 1.52 ad }
875 1.2 thorpej
876 1.107 ad kpreempt_disable();
877 1.107 ad l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
878 1.107 ad l2->l_cpu = l1->l_cpu;
879 1.107 ad kpreempt_enable();
880 1.107 ad
881 1.138 darran kdtrace_thread_ctor(NULL, l2);
882 1.73 rmind lwp_initspecific(l2);
883 1.75 ad sched_lwp_fork(l1, l2);
884 1.37 ad lwp_update_creds(l2);
885 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
886 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
887 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
888 1.171 rmind cv_init(&l2->l_waitcv, "vfork");
889 1.52 ad l2->l_syncobj = &sched_syncobj;
890 1.201 ozaki PSREF_DEBUG_INIT_LWP(l2);
891 1.2 thorpej
892 1.2 thorpej if (rnewlwpp != NULL)
893 1.2 thorpej *rnewlwpp = l2;
894 1.2 thorpej
895 1.158 matt /*
896 1.158 matt * PCU state needs to be saved before calling uvm_lwp_fork() so that
897 1.158 matt * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
898 1.158 matt */
899 1.158 matt pcu_save_all(l1);
900 1.158 matt
901 1.137 rmind uvm_lwp_setuarea(l2, uaddr);
902 1.190 skrll uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
903 1.2 thorpej
904 1.151 chs if ((flags & LWP_PIDLID) != 0) {
905 1.151 chs lid = proc_alloc_pid(p2);
906 1.151 chs l2->l_pflag |= LP_PIDLID;
907 1.206 joerg } else if (p2->p_nlwps == 0) {
908 1.206 joerg lid = l1->l_lid;
909 1.207 joerg /*
910 1.207 joerg * Update next LWP ID, too. If this overflows to LID_SCAN,
911 1.207 joerg * the slow path of scanning will be used for the next LWP.
912 1.207 joerg */
913 1.207 joerg p2->p_nlwpid = lid + 1;
914 1.151 chs } else {
915 1.151 chs lid = 0;
916 1.151 chs }
917 1.151 chs
918 1.103 ad mutex_enter(p2->p_lock);
919 1.52 ad
920 1.52 ad if ((flags & LWP_DETACHED) != 0) {
921 1.52 ad l2->l_prflag = LPR_DETACHED;
922 1.52 ad p2->p_ndlwps++;
923 1.52 ad } else
924 1.52 ad l2->l_prflag = 0;
925 1.52 ad
926 1.188 christos l2->l_sigstk = *sigstk;
927 1.188 christos l2->l_sigmask = *sigmask;
928 1.176 christos TAILQ_INIT(&l2->l_sigpend.sp_info);
929 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
930 1.52 ad
931 1.174 dsl if (__predict_true(lid == 0)) {
932 1.174 dsl /*
933 1.174 dsl * XXX: l_lid are expected to be unique (for a process)
934 1.174 dsl * if LWP_PIDLID is sometimes set this won't be true.
935 1.174 dsl * Once 2^31 threads have been allocated we have to
936 1.174 dsl * scan to ensure we allocate a unique value.
937 1.174 dsl */
938 1.174 dsl lid = ++p2->p_nlwpid;
939 1.174 dsl if (__predict_false(lid & LID_SCAN)) {
940 1.174 dsl lid = lwp_find_free_lid(lid, l2, p2);
941 1.174 dsl p2->p_nlwpid = lid | LID_SCAN;
942 1.174 dsl /* l2 as been inserted into p_lwps in order */
943 1.174 dsl goto skip_insert;
944 1.174 dsl }
945 1.174 dsl p2->p_nlwpid = lid;
946 1.151 chs }
947 1.174 dsl LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
948 1.174 dsl skip_insert:
949 1.151 chs l2->l_lid = lid;
950 1.2 thorpej p2->p_nlwps++;
951 1.149 yamt p2->p_nrlwps++;
952 1.2 thorpej
953 1.162 rmind KASSERT(l2->l_affinity == NULL);
954 1.162 rmind
955 1.91 rmind if ((p2->p_flag & PK_SYSTEM) == 0) {
956 1.162 rmind /* Inherit the affinity mask. */
957 1.162 rmind if (l1->l_affinity) {
958 1.128 rmind /*
959 1.128 rmind * Note that we hold the state lock while inheriting
960 1.128 rmind * the affinity to avoid race with sched_setaffinity().
961 1.128 rmind */
962 1.128 rmind lwp_lock(l1);
963 1.162 rmind if (l1->l_affinity) {
964 1.122 rmind kcpuset_use(l1->l_affinity);
965 1.122 rmind l2->l_affinity = l1->l_affinity;
966 1.122 rmind }
967 1.128 rmind lwp_unlock(l1);
968 1.117 christos }
969 1.128 rmind lwp_lock(l2);
970 1.128 rmind /* Inherit a processor-set */
971 1.128 rmind l2->l_psid = l1->l_psid;
972 1.91 rmind /* Look for a CPU to start */
973 1.91 rmind l2->l_cpu = sched_takecpu(l2);
974 1.91 rmind lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
975 1.91 rmind }
976 1.128 rmind mutex_exit(p2->p_lock);
977 1.128 rmind
978 1.180 christos SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
979 1.141 darran
980 1.128 rmind mutex_enter(proc_lock);
981 1.128 rmind LIST_INSERT_HEAD(&alllwp, l2, l_list);
982 1.128 rmind mutex_exit(proc_lock);
983 1.91 rmind
984 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
985 1.57 dsl
986 1.16 manu if (p2->p_emul->e_lwp_fork)
987 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
988 1.16 manu
989 1.2 thorpej return (0);
990 1.2 thorpej }
991 1.2 thorpej
992 1.2 thorpej /*
993 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
994 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
995 1.64 yamt * previous LWP, at splsched.
996 1.64 yamt */
997 1.64 yamt void
998 1.178 matt lwp_startup(struct lwp *prev, struct lwp *new_lwp)
999 1.64 yamt {
1000 1.178 matt KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1001 1.64 yamt
1002 1.180 christos SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1003 1.141 darran
1004 1.107 ad KASSERT(kpreempt_disabled());
1005 1.64 yamt if (prev != NULL) {
1006 1.81 ad /*
1007 1.81 ad * Normalize the count of the spin-mutexes, it was
1008 1.81 ad * increased in mi_switch(). Unmark the state of
1009 1.81 ad * context switch - it is finished for previous LWP.
1010 1.81 ad */
1011 1.81 ad curcpu()->ci_mtx_count++;
1012 1.81 ad membar_exit();
1013 1.81 ad prev->l_ctxswtch = 0;
1014 1.64 yamt }
1015 1.178 matt KPREEMPT_DISABLE(new_lwp);
1016 1.178 matt if (__predict_true(new_lwp->l_proc->p_vmspace))
1017 1.178 matt pmap_activate(new_lwp);
1018 1.181 skrll spl0();
1019 1.161 christos
1020 1.161 christos /* Note trip through cpu_switchto(). */
1021 1.161 christos pserialize_switchpoint();
1022 1.161 christos
1023 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
1024 1.178 matt KPREEMPT_ENABLE(new_lwp);
1025 1.178 matt if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1026 1.178 matt KERNEL_LOCK(1, new_lwp);
1027 1.65 ad }
1028 1.64 yamt }
1029 1.64 yamt
1030 1.64 yamt /*
1031 1.65 ad * Exit an LWP.
1032 1.2 thorpej */
1033 1.2 thorpej void
1034 1.2 thorpej lwp_exit(struct lwp *l)
1035 1.2 thorpej {
1036 1.2 thorpej struct proc *p = l->l_proc;
1037 1.52 ad struct lwp *l2;
1038 1.65 ad bool current;
1039 1.65 ad
1040 1.65 ad current = (l == curlwp);
1041 1.2 thorpej
1042 1.114 rmind KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1043 1.131 ad KASSERT(p == curproc);
1044 1.2 thorpej
1045 1.180 christos SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1046 1.141 darran
1047 1.52 ad /*
1048 1.52 ad * Verify that we hold no locks other than the kernel lock.
1049 1.52 ad */
1050 1.52 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
1051 1.16 manu
1052 1.2 thorpej /*
1053 1.52 ad * If we are the last live LWP in a process, we need to exit the
1054 1.52 ad * entire process. We do so with an exit status of zero, because
1055 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
1056 1.52 ad *
1057 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
1058 1.52 ad * must increment the count of zombies here.
1059 1.45 thorpej *
1060 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
1061 1.2 thorpej */
1062 1.103 ad mutex_enter(p->p_lock);
1063 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
1064 1.65 ad KASSERT(current == true);
1065 1.172 matt KASSERT(p != &proc0);
1066 1.88 ad /* XXXSMP kernel_lock not held */
1067 1.184 christos exit1(l, 0, 0);
1068 1.19 jdolecek /* NOTREACHED */
1069 1.2 thorpej }
1070 1.52 ad p->p_nzlwps++;
1071 1.103 ad mutex_exit(p->p_lock);
1072 1.52 ad
1073 1.52 ad if (p->p_emul->e_lwp_exit)
1074 1.52 ad (*p->p_emul->e_lwp_exit)(l);
1075 1.2 thorpej
1076 1.131 ad /* Drop filedesc reference. */
1077 1.131 ad fd_free();
1078 1.131 ad
1079 1.196 hannken /* Release fstrans private data. */
1080 1.196 hannken fstrans_lwp_dtor(l);
1081 1.196 hannken
1082 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
1083 1.145 pooka lwp_finispecific(l);
1084 1.45 thorpej
1085 1.52 ad /*
1086 1.52 ad * Release our cached credentials.
1087 1.52 ad */
1088 1.37 ad kauth_cred_free(l->l_cred);
1089 1.70 ad callout_destroy(&l->l_timeout_ch);
1090 1.65 ad
1091 1.65 ad /*
1092 1.198 kamil * If traced, report LWP exit event to the debugger.
1093 1.198 kamil *
1094 1.52 ad * Remove the LWP from the global list.
1095 1.151 chs * Free its LID from the PID namespace if needed.
1096 1.52 ad */
1097 1.102 ad mutex_enter(proc_lock);
1098 1.198 kamil
1099 1.199 kamil if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1100 1.198 kamil (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1101 1.198 kamil mutex_enter(p->p_lock);
1102 1.202 kamil if (ISSET(p->p_sflag, PS_WEXIT)) {
1103 1.202 kamil mutex_exit(p->p_lock);
1104 1.202 kamil /*
1105 1.202 kamil * We are exiting, bail out without informing parent
1106 1.202 kamil * about a terminating LWP as it would deadlock.
1107 1.202 kamil */
1108 1.202 kamil } else {
1109 1.203 kamil eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1110 1.202 kamil mutex_enter(proc_lock);
1111 1.202 kamil }
1112 1.198 kamil }
1113 1.198 kamil
1114 1.52 ad LIST_REMOVE(l, l_list);
1115 1.151 chs if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1116 1.151 chs proc_free_pid(l->l_lid);
1117 1.151 chs }
1118 1.102 ad mutex_exit(proc_lock);
1119 1.19 jdolecek
1120 1.52 ad /*
1121 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
1122 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
1123 1.52 ad * mark it waiting for collection in the proc structure. Note that
1124 1.52 ad * before we can do that, we need to free any other dead, deatched
1125 1.52 ad * LWP waiting to meet its maker.
1126 1.52 ad */
1127 1.103 ad mutex_enter(p->p_lock);
1128 1.52 ad lwp_drainrefs(l);
1129 1.31 yamt
1130 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
1131 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
1132 1.52 ad p->p_zomblwp = NULL;
1133 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
1134 1.103 ad mutex_enter(p->p_lock);
1135 1.72 ad l->l_refcnt++;
1136 1.72 ad lwp_drainrefs(l);
1137 1.52 ad }
1138 1.52 ad p->p_zomblwp = l;
1139 1.52 ad }
1140 1.31 yamt
1141 1.52 ad /*
1142 1.52 ad * If we find a pending signal for the process and we have been
1143 1.151 chs * asked to check for signals, then we lose: arrange to have
1144 1.52 ad * all other LWPs in the process check for signals.
1145 1.52 ad */
1146 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
1147 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
1148 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1149 1.52 ad lwp_lock(l2);
1150 1.56 pavel l2->l_flag |= LW_PENDSIG;
1151 1.52 ad lwp_unlock(l2);
1152 1.52 ad }
1153 1.31 yamt }
1154 1.31 yamt
1155 1.158 matt /*
1156 1.158 matt * Release any PCU resources before becoming a zombie.
1157 1.158 matt */
1158 1.158 matt pcu_discard_all(l);
1159 1.158 matt
1160 1.52 ad lwp_lock(l);
1161 1.52 ad l->l_stat = LSZOMB;
1162 1.162 rmind if (l->l_name != NULL) {
1163 1.90 ad strcpy(l->l_name, "(zombie)");
1164 1.128 rmind }
1165 1.52 ad lwp_unlock(l);
1166 1.2 thorpej p->p_nrlwps--;
1167 1.52 ad cv_broadcast(&p->p_lwpcv);
1168 1.78 ad if (l->l_lwpctl != NULL)
1169 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1170 1.103 ad mutex_exit(p->p_lock);
1171 1.52 ad
1172 1.52 ad /*
1173 1.52 ad * We can no longer block. At this point, lwp_free() may already
1174 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1175 1.52 ad *
1176 1.52 ad * Free MD LWP resources.
1177 1.52 ad */
1178 1.52 ad cpu_lwp_free(l, 0);
1179 1.2 thorpej
1180 1.65 ad if (current) {
1181 1.65 ad pmap_deactivate(l);
1182 1.65 ad
1183 1.65 ad /*
1184 1.65 ad * Release the kernel lock, and switch away into
1185 1.65 ad * oblivion.
1186 1.65 ad */
1187 1.52 ad #ifdef notyet
1188 1.65 ad /* XXXSMP hold in lwp_userret() */
1189 1.65 ad KERNEL_UNLOCK_LAST(l);
1190 1.52 ad #else
1191 1.65 ad KERNEL_UNLOCK_ALL(l, NULL);
1192 1.52 ad #endif
1193 1.65 ad lwp_exit_switchaway(l);
1194 1.65 ad }
1195 1.2 thorpej }
1196 1.2 thorpej
1197 1.52 ad /*
1198 1.52 ad * Free a dead LWP's remaining resources.
1199 1.52 ad *
1200 1.52 ad * XXXLWP limits.
1201 1.52 ad */
1202 1.52 ad void
1203 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
1204 1.52 ad {
1205 1.52 ad struct proc *p = l->l_proc;
1206 1.100 ad struct rusage *ru;
1207 1.52 ad ksiginfoq_t kq;
1208 1.52 ad
1209 1.92 yamt KASSERT(l != curlwp);
1210 1.160 yamt KASSERT(last || mutex_owned(p->p_lock));
1211 1.92 yamt
1212 1.177 christos /*
1213 1.177 christos * We use the process credentials instead of the lwp credentials here
1214 1.177 christos * because the lwp credentials maybe cached (just after a setuid call)
1215 1.177 christos * and we don't want pay for syncing, since the lwp is going away
1216 1.177 christos * anyway
1217 1.177 christos */
1218 1.169 christos if (p != &proc0 && p->p_nlwps != 1)
1219 1.177 christos (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1220 1.52 ad /*
1221 1.52 ad * If this was not the last LWP in the process, then adjust
1222 1.52 ad * counters and unlock.
1223 1.52 ad */
1224 1.52 ad if (!last) {
1225 1.52 ad /*
1226 1.52 ad * Add the LWP's run time to the process' base value.
1227 1.52 ad * This needs to co-incide with coming off p_lwps.
1228 1.52 ad */
1229 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime);
1230 1.64 yamt p->p_pctcpu += l->l_pctcpu;
1231 1.100 ad ru = &p->p_stats->p_ru;
1232 1.100 ad ruadd(ru, &l->l_ru);
1233 1.100 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1234 1.100 ad ru->ru_nivcsw += l->l_nivcsw;
1235 1.52 ad LIST_REMOVE(l, l_sibling);
1236 1.52 ad p->p_nlwps--;
1237 1.52 ad p->p_nzlwps--;
1238 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
1239 1.52 ad p->p_ndlwps--;
1240 1.63 ad
1241 1.63 ad /*
1242 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
1243 1.63 ad * deadlock.
1244 1.63 ad */
1245 1.63 ad cv_broadcast(&p->p_lwpcv);
1246 1.103 ad mutex_exit(p->p_lock);
1247 1.63 ad }
1248 1.52 ad
1249 1.52 ad #ifdef MULTIPROCESSOR
1250 1.63 ad /*
1251 1.63 ad * In the unlikely event that the LWP is still on the CPU,
1252 1.63 ad * then spin until it has switched away. We need to release
1253 1.63 ad * all locks to avoid deadlock against interrupt handlers on
1254 1.63 ad * the target CPU.
1255 1.63 ad */
1256 1.115 ad if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1257 1.63 ad int count;
1258 1.64 yamt (void)count; /* XXXgcc */
1259 1.63 ad KERNEL_UNLOCK_ALL(curlwp, &count);
1260 1.115 ad while ((l->l_pflag & LP_RUNNING) != 0 ||
1261 1.64 yamt l->l_cpu->ci_curlwp == l)
1262 1.63 ad SPINLOCK_BACKOFF_HOOK;
1263 1.63 ad KERNEL_LOCK(count, curlwp);
1264 1.63 ad }
1265 1.52 ad #endif
1266 1.52 ad
1267 1.52 ad /*
1268 1.52 ad * Destroy the LWP's remaining signal information.
1269 1.52 ad */
1270 1.52 ad ksiginfo_queue_init(&kq);
1271 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
1272 1.52 ad ksiginfo_queue_drain(&kq);
1273 1.52 ad cv_destroy(&l->l_sigcv);
1274 1.171 rmind cv_destroy(&l->l_waitcv);
1275 1.2 thorpej
1276 1.19 jdolecek /*
1277 1.162 rmind * Free lwpctl structure and affinity.
1278 1.162 rmind */
1279 1.162 rmind if (l->l_lwpctl) {
1280 1.162 rmind lwp_ctl_free(l);
1281 1.162 rmind }
1282 1.162 rmind if (l->l_affinity) {
1283 1.162 rmind kcpuset_unuse(l->l_affinity, NULL);
1284 1.162 rmind l->l_affinity = NULL;
1285 1.162 rmind }
1286 1.162 rmind
1287 1.162 rmind /*
1288 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
1289 1.93 yamt * caller wants to recycle them. Also, free the scheduler specific
1290 1.93 yamt * data.
1291 1.52 ad *
1292 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
1293 1.52 ad * so if it comes up just drop it quietly and move on.
1294 1.52 ad *
1295 1.52 ad * We don't recycle the VM resources at this time.
1296 1.19 jdolecek */
1297 1.64 yamt
1298 1.52 ad if (!recycle && l->l_ts != &turnstile0)
1299 1.76 ad pool_cache_put(turnstile_cache, l->l_ts);
1300 1.90 ad if (l->l_name != NULL)
1301 1.90 ad kmem_free(l->l_name, MAXCOMLEN);
1302 1.135 rmind
1303 1.208 maxv kmsan_lwp_free(l);
1304 1.52 ad cpu_lwp_free2(l);
1305 1.19 jdolecek uvm_lwp_exit(l);
1306 1.134 rmind
1307 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1308 1.75 ad KASSERT(l->l_inheritedprio == -1);
1309 1.155 matt KASSERT(l->l_blcnt == 0);
1310 1.138 darran kdtrace_thread_dtor(NULL, l);
1311 1.52 ad if (!recycle)
1312 1.87 ad pool_cache_put(lwp_cache, l);
1313 1.2 thorpej }
1314 1.2 thorpej
1315 1.2 thorpej /*
1316 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP.
1317 1.91 rmind */
1318 1.91 rmind void
1319 1.114 rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
1320 1.91 rmind {
1321 1.114 rmind struct schedstate_percpu *tspc;
1322 1.121 rmind int lstat = l->l_stat;
1323 1.121 rmind
1324 1.91 rmind KASSERT(lwp_locked(l, NULL));
1325 1.114 rmind KASSERT(tci != NULL);
1326 1.114 rmind
1327 1.121 rmind /* If LWP is still on the CPU, it must be handled like LSONPROC */
1328 1.121 rmind if ((l->l_pflag & LP_RUNNING) != 0) {
1329 1.121 rmind lstat = LSONPROC;
1330 1.121 rmind }
1331 1.121 rmind
1332 1.114 rmind /*
1333 1.114 rmind * The destination CPU could be changed while previous migration
1334 1.114 rmind * was not finished.
1335 1.114 rmind */
1336 1.121 rmind if (l->l_target_cpu != NULL) {
1337 1.114 rmind l->l_target_cpu = tci;
1338 1.114 rmind lwp_unlock(l);
1339 1.114 rmind return;
1340 1.114 rmind }
1341 1.91 rmind
1342 1.114 rmind /* Nothing to do if trying to migrate to the same CPU */
1343 1.114 rmind if (l->l_cpu == tci) {
1344 1.91 rmind lwp_unlock(l);
1345 1.91 rmind return;
1346 1.91 rmind }
1347 1.91 rmind
1348 1.114 rmind KASSERT(l->l_target_cpu == NULL);
1349 1.114 rmind tspc = &tci->ci_schedstate;
1350 1.121 rmind switch (lstat) {
1351 1.91 rmind case LSRUN:
1352 1.134 rmind l->l_target_cpu = tci;
1353 1.134 rmind break;
1354 1.91 rmind case LSIDL:
1355 1.114 rmind l->l_cpu = tci;
1356 1.114 rmind lwp_unlock_to(l, tspc->spc_mutex);
1357 1.91 rmind return;
1358 1.91 rmind case LSSLEEP:
1359 1.114 rmind l->l_cpu = tci;
1360 1.91 rmind break;
1361 1.91 rmind case LSSTOP:
1362 1.91 rmind case LSSUSPENDED:
1363 1.114 rmind l->l_cpu = tci;
1364 1.114 rmind if (l->l_wchan == NULL) {
1365 1.114 rmind lwp_unlock_to(l, tspc->spc_lwplock);
1366 1.114 rmind return;
1367 1.91 rmind }
1368 1.114 rmind break;
1369 1.91 rmind case LSONPROC:
1370 1.114 rmind l->l_target_cpu = tci;
1371 1.114 rmind spc_lock(l->l_cpu);
1372 1.114 rmind cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1373 1.114 rmind spc_unlock(l->l_cpu);
1374 1.91 rmind break;
1375 1.91 rmind }
1376 1.91 rmind lwp_unlock(l);
1377 1.91 rmind }
1378 1.91 rmind
1379 1.91 rmind /*
1380 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case,
1381 1.94 rmind * the calling process and first LWP in the list will be used.
1382 1.103 ad * On success - returns proc locked.
1383 1.91 rmind */
1384 1.91 rmind struct lwp *
1385 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid)
1386 1.91 rmind {
1387 1.91 rmind proc_t *p;
1388 1.91 rmind lwp_t *l;
1389 1.91 rmind
1390 1.150 rmind /* Find the process. */
1391 1.94 rmind if (pid != 0) {
1392 1.150 rmind mutex_enter(proc_lock);
1393 1.150 rmind p = proc_find(pid);
1394 1.150 rmind if (p == NULL) {
1395 1.150 rmind mutex_exit(proc_lock);
1396 1.150 rmind return NULL;
1397 1.150 rmind }
1398 1.150 rmind mutex_enter(p->p_lock);
1399 1.102 ad mutex_exit(proc_lock);
1400 1.150 rmind } else {
1401 1.150 rmind p = curlwp->l_proc;
1402 1.150 rmind mutex_enter(p->p_lock);
1403 1.150 rmind }
1404 1.150 rmind /* Find the thread. */
1405 1.150 rmind if (lid != 0) {
1406 1.150 rmind l = lwp_find(p, lid);
1407 1.150 rmind } else {
1408 1.150 rmind l = LIST_FIRST(&p->p_lwps);
1409 1.94 rmind }
1410 1.103 ad if (l == NULL) {
1411 1.103 ad mutex_exit(p->p_lock);
1412 1.103 ad }
1413 1.91 rmind return l;
1414 1.91 rmind }
1415 1.91 rmind
1416 1.91 rmind /*
1417 1.168 yamt * Look up a live LWP within the specified process.
1418 1.52 ad *
1419 1.103 ad * Must be called with p->p_lock held.
1420 1.52 ad */
1421 1.52 ad struct lwp *
1422 1.151 chs lwp_find(struct proc *p, lwpid_t id)
1423 1.52 ad {
1424 1.52 ad struct lwp *l;
1425 1.52 ad
1426 1.103 ad KASSERT(mutex_owned(p->p_lock));
1427 1.52 ad
1428 1.52 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1429 1.52 ad if (l->l_lid == id)
1430 1.52 ad break;
1431 1.52 ad }
1432 1.52 ad
1433 1.52 ad /*
1434 1.52 ad * No need to lock - all of these conditions will
1435 1.52 ad * be visible with the process level mutex held.
1436 1.52 ad */
1437 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1438 1.52 ad l = NULL;
1439 1.52 ad
1440 1.52 ad return l;
1441 1.52 ad }
1442 1.52 ad
1443 1.52 ad /*
1444 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1445 1.37 ad *
1446 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1447 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1448 1.179 snj * its credentials by calling this routine. This may be called from
1449 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1450 1.37 ad */
1451 1.37 ad void
1452 1.37 ad lwp_update_creds(struct lwp *l)
1453 1.37 ad {
1454 1.37 ad kauth_cred_t oc;
1455 1.37 ad struct proc *p;
1456 1.37 ad
1457 1.37 ad p = l->l_proc;
1458 1.37 ad oc = l->l_cred;
1459 1.37 ad
1460 1.103 ad mutex_enter(p->p_lock);
1461 1.37 ad kauth_cred_hold(p->p_cred);
1462 1.37 ad l->l_cred = p->p_cred;
1463 1.98 ad l->l_prflag &= ~LPR_CRMOD;
1464 1.103 ad mutex_exit(p->p_lock);
1465 1.88 ad if (oc != NULL)
1466 1.37 ad kauth_cred_free(oc);
1467 1.52 ad }
1468 1.52 ad
1469 1.52 ad /*
1470 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1471 1.52 ad * one we specify.
1472 1.52 ad */
1473 1.52 ad int
1474 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1475 1.52 ad {
1476 1.52 ad kmutex_t *cur = l->l_mutex;
1477 1.52 ad
1478 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1479 1.52 ad }
1480 1.52 ad
1481 1.52 ad /*
1482 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1483 1.52 ad */
1484 1.52 ad void
1485 1.178 matt lwp_setlock(struct lwp *l, kmutex_t *mtx)
1486 1.52 ad {
1487 1.52 ad
1488 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1489 1.52 ad
1490 1.107 ad membar_exit();
1491 1.178 matt l->l_mutex = mtx;
1492 1.52 ad }
1493 1.52 ad
1494 1.52 ad /*
1495 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1496 1.52 ad * must be held.
1497 1.52 ad */
1498 1.52 ad void
1499 1.178 matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1500 1.52 ad {
1501 1.52 ad kmutex_t *old;
1502 1.52 ad
1503 1.152 rmind KASSERT(lwp_locked(l, NULL));
1504 1.52 ad
1505 1.52 ad old = l->l_mutex;
1506 1.107 ad membar_exit();
1507 1.178 matt l->l_mutex = mtx;
1508 1.52 ad mutex_spin_exit(old);
1509 1.52 ad }
1510 1.52 ad
1511 1.60 yamt int
1512 1.60 yamt lwp_trylock(struct lwp *l)
1513 1.60 yamt {
1514 1.60 yamt kmutex_t *old;
1515 1.60 yamt
1516 1.60 yamt for (;;) {
1517 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1518 1.60 yamt return 0;
1519 1.60 yamt if (__predict_true(l->l_mutex == old))
1520 1.60 yamt return 1;
1521 1.60 yamt mutex_spin_exit(old);
1522 1.60 yamt }
1523 1.60 yamt }
1524 1.60 yamt
1525 1.134 rmind void
1526 1.96 ad lwp_unsleep(lwp_t *l, bool cleanup)
1527 1.96 ad {
1528 1.96 ad
1529 1.96 ad KASSERT(mutex_owned(l->l_mutex));
1530 1.134 rmind (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1531 1.96 ad }
1532 1.96 ad
1533 1.52 ad /*
1534 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1535 1.52 ad * set.
1536 1.52 ad */
1537 1.52 ad void
1538 1.52 ad lwp_userret(struct lwp *l)
1539 1.52 ad {
1540 1.52 ad struct proc *p;
1541 1.52 ad int sig;
1542 1.52 ad
1543 1.114 rmind KASSERT(l == curlwp);
1544 1.114 rmind KASSERT(l->l_stat == LSONPROC);
1545 1.52 ad p = l->l_proc;
1546 1.52 ad
1547 1.75 ad #ifndef __HAVE_FAST_SOFTINTS
1548 1.75 ad /* Run pending soft interrupts. */
1549 1.75 ad if (l->l_cpu->ci_data.cpu_softints != 0)
1550 1.75 ad softint_overlay();
1551 1.75 ad #endif
1552 1.75 ad
1553 1.52 ad /*
1554 1.167 rmind * It is safe to do this read unlocked on a MP system..
1555 1.52 ad */
1556 1.167 rmind while ((l->l_flag & LW_USERRET) != 0) {
1557 1.52 ad /*
1558 1.52 ad * Process pending signals first, unless the process
1559 1.61 ad * is dumping core or exiting, where we will instead
1560 1.101 rmind * enter the LW_WSUSPEND case below.
1561 1.52 ad */
1562 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1563 1.61 ad LW_PENDSIG) {
1564 1.103 ad mutex_enter(p->p_lock);
1565 1.52 ad while ((sig = issignal(l)) != 0)
1566 1.52 ad postsig(sig);
1567 1.103 ad mutex_exit(p->p_lock);
1568 1.52 ad }
1569 1.52 ad
1570 1.52 ad /*
1571 1.52 ad * Core-dump or suspend pending.
1572 1.52 ad *
1573 1.159 matt * In case of core dump, suspend ourselves, so that the kernel
1574 1.159 matt * stack and therefore the userland registers saved in the
1575 1.159 matt * trapframe are around for coredump() to write them out.
1576 1.159 matt * We also need to save any PCU resources that we have so that
1577 1.159 matt * they accessible for coredump(). We issue a wakeup on
1578 1.159 matt * p->p_lwpcv so that sigexit() will write the core file out
1579 1.159 matt * once all other LWPs are suspended.
1580 1.52 ad */
1581 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1582 1.159 matt pcu_save_all(l);
1583 1.103 ad mutex_enter(p->p_lock);
1584 1.52 ad p->p_nrlwps--;
1585 1.52 ad cv_broadcast(&p->p_lwpcv);
1586 1.52 ad lwp_lock(l);
1587 1.52 ad l->l_stat = LSSUSPENDED;
1588 1.104 ad lwp_unlock(l);
1589 1.103 ad mutex_exit(p->p_lock);
1590 1.104 ad lwp_lock(l);
1591 1.64 yamt mi_switch(l);
1592 1.52 ad }
1593 1.52 ad
1594 1.52 ad /* Process is exiting. */
1595 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1596 1.52 ad lwp_exit(l);
1597 1.52 ad KASSERT(0);
1598 1.52 ad /* NOTREACHED */
1599 1.52 ad }
1600 1.156 pooka
1601 1.156 pooka /* update lwpctl processor (for vfork child_return) */
1602 1.156 pooka if (l->l_flag & LW_LWPCTL) {
1603 1.156 pooka lwp_lock(l);
1604 1.156 pooka KASSERT(kpreempt_disabled());
1605 1.156 pooka l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1606 1.156 pooka l->l_lwpctl->lc_pctr++;
1607 1.156 pooka l->l_flag &= ~LW_LWPCTL;
1608 1.156 pooka lwp_unlock(l);
1609 1.156 pooka }
1610 1.52 ad }
1611 1.52 ad }
1612 1.52 ad
1613 1.52 ad /*
1614 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1615 1.52 ad */
1616 1.52 ad void
1617 1.52 ad lwp_need_userret(struct lwp *l)
1618 1.52 ad {
1619 1.63 ad KASSERT(lwp_locked(l, NULL));
1620 1.52 ad
1621 1.52 ad /*
1622 1.52 ad * Since the tests in lwp_userret() are done unlocked, make sure
1623 1.52 ad * that the condition will be seen before forcing the LWP to enter
1624 1.52 ad * kernel mode.
1625 1.52 ad */
1626 1.81 ad membar_producer();
1627 1.52 ad cpu_signotify(l);
1628 1.52 ad }
1629 1.52 ad
1630 1.52 ad /*
1631 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1632 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1633 1.52 ad */
1634 1.52 ad void
1635 1.52 ad lwp_addref(struct lwp *l)
1636 1.52 ad {
1637 1.52 ad
1638 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1639 1.52 ad KASSERT(l->l_stat != LSZOMB);
1640 1.52 ad KASSERT(l->l_refcnt != 0);
1641 1.52 ad
1642 1.52 ad l->l_refcnt++;
1643 1.52 ad }
1644 1.52 ad
1645 1.52 ad /*
1646 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1647 1.52 ad * then we must finalize the LWP's death.
1648 1.52 ad */
1649 1.52 ad void
1650 1.52 ad lwp_delref(struct lwp *l)
1651 1.52 ad {
1652 1.52 ad struct proc *p = l->l_proc;
1653 1.52 ad
1654 1.103 ad mutex_enter(p->p_lock);
1655 1.142 christos lwp_delref2(l);
1656 1.142 christos mutex_exit(p->p_lock);
1657 1.142 christos }
1658 1.142 christos
1659 1.142 christos /*
1660 1.142 christos * Remove one reference to an LWP. If this is the last reference,
1661 1.142 christos * then we must finalize the LWP's death. The proc mutex is held
1662 1.142 christos * on entry.
1663 1.142 christos */
1664 1.142 christos void
1665 1.142 christos lwp_delref2(struct lwp *l)
1666 1.142 christos {
1667 1.142 christos struct proc *p = l->l_proc;
1668 1.142 christos
1669 1.142 christos KASSERT(mutex_owned(p->p_lock));
1670 1.72 ad KASSERT(l->l_stat != LSZOMB);
1671 1.72 ad KASSERT(l->l_refcnt > 0);
1672 1.52 ad if (--l->l_refcnt == 0)
1673 1.76 ad cv_broadcast(&p->p_lwpcv);
1674 1.52 ad }
1675 1.52 ad
1676 1.52 ad /*
1677 1.52 ad * Drain all references to the current LWP.
1678 1.52 ad */
1679 1.52 ad void
1680 1.52 ad lwp_drainrefs(struct lwp *l)
1681 1.52 ad {
1682 1.52 ad struct proc *p = l->l_proc;
1683 1.52 ad
1684 1.103 ad KASSERT(mutex_owned(p->p_lock));
1685 1.52 ad KASSERT(l->l_refcnt != 0);
1686 1.52 ad
1687 1.52 ad l->l_refcnt--;
1688 1.52 ad while (l->l_refcnt != 0)
1689 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
1690 1.37 ad }
1691 1.41 thorpej
1692 1.41 thorpej /*
1693 1.127 ad * Return true if the specified LWP is 'alive'. Only p->p_lock need
1694 1.127 ad * be held.
1695 1.127 ad */
1696 1.127 ad bool
1697 1.127 ad lwp_alive(lwp_t *l)
1698 1.127 ad {
1699 1.127 ad
1700 1.127 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1701 1.127 ad
1702 1.127 ad switch (l->l_stat) {
1703 1.127 ad case LSSLEEP:
1704 1.127 ad case LSRUN:
1705 1.127 ad case LSONPROC:
1706 1.127 ad case LSSTOP:
1707 1.127 ad case LSSUSPENDED:
1708 1.127 ad return true;
1709 1.127 ad default:
1710 1.127 ad return false;
1711 1.127 ad }
1712 1.127 ad }
1713 1.127 ad
1714 1.127 ad /*
1715 1.127 ad * Return first live LWP in the process.
1716 1.127 ad */
1717 1.127 ad lwp_t *
1718 1.127 ad lwp_find_first(proc_t *p)
1719 1.127 ad {
1720 1.127 ad lwp_t *l;
1721 1.127 ad
1722 1.127 ad KASSERT(mutex_owned(p->p_lock));
1723 1.127 ad
1724 1.127 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1725 1.127 ad if (lwp_alive(l)) {
1726 1.127 ad return l;
1727 1.127 ad }
1728 1.127 ad }
1729 1.127 ad
1730 1.127 ad return NULL;
1731 1.127 ad }
1732 1.127 ad
1733 1.127 ad /*
1734 1.78 ad * Allocate a new lwpctl structure for a user LWP.
1735 1.78 ad */
1736 1.78 ad int
1737 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr)
1738 1.78 ad {
1739 1.78 ad lcproc_t *lp;
1740 1.78 ad u_int bit, i, offset;
1741 1.78 ad struct uvm_object *uao;
1742 1.78 ad int error;
1743 1.78 ad lcpage_t *lcp;
1744 1.78 ad proc_t *p;
1745 1.78 ad lwp_t *l;
1746 1.78 ad
1747 1.78 ad l = curlwp;
1748 1.78 ad p = l->l_proc;
1749 1.78 ad
1750 1.156 pooka /* don't allow a vforked process to create lwp ctls */
1751 1.156 pooka if (p->p_lflag & PL_PPWAIT)
1752 1.156 pooka return EBUSY;
1753 1.156 pooka
1754 1.81 ad if (l->l_lcpage != NULL) {
1755 1.81 ad lcp = l->l_lcpage;
1756 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1757 1.143 njoly return 0;
1758 1.81 ad }
1759 1.78 ad
1760 1.78 ad /* First time around, allocate header structure for the process. */
1761 1.78 ad if ((lp = p->p_lwpctl) == NULL) {
1762 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1763 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1764 1.78 ad lp->lp_uao = NULL;
1765 1.78 ad TAILQ_INIT(&lp->lp_pages);
1766 1.103 ad mutex_enter(p->p_lock);
1767 1.78 ad if (p->p_lwpctl == NULL) {
1768 1.78 ad p->p_lwpctl = lp;
1769 1.103 ad mutex_exit(p->p_lock);
1770 1.78 ad } else {
1771 1.103 ad mutex_exit(p->p_lock);
1772 1.78 ad mutex_destroy(&lp->lp_lock);
1773 1.78 ad kmem_free(lp, sizeof(*lp));
1774 1.78 ad lp = p->p_lwpctl;
1775 1.78 ad }
1776 1.78 ad }
1777 1.78 ad
1778 1.78 ad /*
1779 1.78 ad * Set up an anonymous memory region to hold the shared pages.
1780 1.78 ad * Map them into the process' address space. The user vmspace
1781 1.78 ad * gets the first reference on the UAO.
1782 1.78 ad */
1783 1.78 ad mutex_enter(&lp->lp_lock);
1784 1.78 ad if (lp->lp_uao == NULL) {
1785 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1786 1.78 ad lp->lp_cur = 0;
1787 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ;
1788 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1789 1.182 martin (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1790 1.182 martin p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1791 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1792 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1793 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1794 1.78 ad if (error != 0) {
1795 1.78 ad uao_detach(lp->lp_uao);
1796 1.78 ad lp->lp_uao = NULL;
1797 1.78 ad mutex_exit(&lp->lp_lock);
1798 1.78 ad return error;
1799 1.78 ad }
1800 1.78 ad }
1801 1.78 ad
1802 1.78 ad /* Get a free block and allocate for this LWP. */
1803 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1804 1.78 ad if (lcp->lcp_nfree != 0)
1805 1.78 ad break;
1806 1.78 ad }
1807 1.78 ad if (lcp == NULL) {
1808 1.78 ad /* Nothing available - try to set up a free page. */
1809 1.78 ad if (lp->lp_cur == lp->lp_max) {
1810 1.78 ad mutex_exit(&lp->lp_lock);
1811 1.78 ad return ENOMEM;
1812 1.78 ad }
1813 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1814 1.189 chs
1815 1.78 ad /*
1816 1.78 ad * Wire the next page down in kernel space. Since this
1817 1.78 ad * is a new mapping, we must add a reference.
1818 1.78 ad */
1819 1.78 ad uao = lp->lp_uao;
1820 1.78 ad (*uao->pgops->pgo_reference)(uao);
1821 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map);
1822 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1823 1.78 ad uao, lp->lp_cur, PAGE_SIZE,
1824 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1825 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1826 1.78 ad if (error != 0) {
1827 1.78 ad mutex_exit(&lp->lp_lock);
1828 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1829 1.78 ad (*uao->pgops->pgo_detach)(uao);
1830 1.78 ad return error;
1831 1.78 ad }
1832 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1833 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1834 1.89 yamt if (error != 0) {
1835 1.89 yamt mutex_exit(&lp->lp_lock);
1836 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr,
1837 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE);
1838 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1839 1.89 yamt return error;
1840 1.89 yamt }
1841 1.78 ad /* Prepare the page descriptor and link into the list. */
1842 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1843 1.78 ad lp->lp_cur += PAGE_SIZE;
1844 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE;
1845 1.78 ad lcp->lcp_rotor = 0;
1846 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1847 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1848 1.78 ad }
1849 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1850 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES)
1851 1.78 ad i = 0;
1852 1.78 ad }
1853 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1;
1854 1.193 kamil lcp->lcp_bitmap[i] ^= (1U << bit);
1855 1.78 ad lcp->lcp_rotor = i;
1856 1.78 ad lcp->lcp_nfree--;
1857 1.78 ad l->l_lcpage = lcp;
1858 1.78 ad offset = (i << 5) + bit;
1859 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1860 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1861 1.78 ad mutex_exit(&lp->lp_lock);
1862 1.78 ad
1863 1.107 ad KPREEMPT_DISABLE(l);
1864 1.195 skrll l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1865 1.107 ad KPREEMPT_ENABLE(l);
1866 1.78 ad
1867 1.78 ad return 0;
1868 1.78 ad }
1869 1.78 ad
1870 1.78 ad /*
1871 1.78 ad * Free an lwpctl structure back to the per-process list.
1872 1.78 ad */
1873 1.78 ad void
1874 1.78 ad lwp_ctl_free(lwp_t *l)
1875 1.78 ad {
1876 1.156 pooka struct proc *p = l->l_proc;
1877 1.78 ad lcproc_t *lp;
1878 1.78 ad lcpage_t *lcp;
1879 1.78 ad u_int map, offset;
1880 1.78 ad
1881 1.156 pooka /* don't free a lwp context we borrowed for vfork */
1882 1.156 pooka if (p->p_lflag & PL_PPWAIT) {
1883 1.156 pooka l->l_lwpctl = NULL;
1884 1.156 pooka return;
1885 1.156 pooka }
1886 1.156 pooka
1887 1.156 pooka lp = p->p_lwpctl;
1888 1.78 ad KASSERT(lp != NULL);
1889 1.78 ad
1890 1.78 ad lcp = l->l_lcpage;
1891 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1892 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE);
1893 1.78 ad
1894 1.78 ad mutex_enter(&lp->lp_lock);
1895 1.78 ad lcp->lcp_nfree++;
1896 1.78 ad map = offset >> 5;
1897 1.194 kamil lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1898 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1899 1.78 ad lcp->lcp_rotor = map;
1900 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1901 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1902 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1903 1.78 ad }
1904 1.78 ad mutex_exit(&lp->lp_lock);
1905 1.78 ad }
1906 1.78 ad
1907 1.78 ad /*
1908 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely
1909 1.78 ad * called by the last LWP in the process.
1910 1.78 ad */
1911 1.78 ad void
1912 1.78 ad lwp_ctl_exit(void)
1913 1.78 ad {
1914 1.78 ad lcpage_t *lcp, *next;
1915 1.78 ad lcproc_t *lp;
1916 1.78 ad proc_t *p;
1917 1.78 ad lwp_t *l;
1918 1.78 ad
1919 1.78 ad l = curlwp;
1920 1.78 ad l->l_lwpctl = NULL;
1921 1.95 ad l->l_lcpage = NULL;
1922 1.78 ad p = l->l_proc;
1923 1.78 ad lp = p->p_lwpctl;
1924 1.78 ad
1925 1.78 ad KASSERT(lp != NULL);
1926 1.78 ad KASSERT(p->p_nlwps == 1);
1927 1.78 ad
1928 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1929 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain);
1930 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr,
1931 1.78 ad lcp->lcp_kaddr + PAGE_SIZE);
1932 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1933 1.78 ad }
1934 1.78 ad
1935 1.78 ad if (lp->lp_uao != NULL) {
1936 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1937 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ);
1938 1.78 ad }
1939 1.78 ad
1940 1.78 ad mutex_destroy(&lp->lp_lock);
1941 1.78 ad kmem_free(lp, sizeof(*lp));
1942 1.78 ad p->p_lwpctl = NULL;
1943 1.78 ad }
1944 1.84 yamt
1945 1.130 ad /*
1946 1.130 ad * Return the current LWP's "preemption counter". Used to detect
1947 1.130 ad * preemption across operations that can tolerate preemption without
1948 1.130 ad * crashing, but which may generate incorrect results if preempted.
1949 1.130 ad */
1950 1.130 ad uint64_t
1951 1.130 ad lwp_pctr(void)
1952 1.130 ad {
1953 1.130 ad
1954 1.130 ad return curlwp->l_ncsw;
1955 1.130 ad }
1956 1.130 ad
1957 1.151 chs /*
1958 1.151 chs * Set an LWP's private data pointer.
1959 1.151 chs */
1960 1.151 chs int
1961 1.151 chs lwp_setprivate(struct lwp *l, void *ptr)
1962 1.151 chs {
1963 1.151 chs int error = 0;
1964 1.151 chs
1965 1.151 chs l->l_private = ptr;
1966 1.151 chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
1967 1.151 chs error = cpu_lwp_setprivate(l, ptr);
1968 1.151 chs #endif
1969 1.151 chs return error;
1970 1.151 chs }
1971 1.151 chs
1972 1.84 yamt #if defined(DDB)
1973 1.153 rmind #include <machine/pcb.h>
1974 1.153 rmind
1975 1.84 yamt void
1976 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1977 1.84 yamt {
1978 1.84 yamt lwp_t *l;
1979 1.84 yamt
1980 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) {
1981 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1982 1.84 yamt
1983 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) {
1984 1.84 yamt continue;
1985 1.84 yamt }
1986 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n",
1987 1.84 yamt (void *)addr, (void *)stack,
1988 1.84 yamt (size_t)(addr - stack), l);
1989 1.84 yamt }
1990 1.84 yamt }
1991 1.84 yamt #endif /* defined(DDB) */
1992