kern_lwp.c revision 1.233.2.1 1 1.233.2.1 bouyer /* $NetBSD: kern_lwp.c,v 1.233.2.1 2020/04/20 11:29:10 bouyer Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.220 ad * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
5 1.220 ad * The NetBSD Foundation, Inc.
6 1.2 thorpej * All rights reserved.
7 1.2 thorpej *
8 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.52 ad * by Nathan J. Williams, and Andrew Doran.
10 1.2 thorpej *
11 1.2 thorpej * Redistribution and use in source and binary forms, with or without
12 1.2 thorpej * modification, are permitted provided that the following conditions
13 1.2 thorpej * are met:
14 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.2 thorpej * notice, this list of conditions and the following disclaimer.
16 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.2 thorpej * documentation and/or other materials provided with the distribution.
19 1.2 thorpej *
20 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.2 thorpej */
32 1.9 lukem
33 1.52 ad /*
34 1.52 ad * Overview
35 1.52 ad *
36 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of
37 1.52 ad * execution within the kernel. The core state of an LWP is described
38 1.66 ad * by "struct lwp", also known as lwp_t.
39 1.52 ad *
40 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
41 1.52 ad * Every process contains at least one LWP, but may contain more. The
42 1.52 ad * process describes attributes shared among all of its LWPs such as a
43 1.52 ad * private address space, global execution state (stopped, active,
44 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
45 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel.
46 1.52 ad *
47 1.52 ad * Execution states
48 1.52 ad *
49 1.52 ad * At any given time, an LWP has overall state that is described by
50 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
51 1.52 ad * set is guaranteed to represent the absolute, current state of the
52 1.52 ad * LWP:
53 1.101 rmind *
54 1.101 rmind * LSONPROC
55 1.101 rmind *
56 1.101 rmind * On processor: the LWP is executing on a CPU, either in the
57 1.101 rmind * kernel or in user space.
58 1.101 rmind *
59 1.101 rmind * LSRUN
60 1.101 rmind *
61 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be
62 1.101 rmind * chosen to run by an idle processor, or by a processor that
63 1.101 rmind * has been asked to preempt a currently runnning but lower
64 1.134 rmind * priority LWP.
65 1.101 rmind *
66 1.101 rmind * LSIDL
67 1.101 rmind *
68 1.101 rmind * Idle: the LWP has been created but has not yet executed,
69 1.66 ad * or it has ceased executing a unit of work and is waiting
70 1.66 ad * to be started again.
71 1.101 rmind *
72 1.101 rmind * LSSUSPENDED:
73 1.101 rmind *
74 1.101 rmind * Suspended: the LWP has had its execution suspended by
75 1.52 ad * another LWP in the same process using the _lwp_suspend()
76 1.52 ad * system call. User-level LWPs also enter the suspended
77 1.52 ad * state when the system is shutting down.
78 1.52 ad *
79 1.52 ad * The second set represent a "statement of intent" on behalf of the
80 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
81 1.66 ad * sleeping or idle. It is expected to take the necessary action to
82 1.101 rmind * stop executing or become "running" again within a short timeframe.
83 1.227 ad * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 1.101 rmind * Importantly, it indicates that its state is tied to a CPU.
85 1.101 rmind *
86 1.101 rmind * LSZOMB:
87 1.101 rmind *
88 1.101 rmind * Dead or dying: the LWP has released most of its resources
89 1.129 ad * and is about to switch away into oblivion, or has already
90 1.66 ad * switched away. When it switches away, its few remaining
91 1.66 ad * resources can be collected.
92 1.101 rmind *
93 1.101 rmind * LSSLEEP:
94 1.101 rmind *
95 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and
96 1.101 rmind * has switched away or will switch away shortly to allow other
97 1.66 ad * LWPs to run on the CPU.
98 1.101 rmind *
99 1.101 rmind * LSSTOP:
100 1.101 rmind *
101 1.101 rmind * Stopped: the LWP has been stopped as a result of a job
102 1.101 rmind * control signal, or as a result of the ptrace() interface.
103 1.101 rmind *
104 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle
105 1.101 rmind * signals that they receive, but will not return to user space
106 1.101 rmind * until their process' state is changed away from stopped.
107 1.101 rmind *
108 1.101 rmind * Single LWPs within a process can not be set stopped
109 1.101 rmind * selectively: all actions that can stop or continue LWPs
110 1.101 rmind * occur at the process level.
111 1.101 rmind *
112 1.52 ad * State transitions
113 1.52 ad *
114 1.66 ad * Note that the LSSTOP state may only be set when returning to
115 1.66 ad * user space in userret(), or when sleeping interruptably. The
116 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting
117 1.66 ad * those states, we try to ensure that the LWPs will release all
118 1.66 ad * locks that they hold, and at a minimum try to ensure that the
119 1.66 ad * LWP can be set runnable again by a signal.
120 1.52 ad *
121 1.52 ad * LWPs may transition states in the following ways:
122 1.52 ad *
123 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
124 1.129 ad * > SLEEP
125 1.129 ad * > STOPPED
126 1.52 ad * > SUSPENDED
127 1.52 ad * > ZOMB
128 1.129 ad * > IDL (special cases)
129 1.52 ad *
130 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
131 1.129 ad * > SLEEP
132 1.52 ad *
133 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
134 1.101 rmind * > RUN > SUSPENDED
135 1.101 rmind * > STOPPED > STOPPED
136 1.129 ad * > ONPROC (special cases)
137 1.52 ad *
138 1.129 ad * Some state transitions are only possible with kernel threads (eg
139 1.129 ad * ONPROC -> IDL) and happen under tightly controlled circumstances
140 1.129 ad * free of unwanted side effects.
141 1.66 ad *
142 1.114 rmind * Migration
143 1.114 rmind *
144 1.114 rmind * Migration of threads from one CPU to another could be performed
145 1.114 rmind * internally by the scheduler via sched_takecpu() or sched_catchlwp()
146 1.114 rmind * functions. The universal lwp_migrate() function should be used for
147 1.114 rmind * any other cases. Subsystems in the kernel must be aware that CPU
148 1.114 rmind * of LWP may change, while it is not locked.
149 1.114 rmind *
150 1.52 ad * Locking
151 1.52 ad *
152 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
153 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering
154 1.52 ad * each field are documented in sys/lwp.h.
155 1.52 ad *
156 1.66 ad * State transitions must be made with the LWP's general lock held,
157 1.152 rmind * and may cause the LWP's lock pointer to change. Manipulation of
158 1.66 ad * the general lock is not performed directly, but through calls to
159 1.152 rmind * lwp_lock(), lwp_unlock() and others. It should be noted that the
160 1.152 rmind * adaptive locks are not allowed to be released while the LWP's lock
161 1.152 rmind * is being held (unlike for other spin-locks).
162 1.52 ad *
163 1.52 ad * States and their associated locks:
164 1.52 ad *
165 1.212 ad * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
166 1.52 ad *
167 1.212 ad * Always covered by spc_lwplock, which protects LWPs not
168 1.212 ad * associated with any other sync object. This is a per-CPU
169 1.212 ad * lock and matches lwp::l_cpu.
170 1.52 ad *
171 1.212 ad * LSRUN:
172 1.52 ad *
173 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
174 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
175 1.52 ad *
176 1.52 ad * LSSLEEP:
177 1.52 ad *
178 1.212 ad * Covered by a lock associated with the sleep queue (sometimes
179 1.221 ad * a turnstile sleep queue) that the LWP resides on. This can
180 1.221 ad * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
181 1.52 ad *
182 1.212 ad * LSSTOP:
183 1.101 rmind *
184 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
185 1.66 ad * l_mutex references the sleep queue lock. If the LWP was
186 1.52 ad * runnable or on the CPU when halted, or has been removed from
187 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock.
188 1.52 ad *
189 1.52 ad * The lock order is as follows:
190 1.52 ad *
191 1.212 ad * sleepq -> turnstile -> spc_lwplock -> spc_mutex
192 1.52 ad *
193 1.103 ad * Each process has an scheduler state lock (proc::p_lock), and a
194 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
196 1.103 ad * following states, p_lock must be held and the process wide counters
197 1.52 ad * adjusted:
198 1.52 ad *
199 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 1.52 ad *
201 1.129 ad * (But not always for kernel threads. There are some special cases
202 1.212 ad * as mentioned above: soft interrupts, and the idle loops.)
203 1.129 ad *
204 1.52 ad * Note that an LWP is considered running or likely to run soon if in
205 1.52 ad * one of the following states. This affects the value of p_nrlwps:
206 1.52 ad *
207 1.52 ad * LSRUN, LSONPROC, LSSLEEP
208 1.52 ad *
209 1.103 ad * p_lock does not need to be held when transitioning among these
210 1.129 ad * three states, hence p_lock is rarely taken for state transitions.
211 1.52 ad */
212 1.52 ad
213 1.9 lukem #include <sys/cdefs.h>
214 1.233.2.1 bouyer __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.233.2.1 2020/04/20 11:29:10 bouyer Exp $");
215 1.8 martin
216 1.84 yamt #include "opt_ddb.h"
217 1.52 ad #include "opt_lockdebug.h"
218 1.139 darran #include "opt_dtrace.h"
219 1.2 thorpej
220 1.47 hannken #define _LWP_API_PRIVATE
221 1.47 hannken
222 1.2 thorpej #include <sys/param.h>
223 1.2 thorpej #include <sys/systm.h>
224 1.64 yamt #include <sys/cpu.h>
225 1.2 thorpej #include <sys/pool.h>
226 1.2 thorpej #include <sys/proc.h>
227 1.2 thorpej #include <sys/syscallargs.h>
228 1.57 dsl #include <sys/syscall_stats.h>
229 1.37 ad #include <sys/kauth.h>
230 1.52 ad #include <sys/sleepq.h>
231 1.52 ad #include <sys/lockdebug.h>
232 1.52 ad #include <sys/kmem.h>
233 1.91 rmind #include <sys/pset.h>
234 1.75 ad #include <sys/intr.h>
235 1.78 ad #include <sys/lwpctl.h>
236 1.81 ad #include <sys/atomic.h>
237 1.131 ad #include <sys/filedesc.h>
238 1.196 hannken #include <sys/fstrans.h>
239 1.138 darran #include <sys/dtrace_bsd.h>
240 1.141 darran #include <sys/sdt.h>
241 1.203 kamil #include <sys/ptrace.h>
242 1.157 rmind #include <sys/xcall.h>
243 1.169 christos #include <sys/uidinfo.h>
244 1.169 christos #include <sys/sysctl.h>
245 1.201 ozaki #include <sys/psref.h>
246 1.208 maxv #include <sys/msan.h>
247 1.232 maxv #include <sys/kcov.h>
248 1.233 thorpej #include <sys/thmap.h>
249 1.233 thorpej #include <sys/cprng.h>
250 1.138 darran
251 1.2 thorpej #include <uvm/uvm_extern.h>
252 1.80 skrll #include <uvm/uvm_object.h>
253 1.2 thorpej
254 1.152 rmind static pool_cache_t lwp_cache __read_mostly;
255 1.152 rmind struct lwplist alllwp __cacheline_aligned;
256 1.41 thorpej
257 1.233 thorpej /*
258 1.233 thorpej * Lookups by global thread ID operate outside of the normal LWP
259 1.233 thorpej * locking protocol.
260 1.233 thorpej *
261 1.233 thorpej * We are using a thmap, which internally can perform lookups lock-free.
262 1.233 thorpej * However, we still need to serialize lookups against LWP exit. We
263 1.233 thorpej * achieve this as follows:
264 1.233 thorpej *
265 1.233 thorpej * => Assignment of TID is performed lazily by the LWP itself, when it
266 1.233 thorpej * is first requested. Insertion into the thmap is done completely
267 1.233 thorpej * lock-free (other than the internal locking performed by thmap itself).
268 1.233 thorpej * Once the TID is published in the map, the l___tid field in the LWP
269 1.233 thorpej * is protected by p_lock.
270 1.233 thorpej *
271 1.233 thorpej * => When we look up an LWP in the thmap, we take lwp_threadid_lock as
272 1.233 thorpej * a READER. While still holding the lock, we add a reference to
273 1.233 thorpej * the LWP (using atomics). After adding the reference, we drop the
274 1.233 thorpej * lwp_threadid_lock. We now take p_lock and check the state of the
275 1.233 thorpej * LWP. If the LWP is draining its references or if the l___tid field
276 1.233 thorpej * has been invalidated, we drop the reference we took and return NULL.
277 1.233 thorpej * Otherwise, the lookup has succeeded and the LWP is returned with a
278 1.233 thorpej * reference count that the caller is responsible for dropping.
279 1.233 thorpej *
280 1.233 thorpej * => When a LWP is exiting it releases its TID. While holding the
281 1.233 thorpej * p_lock, the entry is deleted from the thmap and the l___tid field
282 1.233 thorpej * invalidated. Once the field is invalidated, p_lock is released.
283 1.233 thorpej * It is done in this sequence because the l___tid field is used as
284 1.233 thorpej * the lookup key storage in the thmap in order to conserve memory.
285 1.233 thorpej * Even if a lookup races with this process and succeeds only to have
286 1.233 thorpej * the TID invalidated, it's OK because it also results in a reference
287 1.233 thorpej * that will be drained later.
288 1.233 thorpej *
289 1.233 thorpej * => Deleting a node also requires GC of now-unused thmap nodes. The
290 1.233 thorpej * serialization point between stage_gc and gc is performed by simply
291 1.233 thorpej * taking the lwp_threadid_lock as a WRITER and immediately releasing
292 1.233 thorpej * it. By doing this, we know that any busy readers will have drained.
293 1.233 thorpej *
294 1.233 thorpej * => When a LWP is exiting, it also drains off any references being
295 1.233 thorpej * held by others. However, the reference in the lookup path is taken
296 1.233 thorpej * outside the normal locking protocol. There needs to be additional
297 1.233 thorpej * serialization so that EITHER lwp_drainrefs() sees the incremented
298 1.233 thorpej * reference count so that it knows to wait, OR lwp_getref_tid() sees
299 1.233 thorpej * that the LWP is waiting to drain and thus drops the reference
300 1.233 thorpej * immediately. This is achieved by taking lwp_threadid_lock as a
301 1.233 thorpej * WRITER when setting LPR_DRAINING. Note the locking order:
302 1.233 thorpej *
303 1.233 thorpej * p_lock -> lwp_threadid_lock
304 1.233 thorpej *
305 1.233 thorpej * Note that this scheme could easily use pserialize(9) in place of the
306 1.233 thorpej * lwp_threadid_lock rwlock lock. However, this would require placing a
307 1.233 thorpej * pserialize_perform() call in the LWP exit path, which is arguably more
308 1.233 thorpej * expensive than briefly taking a global lock that should be relatively
309 1.233 thorpej * uncontended. This issue can be revisited if the rwlock proves to be
310 1.233 thorpej * a performance problem.
311 1.233 thorpej */
312 1.233 thorpej static krwlock_t lwp_threadid_lock __cacheline_aligned;
313 1.233 thorpej static thmap_t * lwp_threadid_map __read_mostly;
314 1.233 thorpej
315 1.157 rmind static void lwp_dtor(void *, void *);
316 1.157 rmind
317 1.141 darran /* DTrace proc provider probes */
318 1.180 christos SDT_PROVIDER_DEFINE(proc);
319 1.180 christos
320 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
321 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
322 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
323 1.141 darran
324 1.213 ad struct turnstile turnstile0 __cacheline_aligned;
325 1.147 pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
326 1.147 pooka #ifdef LWP0_CPU_INFO
327 1.147 pooka .l_cpu = LWP0_CPU_INFO,
328 1.147 pooka #endif
329 1.154 matt #ifdef LWP0_MD_INITIALIZER
330 1.154 matt .l_md = LWP0_MD_INITIALIZER,
331 1.154 matt #endif
332 1.147 pooka .l_proc = &proc0,
333 1.147 pooka .l_lid = 1,
334 1.147 pooka .l_flag = LW_SYSTEM,
335 1.147 pooka .l_stat = LSONPROC,
336 1.147 pooka .l_ts = &turnstile0,
337 1.147 pooka .l_syncobj = &sched_syncobj,
338 1.231 ad .l_refcnt = 0,
339 1.147 pooka .l_priority = PRI_USER + NPRI_USER - 1,
340 1.147 pooka .l_inheritedprio = -1,
341 1.147 pooka .l_class = SCHED_OTHER,
342 1.147 pooka .l_psid = PS_NONE,
343 1.147 pooka .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
344 1.147 pooka .l_name = __UNCONST("swapper"),
345 1.147 pooka .l_fd = &filedesc0,
346 1.147 pooka };
347 1.147 pooka
348 1.233 thorpej static void lwp_threadid_init(void);
349 1.169 christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
350 1.169 christos
351 1.169 christos /*
352 1.169 christos * sysctl helper routine for kern.maxlwp. Ensures that the new
353 1.169 christos * values are not too low or too high.
354 1.169 christos */
355 1.169 christos static int
356 1.169 christos sysctl_kern_maxlwp(SYSCTLFN_ARGS)
357 1.169 christos {
358 1.169 christos int error, nmaxlwp;
359 1.169 christos struct sysctlnode node;
360 1.169 christos
361 1.169 christos nmaxlwp = maxlwp;
362 1.169 christos node = *rnode;
363 1.169 christos node.sysctl_data = &nmaxlwp;
364 1.169 christos error = sysctl_lookup(SYSCTLFN_CALL(&node));
365 1.169 christos if (error || newp == NULL)
366 1.169 christos return error;
367 1.169 christos
368 1.169 christos if (nmaxlwp < 0 || nmaxlwp >= 65536)
369 1.169 christos return EINVAL;
370 1.169 christos if (nmaxlwp > cpu_maxlwp())
371 1.169 christos return EINVAL;
372 1.169 christos maxlwp = nmaxlwp;
373 1.169 christos
374 1.169 christos return 0;
375 1.169 christos }
376 1.169 christos
377 1.169 christos static void
378 1.169 christos sysctl_kern_lwp_setup(void)
379 1.169 christos {
380 1.169 christos struct sysctllog *clog = NULL;
381 1.169 christos
382 1.169 christos sysctl_createv(&clog, 0, NULL, NULL,
383 1.169 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
384 1.169 christos CTLTYPE_INT, "maxlwp",
385 1.169 christos SYSCTL_DESCR("Maximum number of simultaneous threads"),
386 1.169 christos sysctl_kern_maxlwp, 0, NULL, 0,
387 1.169 christos CTL_KERN, CTL_CREATE, CTL_EOL);
388 1.169 christos }
389 1.169 christos
390 1.41 thorpej void
391 1.41 thorpej lwpinit(void)
392 1.41 thorpej {
393 1.41 thorpej
394 1.152 rmind LIST_INIT(&alllwp);
395 1.144 pooka lwpinit_specificdata();
396 1.87 ad lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
397 1.157 rmind "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
398 1.169 christos
399 1.169 christos maxlwp = cpu_maxlwp();
400 1.169 christos sysctl_kern_lwp_setup();
401 1.233 thorpej lwp_threadid_init();
402 1.41 thorpej }
403 1.41 thorpej
404 1.147 pooka void
405 1.147 pooka lwp0_init(void)
406 1.147 pooka {
407 1.147 pooka struct lwp *l = &lwp0;
408 1.147 pooka
409 1.147 pooka KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
410 1.148 pooka KASSERT(l->l_lid == proc0.p_nlwpid);
411 1.147 pooka
412 1.147 pooka LIST_INSERT_HEAD(&alllwp, l, l_list);
413 1.147 pooka
414 1.147 pooka callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
415 1.147 pooka callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
416 1.147 pooka cv_init(&l->l_sigcv, "sigwait");
417 1.171 rmind cv_init(&l->l_waitcv, "vfork");
418 1.147 pooka
419 1.147 pooka kauth_cred_hold(proc0.p_cred);
420 1.147 pooka l->l_cred = proc0.p_cred;
421 1.147 pooka
422 1.164 yamt kdtrace_thread_ctor(NULL, l);
423 1.147 pooka lwp_initspecific(l);
424 1.147 pooka
425 1.147 pooka SYSCALL_TIME_LWP_INIT(l);
426 1.147 pooka }
427 1.147 pooka
428 1.157 rmind static void
429 1.157 rmind lwp_dtor(void *arg, void *obj)
430 1.157 rmind {
431 1.157 rmind lwp_t *l = obj;
432 1.157 rmind (void)l;
433 1.157 rmind
434 1.157 rmind /*
435 1.157 rmind * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
436 1.157 rmind * calls will exit before memory of LWP is returned to the pool, where
437 1.157 rmind * KVA of LWP structure might be freed and re-used for other purposes.
438 1.157 rmind * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
439 1.157 rmind * callers, therefore cross-call to all CPUs will do the job. Also,
440 1.157 rmind * the value of l->l_cpu must be still valid at this point.
441 1.157 rmind */
442 1.157 rmind KASSERT(l->l_cpu != NULL);
443 1.205 uwe xc_barrier(0);
444 1.157 rmind }
445 1.157 rmind
446 1.52 ad /*
447 1.52 ad * Set an suspended.
448 1.52 ad *
449 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
450 1.52 ad * LWP before return.
451 1.52 ad */
452 1.2 thorpej int
453 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
454 1.2 thorpej {
455 1.52 ad int error;
456 1.2 thorpej
457 1.103 ad KASSERT(mutex_owned(t->l_proc->p_lock));
458 1.63 ad KASSERT(lwp_locked(t, NULL));
459 1.33 chs
460 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
461 1.2 thorpej
462 1.52 ad /*
463 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
464 1.52 ad * else or deadlock could occur. We won't return to userspace.
465 1.2 thorpej */
466 1.109 rmind if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
467 1.52 ad lwp_unlock(t);
468 1.52 ad return (EDEADLK);
469 1.2 thorpej }
470 1.2 thorpej
471 1.204 kamil if ((t->l_flag & LW_DBGSUSPEND) != 0) {
472 1.204 kamil lwp_unlock(t);
473 1.204 kamil return 0;
474 1.204 kamil }
475 1.204 kamil
476 1.52 ad error = 0;
477 1.2 thorpej
478 1.52 ad switch (t->l_stat) {
479 1.52 ad case LSRUN:
480 1.52 ad case LSONPROC:
481 1.56 pavel t->l_flag |= LW_WSUSPEND;
482 1.52 ad lwp_need_userret(t);
483 1.52 ad lwp_unlock(t);
484 1.52 ad break;
485 1.2 thorpej
486 1.52 ad case LSSLEEP:
487 1.56 pavel t->l_flag |= LW_WSUSPEND;
488 1.2 thorpej
489 1.2 thorpej /*
490 1.52 ad * Kick the LWP and try to get it to the kernel boundary
491 1.52 ad * so that it will release any locks that it holds.
492 1.52 ad * setrunnable() will release the lock.
493 1.2 thorpej */
494 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
495 1.52 ad setrunnable(t);
496 1.52 ad else
497 1.52 ad lwp_unlock(t);
498 1.52 ad break;
499 1.2 thorpej
500 1.52 ad case LSSUSPENDED:
501 1.52 ad lwp_unlock(t);
502 1.52 ad break;
503 1.17 manu
504 1.52 ad case LSSTOP:
505 1.56 pavel t->l_flag |= LW_WSUSPEND;
506 1.52 ad setrunnable(t);
507 1.52 ad break;
508 1.2 thorpej
509 1.52 ad case LSIDL:
510 1.52 ad case LSZOMB:
511 1.52 ad error = EINTR; /* It's what Solaris does..... */
512 1.52 ad lwp_unlock(t);
513 1.52 ad break;
514 1.2 thorpej }
515 1.2 thorpej
516 1.69 rmind return (error);
517 1.2 thorpej }
518 1.2 thorpej
519 1.52 ad /*
520 1.52 ad * Restart a suspended LWP.
521 1.52 ad *
522 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
523 1.52 ad * LWP before return.
524 1.52 ad */
525 1.2 thorpej void
526 1.2 thorpej lwp_continue(struct lwp *l)
527 1.2 thorpej {
528 1.2 thorpej
529 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
530 1.63 ad KASSERT(lwp_locked(l, NULL));
531 1.52 ad
532 1.52 ad /* If rebooting or not suspended, then just bail out. */
533 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
534 1.52 ad lwp_unlock(l);
535 1.2 thorpej return;
536 1.10 fvdl }
537 1.2 thorpej
538 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
539 1.2 thorpej
540 1.204 kamil if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
541 1.52 ad lwp_unlock(l);
542 1.52 ad return;
543 1.2 thorpej }
544 1.2 thorpej
545 1.52 ad /* setrunnable() will release the lock. */
546 1.52 ad setrunnable(l);
547 1.2 thorpej }
548 1.2 thorpej
549 1.52 ad /*
550 1.142 christos * Restart a stopped LWP.
551 1.142 christos *
552 1.142 christos * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
553 1.142 christos * LWP before return.
554 1.142 christos */
555 1.142 christos void
556 1.142 christos lwp_unstop(struct lwp *l)
557 1.142 christos {
558 1.142 christos struct proc *p = l->l_proc;
559 1.167 rmind
560 1.142 christos KASSERT(mutex_owned(proc_lock));
561 1.142 christos KASSERT(mutex_owned(p->p_lock));
562 1.142 christos
563 1.142 christos lwp_lock(l);
564 1.142 christos
565 1.204 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
566 1.204 kamil
567 1.142 christos /* If not stopped, then just bail out. */
568 1.142 christos if (l->l_stat != LSSTOP) {
569 1.142 christos lwp_unlock(l);
570 1.142 christos return;
571 1.142 christos }
572 1.142 christos
573 1.142 christos p->p_stat = SACTIVE;
574 1.142 christos p->p_sflag &= ~PS_STOPPING;
575 1.142 christos
576 1.142 christos if (!p->p_waited)
577 1.142 christos p->p_pptr->p_nstopchild--;
578 1.142 christos
579 1.142 christos if (l->l_wchan == NULL) {
580 1.142 christos /* setrunnable() will release the lock. */
581 1.142 christos setrunnable(l);
582 1.183 christos } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
583 1.163 christos /* setrunnable() so we can receive the signal */
584 1.163 christos setrunnable(l);
585 1.142 christos } else {
586 1.142 christos l->l_stat = LSSLEEP;
587 1.142 christos p->p_nrlwps++;
588 1.142 christos lwp_unlock(l);
589 1.142 christos }
590 1.142 christos }
591 1.142 christos
592 1.142 christos /*
593 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
594 1.52 ad * non-zero, we are waiting for a specific LWP.
595 1.52 ad *
596 1.103 ad * Must be called with p->p_lock held.
597 1.52 ad */
598 1.2 thorpej int
599 1.173 rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
600 1.2 thorpej {
601 1.173 rmind const lwpid_t curlid = l->l_lid;
602 1.173 rmind proc_t *p = l->l_proc;
603 1.223 ad lwp_t *l2, *next;
604 1.173 rmind int error;
605 1.2 thorpej
606 1.103 ad KASSERT(mutex_owned(p->p_lock));
607 1.52 ad
608 1.52 ad p->p_nlwpwait++;
609 1.63 ad l->l_waitingfor = lid;
610 1.52 ad
611 1.52 ad for (;;) {
612 1.173 rmind int nfound;
613 1.173 rmind
614 1.52 ad /*
615 1.52 ad * Avoid a race between exit1() and sigexit(): if the
616 1.52 ad * process is dumping core, then we need to bail out: call
617 1.52 ad * into lwp_userret() where we will be suspended until the
618 1.52 ad * deed is done.
619 1.52 ad */
620 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
621 1.103 ad mutex_exit(p->p_lock);
622 1.52 ad lwp_userret(l);
623 1.173 rmind KASSERT(false);
624 1.52 ad }
625 1.52 ad
626 1.52 ad /*
627 1.52 ad * First off, drain any detached LWP that is waiting to be
628 1.52 ad * reaped.
629 1.52 ad */
630 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
631 1.52 ad p->p_zomblwp = NULL;
632 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
633 1.103 ad mutex_enter(p->p_lock);
634 1.52 ad }
635 1.52 ad
636 1.52 ad /*
637 1.52 ad * Now look for an LWP to collect. If the whole process is
638 1.52 ad * exiting, count detached LWPs as eligible to be collected,
639 1.52 ad * but don't drain them here.
640 1.52 ad */
641 1.52 ad nfound = 0;
642 1.63 ad error = 0;
643 1.223 ad
644 1.223 ad /*
645 1.223 ad * If given a specific LID, go via the tree and make sure
646 1.223 ad * it's not detached.
647 1.223 ad */
648 1.223 ad if (lid != 0) {
649 1.223 ad l2 = radix_tree_lookup_node(&p->p_lwptree,
650 1.223 ad (uint64_t)(lid - 1));
651 1.223 ad if (l2 == NULL) {
652 1.223 ad error = ESRCH;
653 1.223 ad break;
654 1.223 ad }
655 1.223 ad KASSERT(l2->l_lid == lid);
656 1.223 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
657 1.223 ad error = EINVAL;
658 1.223 ad break;
659 1.223 ad }
660 1.223 ad } else {
661 1.223 ad l2 = LIST_FIRST(&p->p_lwps);
662 1.223 ad }
663 1.223 ad for (; l2 != NULL; l2 = next) {
664 1.223 ad next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
665 1.223 ad
666 1.63 ad /*
667 1.63 ad * If a specific wait and the target is waiting on
668 1.63 ad * us, then avoid deadlock. This also traps LWPs
669 1.63 ad * that try to wait on themselves.
670 1.63 ad *
671 1.63 ad * Note that this does not handle more complicated
672 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
673 1.63 ad * can still be killed so it is not a major problem.
674 1.63 ad */
675 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
676 1.63 ad error = EDEADLK;
677 1.63 ad break;
678 1.63 ad }
679 1.63 ad if (l2 == l)
680 1.52 ad continue;
681 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
682 1.63 ad nfound += exiting;
683 1.63 ad continue;
684 1.63 ad }
685 1.63 ad if (lid != 0) {
686 1.63 ad /*
687 1.63 ad * Mark this LWP as the first waiter, if there
688 1.63 ad * is no other.
689 1.63 ad */
690 1.63 ad if (l2->l_waiter == 0)
691 1.63 ad l2->l_waiter = curlid;
692 1.63 ad } else if (l2->l_waiter != 0) {
693 1.63 ad /*
694 1.63 ad * It already has a waiter - so don't
695 1.63 ad * collect it. If the waiter doesn't
696 1.63 ad * grab it we'll get another chance
697 1.63 ad * later.
698 1.63 ad */
699 1.63 ad nfound++;
700 1.52 ad continue;
701 1.52 ad }
702 1.52 ad nfound++;
703 1.2 thorpej
704 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
705 1.52 ad if (l2->l_stat != LSZOMB)
706 1.52 ad continue;
707 1.2 thorpej
708 1.63 ad /*
709 1.63 ad * We're no longer waiting. Reset the "first waiter"
710 1.63 ad * pointer on the target, in case it was us.
711 1.63 ad */
712 1.63 ad l->l_waitingfor = 0;
713 1.63 ad l2->l_waiter = 0;
714 1.63 ad p->p_nlwpwait--;
715 1.2 thorpej if (departed)
716 1.2 thorpej *departed = l2->l_lid;
717 1.75 ad sched_lwp_collect(l2);
718 1.63 ad
719 1.63 ad /* lwp_free() releases the proc lock. */
720 1.63 ad lwp_free(l2, false, false);
721 1.103 ad mutex_enter(p->p_lock);
722 1.52 ad return 0;
723 1.52 ad }
724 1.2 thorpej
725 1.63 ad if (error != 0)
726 1.63 ad break;
727 1.52 ad if (nfound == 0) {
728 1.52 ad error = ESRCH;
729 1.52 ad break;
730 1.52 ad }
731 1.63 ad
732 1.63 ad /*
733 1.173 rmind * Note: since the lock will be dropped, need to restart on
734 1.173 rmind * wakeup to run all LWPs again, e.g. there may be new LWPs.
735 1.63 ad */
736 1.63 ad if (exiting) {
737 1.52 ad KASSERT(p->p_nlwps > 1);
738 1.222 ad error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
739 1.173 rmind break;
740 1.52 ad }
741 1.63 ad
742 1.63 ad /*
743 1.233.2.1 bouyer * Break out if all LWPs are in _lwp_wait(). There are
744 1.233.2.1 bouyer * other ways to hang the process with _lwp_wait(), but the
745 1.233.2.1 bouyer * sleep is interruptable so little point checking for them.
746 1.63 ad */
747 1.233.2.1 bouyer if (p->p_nlwpwait == p->p_nlwps) {
748 1.52 ad error = EDEADLK;
749 1.52 ad break;
750 1.2 thorpej }
751 1.63 ad
752 1.63 ad /*
753 1.63 ad * Sit around and wait for something to happen. We'll be
754 1.63 ad * awoken if any of the conditions examined change: if an
755 1.63 ad * LWP exits, is collected, or is detached.
756 1.63 ad */
757 1.103 ad if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
758 1.52 ad break;
759 1.2 thorpej }
760 1.2 thorpej
761 1.63 ad /*
762 1.63 ad * We didn't find any LWPs to collect, we may have received a
763 1.63 ad * signal, or some other condition has caused us to bail out.
764 1.63 ad *
765 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
766 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
767 1.63 ad * so that they can re-check for zombies and for deadlock.
768 1.63 ad */
769 1.63 ad if (lid != 0) {
770 1.223 ad l2 = radix_tree_lookup_node(&p->p_lwptree,
771 1.223 ad (uint64_t)(lid - 1));
772 1.223 ad KASSERT(l2 == NULL || l2->l_lid == lid);
773 1.223 ad
774 1.223 ad if (l2 != NULL && l2->l_waiter == curlid)
775 1.223 ad l2->l_waiter = 0;
776 1.63 ad }
777 1.52 ad p->p_nlwpwait--;
778 1.63 ad l->l_waitingfor = 0;
779 1.63 ad cv_broadcast(&p->p_lwpcv);
780 1.63 ad
781 1.52 ad return error;
782 1.2 thorpej }
783 1.2 thorpej
784 1.223 ad /*
785 1.223 ad * Find an unused LID for a new LWP.
786 1.223 ad */
787 1.174 dsl static lwpid_t
788 1.223 ad lwp_find_free_lid(struct proc *p)
789 1.174 dsl {
790 1.223 ad struct lwp *gang[32];
791 1.223 ad lwpid_t lid;
792 1.223 ad unsigned n;
793 1.223 ad
794 1.223 ad KASSERT(mutex_owned(p->p_lock));
795 1.223 ad KASSERT(p->p_nlwpid > 0);
796 1.174 dsl
797 1.223 ad /*
798 1.223 ad * Scoot forward through the tree in blocks of LIDs doing gang
799 1.223 ad * lookup with dense=true, meaning the lookup will terminate the
800 1.223 ad * instant a hole is encountered. Most of the time the first entry
801 1.223 ad * (p->p_nlwpid) is free and the lookup fails fast.
802 1.223 ad */
803 1.223 ad for (lid = p->p_nlwpid;;) {
804 1.223 ad n = radix_tree_gang_lookup_node(&p->p_lwptree, lid - 1,
805 1.223 ad (void **)gang, __arraycount(gang), true);
806 1.223 ad if (n == 0) {
807 1.223 ad /* Start point was empty. */
808 1.223 ad break;
809 1.174 dsl }
810 1.223 ad KASSERT(gang[0]->l_lid == lid);
811 1.223 ad lid = gang[n - 1]->l_lid + 1;
812 1.223 ad if (n < __arraycount(gang)) {
813 1.223 ad /* Scan encountered a hole. */
814 1.223 ad break;
815 1.174 dsl }
816 1.174 dsl }
817 1.174 dsl
818 1.223 ad return (lwpid_t)lid;
819 1.174 dsl }
820 1.174 dsl
821 1.52 ad /*
822 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
823 1.52 ad * The new LWP is created in state LSIDL and must be set running,
824 1.52 ad * suspended, or stopped by the caller.
825 1.52 ad */
826 1.2 thorpej int
827 1.134 rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
828 1.188 christos void *stack, size_t stacksize, void (*func)(void *), void *arg,
829 1.188 christos lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
830 1.188 christos const stack_t *sigstk)
831 1.2 thorpej {
832 1.215 ad struct lwp *l2;
833 1.52 ad turnstile_t *ts;
834 1.151 chs lwpid_t lid;
835 1.2 thorpej
836 1.107 ad KASSERT(l1 == curlwp || l1->l_proc == &proc0);
837 1.107 ad
838 1.52 ad /*
839 1.215 ad * Enforce limits, excluding the first lwp and kthreads. We must
840 1.215 ad * use the process credentials here when adjusting the limit, as
841 1.215 ad * they are what's tied to the accounting entity. However for
842 1.215 ad * authorizing the action, we'll use the LWP's credentials.
843 1.169 christos */
844 1.215 ad mutex_enter(p2->p_lock);
845 1.169 christos if (p2->p_nlwps != 0 && p2 != &proc0) {
846 1.215 ad uid_t uid = kauth_cred_getuid(p2->p_cred);
847 1.169 christos int count = chglwpcnt(uid, 1);
848 1.169 christos if (__predict_false(count >
849 1.169 christos p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
850 1.169 christos if (kauth_authorize_process(l1->l_cred,
851 1.169 christos KAUTH_PROCESS_RLIMIT, p2,
852 1.169 christos KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
853 1.169 christos &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
854 1.169 christos != 0) {
855 1.170 christos (void)chglwpcnt(uid, -1);
856 1.215 ad mutex_exit(p2->p_lock);
857 1.170 christos return EAGAIN;
858 1.169 christos }
859 1.169 christos }
860 1.169 christos }
861 1.169 christos
862 1.169 christos /*
863 1.52 ad * First off, reap any detached LWP waiting to be collected.
864 1.52 ad * We can re-use its LWP structure and turnstile.
865 1.52 ad */
866 1.215 ad if ((l2 = p2->p_zomblwp) != NULL) {
867 1.215 ad p2->p_zomblwp = NULL;
868 1.215 ad lwp_free(l2, true, false);
869 1.215 ad /* p2 now unlocked by lwp_free() */
870 1.52 ad ts = l2->l_ts;
871 1.75 ad KASSERT(l2->l_inheritedprio == -1);
872 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
873 1.52 ad memset(l2, 0, sizeof(*l2));
874 1.52 ad l2->l_ts = ts;
875 1.215 ad } else {
876 1.215 ad mutex_exit(p2->p_lock);
877 1.215 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK);
878 1.215 ad memset(l2, 0, sizeof(*l2));
879 1.215 ad l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
880 1.215 ad SLIST_INIT(&l2->l_pi_lenders);
881 1.52 ad }
882 1.2 thorpej
883 1.2 thorpej l2->l_stat = LSIDL;
884 1.2 thorpej l2->l_proc = p2;
885 1.231 ad l2->l_refcnt = 0;
886 1.75 ad l2->l_class = sclass;
887 1.116 ad
888 1.116 ad /*
889 1.116 ad * If vfork(), we want the LWP to run fast and on the same CPU
890 1.116 ad * as its parent, so that it can reuse the VM context and cache
891 1.116 ad * footprint on the local CPU.
892 1.116 ad */
893 1.116 ad l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
894 1.82 ad l2->l_kpribase = PRI_KERNEL;
895 1.52 ad l2->l_priority = l1->l_priority;
896 1.75 ad l2->l_inheritedprio = -1;
897 1.185 christos l2->l_protectprio = -1;
898 1.185 christos l2->l_auxprio = -1;
899 1.222 ad l2->l_flag = 0;
900 1.88 ad l2->l_pflag = LP_MPSAFE;
901 1.131 ad TAILQ_INIT(&l2->l_ld_locks);
902 1.197 ozaki l2->l_psrefs = 0;
903 1.208 maxv kmsan_lwp_alloc(l2);
904 1.131 ad
905 1.131 ad /*
906 1.156 pooka * For vfork, borrow parent's lwpctl context if it exists.
907 1.156 pooka * This also causes us to return via lwp_userret.
908 1.156 pooka */
909 1.156 pooka if (flags & LWP_VFORK && l1->l_lwpctl) {
910 1.156 pooka l2->l_lwpctl = l1->l_lwpctl;
911 1.156 pooka l2->l_flag |= LW_LWPCTL;
912 1.156 pooka }
913 1.156 pooka
914 1.156 pooka /*
915 1.131 ad * If not the first LWP in the process, grab a reference to the
916 1.131 ad * descriptor table.
917 1.131 ad */
918 1.97 ad l2->l_fd = p2->p_fd;
919 1.131 ad if (p2->p_nlwps != 0) {
920 1.131 ad KASSERT(l1->l_proc == p2);
921 1.136 rmind fd_hold(l2);
922 1.131 ad } else {
923 1.131 ad KASSERT(l1->l_proc != p2);
924 1.131 ad }
925 1.41 thorpej
926 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
927 1.134 rmind /* Mark it as a system LWP. */
928 1.56 pavel l2->l_flag |= LW_SYSTEM;
929 1.52 ad }
930 1.2 thorpej
931 1.107 ad kpreempt_disable();
932 1.212 ad l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
933 1.107 ad l2->l_cpu = l1->l_cpu;
934 1.107 ad kpreempt_enable();
935 1.107 ad
936 1.138 darran kdtrace_thread_ctor(NULL, l2);
937 1.73 rmind lwp_initspecific(l2);
938 1.75 ad sched_lwp_fork(l1, l2);
939 1.37 ad lwp_update_creds(l2);
940 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
941 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
942 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
943 1.171 rmind cv_init(&l2->l_waitcv, "vfork");
944 1.52 ad l2->l_syncobj = &sched_syncobj;
945 1.201 ozaki PSREF_DEBUG_INIT_LWP(l2);
946 1.2 thorpej
947 1.2 thorpej if (rnewlwpp != NULL)
948 1.2 thorpej *rnewlwpp = l2;
949 1.2 thorpej
950 1.158 matt /*
951 1.158 matt * PCU state needs to be saved before calling uvm_lwp_fork() so that
952 1.158 matt * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
953 1.158 matt */
954 1.158 matt pcu_save_all(l1);
955 1.225 dogcow #if PCU_UNIT_COUNT > 0
956 1.224 riastrad l2->l_pcu_valid = l1->l_pcu_valid;
957 1.225 dogcow #endif
958 1.158 matt
959 1.137 rmind uvm_lwp_setuarea(l2, uaddr);
960 1.190 skrll uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
961 1.2 thorpej
962 1.151 chs if ((flags & LWP_PIDLID) != 0) {
963 1.223 ad /* Linux threads: use a PID. */
964 1.151 chs lid = proc_alloc_pid(p2);
965 1.151 chs l2->l_pflag |= LP_PIDLID;
966 1.206 joerg } else if (p2->p_nlwps == 0) {
967 1.207 joerg /*
968 1.223 ad * First LWP in process. Copy the parent's LID to avoid
969 1.223 ad * causing problems for fork() + threads. Don't give
970 1.223 ad * subsequent threads the distinction of using LID 1.
971 1.207 joerg */
972 1.223 ad lid = l1->l_lid;
973 1.223 ad p2->p_nlwpid = 2;
974 1.151 chs } else {
975 1.223 ad /* Scan the radix tree for a free LID. */
976 1.151 chs lid = 0;
977 1.151 chs }
978 1.151 chs
979 1.223 ad /*
980 1.223 ad * Allocate LID if needed, and insert into the radix tree. The
981 1.223 ad * first LWP in most processes has a LID of 1. It turns out that if
982 1.223 ad * you insert an item with a key of zero to a radixtree, it's stored
983 1.223 ad * directly in the root (p_lwptree) and no extra memory is
984 1.223 ad * allocated. We therefore always subtract 1 from the LID, which
985 1.223 ad * means no memory is allocated for the tree unless the program is
986 1.223 ad * using threads. NB: the allocation and insert must take place
987 1.223 ad * under the same hold of p_lock.
988 1.223 ad */
989 1.103 ad mutex_enter(p2->p_lock);
990 1.223 ad for (;;) {
991 1.223 ad int error;
992 1.223 ad
993 1.223 ad l2->l_lid = (lid == 0 ? lwp_find_free_lid(p2) : lid);
994 1.223 ad
995 1.223 ad rw_enter(&p2->p_treelock, RW_WRITER);
996 1.223 ad error = radix_tree_insert_node(&p2->p_lwptree,
997 1.223 ad (uint64_t)(l2->l_lid - 1), l2);
998 1.223 ad rw_exit(&p2->p_treelock);
999 1.223 ad
1000 1.223 ad if (__predict_true(error == 0)) {
1001 1.223 ad if (lid == 0)
1002 1.223 ad p2->p_nlwpid = l2->l_lid + 1;
1003 1.223 ad break;
1004 1.223 ad }
1005 1.223 ad
1006 1.223 ad KASSERT(error == ENOMEM);
1007 1.223 ad mutex_exit(p2->p_lock);
1008 1.223 ad radix_tree_await_memory();
1009 1.223 ad mutex_enter(p2->p_lock);
1010 1.223 ad }
1011 1.52 ad
1012 1.52 ad if ((flags & LWP_DETACHED) != 0) {
1013 1.52 ad l2->l_prflag = LPR_DETACHED;
1014 1.52 ad p2->p_ndlwps++;
1015 1.52 ad } else
1016 1.52 ad l2->l_prflag = 0;
1017 1.52 ad
1018 1.223 ad if (l1->l_proc == p2) {
1019 1.223 ad /*
1020 1.223 ad * These flags are set while p_lock is held. Copy with
1021 1.223 ad * p_lock held too, so the LWP doesn't sneak into the
1022 1.223 ad * process without them being set.
1023 1.223 ad */
1024 1.222 ad l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
1025 1.223 ad } else {
1026 1.223 ad /* fork(): pending core/exit doesn't apply to child. */
1027 1.222 ad l2->l_flag |= (l1->l_flag & LW_WREBOOT);
1028 1.223 ad }
1029 1.222 ad
1030 1.188 christos l2->l_sigstk = *sigstk;
1031 1.188 christos l2->l_sigmask = *sigmask;
1032 1.176 christos TAILQ_INIT(&l2->l_sigpend.sp_info);
1033 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
1034 1.174 dsl LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
1035 1.2 thorpej p2->p_nlwps++;
1036 1.149 yamt p2->p_nrlwps++;
1037 1.2 thorpej
1038 1.162 rmind KASSERT(l2->l_affinity == NULL);
1039 1.162 rmind
1040 1.210 ad /* Inherit the affinity mask. */
1041 1.210 ad if (l1->l_affinity) {
1042 1.210 ad /*
1043 1.210 ad * Note that we hold the state lock while inheriting
1044 1.210 ad * the affinity to avoid race with sched_setaffinity().
1045 1.210 ad */
1046 1.210 ad lwp_lock(l1);
1047 1.162 rmind if (l1->l_affinity) {
1048 1.210 ad kcpuset_use(l1->l_affinity);
1049 1.210 ad l2->l_affinity = l1->l_affinity;
1050 1.117 christos }
1051 1.210 ad lwp_unlock(l1);
1052 1.91 rmind }
1053 1.223 ad
1054 1.223 ad /* This marks the end of the "must be atomic" section. */
1055 1.128 rmind mutex_exit(p2->p_lock);
1056 1.128 rmind
1057 1.180 christos SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
1058 1.141 darran
1059 1.128 rmind mutex_enter(proc_lock);
1060 1.128 rmind LIST_INSERT_HEAD(&alllwp, l2, l_list);
1061 1.210 ad /* Inherit a processor-set */
1062 1.210 ad l2->l_psid = l1->l_psid;
1063 1.128 rmind mutex_exit(proc_lock);
1064 1.91 rmind
1065 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
1066 1.57 dsl
1067 1.16 manu if (p2->p_emul->e_lwp_fork)
1068 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
1069 1.16 manu
1070 1.2 thorpej return (0);
1071 1.2 thorpej }
1072 1.2 thorpej
1073 1.2 thorpej /*
1074 1.212 ad * Set a new LWP running. If the process is stopping, then the LWP is
1075 1.212 ad * created stopped.
1076 1.212 ad */
1077 1.212 ad void
1078 1.212 ad lwp_start(lwp_t *l, int flags)
1079 1.212 ad {
1080 1.212 ad proc_t *p = l->l_proc;
1081 1.212 ad
1082 1.212 ad mutex_enter(p->p_lock);
1083 1.212 ad lwp_lock(l);
1084 1.212 ad KASSERT(l->l_stat == LSIDL);
1085 1.212 ad if ((flags & LWP_SUSPENDED) != 0) {
1086 1.212 ad /* It'll suspend itself in lwp_userret(). */
1087 1.212 ad l->l_flag |= LW_WSUSPEND;
1088 1.212 ad }
1089 1.212 ad if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1090 1.212 ad KASSERT(l->l_wchan == NULL);
1091 1.212 ad l->l_stat = LSSTOP;
1092 1.212 ad p->p_nrlwps--;
1093 1.212 ad lwp_unlock(l);
1094 1.212 ad } else {
1095 1.212 ad setrunnable(l);
1096 1.212 ad /* LWP now unlocked */
1097 1.212 ad }
1098 1.212 ad mutex_exit(p->p_lock);
1099 1.212 ad }
1100 1.212 ad
1101 1.212 ad /*
1102 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
1103 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
1104 1.64 yamt * previous LWP, at splsched.
1105 1.64 yamt */
1106 1.64 yamt void
1107 1.178 matt lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1108 1.64 yamt {
1109 1.227 ad kmutex_t *lock;
1110 1.218 ad
1111 1.178 matt KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1112 1.218 ad KASSERT(kpreempt_disabled());
1113 1.218 ad KASSERT(prev != NULL);
1114 1.227 ad KASSERT((prev->l_pflag & LP_RUNNING) != 0);
1115 1.218 ad KASSERT(curcpu()->ci_mtx_count == -2);
1116 1.218 ad
1117 1.227 ad /*
1118 1.227 ad * Immediately mark the previous LWP as no longer running and unlock
1119 1.227 ad * (to keep lock wait times short as possible). If a zombie, don't
1120 1.227 ad * touch after clearing LP_RUNNING as it could be reaped by another
1121 1.227 ad * CPU. Issue a memory barrier to ensure this.
1122 1.227 ad */
1123 1.227 ad lock = prev->l_mutex;
1124 1.227 ad if (__predict_false(prev->l_stat == LSZOMB)) {
1125 1.227 ad membar_sync();
1126 1.227 ad }
1127 1.227 ad prev->l_pflag &= ~LP_RUNNING;
1128 1.227 ad mutex_spin_exit(lock);
1129 1.64 yamt
1130 1.218 ad /* Correct spin mutex count after mi_switch(). */
1131 1.218 ad curcpu()->ci_mtx_count = 0;
1132 1.141 darran
1133 1.218 ad /* Install new VM context. */
1134 1.218 ad if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1135 1.218 ad pmap_activate(new_lwp);
1136 1.64 yamt }
1137 1.218 ad
1138 1.218 ad /* We remain at IPL_SCHED from mi_switch() - reset it. */
1139 1.181 skrll spl0();
1140 1.161 christos
1141 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
1142 1.218 ad SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1143 1.218 ad
1144 1.218 ad /* For kthreads, acquire kernel lock if not MPSAFE. */
1145 1.218 ad if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1146 1.178 matt KERNEL_LOCK(1, new_lwp);
1147 1.65 ad }
1148 1.64 yamt }
1149 1.64 yamt
1150 1.64 yamt /*
1151 1.65 ad * Exit an LWP.
1152 1.2 thorpej */
1153 1.2 thorpej void
1154 1.2 thorpej lwp_exit(struct lwp *l)
1155 1.2 thorpej {
1156 1.2 thorpej struct proc *p = l->l_proc;
1157 1.52 ad struct lwp *l2;
1158 1.65 ad bool current;
1159 1.65 ad
1160 1.65 ad current = (l == curlwp);
1161 1.2 thorpej
1162 1.114 rmind KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1163 1.131 ad KASSERT(p == curproc);
1164 1.2 thorpej
1165 1.180 christos SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1166 1.141 darran
1167 1.220 ad /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1168 1.218 ad LOCKDEBUG_BARRIER(NULL, 0);
1169 1.220 ad KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1170 1.16 manu
1171 1.2 thorpej /*
1172 1.52 ad * If we are the last live LWP in a process, we need to exit the
1173 1.52 ad * entire process. We do so with an exit status of zero, because
1174 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
1175 1.52 ad *
1176 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
1177 1.52 ad * must increment the count of zombies here.
1178 1.45 thorpej *
1179 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
1180 1.2 thorpej */
1181 1.103 ad mutex_enter(p->p_lock);
1182 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
1183 1.65 ad KASSERT(current == true);
1184 1.172 matt KASSERT(p != &proc0);
1185 1.184 christos exit1(l, 0, 0);
1186 1.19 jdolecek /* NOTREACHED */
1187 1.2 thorpej }
1188 1.52 ad p->p_nzlwps++;
1189 1.233 thorpej
1190 1.233 thorpej /*
1191 1.233 thorpej * Perform any required thread cleanup. Do this early so
1192 1.233 thorpej * anyone wanting to look us up by our global thread ID
1193 1.233 thorpej * will fail to find us.
1194 1.233 thorpej *
1195 1.233 thorpej * N.B. this will unlock p->p_lock on our behalf.
1196 1.233 thorpej */
1197 1.233 thorpej lwp_thread_cleanup(l);
1198 1.52 ad
1199 1.52 ad if (p->p_emul->e_lwp_exit)
1200 1.52 ad (*p->p_emul->e_lwp_exit)(l);
1201 1.2 thorpej
1202 1.131 ad /* Drop filedesc reference. */
1203 1.131 ad fd_free();
1204 1.131 ad
1205 1.196 hannken /* Release fstrans private data. */
1206 1.196 hannken fstrans_lwp_dtor(l);
1207 1.196 hannken
1208 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
1209 1.145 pooka lwp_finispecific(l);
1210 1.45 thorpej
1211 1.52 ad /*
1212 1.52 ad * Release our cached credentials.
1213 1.52 ad */
1214 1.37 ad kauth_cred_free(l->l_cred);
1215 1.70 ad callout_destroy(&l->l_timeout_ch);
1216 1.65 ad
1217 1.65 ad /*
1218 1.198 kamil * If traced, report LWP exit event to the debugger.
1219 1.198 kamil *
1220 1.52 ad * Remove the LWP from the global list.
1221 1.151 chs * Free its LID from the PID namespace if needed.
1222 1.52 ad */
1223 1.102 ad mutex_enter(proc_lock);
1224 1.198 kamil
1225 1.199 kamil if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1226 1.198 kamil (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1227 1.198 kamil mutex_enter(p->p_lock);
1228 1.202 kamil if (ISSET(p->p_sflag, PS_WEXIT)) {
1229 1.202 kamil mutex_exit(p->p_lock);
1230 1.202 kamil /*
1231 1.202 kamil * We are exiting, bail out without informing parent
1232 1.202 kamil * about a terminating LWP as it would deadlock.
1233 1.202 kamil */
1234 1.202 kamil } else {
1235 1.203 kamil eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1236 1.202 kamil mutex_enter(proc_lock);
1237 1.202 kamil }
1238 1.198 kamil }
1239 1.198 kamil
1240 1.52 ad LIST_REMOVE(l, l_list);
1241 1.151 chs if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1242 1.151 chs proc_free_pid(l->l_lid);
1243 1.151 chs }
1244 1.102 ad mutex_exit(proc_lock);
1245 1.19 jdolecek
1246 1.52 ad /*
1247 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
1248 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
1249 1.52 ad * mark it waiting for collection in the proc structure. Note that
1250 1.52 ad * before we can do that, we need to free any other dead, deatched
1251 1.52 ad * LWP waiting to meet its maker.
1252 1.231 ad *
1253 1.231 ad * All conditions need to be observed upon under the same hold of
1254 1.231 ad * p_lock, because if the lock is dropped any of them can change.
1255 1.52 ad */
1256 1.103 ad mutex_enter(p->p_lock);
1257 1.231 ad for (;;) {
1258 1.233 thorpej if (lwp_drainrefs(l))
1259 1.231 ad continue;
1260 1.231 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
1261 1.231 ad if ((l2 = p->p_zomblwp) != NULL) {
1262 1.231 ad p->p_zomblwp = NULL;
1263 1.231 ad lwp_free(l2, false, false);
1264 1.231 ad /* proc now unlocked */
1265 1.231 ad mutex_enter(p->p_lock);
1266 1.231 ad continue;
1267 1.231 ad }
1268 1.231 ad p->p_zomblwp = l;
1269 1.52 ad }
1270 1.231 ad break;
1271 1.52 ad }
1272 1.31 yamt
1273 1.52 ad /*
1274 1.52 ad * If we find a pending signal for the process and we have been
1275 1.151 chs * asked to check for signals, then we lose: arrange to have
1276 1.52 ad * all other LWPs in the process check for signals.
1277 1.52 ad */
1278 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
1279 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
1280 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1281 1.52 ad lwp_lock(l2);
1282 1.209 ad signotify(l2);
1283 1.52 ad lwp_unlock(l2);
1284 1.52 ad }
1285 1.31 yamt }
1286 1.31 yamt
1287 1.158 matt /*
1288 1.158 matt * Release any PCU resources before becoming a zombie.
1289 1.158 matt */
1290 1.158 matt pcu_discard_all(l);
1291 1.158 matt
1292 1.52 ad lwp_lock(l);
1293 1.52 ad l->l_stat = LSZOMB;
1294 1.162 rmind if (l->l_name != NULL) {
1295 1.90 ad strcpy(l->l_name, "(zombie)");
1296 1.128 rmind }
1297 1.52 ad lwp_unlock(l);
1298 1.2 thorpej p->p_nrlwps--;
1299 1.52 ad cv_broadcast(&p->p_lwpcv);
1300 1.78 ad if (l->l_lwpctl != NULL)
1301 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1302 1.103 ad mutex_exit(p->p_lock);
1303 1.52 ad
1304 1.52 ad /*
1305 1.52 ad * We can no longer block. At this point, lwp_free() may already
1306 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1307 1.52 ad *
1308 1.52 ad * Free MD LWP resources.
1309 1.52 ad */
1310 1.52 ad cpu_lwp_free(l, 0);
1311 1.2 thorpej
1312 1.65 ad if (current) {
1313 1.218 ad /* Switch away into oblivion. */
1314 1.218 ad lwp_lock(l);
1315 1.218 ad spc_lock(l->l_cpu);
1316 1.218 ad mi_switch(l);
1317 1.218 ad panic("lwp_exit");
1318 1.65 ad }
1319 1.2 thorpej }
1320 1.2 thorpej
1321 1.52 ad /*
1322 1.52 ad * Free a dead LWP's remaining resources.
1323 1.52 ad *
1324 1.52 ad * XXXLWP limits.
1325 1.52 ad */
1326 1.52 ad void
1327 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
1328 1.52 ad {
1329 1.52 ad struct proc *p = l->l_proc;
1330 1.100 ad struct rusage *ru;
1331 1.223 ad struct lwp *l2 __diagused;
1332 1.52 ad ksiginfoq_t kq;
1333 1.52 ad
1334 1.92 yamt KASSERT(l != curlwp);
1335 1.160 yamt KASSERT(last || mutex_owned(p->p_lock));
1336 1.92 yamt
1337 1.177 christos /*
1338 1.177 christos * We use the process credentials instead of the lwp credentials here
1339 1.177 christos * because the lwp credentials maybe cached (just after a setuid call)
1340 1.177 christos * and we don't want pay for syncing, since the lwp is going away
1341 1.177 christos * anyway
1342 1.177 christos */
1343 1.169 christos if (p != &proc0 && p->p_nlwps != 1)
1344 1.177 christos (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1345 1.218 ad
1346 1.52 ad /*
1347 1.223 ad * If this was not the last LWP in the process, then adjust counters
1348 1.223 ad * and unlock. This is done differently for the last LWP in exit1().
1349 1.52 ad */
1350 1.52 ad if (!last) {
1351 1.52 ad /*
1352 1.52 ad * Add the LWP's run time to the process' base value.
1353 1.52 ad * This needs to co-incide with coming off p_lwps.
1354 1.52 ad */
1355 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime);
1356 1.64 yamt p->p_pctcpu += l->l_pctcpu;
1357 1.100 ad ru = &p->p_stats->p_ru;
1358 1.100 ad ruadd(ru, &l->l_ru);
1359 1.100 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1360 1.100 ad ru->ru_nivcsw += l->l_nivcsw;
1361 1.52 ad LIST_REMOVE(l, l_sibling);
1362 1.52 ad p->p_nlwps--;
1363 1.52 ad p->p_nzlwps--;
1364 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
1365 1.52 ad p->p_ndlwps--;
1366 1.63 ad
1367 1.223 ad /* Make note of the LID being free, and remove from tree. */
1368 1.223 ad if (l->l_lid < p->p_nlwpid)
1369 1.223 ad p->p_nlwpid = l->l_lid;
1370 1.223 ad rw_enter(&p->p_treelock, RW_WRITER);
1371 1.223 ad l2 = radix_tree_remove_node(&p->p_lwptree,
1372 1.223 ad (uint64_t)(l->l_lid - 1));
1373 1.223 ad KASSERT(l2 == l);
1374 1.223 ad rw_exit(&p->p_treelock);
1375 1.223 ad
1376 1.63 ad /*
1377 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
1378 1.63 ad * deadlock.
1379 1.63 ad */
1380 1.63 ad cv_broadcast(&p->p_lwpcv);
1381 1.103 ad mutex_exit(p->p_lock);
1382 1.63 ad }
1383 1.52 ad
1384 1.63 ad /*
1385 1.63 ad * In the unlikely event that the LWP is still on the CPU,
1386 1.228 ad * then spin until it has switched away.
1387 1.63 ad */
1388 1.227 ad membar_consumer();
1389 1.227 ad while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
1390 1.219 ad SPINLOCK_BACKOFF_HOOK;
1391 1.63 ad }
1392 1.52 ad
1393 1.52 ad /*
1394 1.52 ad * Destroy the LWP's remaining signal information.
1395 1.52 ad */
1396 1.52 ad ksiginfo_queue_init(&kq);
1397 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
1398 1.52 ad ksiginfo_queue_drain(&kq);
1399 1.52 ad cv_destroy(&l->l_sigcv);
1400 1.171 rmind cv_destroy(&l->l_waitcv);
1401 1.2 thorpej
1402 1.19 jdolecek /*
1403 1.162 rmind * Free lwpctl structure and affinity.
1404 1.162 rmind */
1405 1.162 rmind if (l->l_lwpctl) {
1406 1.162 rmind lwp_ctl_free(l);
1407 1.162 rmind }
1408 1.162 rmind if (l->l_affinity) {
1409 1.162 rmind kcpuset_unuse(l->l_affinity, NULL);
1410 1.162 rmind l->l_affinity = NULL;
1411 1.162 rmind }
1412 1.162 rmind
1413 1.162 rmind /*
1414 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
1415 1.93 yamt * caller wants to recycle them. Also, free the scheduler specific
1416 1.93 yamt * data.
1417 1.52 ad *
1418 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
1419 1.52 ad * so if it comes up just drop it quietly and move on.
1420 1.52 ad *
1421 1.52 ad * We don't recycle the VM resources at this time.
1422 1.19 jdolecek */
1423 1.64 yamt
1424 1.52 ad if (!recycle && l->l_ts != &turnstile0)
1425 1.76 ad pool_cache_put(turnstile_cache, l->l_ts);
1426 1.90 ad if (l->l_name != NULL)
1427 1.90 ad kmem_free(l->l_name, MAXCOMLEN);
1428 1.135 rmind
1429 1.208 maxv kmsan_lwp_free(l);
1430 1.232 maxv kcov_lwp_free(l);
1431 1.52 ad cpu_lwp_free2(l);
1432 1.19 jdolecek uvm_lwp_exit(l);
1433 1.134 rmind
1434 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1435 1.75 ad KASSERT(l->l_inheritedprio == -1);
1436 1.155 matt KASSERT(l->l_blcnt == 0);
1437 1.138 darran kdtrace_thread_dtor(NULL, l);
1438 1.52 ad if (!recycle)
1439 1.87 ad pool_cache_put(lwp_cache, l);
1440 1.2 thorpej }
1441 1.2 thorpej
1442 1.2 thorpej /*
1443 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP.
1444 1.91 rmind */
1445 1.91 rmind void
1446 1.114 rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
1447 1.91 rmind {
1448 1.114 rmind struct schedstate_percpu *tspc;
1449 1.121 rmind int lstat = l->l_stat;
1450 1.121 rmind
1451 1.91 rmind KASSERT(lwp_locked(l, NULL));
1452 1.114 rmind KASSERT(tci != NULL);
1453 1.114 rmind
1454 1.121 rmind /* If LWP is still on the CPU, it must be handled like LSONPROC */
1455 1.227 ad if ((l->l_pflag & LP_RUNNING) != 0) {
1456 1.121 rmind lstat = LSONPROC;
1457 1.121 rmind }
1458 1.121 rmind
1459 1.114 rmind /*
1460 1.114 rmind * The destination CPU could be changed while previous migration
1461 1.114 rmind * was not finished.
1462 1.114 rmind */
1463 1.121 rmind if (l->l_target_cpu != NULL) {
1464 1.114 rmind l->l_target_cpu = tci;
1465 1.114 rmind lwp_unlock(l);
1466 1.114 rmind return;
1467 1.114 rmind }
1468 1.91 rmind
1469 1.114 rmind /* Nothing to do if trying to migrate to the same CPU */
1470 1.114 rmind if (l->l_cpu == tci) {
1471 1.91 rmind lwp_unlock(l);
1472 1.91 rmind return;
1473 1.91 rmind }
1474 1.91 rmind
1475 1.114 rmind KASSERT(l->l_target_cpu == NULL);
1476 1.114 rmind tspc = &tci->ci_schedstate;
1477 1.121 rmind switch (lstat) {
1478 1.91 rmind case LSRUN:
1479 1.134 rmind l->l_target_cpu = tci;
1480 1.134 rmind break;
1481 1.91 rmind case LSSLEEP:
1482 1.114 rmind l->l_cpu = tci;
1483 1.91 rmind break;
1484 1.212 ad case LSIDL:
1485 1.91 rmind case LSSTOP:
1486 1.91 rmind case LSSUSPENDED:
1487 1.114 rmind l->l_cpu = tci;
1488 1.114 rmind if (l->l_wchan == NULL) {
1489 1.114 rmind lwp_unlock_to(l, tspc->spc_lwplock);
1490 1.114 rmind return;
1491 1.91 rmind }
1492 1.114 rmind break;
1493 1.91 rmind case LSONPROC:
1494 1.114 rmind l->l_target_cpu = tci;
1495 1.114 rmind spc_lock(l->l_cpu);
1496 1.212 ad sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1497 1.212 ad /* spc now unlocked */
1498 1.91 rmind break;
1499 1.91 rmind }
1500 1.91 rmind lwp_unlock(l);
1501 1.91 rmind }
1502 1.91 rmind
1503 1.91 rmind /*
1504 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case,
1505 1.94 rmind * the calling process and first LWP in the list will be used.
1506 1.103 ad * On success - returns proc locked.
1507 1.91 rmind */
1508 1.91 rmind struct lwp *
1509 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid)
1510 1.91 rmind {
1511 1.91 rmind proc_t *p;
1512 1.91 rmind lwp_t *l;
1513 1.91 rmind
1514 1.150 rmind /* Find the process. */
1515 1.94 rmind if (pid != 0) {
1516 1.150 rmind mutex_enter(proc_lock);
1517 1.150 rmind p = proc_find(pid);
1518 1.150 rmind if (p == NULL) {
1519 1.150 rmind mutex_exit(proc_lock);
1520 1.150 rmind return NULL;
1521 1.150 rmind }
1522 1.150 rmind mutex_enter(p->p_lock);
1523 1.102 ad mutex_exit(proc_lock);
1524 1.150 rmind } else {
1525 1.150 rmind p = curlwp->l_proc;
1526 1.150 rmind mutex_enter(p->p_lock);
1527 1.150 rmind }
1528 1.150 rmind /* Find the thread. */
1529 1.150 rmind if (lid != 0) {
1530 1.150 rmind l = lwp_find(p, lid);
1531 1.150 rmind } else {
1532 1.150 rmind l = LIST_FIRST(&p->p_lwps);
1533 1.94 rmind }
1534 1.103 ad if (l == NULL) {
1535 1.103 ad mutex_exit(p->p_lock);
1536 1.103 ad }
1537 1.91 rmind return l;
1538 1.91 rmind }
1539 1.91 rmind
1540 1.91 rmind /*
1541 1.168 yamt * Look up a live LWP within the specified process.
1542 1.52 ad *
1543 1.223 ad * Must be called with p->p_lock held (as it looks at the radix tree,
1544 1.223 ad * and also wants to exclude idle and zombie LWPs).
1545 1.52 ad */
1546 1.52 ad struct lwp *
1547 1.151 chs lwp_find(struct proc *p, lwpid_t id)
1548 1.52 ad {
1549 1.52 ad struct lwp *l;
1550 1.52 ad
1551 1.103 ad KASSERT(mutex_owned(p->p_lock));
1552 1.52 ad
1553 1.223 ad l = radix_tree_lookup_node(&p->p_lwptree, (uint64_t)(id - 1));
1554 1.223 ad KASSERT(l == NULL || l->l_lid == id);
1555 1.52 ad
1556 1.52 ad /*
1557 1.52 ad * No need to lock - all of these conditions will
1558 1.52 ad * be visible with the process level mutex held.
1559 1.52 ad */
1560 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1561 1.52 ad l = NULL;
1562 1.52 ad
1563 1.52 ad return l;
1564 1.52 ad }
1565 1.52 ad
1566 1.52 ad /*
1567 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1568 1.37 ad *
1569 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1570 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1571 1.179 snj * its credentials by calling this routine. This may be called from
1572 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1573 1.37 ad */
1574 1.37 ad void
1575 1.37 ad lwp_update_creds(struct lwp *l)
1576 1.37 ad {
1577 1.37 ad kauth_cred_t oc;
1578 1.37 ad struct proc *p;
1579 1.37 ad
1580 1.37 ad p = l->l_proc;
1581 1.37 ad oc = l->l_cred;
1582 1.37 ad
1583 1.103 ad mutex_enter(p->p_lock);
1584 1.37 ad kauth_cred_hold(p->p_cred);
1585 1.37 ad l->l_cred = p->p_cred;
1586 1.98 ad l->l_prflag &= ~LPR_CRMOD;
1587 1.103 ad mutex_exit(p->p_lock);
1588 1.88 ad if (oc != NULL)
1589 1.37 ad kauth_cred_free(oc);
1590 1.52 ad }
1591 1.52 ad
1592 1.52 ad /*
1593 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1594 1.52 ad * one we specify.
1595 1.52 ad */
1596 1.52 ad int
1597 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1598 1.52 ad {
1599 1.52 ad kmutex_t *cur = l->l_mutex;
1600 1.52 ad
1601 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1602 1.52 ad }
1603 1.52 ad
1604 1.52 ad /*
1605 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1606 1.52 ad */
1607 1.211 ad kmutex_t *
1608 1.178 matt lwp_setlock(struct lwp *l, kmutex_t *mtx)
1609 1.52 ad {
1610 1.211 ad kmutex_t *oldmtx = l->l_mutex;
1611 1.52 ad
1612 1.211 ad KASSERT(mutex_owned(oldmtx));
1613 1.52 ad
1614 1.107 ad membar_exit();
1615 1.178 matt l->l_mutex = mtx;
1616 1.211 ad return oldmtx;
1617 1.52 ad }
1618 1.52 ad
1619 1.52 ad /*
1620 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1621 1.52 ad * must be held.
1622 1.52 ad */
1623 1.52 ad void
1624 1.178 matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1625 1.52 ad {
1626 1.52 ad kmutex_t *old;
1627 1.52 ad
1628 1.152 rmind KASSERT(lwp_locked(l, NULL));
1629 1.52 ad
1630 1.52 ad old = l->l_mutex;
1631 1.107 ad membar_exit();
1632 1.178 matt l->l_mutex = mtx;
1633 1.52 ad mutex_spin_exit(old);
1634 1.52 ad }
1635 1.52 ad
1636 1.60 yamt int
1637 1.60 yamt lwp_trylock(struct lwp *l)
1638 1.60 yamt {
1639 1.60 yamt kmutex_t *old;
1640 1.60 yamt
1641 1.60 yamt for (;;) {
1642 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1643 1.60 yamt return 0;
1644 1.60 yamt if (__predict_true(l->l_mutex == old))
1645 1.60 yamt return 1;
1646 1.60 yamt mutex_spin_exit(old);
1647 1.60 yamt }
1648 1.60 yamt }
1649 1.60 yamt
1650 1.134 rmind void
1651 1.211 ad lwp_unsleep(lwp_t *l, bool unlock)
1652 1.96 ad {
1653 1.96 ad
1654 1.96 ad KASSERT(mutex_owned(l->l_mutex));
1655 1.211 ad (*l->l_syncobj->sobj_unsleep)(l, unlock);
1656 1.96 ad }
1657 1.96 ad
1658 1.52 ad /*
1659 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1660 1.52 ad * set.
1661 1.52 ad */
1662 1.52 ad void
1663 1.52 ad lwp_userret(struct lwp *l)
1664 1.52 ad {
1665 1.52 ad struct proc *p;
1666 1.52 ad int sig;
1667 1.52 ad
1668 1.114 rmind KASSERT(l == curlwp);
1669 1.114 rmind KASSERT(l->l_stat == LSONPROC);
1670 1.52 ad p = l->l_proc;
1671 1.52 ad
1672 1.52 ad /*
1673 1.167 rmind * It is safe to do this read unlocked on a MP system..
1674 1.52 ad */
1675 1.167 rmind while ((l->l_flag & LW_USERRET) != 0) {
1676 1.52 ad /*
1677 1.52 ad * Process pending signals first, unless the process
1678 1.61 ad * is dumping core or exiting, where we will instead
1679 1.101 rmind * enter the LW_WSUSPEND case below.
1680 1.52 ad */
1681 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1682 1.61 ad LW_PENDSIG) {
1683 1.103 ad mutex_enter(p->p_lock);
1684 1.52 ad while ((sig = issignal(l)) != 0)
1685 1.52 ad postsig(sig);
1686 1.103 ad mutex_exit(p->p_lock);
1687 1.52 ad }
1688 1.52 ad
1689 1.52 ad /*
1690 1.52 ad * Core-dump or suspend pending.
1691 1.52 ad *
1692 1.159 matt * In case of core dump, suspend ourselves, so that the kernel
1693 1.159 matt * stack and therefore the userland registers saved in the
1694 1.159 matt * trapframe are around for coredump() to write them out.
1695 1.159 matt * We also need to save any PCU resources that we have so that
1696 1.159 matt * they accessible for coredump(). We issue a wakeup on
1697 1.159 matt * p->p_lwpcv so that sigexit() will write the core file out
1698 1.159 matt * once all other LWPs are suspended.
1699 1.52 ad */
1700 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1701 1.159 matt pcu_save_all(l);
1702 1.103 ad mutex_enter(p->p_lock);
1703 1.52 ad p->p_nrlwps--;
1704 1.52 ad cv_broadcast(&p->p_lwpcv);
1705 1.52 ad lwp_lock(l);
1706 1.52 ad l->l_stat = LSSUSPENDED;
1707 1.104 ad lwp_unlock(l);
1708 1.103 ad mutex_exit(p->p_lock);
1709 1.104 ad lwp_lock(l);
1710 1.217 ad spc_lock(l->l_cpu);
1711 1.64 yamt mi_switch(l);
1712 1.52 ad }
1713 1.52 ad
1714 1.52 ad /* Process is exiting. */
1715 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1716 1.52 ad lwp_exit(l);
1717 1.52 ad KASSERT(0);
1718 1.52 ad /* NOTREACHED */
1719 1.52 ad }
1720 1.156 pooka
1721 1.156 pooka /* update lwpctl processor (for vfork child_return) */
1722 1.156 pooka if (l->l_flag & LW_LWPCTL) {
1723 1.156 pooka lwp_lock(l);
1724 1.156 pooka KASSERT(kpreempt_disabled());
1725 1.156 pooka l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1726 1.156 pooka l->l_lwpctl->lc_pctr++;
1727 1.156 pooka l->l_flag &= ~LW_LWPCTL;
1728 1.156 pooka lwp_unlock(l);
1729 1.156 pooka }
1730 1.52 ad }
1731 1.52 ad }
1732 1.52 ad
1733 1.52 ad /*
1734 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1735 1.52 ad */
1736 1.52 ad void
1737 1.52 ad lwp_need_userret(struct lwp *l)
1738 1.52 ad {
1739 1.209 ad
1740 1.209 ad KASSERT(!cpu_intr_p());
1741 1.63 ad KASSERT(lwp_locked(l, NULL));
1742 1.52 ad
1743 1.52 ad /*
1744 1.209 ad * If the LWP is in any state other than LSONPROC, we know that it
1745 1.209 ad * is executing in-kernel and will hit userret() on the way out.
1746 1.209 ad *
1747 1.209 ad * If the LWP is curlwp, then we know we'll be back out to userspace
1748 1.209 ad * soon (can't be called from a hardware interrupt here).
1749 1.209 ad *
1750 1.209 ad * Otherwise, we can't be sure what the LWP is doing, so first make
1751 1.209 ad * sure the update to l_flag will be globally visible, and then
1752 1.209 ad * force the LWP to take a trip through trap() where it will do
1753 1.209 ad * userret().
1754 1.209 ad */
1755 1.209 ad if (l->l_stat == LSONPROC && l != curlwp) {
1756 1.209 ad membar_producer();
1757 1.209 ad cpu_signotify(l);
1758 1.209 ad }
1759 1.52 ad }
1760 1.52 ad
1761 1.52 ad /*
1762 1.233 thorpej * Add one reference to an LWP. Interlocked against lwp_drainrefs()
1763 1.233 thorpej * either by holding the proc's lock or by holding lwp_threadid_lock.
1764 1.233 thorpej */
1765 1.233 thorpej static void
1766 1.233 thorpej lwp_addref2(struct lwp *l)
1767 1.233 thorpej {
1768 1.233 thorpej
1769 1.233 thorpej KASSERT(l->l_stat != LSZOMB);
1770 1.233 thorpej
1771 1.233 thorpej atomic_inc_uint(&l->l_refcnt);
1772 1.233 thorpej }
1773 1.233 thorpej
1774 1.233 thorpej /*
1775 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1776 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1777 1.52 ad */
1778 1.52 ad void
1779 1.52 ad lwp_addref(struct lwp *l)
1780 1.52 ad {
1781 1.52 ad
1782 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1783 1.233 thorpej lwp_addref2(l);
1784 1.52 ad }
1785 1.52 ad
1786 1.52 ad /*
1787 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1788 1.52 ad * then we must finalize the LWP's death.
1789 1.52 ad */
1790 1.52 ad void
1791 1.52 ad lwp_delref(struct lwp *l)
1792 1.52 ad {
1793 1.52 ad struct proc *p = l->l_proc;
1794 1.52 ad
1795 1.103 ad mutex_enter(p->p_lock);
1796 1.142 christos lwp_delref2(l);
1797 1.142 christos mutex_exit(p->p_lock);
1798 1.142 christos }
1799 1.142 christos
1800 1.142 christos /*
1801 1.142 christos * Remove one reference to an LWP. If this is the last reference,
1802 1.142 christos * then we must finalize the LWP's death. The proc mutex is held
1803 1.142 christos * on entry.
1804 1.142 christos */
1805 1.142 christos void
1806 1.142 christos lwp_delref2(struct lwp *l)
1807 1.142 christos {
1808 1.142 christos struct proc *p = l->l_proc;
1809 1.142 christos
1810 1.142 christos KASSERT(mutex_owned(p->p_lock));
1811 1.72 ad KASSERT(l->l_stat != LSZOMB);
1812 1.233 thorpej KASSERT(atomic_load_relaxed(&l->l_refcnt) > 0);
1813 1.231 ad
1814 1.233 thorpej if (atomic_dec_uint_nv(&l->l_refcnt) == 0)
1815 1.76 ad cv_broadcast(&p->p_lwpcv);
1816 1.52 ad }
1817 1.52 ad
1818 1.52 ad /*
1819 1.233 thorpej * Drain all references to the current LWP. Returns true if
1820 1.233 thorpej * we blocked.
1821 1.52 ad */
1822 1.233 thorpej bool
1823 1.52 ad lwp_drainrefs(struct lwp *l)
1824 1.52 ad {
1825 1.52 ad struct proc *p = l->l_proc;
1826 1.233 thorpej bool rv = false;
1827 1.52 ad
1828 1.103 ad KASSERT(mutex_owned(p->p_lock));
1829 1.52 ad
1830 1.233 thorpej /*
1831 1.233 thorpej * Lookups in the lwp_threadid_map hold lwp_threadid_lock
1832 1.233 thorpej * as a reader, increase l_refcnt, release it, and then
1833 1.233 thorpej * acquire p_lock to check for LPR_DRAINING. By taking
1834 1.233 thorpej * lwp_threadid_lock as a writer here we ensure that either
1835 1.233 thorpej * we see the increase in l_refcnt or that they see LPR_DRAINING.
1836 1.233 thorpej */
1837 1.233 thorpej rw_enter(&lwp_threadid_lock, RW_WRITER);
1838 1.233 thorpej l->l_prflag |= LPR_DRAINING;
1839 1.233 thorpej rw_exit(&lwp_threadid_lock);
1840 1.233 thorpej
1841 1.233 thorpej while (atomic_load_relaxed(&l->l_refcnt) > 0) {
1842 1.233 thorpej rv = true;
1843 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
1844 1.233 thorpej }
1845 1.233 thorpej return rv;
1846 1.37 ad }
1847 1.41 thorpej
1848 1.41 thorpej /*
1849 1.127 ad * Return true if the specified LWP is 'alive'. Only p->p_lock need
1850 1.127 ad * be held.
1851 1.127 ad */
1852 1.127 ad bool
1853 1.127 ad lwp_alive(lwp_t *l)
1854 1.127 ad {
1855 1.127 ad
1856 1.127 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1857 1.127 ad
1858 1.127 ad switch (l->l_stat) {
1859 1.127 ad case LSSLEEP:
1860 1.127 ad case LSRUN:
1861 1.127 ad case LSONPROC:
1862 1.127 ad case LSSTOP:
1863 1.127 ad case LSSUSPENDED:
1864 1.127 ad return true;
1865 1.127 ad default:
1866 1.127 ad return false;
1867 1.127 ad }
1868 1.127 ad }
1869 1.127 ad
1870 1.127 ad /*
1871 1.127 ad * Return first live LWP in the process.
1872 1.127 ad */
1873 1.127 ad lwp_t *
1874 1.127 ad lwp_find_first(proc_t *p)
1875 1.127 ad {
1876 1.127 ad lwp_t *l;
1877 1.127 ad
1878 1.127 ad KASSERT(mutex_owned(p->p_lock));
1879 1.127 ad
1880 1.127 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1881 1.127 ad if (lwp_alive(l)) {
1882 1.127 ad return l;
1883 1.127 ad }
1884 1.127 ad }
1885 1.127 ad
1886 1.127 ad return NULL;
1887 1.127 ad }
1888 1.127 ad
1889 1.127 ad /*
1890 1.78 ad * Allocate a new lwpctl structure for a user LWP.
1891 1.78 ad */
1892 1.78 ad int
1893 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr)
1894 1.78 ad {
1895 1.78 ad lcproc_t *lp;
1896 1.78 ad u_int bit, i, offset;
1897 1.78 ad struct uvm_object *uao;
1898 1.78 ad int error;
1899 1.78 ad lcpage_t *lcp;
1900 1.78 ad proc_t *p;
1901 1.78 ad lwp_t *l;
1902 1.78 ad
1903 1.78 ad l = curlwp;
1904 1.78 ad p = l->l_proc;
1905 1.78 ad
1906 1.156 pooka /* don't allow a vforked process to create lwp ctls */
1907 1.156 pooka if (p->p_lflag & PL_PPWAIT)
1908 1.156 pooka return EBUSY;
1909 1.156 pooka
1910 1.81 ad if (l->l_lcpage != NULL) {
1911 1.81 ad lcp = l->l_lcpage;
1912 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1913 1.143 njoly return 0;
1914 1.81 ad }
1915 1.78 ad
1916 1.78 ad /* First time around, allocate header structure for the process. */
1917 1.78 ad if ((lp = p->p_lwpctl) == NULL) {
1918 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1919 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1920 1.78 ad lp->lp_uao = NULL;
1921 1.78 ad TAILQ_INIT(&lp->lp_pages);
1922 1.103 ad mutex_enter(p->p_lock);
1923 1.78 ad if (p->p_lwpctl == NULL) {
1924 1.78 ad p->p_lwpctl = lp;
1925 1.103 ad mutex_exit(p->p_lock);
1926 1.78 ad } else {
1927 1.103 ad mutex_exit(p->p_lock);
1928 1.78 ad mutex_destroy(&lp->lp_lock);
1929 1.78 ad kmem_free(lp, sizeof(*lp));
1930 1.78 ad lp = p->p_lwpctl;
1931 1.78 ad }
1932 1.78 ad }
1933 1.78 ad
1934 1.78 ad /*
1935 1.78 ad * Set up an anonymous memory region to hold the shared pages.
1936 1.78 ad * Map them into the process' address space. The user vmspace
1937 1.78 ad * gets the first reference on the UAO.
1938 1.78 ad */
1939 1.78 ad mutex_enter(&lp->lp_lock);
1940 1.78 ad if (lp->lp_uao == NULL) {
1941 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1942 1.78 ad lp->lp_cur = 0;
1943 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ;
1944 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1945 1.182 martin (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1946 1.182 martin p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1947 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1948 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1949 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1950 1.78 ad if (error != 0) {
1951 1.78 ad uao_detach(lp->lp_uao);
1952 1.78 ad lp->lp_uao = NULL;
1953 1.78 ad mutex_exit(&lp->lp_lock);
1954 1.78 ad return error;
1955 1.78 ad }
1956 1.78 ad }
1957 1.78 ad
1958 1.78 ad /* Get a free block and allocate for this LWP. */
1959 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1960 1.78 ad if (lcp->lcp_nfree != 0)
1961 1.78 ad break;
1962 1.78 ad }
1963 1.78 ad if (lcp == NULL) {
1964 1.78 ad /* Nothing available - try to set up a free page. */
1965 1.78 ad if (lp->lp_cur == lp->lp_max) {
1966 1.78 ad mutex_exit(&lp->lp_lock);
1967 1.78 ad return ENOMEM;
1968 1.78 ad }
1969 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1970 1.189 chs
1971 1.78 ad /*
1972 1.78 ad * Wire the next page down in kernel space. Since this
1973 1.78 ad * is a new mapping, we must add a reference.
1974 1.78 ad */
1975 1.78 ad uao = lp->lp_uao;
1976 1.78 ad (*uao->pgops->pgo_reference)(uao);
1977 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map);
1978 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1979 1.78 ad uao, lp->lp_cur, PAGE_SIZE,
1980 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1981 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1982 1.78 ad if (error != 0) {
1983 1.78 ad mutex_exit(&lp->lp_lock);
1984 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1985 1.78 ad (*uao->pgops->pgo_detach)(uao);
1986 1.78 ad return error;
1987 1.78 ad }
1988 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1989 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1990 1.89 yamt if (error != 0) {
1991 1.89 yamt mutex_exit(&lp->lp_lock);
1992 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr,
1993 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE);
1994 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1995 1.89 yamt return error;
1996 1.89 yamt }
1997 1.78 ad /* Prepare the page descriptor and link into the list. */
1998 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1999 1.78 ad lp->lp_cur += PAGE_SIZE;
2000 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE;
2001 1.78 ad lcp->lcp_rotor = 0;
2002 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
2003 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
2004 1.78 ad }
2005 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
2006 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES)
2007 1.78 ad i = 0;
2008 1.78 ad }
2009 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1;
2010 1.193 kamil lcp->lcp_bitmap[i] ^= (1U << bit);
2011 1.78 ad lcp->lcp_rotor = i;
2012 1.78 ad lcp->lcp_nfree--;
2013 1.78 ad l->l_lcpage = lcp;
2014 1.78 ad offset = (i << 5) + bit;
2015 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
2016 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
2017 1.78 ad mutex_exit(&lp->lp_lock);
2018 1.78 ad
2019 1.107 ad KPREEMPT_DISABLE(l);
2020 1.195 skrll l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
2021 1.107 ad KPREEMPT_ENABLE(l);
2022 1.78 ad
2023 1.78 ad return 0;
2024 1.78 ad }
2025 1.78 ad
2026 1.78 ad /*
2027 1.78 ad * Free an lwpctl structure back to the per-process list.
2028 1.78 ad */
2029 1.78 ad void
2030 1.78 ad lwp_ctl_free(lwp_t *l)
2031 1.78 ad {
2032 1.156 pooka struct proc *p = l->l_proc;
2033 1.78 ad lcproc_t *lp;
2034 1.78 ad lcpage_t *lcp;
2035 1.78 ad u_int map, offset;
2036 1.78 ad
2037 1.156 pooka /* don't free a lwp context we borrowed for vfork */
2038 1.156 pooka if (p->p_lflag & PL_PPWAIT) {
2039 1.156 pooka l->l_lwpctl = NULL;
2040 1.156 pooka return;
2041 1.156 pooka }
2042 1.156 pooka
2043 1.156 pooka lp = p->p_lwpctl;
2044 1.78 ad KASSERT(lp != NULL);
2045 1.78 ad
2046 1.78 ad lcp = l->l_lcpage;
2047 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
2048 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE);
2049 1.78 ad
2050 1.78 ad mutex_enter(&lp->lp_lock);
2051 1.78 ad lcp->lcp_nfree++;
2052 1.78 ad map = offset >> 5;
2053 1.194 kamil lcp->lcp_bitmap[map] |= (1U << (offset & 31));
2054 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
2055 1.78 ad lcp->lcp_rotor = map;
2056 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
2057 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
2058 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
2059 1.78 ad }
2060 1.78 ad mutex_exit(&lp->lp_lock);
2061 1.78 ad }
2062 1.78 ad
2063 1.78 ad /*
2064 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely
2065 1.78 ad * called by the last LWP in the process.
2066 1.78 ad */
2067 1.78 ad void
2068 1.78 ad lwp_ctl_exit(void)
2069 1.78 ad {
2070 1.78 ad lcpage_t *lcp, *next;
2071 1.78 ad lcproc_t *lp;
2072 1.78 ad proc_t *p;
2073 1.78 ad lwp_t *l;
2074 1.78 ad
2075 1.78 ad l = curlwp;
2076 1.78 ad l->l_lwpctl = NULL;
2077 1.95 ad l->l_lcpage = NULL;
2078 1.78 ad p = l->l_proc;
2079 1.78 ad lp = p->p_lwpctl;
2080 1.78 ad
2081 1.78 ad KASSERT(lp != NULL);
2082 1.78 ad KASSERT(p->p_nlwps == 1);
2083 1.78 ad
2084 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
2085 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain);
2086 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr,
2087 1.78 ad lcp->lcp_kaddr + PAGE_SIZE);
2088 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
2089 1.78 ad }
2090 1.78 ad
2091 1.78 ad if (lp->lp_uao != NULL) {
2092 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
2093 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ);
2094 1.78 ad }
2095 1.78 ad
2096 1.78 ad mutex_destroy(&lp->lp_lock);
2097 1.78 ad kmem_free(lp, sizeof(*lp));
2098 1.78 ad p->p_lwpctl = NULL;
2099 1.78 ad }
2100 1.84 yamt
2101 1.130 ad /*
2102 1.130 ad * Return the current LWP's "preemption counter". Used to detect
2103 1.130 ad * preemption across operations that can tolerate preemption without
2104 1.130 ad * crashing, but which may generate incorrect results if preempted.
2105 1.130 ad */
2106 1.130 ad uint64_t
2107 1.130 ad lwp_pctr(void)
2108 1.130 ad {
2109 1.130 ad
2110 1.130 ad return curlwp->l_ncsw;
2111 1.130 ad }
2112 1.130 ad
2113 1.151 chs /*
2114 1.151 chs * Set an LWP's private data pointer.
2115 1.151 chs */
2116 1.151 chs int
2117 1.151 chs lwp_setprivate(struct lwp *l, void *ptr)
2118 1.151 chs {
2119 1.151 chs int error = 0;
2120 1.151 chs
2121 1.151 chs l->l_private = ptr;
2122 1.151 chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
2123 1.151 chs error = cpu_lwp_setprivate(l, ptr);
2124 1.151 chs #endif
2125 1.151 chs return error;
2126 1.151 chs }
2127 1.151 chs
2128 1.226 ad /*
2129 1.226 ad * Renumber the first and only LWP in a process on exec() or fork().
2130 1.226 ad * Don't bother with p_treelock here as this is the only live LWP in
2131 1.226 ad * the proc right now.
2132 1.226 ad */
2133 1.226 ad void
2134 1.226 ad lwp_renumber(lwp_t *l, lwpid_t lid)
2135 1.226 ad {
2136 1.226 ad lwp_t *l2 __diagused;
2137 1.226 ad proc_t *p = l->l_proc;
2138 1.226 ad int error;
2139 1.226 ad
2140 1.226 ad KASSERT(p->p_nlwps == 1);
2141 1.226 ad
2142 1.226 ad while (l->l_lid != lid) {
2143 1.226 ad mutex_enter(p->p_lock);
2144 1.226 ad error = radix_tree_insert_node(&p->p_lwptree, lid - 1, l);
2145 1.226 ad if (error == 0) {
2146 1.226 ad l2 = radix_tree_remove_node(&p->p_lwptree,
2147 1.226 ad (uint64_t)(l->l_lid - 1));
2148 1.226 ad KASSERT(l2 == l);
2149 1.226 ad p->p_nlwpid = lid + 1;
2150 1.226 ad l->l_lid = lid;
2151 1.226 ad }
2152 1.226 ad mutex_exit(p->p_lock);
2153 1.226 ad
2154 1.226 ad if (error == 0)
2155 1.226 ad break;
2156 1.226 ad
2157 1.226 ad KASSERT(error == ENOMEM);
2158 1.226 ad radix_tree_await_memory();
2159 1.226 ad }
2160 1.226 ad }
2161 1.226 ad
2162 1.233 thorpej #define LWP_TID_MASK 0x3fffffff /* placeholder */
2163 1.233 thorpej
2164 1.233 thorpej static void
2165 1.233 thorpej lwp_threadid_init(void)
2166 1.233 thorpej {
2167 1.233 thorpej rw_init(&lwp_threadid_lock);
2168 1.233 thorpej lwp_threadid_map = thmap_create(0, NULL, THMAP_NOCOPY);
2169 1.233 thorpej }
2170 1.233 thorpej
2171 1.233 thorpej static void
2172 1.233 thorpej lwp_threadid_alloc(struct lwp * const l)
2173 1.233 thorpej {
2174 1.233 thorpej
2175 1.233 thorpej KASSERT(l == curlwp);
2176 1.233 thorpej KASSERT(l->l___tid == 0);
2177 1.233 thorpej
2178 1.233 thorpej for (;;) {
2179 1.233 thorpej l->l___tid = cprng_fast32() & LWP_TID_MASK;
2180 1.233 thorpej if (l->l___tid != 0 &&
2181 1.233 thorpej /*
2182 1.233 thorpej * There is no need to take the lwp_threadid_lock
2183 1.233 thorpej * while inserting into the map: internally, the
2184 1.233 thorpej * map is already concurrency-safe, and the lock
2185 1.233 thorpej * is only needed to serialize removal with respect
2186 1.233 thorpej * to lookup.
2187 1.233 thorpej */
2188 1.233 thorpej thmap_put(lwp_threadid_map,
2189 1.233 thorpej &l->l___tid, sizeof(l->l___tid), l) == l) {
2190 1.233 thorpej /* claimed! */
2191 1.233 thorpej return;
2192 1.233 thorpej }
2193 1.233 thorpej preempt_point();
2194 1.233 thorpej }
2195 1.233 thorpej }
2196 1.233 thorpej
2197 1.233 thorpej static inline void
2198 1.233 thorpej lwp_threadid_gc_serialize(void)
2199 1.233 thorpej {
2200 1.233 thorpej
2201 1.233 thorpej /*
2202 1.233 thorpej * By acquiring the lock as a writer, we will know that
2203 1.233 thorpej * all of the existing readers have drained away and thus
2204 1.233 thorpej * the GC is safe.
2205 1.233 thorpej */
2206 1.233 thorpej rw_enter(&lwp_threadid_lock, RW_WRITER);
2207 1.233 thorpej rw_exit(&lwp_threadid_lock);
2208 1.233 thorpej }
2209 1.233 thorpej
2210 1.233 thorpej static void
2211 1.233 thorpej lwp_threadid_free(struct lwp * const l)
2212 1.233 thorpej {
2213 1.233 thorpej
2214 1.233 thorpej KASSERT(l == curlwp);
2215 1.233 thorpej KASSERT(l->l___tid != 0);
2216 1.233 thorpej
2217 1.233 thorpej /*
2218 1.233 thorpej * Ensure that anyone who finds this entry in the lock-free lookup
2219 1.233 thorpej * path sees that the key has been deleted by serialzing with the
2220 1.233 thorpej * examination of l___tid.
2221 1.233 thorpej *
2222 1.233 thorpej * N.B. l___tid field must be zapped *after* deleting from the map
2223 1.233 thorpej * because that field is being used as the key storage by thmap.
2224 1.233 thorpej */
2225 1.233 thorpej KASSERT(mutex_owned(l->l_proc->p_lock));
2226 1.233 thorpej struct lwp * const ldiag __diagused = thmap_del(lwp_threadid_map,
2227 1.233 thorpej &l->l___tid, sizeof(l->l___tid));
2228 1.233 thorpej l->l___tid = 0;
2229 1.233 thorpej mutex_exit(l->l_proc->p_lock);
2230 1.233 thorpej
2231 1.233 thorpej KASSERT(l == ldiag);
2232 1.233 thorpej
2233 1.233 thorpej void * const gc_ref = thmap_stage_gc(lwp_threadid_map);
2234 1.233 thorpej lwp_threadid_gc_serialize();
2235 1.233 thorpej thmap_gc(lwp_threadid_map, gc_ref);
2236 1.233 thorpej }
2237 1.233 thorpej
2238 1.233 thorpej /*
2239 1.233 thorpej * Return the current LWP's global thread ID. Only the current LWP
2240 1.233 thorpej * should ever use this value, unless it is guaranteed that the LWP
2241 1.233 thorpej * is paused (and then it should be accessed directly, rather than
2242 1.233 thorpej * by this accessor).
2243 1.233 thorpej */
2244 1.233 thorpej lwpid_t
2245 1.233 thorpej lwp_gettid(void)
2246 1.233 thorpej {
2247 1.233 thorpej struct lwp * const l = curlwp;
2248 1.233 thorpej
2249 1.233 thorpej if (l->l___tid == 0)
2250 1.233 thorpej lwp_threadid_alloc(l);
2251 1.233 thorpej
2252 1.233 thorpej return l->l___tid;
2253 1.233 thorpej }
2254 1.233 thorpej
2255 1.233 thorpej /*
2256 1.233 thorpej * Lookup an LWP by global thread ID. Care must be taken because
2257 1.233 thorpej * callers of this are operating outside the normal locking protocol.
2258 1.233 thorpej * We return the LWP with an additional reference that must be dropped
2259 1.233 thorpej * with lwp_delref().
2260 1.233 thorpej */
2261 1.233 thorpej struct lwp *
2262 1.233 thorpej lwp_getref_tid(lwpid_t tid)
2263 1.233 thorpej {
2264 1.233 thorpej struct lwp *l, *rv;
2265 1.233 thorpej
2266 1.233 thorpej rw_enter(&lwp_threadid_lock, RW_READER);
2267 1.233 thorpej l = thmap_get(lwp_threadid_map, &tid, sizeof(&tid));
2268 1.233 thorpej if (__predict_false(l == NULL)) {
2269 1.233 thorpej rw_exit(&lwp_threadid_lock);
2270 1.233 thorpej return NULL;
2271 1.233 thorpej }
2272 1.233 thorpej
2273 1.233 thorpej /*
2274 1.233 thorpej * Acquire a reference on the lwp. It is safe to do this unlocked
2275 1.233 thorpej * here because lwp_drainrefs() serializes with us by taking the
2276 1.233 thorpej * lwp_threadid_lock as a writer.
2277 1.233 thorpej */
2278 1.233 thorpej lwp_addref2(l);
2279 1.233 thorpej rw_exit(&lwp_threadid_lock);
2280 1.233 thorpej
2281 1.233 thorpej /*
2282 1.233 thorpej * Now verify that our reference is valid.
2283 1.233 thorpej */
2284 1.233 thorpej mutex_enter(l->l_proc->p_lock);
2285 1.233 thorpej if (__predict_false((l->l_prflag & LPR_DRAINING) != 0 ||
2286 1.233 thorpej l->l___tid == 0)) {
2287 1.233 thorpej lwp_delref2(l);
2288 1.233 thorpej rv = NULL;
2289 1.233 thorpej } else {
2290 1.233 thorpej rv = l;
2291 1.233 thorpej }
2292 1.233 thorpej mutex_exit(l->l_proc->p_lock);
2293 1.233 thorpej
2294 1.233 thorpej return rv;
2295 1.233 thorpej }
2296 1.233 thorpej
2297 1.233 thorpej /*
2298 1.233 thorpej * Perform any thread-related cleanup on LWP exit.
2299 1.233 thorpej * N.B. l->l_proc->p_lock must be HELD on entry but will
2300 1.233 thorpej * be released before returning!
2301 1.233 thorpej */
2302 1.233 thorpej void
2303 1.233 thorpej lwp_thread_cleanup(struct lwp *l)
2304 1.233 thorpej {
2305 1.233 thorpej KASSERT(l == curlwp);
2306 1.233 thorpej const lwpid_t tid = l->l___tid;
2307 1.233 thorpej
2308 1.233 thorpej KASSERT(mutex_owned(l->l_proc->p_lock));
2309 1.233 thorpej
2310 1.233 thorpej if (__predict_false(tid != 0)) {
2311 1.233 thorpej /*
2312 1.233 thorpej * Drop our thread ID. This will also unlock
2313 1.233 thorpej * our proc.
2314 1.233 thorpej */
2315 1.233 thorpej lwp_threadid_free(l);
2316 1.233 thorpej } else {
2317 1.233 thorpej /*
2318 1.233 thorpej * No thread cleanup was required; just unlock
2319 1.233 thorpej * the proc.
2320 1.233 thorpej */
2321 1.233 thorpej mutex_exit(l->l_proc->p_lock);
2322 1.233 thorpej }
2323 1.233 thorpej }
2324 1.233 thorpej
2325 1.84 yamt #if defined(DDB)
2326 1.153 rmind #include <machine/pcb.h>
2327 1.153 rmind
2328 1.84 yamt void
2329 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2330 1.84 yamt {
2331 1.84 yamt lwp_t *l;
2332 1.84 yamt
2333 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) {
2334 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2335 1.84 yamt
2336 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) {
2337 1.84 yamt continue;
2338 1.84 yamt }
2339 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n",
2340 1.84 yamt (void *)addr, (void *)stack,
2341 1.84 yamt (size_t)(addr - stack), l);
2342 1.84 yamt }
2343 1.84 yamt }
2344 1.84 yamt #endif /* defined(DDB) */
2345