Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.234
      1  1.234        ad /*	$NetBSD: kern_lwp.c,v 1.234 2020/04/19 23:05:04 ad Exp $	*/
      2    1.2   thorpej 
      3    1.2   thorpej /*-
      4  1.220        ad  * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
      5  1.220        ad  *     The NetBSD Foundation, Inc.
      6    1.2   thorpej  * All rights reserved.
      7    1.2   thorpej  *
      8    1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      9   1.52        ad  * by Nathan J. Williams, and Andrew Doran.
     10    1.2   thorpej  *
     11    1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     12    1.2   thorpej  * modification, are permitted provided that the following conditions
     13    1.2   thorpej  * are met:
     14    1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     15    1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     16    1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17    1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18    1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     19    1.2   thorpej  *
     20    1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21    1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22    1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23    1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24    1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25    1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26    1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27    1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28    1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29    1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30    1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31    1.2   thorpej  */
     32    1.9     lukem 
     33   1.52        ad /*
     34   1.52        ad  * Overview
     35   1.52        ad  *
     36   1.66        ad  *	Lightweight processes (LWPs) are the basic unit or thread of
     37   1.52        ad  *	execution within the kernel.  The core state of an LWP is described
     38   1.66        ad  *	by "struct lwp", also known as lwp_t.
     39   1.52        ad  *
     40   1.52        ad  *	Each LWP is contained within a process (described by "struct proc"),
     41   1.52        ad  *	Every process contains at least one LWP, but may contain more.  The
     42   1.52        ad  *	process describes attributes shared among all of its LWPs such as a
     43   1.52        ad  *	private address space, global execution state (stopped, active,
     44   1.52        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     45   1.66        ad  *	machine, multiple LWPs be executing concurrently in the kernel.
     46   1.52        ad  *
     47   1.52        ad  * Execution states
     48   1.52        ad  *
     49   1.52        ad  *	At any given time, an LWP has overall state that is described by
     50   1.52        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     51   1.52        ad  *	set is guaranteed to represent the absolute, current state of the
     52   1.52        ad  *	LWP:
     53  1.101     rmind  *
     54  1.101     rmind  *	LSONPROC
     55  1.101     rmind  *
     56  1.101     rmind  *		On processor: the LWP is executing on a CPU, either in the
     57  1.101     rmind  *		kernel or in user space.
     58  1.101     rmind  *
     59  1.101     rmind  *	LSRUN
     60  1.101     rmind  *
     61  1.101     rmind  *		Runnable: the LWP is parked on a run queue, and may soon be
     62  1.101     rmind  *		chosen to run by an idle processor, or by a processor that
     63  1.101     rmind  *		has been asked to preempt a currently runnning but lower
     64  1.134     rmind  *		priority LWP.
     65  1.101     rmind  *
     66  1.101     rmind  *	LSIDL
     67  1.101     rmind  *
     68  1.101     rmind  *		Idle: the LWP has been created but has not yet executed,
     69   1.66        ad  *		or it has ceased executing a unit of work and is waiting
     70   1.66        ad  *		to be started again.
     71  1.101     rmind  *
     72  1.101     rmind  *	LSSUSPENDED:
     73  1.101     rmind  *
     74  1.101     rmind  *		Suspended: the LWP has had its execution suspended by
     75   1.52        ad  *		another LWP in the same process using the _lwp_suspend()
     76   1.52        ad  *		system call.  User-level LWPs also enter the suspended
     77   1.52        ad  *		state when the system is shutting down.
     78   1.52        ad  *
     79   1.52        ad  *	The second set represent a "statement of intent" on behalf of the
     80   1.52        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     81   1.66        ad  *	sleeping or idle. It is expected to take the necessary action to
     82  1.101     rmind  *	stop executing or become "running" again within a short timeframe.
     83  1.227        ad  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     84  1.101     rmind  *	Importantly, it indicates that its state is tied to a CPU.
     85  1.101     rmind  *
     86  1.101     rmind  *	LSZOMB:
     87  1.101     rmind  *
     88  1.101     rmind  *		Dead or dying: the LWP has released most of its resources
     89  1.129        ad  *		and is about to switch away into oblivion, or has already
     90   1.66        ad  *		switched away.  When it switches away, its few remaining
     91   1.66        ad  *		resources can be collected.
     92  1.101     rmind  *
     93  1.101     rmind  *	LSSLEEP:
     94  1.101     rmind  *
     95  1.101     rmind  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     96  1.101     rmind  *		has switched away or will switch away shortly to allow other
     97   1.66        ad  *		LWPs to run on the CPU.
     98  1.101     rmind  *
     99  1.101     rmind  *	LSSTOP:
    100  1.101     rmind  *
    101  1.101     rmind  *		Stopped: the LWP has been stopped as a result of a job
    102  1.101     rmind  *		control signal, or as a result of the ptrace() interface.
    103  1.101     rmind  *
    104  1.101     rmind  *		Stopped LWPs may run briefly within the kernel to handle
    105  1.101     rmind  *		signals that they receive, but will not return to user space
    106  1.101     rmind  *		until their process' state is changed away from stopped.
    107  1.101     rmind  *
    108  1.101     rmind  *		Single LWPs within a process can not be set stopped
    109  1.101     rmind  *		selectively: all actions that can stop or continue LWPs
    110  1.101     rmind  *		occur at the process level.
    111  1.101     rmind  *
    112   1.52        ad  * State transitions
    113   1.52        ad  *
    114   1.66        ad  *	Note that the LSSTOP state may only be set when returning to
    115   1.66        ad  *	user space in userret(), or when sleeping interruptably.  The
    116   1.66        ad  *	LSSUSPENDED state may only be set in userret().  Before setting
    117   1.66        ad  *	those states, we try to ensure that the LWPs will release all
    118   1.66        ad  *	locks that they hold, and at a minimum try to ensure that the
    119   1.66        ad  *	LWP can be set runnable again by a signal.
    120   1.52        ad  *
    121   1.52        ad  *	LWPs may transition states in the following ways:
    122   1.52        ad  *
    123   1.52        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    124  1.129        ad  *		    				    > SLEEP
    125  1.129        ad  *		    				    > STOPPED
    126   1.52        ad  *						    > SUSPENDED
    127   1.52        ad  *						    > ZOMB
    128  1.129        ad  *						    > IDL (special cases)
    129   1.52        ad  *
    130   1.52        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    131  1.129        ad  *	            > SLEEP
    132   1.52        ad  *
    133   1.52        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    134  1.101     rmind  *		    > RUN			    > SUSPENDED
    135  1.101     rmind  *		    > STOPPED			    > STOPPED
    136  1.129        ad  *						    > ONPROC (special cases)
    137   1.52        ad  *
    138  1.129        ad  *	Some state transitions are only possible with kernel threads (eg
    139  1.129        ad  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    140  1.129        ad  *	free of unwanted side effects.
    141   1.66        ad  *
    142  1.114     rmind  * Migration
    143  1.114     rmind  *
    144  1.114     rmind  *	Migration of threads from one CPU to another could be performed
    145  1.114     rmind  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    146  1.114     rmind  *	functions.  The universal lwp_migrate() function should be used for
    147  1.114     rmind  *	any other cases.  Subsystems in the kernel must be aware that CPU
    148  1.114     rmind  *	of LWP may change, while it is not locked.
    149  1.114     rmind  *
    150   1.52        ad  * Locking
    151   1.52        ad  *
    152   1.52        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    153   1.66        ad  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    154   1.52        ad  *	each field are documented in sys/lwp.h.
    155   1.52        ad  *
    156   1.66        ad  *	State transitions must be made with the LWP's general lock held,
    157  1.152     rmind  *	and may cause the LWP's lock pointer to change.  Manipulation of
    158   1.66        ad  *	the general lock is not performed directly, but through calls to
    159  1.152     rmind  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    160  1.152     rmind  *	adaptive locks are not allowed to be released while the LWP's lock
    161  1.152     rmind  *	is being held (unlike for other spin-locks).
    162   1.52        ad  *
    163   1.52        ad  *	States and their associated locks:
    164   1.52        ad  *
    165  1.212        ad  *	LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
    166   1.52        ad  *
    167  1.212        ad  *		Always covered by spc_lwplock, which protects LWPs not
    168  1.212        ad  *		associated with any other sync object.  This is a per-CPU
    169  1.212        ad  *		lock and matches lwp::l_cpu.
    170   1.52        ad  *
    171  1.212        ad  *	LSRUN:
    172   1.52        ad  *
    173   1.64      yamt  *		Always covered by spc_mutex, which protects the run queues.
    174  1.129        ad  *		This is a per-CPU lock and matches lwp::l_cpu.
    175   1.52        ad  *
    176   1.52        ad  *	LSSLEEP:
    177   1.52        ad  *
    178  1.212        ad  *		Covered by a lock associated with the sleep queue (sometimes
    179  1.221        ad  *		a turnstile sleep queue) that the LWP resides on.  This can
    180  1.221        ad  *		be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
    181   1.52        ad  *
    182  1.212        ad  *	LSSTOP:
    183  1.101     rmind  *
    184   1.52        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    185   1.66        ad  *		l_mutex references the sleep queue lock.  If the LWP was
    186   1.52        ad  *		runnable or on the CPU when halted, or has been removed from
    187   1.66        ad  *		the sleep queue since halted, then the lock is spc_lwplock.
    188   1.52        ad  *
    189   1.52        ad  *	The lock order is as follows:
    190   1.52        ad  *
    191  1.212        ad  *		sleepq -> turnstile -> spc_lwplock -> spc_mutex
    192   1.52        ad  *
    193  1.103        ad  *	Each process has an scheduler state lock (proc::p_lock), and a
    194   1.52        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195   1.52        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    196  1.103        ad  *	following states, p_lock must be held and the process wide counters
    197   1.52        ad  *	adjusted:
    198   1.52        ad  *
    199   1.52        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200   1.52        ad  *
    201  1.129        ad  *	(But not always for kernel threads.  There are some special cases
    202  1.212        ad  *	as mentioned above: soft interrupts, and the idle loops.)
    203  1.129        ad  *
    204   1.52        ad  *	Note that an LWP is considered running or likely to run soon if in
    205   1.52        ad  *	one of the following states.  This affects the value of p_nrlwps:
    206   1.52        ad  *
    207   1.52        ad  *		LSRUN, LSONPROC, LSSLEEP
    208   1.52        ad  *
    209  1.103        ad  *	p_lock does not need to be held when transitioning among these
    210  1.129        ad  *	three states, hence p_lock is rarely taken for state transitions.
    211   1.52        ad  */
    212   1.52        ad 
    213    1.9     lukem #include <sys/cdefs.h>
    214  1.234        ad __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.234 2020/04/19 23:05:04 ad Exp $");
    215    1.8    martin 
    216   1.84      yamt #include "opt_ddb.h"
    217   1.52        ad #include "opt_lockdebug.h"
    218  1.139    darran #include "opt_dtrace.h"
    219    1.2   thorpej 
    220   1.47   hannken #define _LWP_API_PRIVATE
    221   1.47   hannken 
    222    1.2   thorpej #include <sys/param.h>
    223    1.2   thorpej #include <sys/systm.h>
    224   1.64      yamt #include <sys/cpu.h>
    225    1.2   thorpej #include <sys/pool.h>
    226    1.2   thorpej #include <sys/proc.h>
    227    1.2   thorpej #include <sys/syscallargs.h>
    228   1.57       dsl #include <sys/syscall_stats.h>
    229   1.37        ad #include <sys/kauth.h>
    230   1.52        ad #include <sys/sleepq.h>
    231   1.52        ad #include <sys/lockdebug.h>
    232   1.52        ad #include <sys/kmem.h>
    233   1.91     rmind #include <sys/pset.h>
    234   1.75        ad #include <sys/intr.h>
    235   1.78        ad #include <sys/lwpctl.h>
    236   1.81        ad #include <sys/atomic.h>
    237  1.131        ad #include <sys/filedesc.h>
    238  1.196   hannken #include <sys/fstrans.h>
    239  1.138    darran #include <sys/dtrace_bsd.h>
    240  1.141    darran #include <sys/sdt.h>
    241  1.203     kamil #include <sys/ptrace.h>
    242  1.157     rmind #include <sys/xcall.h>
    243  1.169  christos #include <sys/uidinfo.h>
    244  1.169  christos #include <sys/sysctl.h>
    245  1.201     ozaki #include <sys/psref.h>
    246  1.208      maxv #include <sys/msan.h>
    247  1.232      maxv #include <sys/kcov.h>
    248  1.233   thorpej #include <sys/thmap.h>
    249  1.233   thorpej #include <sys/cprng.h>
    250  1.138    darran 
    251    1.2   thorpej #include <uvm/uvm_extern.h>
    252   1.80     skrll #include <uvm/uvm_object.h>
    253    1.2   thorpej 
    254  1.152     rmind static pool_cache_t	lwp_cache	__read_mostly;
    255  1.152     rmind struct lwplist		alllwp		__cacheline_aligned;
    256   1.41   thorpej 
    257  1.233   thorpej /*
    258  1.233   thorpej  * Lookups by global thread ID operate outside of the normal LWP
    259  1.233   thorpej  * locking protocol.
    260  1.233   thorpej  *
    261  1.233   thorpej  * We are using a thmap, which internally can perform lookups lock-free.
    262  1.233   thorpej  * However, we still need to serialize lookups against LWP exit.  We
    263  1.233   thorpej  * achieve this as follows:
    264  1.233   thorpej  *
    265  1.233   thorpej  * => Assignment of TID is performed lazily by the LWP itself, when it
    266  1.233   thorpej  *    is first requested.  Insertion into the thmap is done completely
    267  1.233   thorpej  *    lock-free (other than the internal locking performed by thmap itself).
    268  1.233   thorpej  *    Once the TID is published in the map, the l___tid field in the LWP
    269  1.233   thorpej  *    is protected by p_lock.
    270  1.233   thorpej  *
    271  1.233   thorpej  * => When we look up an LWP in the thmap, we take lwp_threadid_lock as
    272  1.233   thorpej  *    a READER.  While still holding the lock, we add a reference to
    273  1.233   thorpej  *    the LWP (using atomics).  After adding the reference, we drop the
    274  1.233   thorpej  *    lwp_threadid_lock.  We now take p_lock and check the state of the
    275  1.233   thorpej  *    LWP.  If the LWP is draining its references or if the l___tid field
    276  1.233   thorpej  *    has been invalidated, we drop the reference we took and return NULL.
    277  1.233   thorpej  *    Otherwise, the lookup has succeeded and the LWP is returned with a
    278  1.233   thorpej  *    reference count that the caller is responsible for dropping.
    279  1.233   thorpej  *
    280  1.233   thorpej  * => When a LWP is exiting it releases its TID.  While holding the
    281  1.233   thorpej  *    p_lock, the entry is deleted from the thmap and the l___tid field
    282  1.233   thorpej  *    invalidated.  Once the field is invalidated, p_lock is released.
    283  1.233   thorpej  *    It is done in this sequence because the l___tid field is used as
    284  1.233   thorpej  *    the lookup key storage in the thmap in order to conserve memory.
    285  1.233   thorpej  *    Even if a lookup races with this process and succeeds only to have
    286  1.233   thorpej  *    the TID invalidated, it's OK because it also results in a reference
    287  1.233   thorpej  *    that will be drained later.
    288  1.233   thorpej  *
    289  1.233   thorpej  * => Deleting a node also requires GC of now-unused thmap nodes.  The
    290  1.233   thorpej  *    serialization point between stage_gc and gc is performed by simply
    291  1.233   thorpej  *    taking the lwp_threadid_lock as a WRITER and immediately releasing
    292  1.233   thorpej  *    it.  By doing this, we know that any busy readers will have drained.
    293  1.233   thorpej  *
    294  1.233   thorpej  * => When a LWP is exiting, it also drains off any references being
    295  1.233   thorpej  *    held by others.  However, the reference in the lookup path is taken
    296  1.233   thorpej  *    outside the normal locking protocol.  There needs to be additional
    297  1.233   thorpej  *    serialization so that EITHER lwp_drainrefs() sees the incremented
    298  1.233   thorpej  *    reference count so that it knows to wait, OR lwp_getref_tid() sees
    299  1.233   thorpej  *    that the LWP is waiting to drain and thus drops the reference
    300  1.233   thorpej  *    immediately.  This is achieved by taking lwp_threadid_lock as a
    301  1.233   thorpej  *    WRITER when setting LPR_DRAINING.  Note the locking order:
    302  1.233   thorpej  *
    303  1.233   thorpej  *		p_lock -> lwp_threadid_lock
    304  1.233   thorpej  *
    305  1.233   thorpej  * Note that this scheme could easily use pserialize(9) in place of the
    306  1.233   thorpej  * lwp_threadid_lock rwlock lock.  However, this would require placing a
    307  1.233   thorpej  * pserialize_perform() call in the LWP exit path, which is arguably more
    308  1.233   thorpej  * expensive than briefly taking a global lock that should be relatively
    309  1.233   thorpej  * uncontended.  This issue can be revisited if the rwlock proves to be
    310  1.233   thorpej  * a performance problem.
    311  1.233   thorpej  */
    312  1.233   thorpej static krwlock_t	lwp_threadid_lock	__cacheline_aligned;
    313  1.233   thorpej static thmap_t *	lwp_threadid_map	__read_mostly;
    314  1.233   thorpej 
    315  1.157     rmind static void		lwp_dtor(void *, void *);
    316  1.157     rmind 
    317  1.141    darran /* DTrace proc provider probes */
    318  1.180  christos SDT_PROVIDER_DEFINE(proc);
    319  1.180  christos 
    320  1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
    321  1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
    322  1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
    323  1.141    darran 
    324  1.213        ad struct turnstile turnstile0 __cacheline_aligned;
    325  1.147     pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    326  1.147     pooka #ifdef LWP0_CPU_INFO
    327  1.147     pooka 	.l_cpu = LWP0_CPU_INFO,
    328  1.147     pooka #endif
    329  1.154      matt #ifdef LWP0_MD_INITIALIZER
    330  1.154      matt 	.l_md = LWP0_MD_INITIALIZER,
    331  1.154      matt #endif
    332  1.147     pooka 	.l_proc = &proc0,
    333  1.147     pooka 	.l_lid = 1,
    334  1.147     pooka 	.l_flag = LW_SYSTEM,
    335  1.147     pooka 	.l_stat = LSONPROC,
    336  1.147     pooka 	.l_ts = &turnstile0,
    337  1.147     pooka 	.l_syncobj = &sched_syncobj,
    338  1.231        ad 	.l_refcnt = 0,
    339  1.147     pooka 	.l_priority = PRI_USER + NPRI_USER - 1,
    340  1.147     pooka 	.l_inheritedprio = -1,
    341  1.147     pooka 	.l_class = SCHED_OTHER,
    342  1.147     pooka 	.l_psid = PS_NONE,
    343  1.147     pooka 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    344  1.147     pooka 	.l_name = __UNCONST("swapper"),
    345  1.147     pooka 	.l_fd = &filedesc0,
    346  1.147     pooka };
    347  1.147     pooka 
    348  1.233   thorpej static void lwp_threadid_init(void);
    349  1.169  christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
    350  1.169  christos 
    351  1.169  christos /*
    352  1.169  christos  * sysctl helper routine for kern.maxlwp. Ensures that the new
    353  1.169  christos  * values are not too low or too high.
    354  1.169  christos  */
    355  1.169  christos static int
    356  1.169  christos sysctl_kern_maxlwp(SYSCTLFN_ARGS)
    357  1.169  christos {
    358  1.169  christos 	int error, nmaxlwp;
    359  1.169  christos 	struct sysctlnode node;
    360  1.169  christos 
    361  1.169  christos 	nmaxlwp = maxlwp;
    362  1.169  christos 	node = *rnode;
    363  1.169  christos 	node.sysctl_data = &nmaxlwp;
    364  1.169  christos 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    365  1.169  christos 	if (error || newp == NULL)
    366  1.169  christos 		return error;
    367  1.169  christos 
    368  1.169  christos 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
    369  1.169  christos 		return EINVAL;
    370  1.169  christos 	if (nmaxlwp > cpu_maxlwp())
    371  1.169  christos 		return EINVAL;
    372  1.169  christos 	maxlwp = nmaxlwp;
    373  1.169  christos 
    374  1.169  christos 	return 0;
    375  1.169  christos }
    376  1.169  christos 
    377  1.169  christos static void
    378  1.169  christos sysctl_kern_lwp_setup(void)
    379  1.169  christos {
    380  1.169  christos 	struct sysctllog *clog = NULL;
    381  1.169  christos 
    382  1.169  christos 	sysctl_createv(&clog, 0, NULL, NULL,
    383  1.169  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    384  1.169  christos 		       CTLTYPE_INT, "maxlwp",
    385  1.169  christos 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
    386  1.169  christos 		       sysctl_kern_maxlwp, 0, NULL, 0,
    387  1.169  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    388  1.169  christos }
    389  1.169  christos 
    390   1.41   thorpej void
    391   1.41   thorpej lwpinit(void)
    392   1.41   thorpej {
    393   1.41   thorpej 
    394  1.152     rmind 	LIST_INIT(&alllwp);
    395  1.144     pooka 	lwpinit_specificdata();
    396   1.87        ad 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    397  1.157     rmind 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
    398  1.169  christos 
    399  1.169  christos 	maxlwp = cpu_maxlwp();
    400  1.169  christos 	sysctl_kern_lwp_setup();
    401  1.233   thorpej 	lwp_threadid_init();
    402   1.41   thorpej }
    403   1.41   thorpej 
    404  1.147     pooka void
    405  1.147     pooka lwp0_init(void)
    406  1.147     pooka {
    407  1.147     pooka 	struct lwp *l = &lwp0;
    408  1.147     pooka 
    409  1.147     pooka 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    410  1.148     pooka 	KASSERT(l->l_lid == proc0.p_nlwpid);
    411  1.147     pooka 
    412  1.147     pooka 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    413  1.147     pooka 
    414  1.147     pooka 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    415  1.147     pooka 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    416  1.147     pooka 	cv_init(&l->l_sigcv, "sigwait");
    417  1.171     rmind 	cv_init(&l->l_waitcv, "vfork");
    418  1.147     pooka 
    419  1.147     pooka 	kauth_cred_hold(proc0.p_cred);
    420  1.147     pooka 	l->l_cred = proc0.p_cred;
    421  1.147     pooka 
    422  1.164      yamt 	kdtrace_thread_ctor(NULL, l);
    423  1.147     pooka 	lwp_initspecific(l);
    424  1.147     pooka 
    425  1.147     pooka 	SYSCALL_TIME_LWP_INIT(l);
    426  1.147     pooka }
    427  1.147     pooka 
    428  1.157     rmind static void
    429  1.157     rmind lwp_dtor(void *arg, void *obj)
    430  1.157     rmind {
    431  1.157     rmind 	lwp_t *l = obj;
    432  1.157     rmind 	(void)l;
    433  1.157     rmind 
    434  1.157     rmind 	/*
    435  1.157     rmind 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    436  1.157     rmind 	 * calls will exit before memory of LWP is returned to the pool, where
    437  1.157     rmind 	 * KVA of LWP structure might be freed and re-used for other purposes.
    438  1.157     rmind 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    439  1.157     rmind 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
    440  1.157     rmind 	 * the value of l->l_cpu must be still valid at this point.
    441  1.157     rmind 	 */
    442  1.157     rmind 	KASSERT(l->l_cpu != NULL);
    443  1.205       uwe 	xc_barrier(0);
    444  1.157     rmind }
    445  1.157     rmind 
    446   1.52        ad /*
    447   1.52        ad  * Set an suspended.
    448   1.52        ad  *
    449  1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    450   1.52        ad  * LWP before return.
    451   1.52        ad  */
    452    1.2   thorpej int
    453   1.52        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    454    1.2   thorpej {
    455   1.52        ad 	int error;
    456    1.2   thorpej 
    457  1.103        ad 	KASSERT(mutex_owned(t->l_proc->p_lock));
    458   1.63        ad 	KASSERT(lwp_locked(t, NULL));
    459   1.33       chs 
    460   1.52        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    461    1.2   thorpej 
    462   1.52        ad 	/*
    463   1.52        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    464   1.52        ad 	 * else or deadlock could occur.  We won't return to userspace.
    465    1.2   thorpej 	 */
    466  1.109     rmind 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    467   1.52        ad 		lwp_unlock(t);
    468   1.52        ad 		return (EDEADLK);
    469    1.2   thorpej 	}
    470    1.2   thorpej 
    471  1.204     kamil 	if ((t->l_flag & LW_DBGSUSPEND) != 0) {
    472  1.204     kamil 		lwp_unlock(t);
    473  1.204     kamil 		return 0;
    474  1.204     kamil 	}
    475  1.204     kamil 
    476   1.52        ad 	error = 0;
    477    1.2   thorpej 
    478   1.52        ad 	switch (t->l_stat) {
    479   1.52        ad 	case LSRUN:
    480   1.52        ad 	case LSONPROC:
    481   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    482   1.52        ad 		lwp_need_userret(t);
    483   1.52        ad 		lwp_unlock(t);
    484   1.52        ad 		break;
    485    1.2   thorpej 
    486   1.52        ad 	case LSSLEEP:
    487   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    488    1.2   thorpej 
    489    1.2   thorpej 		/*
    490   1.52        ad 		 * Kick the LWP and try to get it to the kernel boundary
    491   1.52        ad 		 * so that it will release any locks that it holds.
    492   1.52        ad 		 * setrunnable() will release the lock.
    493    1.2   thorpej 		 */
    494   1.56     pavel 		if ((t->l_flag & LW_SINTR) != 0)
    495   1.52        ad 			setrunnable(t);
    496   1.52        ad 		else
    497   1.52        ad 			lwp_unlock(t);
    498   1.52        ad 		break;
    499    1.2   thorpej 
    500   1.52        ad 	case LSSUSPENDED:
    501   1.52        ad 		lwp_unlock(t);
    502   1.52        ad 		break;
    503   1.17      manu 
    504   1.52        ad 	case LSSTOP:
    505   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    506   1.52        ad 		setrunnable(t);
    507   1.52        ad 		break;
    508    1.2   thorpej 
    509   1.52        ad 	case LSIDL:
    510   1.52        ad 	case LSZOMB:
    511   1.52        ad 		error = EINTR; /* It's what Solaris does..... */
    512   1.52        ad 		lwp_unlock(t);
    513   1.52        ad 		break;
    514    1.2   thorpej 	}
    515    1.2   thorpej 
    516   1.69     rmind 	return (error);
    517    1.2   thorpej }
    518    1.2   thorpej 
    519   1.52        ad /*
    520   1.52        ad  * Restart a suspended LWP.
    521   1.52        ad  *
    522  1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    523   1.52        ad  * LWP before return.
    524   1.52        ad  */
    525    1.2   thorpej void
    526    1.2   thorpej lwp_continue(struct lwp *l)
    527    1.2   thorpej {
    528    1.2   thorpej 
    529  1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
    530   1.63        ad 	KASSERT(lwp_locked(l, NULL));
    531   1.52        ad 
    532   1.52        ad 	/* If rebooting or not suspended, then just bail out. */
    533   1.56     pavel 	if ((l->l_flag & LW_WREBOOT) != 0) {
    534   1.52        ad 		lwp_unlock(l);
    535    1.2   thorpej 		return;
    536   1.10      fvdl 	}
    537    1.2   thorpej 
    538   1.56     pavel 	l->l_flag &= ~LW_WSUSPEND;
    539    1.2   thorpej 
    540  1.204     kamil 	if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
    541   1.52        ad 		lwp_unlock(l);
    542   1.52        ad 		return;
    543    1.2   thorpej 	}
    544    1.2   thorpej 
    545   1.52        ad 	/* setrunnable() will release the lock. */
    546   1.52        ad 	setrunnable(l);
    547    1.2   thorpej }
    548    1.2   thorpej 
    549   1.52        ad /*
    550  1.142  christos  * Restart a stopped LWP.
    551  1.142  christos  *
    552  1.142  christos  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    553  1.142  christos  * LWP before return.
    554  1.142  christos  */
    555  1.142  christos void
    556  1.142  christos lwp_unstop(struct lwp *l)
    557  1.142  christos {
    558  1.142  christos 	struct proc *p = l->l_proc;
    559  1.167     rmind 
    560  1.142  christos 	KASSERT(mutex_owned(proc_lock));
    561  1.142  christos 	KASSERT(mutex_owned(p->p_lock));
    562  1.142  christos 
    563  1.142  christos 	lwp_lock(l);
    564  1.142  christos 
    565  1.204     kamil 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    566  1.204     kamil 
    567  1.142  christos 	/* If not stopped, then just bail out. */
    568  1.142  christos 	if (l->l_stat != LSSTOP) {
    569  1.142  christos 		lwp_unlock(l);
    570  1.142  christos 		return;
    571  1.142  christos 	}
    572  1.142  christos 
    573  1.142  christos 	p->p_stat = SACTIVE;
    574  1.142  christos 	p->p_sflag &= ~PS_STOPPING;
    575  1.142  christos 
    576  1.142  christos 	if (!p->p_waited)
    577  1.142  christos 		p->p_pptr->p_nstopchild--;
    578  1.142  christos 
    579  1.142  christos 	if (l->l_wchan == NULL) {
    580  1.142  christos 		/* setrunnable() will release the lock. */
    581  1.142  christos 		setrunnable(l);
    582  1.183  christos 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
    583  1.163  christos 		/* setrunnable() so we can receive the signal */
    584  1.163  christos 		setrunnable(l);
    585  1.142  christos 	} else {
    586  1.142  christos 		l->l_stat = LSSLEEP;
    587  1.142  christos 		p->p_nrlwps++;
    588  1.142  christos 		lwp_unlock(l);
    589  1.142  christos 	}
    590  1.142  christos }
    591  1.142  christos 
    592  1.142  christos /*
    593   1.52        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    594   1.52        ad  * non-zero, we are waiting for a specific LWP.
    595   1.52        ad  *
    596  1.103        ad  * Must be called with p->p_lock held.
    597   1.52        ad  */
    598    1.2   thorpej int
    599  1.173     rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
    600    1.2   thorpej {
    601  1.173     rmind 	const lwpid_t curlid = l->l_lid;
    602  1.173     rmind 	proc_t *p = l->l_proc;
    603  1.223        ad 	lwp_t *l2, *next;
    604  1.173     rmind 	int error;
    605    1.2   thorpej 
    606  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
    607   1.52        ad 
    608   1.52        ad 	p->p_nlwpwait++;
    609   1.63        ad 	l->l_waitingfor = lid;
    610   1.52        ad 
    611   1.52        ad 	for (;;) {
    612  1.173     rmind 		int nfound;
    613  1.173     rmind 
    614   1.52        ad 		/*
    615   1.52        ad 		 * Avoid a race between exit1() and sigexit(): if the
    616   1.52        ad 		 * process is dumping core, then we need to bail out: call
    617   1.52        ad 		 * into lwp_userret() where we will be suspended until the
    618   1.52        ad 		 * deed is done.
    619   1.52        ad 		 */
    620   1.52        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    621  1.103        ad 			mutex_exit(p->p_lock);
    622   1.52        ad 			lwp_userret(l);
    623  1.173     rmind 			KASSERT(false);
    624   1.52        ad 		}
    625   1.52        ad 
    626   1.52        ad 		/*
    627   1.52        ad 		 * First off, drain any detached LWP that is waiting to be
    628   1.52        ad 		 * reaped.
    629   1.52        ad 		 */
    630   1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    631   1.52        ad 			p->p_zomblwp = NULL;
    632   1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    633  1.103        ad 			mutex_enter(p->p_lock);
    634   1.52        ad 		}
    635   1.52        ad 
    636   1.52        ad 		/*
    637   1.52        ad 		 * Now look for an LWP to collect.  If the whole process is
    638   1.52        ad 		 * exiting, count detached LWPs as eligible to be collected,
    639   1.52        ad 		 * but don't drain them here.
    640   1.52        ad 		 */
    641   1.52        ad 		nfound = 0;
    642   1.63        ad 		error = 0;
    643  1.223        ad 
    644  1.223        ad 		/*
    645  1.223        ad 		 * If given a specific LID, go via the tree and make sure
    646  1.223        ad 		 * it's not detached.
    647  1.223        ad 		 */
    648  1.223        ad 		if (lid != 0) {
    649  1.223        ad 			l2 = radix_tree_lookup_node(&p->p_lwptree,
    650  1.223        ad 			    (uint64_t)(lid - 1));
    651  1.223        ad 			if (l2 == NULL) {
    652  1.223        ad 				error = ESRCH;
    653  1.223        ad 				break;
    654  1.223        ad 			}
    655  1.223        ad 			KASSERT(l2->l_lid == lid);
    656  1.223        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    657  1.223        ad 				error = EINVAL;
    658  1.223        ad 				break;
    659  1.223        ad 			}
    660  1.223        ad 		} else {
    661  1.223        ad 			l2 = LIST_FIRST(&p->p_lwps);
    662  1.223        ad 		}
    663  1.223        ad 		for (; l2 != NULL; l2 = next) {
    664  1.223        ad 			next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
    665  1.223        ad 
    666   1.63        ad 			/*
    667   1.63        ad 			 * If a specific wait and the target is waiting on
    668   1.63        ad 			 * us, then avoid deadlock.  This also traps LWPs
    669   1.63        ad 			 * that try to wait on themselves.
    670   1.63        ad 			 *
    671   1.63        ad 			 * Note that this does not handle more complicated
    672   1.63        ad 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    673   1.63        ad 			 * can still be killed so it is not a major problem.
    674   1.63        ad 			 */
    675   1.63        ad 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    676   1.63        ad 				error = EDEADLK;
    677   1.63        ad 				break;
    678   1.63        ad 			}
    679   1.63        ad 			if (l2 == l)
    680   1.52        ad 				continue;
    681   1.52        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    682   1.63        ad 				nfound += exiting;
    683   1.63        ad 				continue;
    684   1.63        ad 			}
    685   1.63        ad 			if (lid != 0) {
    686   1.63        ad 				/*
    687   1.63        ad 				 * Mark this LWP as the first waiter, if there
    688   1.63        ad 				 * is no other.
    689   1.63        ad 				 */
    690   1.63        ad 				if (l2->l_waiter == 0)
    691   1.63        ad 					l2->l_waiter = curlid;
    692   1.63        ad 			} else if (l2->l_waiter != 0) {
    693   1.63        ad 				/*
    694   1.63        ad 				 * It already has a waiter - so don't
    695   1.63        ad 				 * collect it.  If the waiter doesn't
    696   1.63        ad 				 * grab it we'll get another chance
    697   1.63        ad 				 * later.
    698   1.63        ad 				 */
    699   1.63        ad 				nfound++;
    700   1.52        ad 				continue;
    701   1.52        ad 			}
    702   1.52        ad 			nfound++;
    703    1.2   thorpej 
    704   1.52        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    705   1.52        ad 			if (l2->l_stat != LSZOMB)
    706   1.52        ad 				continue;
    707    1.2   thorpej 
    708   1.63        ad 			/*
    709   1.63        ad 			 * We're no longer waiting.  Reset the "first waiter"
    710   1.63        ad 			 * pointer on the target, in case it was us.
    711   1.63        ad 			 */
    712   1.63        ad 			l->l_waitingfor = 0;
    713   1.63        ad 			l2->l_waiter = 0;
    714   1.63        ad 			p->p_nlwpwait--;
    715    1.2   thorpej 			if (departed)
    716    1.2   thorpej 				*departed = l2->l_lid;
    717   1.75        ad 			sched_lwp_collect(l2);
    718   1.63        ad 
    719   1.63        ad 			/* lwp_free() releases the proc lock. */
    720   1.63        ad 			lwp_free(l2, false, false);
    721  1.103        ad 			mutex_enter(p->p_lock);
    722   1.52        ad 			return 0;
    723   1.52        ad 		}
    724    1.2   thorpej 
    725   1.63        ad 		if (error != 0)
    726   1.63        ad 			break;
    727   1.52        ad 		if (nfound == 0) {
    728   1.52        ad 			error = ESRCH;
    729   1.52        ad 			break;
    730   1.52        ad 		}
    731   1.63        ad 
    732   1.63        ad 		/*
    733  1.173     rmind 		 * Note: since the lock will be dropped, need to restart on
    734  1.173     rmind 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
    735   1.63        ad 		 */
    736   1.63        ad 		if (exiting) {
    737   1.52        ad 			KASSERT(p->p_nlwps > 1);
    738  1.222        ad 			error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
    739  1.173     rmind 			break;
    740   1.52        ad 		}
    741   1.63        ad 
    742   1.63        ad 		/*
    743  1.234        ad 		 * Break out if all LWPs are in _lwp_wait().  There are
    744  1.234        ad 		 * other ways to hang the process with _lwp_wait(), but the
    745  1.234        ad 		 * sleep is interruptable so little point checking for them.
    746   1.63        ad 		 */
    747  1.234        ad 		if (p->p_nlwpwait == p->p_nlwps) {
    748   1.52        ad 			error = EDEADLK;
    749   1.52        ad 			break;
    750    1.2   thorpej 		}
    751   1.63        ad 
    752   1.63        ad 		/*
    753   1.63        ad 		 * Sit around and wait for something to happen.  We'll be
    754   1.63        ad 		 * awoken if any of the conditions examined change: if an
    755   1.63        ad 		 * LWP exits, is collected, or is detached.
    756   1.63        ad 		 */
    757  1.103        ad 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    758   1.52        ad 			break;
    759    1.2   thorpej 	}
    760    1.2   thorpej 
    761   1.63        ad 	/*
    762   1.63        ad 	 * We didn't find any LWPs to collect, we may have received a
    763   1.63        ad 	 * signal, or some other condition has caused us to bail out.
    764   1.63        ad 	 *
    765   1.63        ad 	 * If waiting on a specific LWP, clear the waiters marker: some
    766   1.63        ad 	 * other LWP may want it.  Then, kick all the remaining waiters
    767   1.63        ad 	 * so that they can re-check for zombies and for deadlock.
    768   1.63        ad 	 */
    769   1.63        ad 	if (lid != 0) {
    770  1.223        ad 		l2 = radix_tree_lookup_node(&p->p_lwptree,
    771  1.223        ad 		    (uint64_t)(lid - 1));
    772  1.223        ad 		KASSERT(l2 == NULL || l2->l_lid == lid);
    773  1.223        ad 
    774  1.223        ad 		if (l2 != NULL && l2->l_waiter == curlid)
    775  1.223        ad 			l2->l_waiter = 0;
    776   1.63        ad 	}
    777   1.52        ad 	p->p_nlwpwait--;
    778   1.63        ad 	l->l_waitingfor = 0;
    779   1.63        ad 	cv_broadcast(&p->p_lwpcv);
    780   1.63        ad 
    781   1.52        ad 	return error;
    782    1.2   thorpej }
    783    1.2   thorpej 
    784  1.223        ad /*
    785  1.223        ad  * Find an unused LID for a new LWP.
    786  1.223        ad  */
    787  1.174       dsl static lwpid_t
    788  1.223        ad lwp_find_free_lid(struct proc *p)
    789  1.174       dsl {
    790  1.223        ad 	struct lwp *gang[32];
    791  1.223        ad 	lwpid_t lid;
    792  1.223        ad 	unsigned n;
    793  1.223        ad 
    794  1.223        ad 	KASSERT(mutex_owned(p->p_lock));
    795  1.223        ad 	KASSERT(p->p_nlwpid > 0);
    796  1.174       dsl 
    797  1.223        ad 	/*
    798  1.223        ad 	 * Scoot forward through the tree in blocks of LIDs doing gang
    799  1.223        ad 	 * lookup with dense=true, meaning the lookup will terminate the
    800  1.223        ad 	 * instant a hole is encountered.  Most of the time the first entry
    801  1.223        ad 	 * (p->p_nlwpid) is free and the lookup fails fast.
    802  1.223        ad 	 */
    803  1.223        ad 	for (lid = p->p_nlwpid;;) {
    804  1.223        ad 		n = radix_tree_gang_lookup_node(&p->p_lwptree, lid - 1,
    805  1.223        ad 		    (void **)gang, __arraycount(gang), true);
    806  1.223        ad 		if (n == 0) {
    807  1.223        ad 			/* Start point was empty. */
    808  1.223        ad 			break;
    809  1.174       dsl 		}
    810  1.223        ad 		KASSERT(gang[0]->l_lid == lid);
    811  1.223        ad 		lid = gang[n - 1]->l_lid + 1;
    812  1.223        ad 		if (n < __arraycount(gang)) {
    813  1.223        ad 			/* Scan encountered a hole. */
    814  1.223        ad 			break;
    815  1.174       dsl 		}
    816  1.174       dsl 	}
    817  1.174       dsl 
    818  1.223        ad 	return (lwpid_t)lid;
    819  1.174       dsl }
    820  1.174       dsl 
    821   1.52        ad /*
    822   1.52        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    823   1.52        ad  * The new LWP is created in state LSIDL and must be set running,
    824   1.52        ad  * suspended, or stopped by the caller.
    825   1.52        ad  */
    826    1.2   thorpej int
    827  1.134     rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    828  1.188  christos     void *stack, size_t stacksize, void (*func)(void *), void *arg,
    829  1.188  christos     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
    830  1.188  christos     const stack_t *sigstk)
    831    1.2   thorpej {
    832  1.215        ad 	struct lwp *l2;
    833   1.52        ad 	turnstile_t *ts;
    834  1.151       chs 	lwpid_t lid;
    835    1.2   thorpej 
    836  1.107        ad 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    837  1.107        ad 
    838   1.52        ad 	/*
    839  1.215        ad 	 * Enforce limits, excluding the first lwp and kthreads.  We must
    840  1.215        ad 	 * use the process credentials here when adjusting the limit, as
    841  1.215        ad 	 * they are what's tied to the accounting entity.  However for
    842  1.215        ad 	 * authorizing the action, we'll use the LWP's credentials.
    843  1.169  christos 	 */
    844  1.215        ad 	mutex_enter(p2->p_lock);
    845  1.169  christos 	if (p2->p_nlwps != 0 && p2 != &proc0) {
    846  1.215        ad 		uid_t uid = kauth_cred_getuid(p2->p_cred);
    847  1.169  christos 		int count = chglwpcnt(uid, 1);
    848  1.169  christos 		if (__predict_false(count >
    849  1.169  christos 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
    850  1.169  christos 			if (kauth_authorize_process(l1->l_cred,
    851  1.169  christos 			    KAUTH_PROCESS_RLIMIT, p2,
    852  1.169  christos 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    853  1.169  christos 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
    854  1.169  christos 			    != 0) {
    855  1.170  christos 				(void)chglwpcnt(uid, -1);
    856  1.215        ad 				mutex_exit(p2->p_lock);
    857  1.170  christos 				return EAGAIN;
    858  1.169  christos 			}
    859  1.169  christos 		}
    860  1.169  christos 	}
    861  1.169  christos 
    862  1.169  christos 	/*
    863   1.52        ad 	 * First off, reap any detached LWP waiting to be collected.
    864   1.52        ad 	 * We can re-use its LWP structure and turnstile.
    865   1.52        ad 	 */
    866  1.215        ad 	if ((l2 = p2->p_zomblwp) != NULL) {
    867  1.215        ad 		p2->p_zomblwp = NULL;
    868  1.215        ad 		lwp_free(l2, true, false);
    869  1.215        ad 		/* p2 now unlocked by lwp_free() */
    870   1.52        ad 		ts = l2->l_ts;
    871   1.75        ad 		KASSERT(l2->l_inheritedprio == -1);
    872   1.60      yamt 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    873   1.52        ad 		memset(l2, 0, sizeof(*l2));
    874   1.52        ad 		l2->l_ts = ts;
    875  1.215        ad 	} else {
    876  1.215        ad 		mutex_exit(p2->p_lock);
    877  1.215        ad 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    878  1.215        ad 		memset(l2, 0, sizeof(*l2));
    879  1.215        ad 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    880  1.215        ad 		SLIST_INIT(&l2->l_pi_lenders);
    881   1.52        ad 	}
    882    1.2   thorpej 
    883    1.2   thorpej 	l2->l_stat = LSIDL;
    884    1.2   thorpej 	l2->l_proc = p2;
    885  1.231        ad 	l2->l_refcnt = 0;
    886   1.75        ad 	l2->l_class = sclass;
    887  1.116        ad 
    888  1.116        ad 	/*
    889  1.116        ad 	 * If vfork(), we want the LWP to run fast and on the same CPU
    890  1.116        ad 	 * as its parent, so that it can reuse the VM context and cache
    891  1.116        ad 	 * footprint on the local CPU.
    892  1.116        ad 	 */
    893  1.116        ad 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    894   1.82        ad 	l2->l_kpribase = PRI_KERNEL;
    895   1.52        ad 	l2->l_priority = l1->l_priority;
    896   1.75        ad 	l2->l_inheritedprio = -1;
    897  1.185  christos 	l2->l_protectprio = -1;
    898  1.185  christos 	l2->l_auxprio = -1;
    899  1.222        ad 	l2->l_flag = 0;
    900   1.88        ad 	l2->l_pflag = LP_MPSAFE;
    901  1.131        ad 	TAILQ_INIT(&l2->l_ld_locks);
    902  1.197     ozaki 	l2->l_psrefs = 0;
    903  1.208      maxv 	kmsan_lwp_alloc(l2);
    904  1.131        ad 
    905  1.131        ad 	/*
    906  1.156     pooka 	 * For vfork, borrow parent's lwpctl context if it exists.
    907  1.156     pooka 	 * This also causes us to return via lwp_userret.
    908  1.156     pooka 	 */
    909  1.156     pooka 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    910  1.156     pooka 		l2->l_lwpctl = l1->l_lwpctl;
    911  1.156     pooka 		l2->l_flag |= LW_LWPCTL;
    912  1.156     pooka 	}
    913  1.156     pooka 
    914  1.156     pooka 	/*
    915  1.131        ad 	 * If not the first LWP in the process, grab a reference to the
    916  1.131        ad 	 * descriptor table.
    917  1.131        ad 	 */
    918   1.97        ad 	l2->l_fd = p2->p_fd;
    919  1.131        ad 	if (p2->p_nlwps != 0) {
    920  1.131        ad 		KASSERT(l1->l_proc == p2);
    921  1.136     rmind 		fd_hold(l2);
    922  1.131        ad 	} else {
    923  1.131        ad 		KASSERT(l1->l_proc != p2);
    924  1.131        ad 	}
    925   1.41   thorpej 
    926   1.56     pavel 	if (p2->p_flag & PK_SYSTEM) {
    927  1.134     rmind 		/* Mark it as a system LWP. */
    928   1.56     pavel 		l2->l_flag |= LW_SYSTEM;
    929   1.52        ad 	}
    930    1.2   thorpej 
    931  1.107        ad 	kpreempt_disable();
    932  1.212        ad 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
    933  1.107        ad 	l2->l_cpu = l1->l_cpu;
    934  1.107        ad 	kpreempt_enable();
    935  1.107        ad 
    936  1.138    darran 	kdtrace_thread_ctor(NULL, l2);
    937   1.73     rmind 	lwp_initspecific(l2);
    938   1.75        ad 	sched_lwp_fork(l1, l2);
    939   1.37        ad 	lwp_update_creds(l2);
    940   1.70        ad 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    941   1.70        ad 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    942   1.52        ad 	cv_init(&l2->l_sigcv, "sigwait");
    943  1.171     rmind 	cv_init(&l2->l_waitcv, "vfork");
    944   1.52        ad 	l2->l_syncobj = &sched_syncobj;
    945  1.201     ozaki 	PSREF_DEBUG_INIT_LWP(l2);
    946    1.2   thorpej 
    947    1.2   thorpej 	if (rnewlwpp != NULL)
    948    1.2   thorpej 		*rnewlwpp = l2;
    949    1.2   thorpej 
    950  1.158      matt 	/*
    951  1.158      matt 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    952  1.158      matt 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    953  1.158      matt 	 */
    954  1.158      matt 	pcu_save_all(l1);
    955  1.225    dogcow #if PCU_UNIT_COUNT > 0
    956  1.224  riastrad 	l2->l_pcu_valid = l1->l_pcu_valid;
    957  1.225    dogcow #endif
    958  1.158      matt 
    959  1.137     rmind 	uvm_lwp_setuarea(l2, uaddr);
    960  1.190     skrll 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
    961    1.2   thorpej 
    962  1.151       chs 	if ((flags & LWP_PIDLID) != 0) {
    963  1.223        ad 		/* Linux threads: use a PID. */
    964  1.151       chs 		lid = proc_alloc_pid(p2);
    965  1.151       chs 		l2->l_pflag |= LP_PIDLID;
    966  1.206     joerg 	} else if (p2->p_nlwps == 0) {
    967  1.207     joerg 		/*
    968  1.223        ad 		 * First LWP in process.  Copy the parent's LID to avoid
    969  1.223        ad 		 * causing problems for fork() + threads.  Don't give
    970  1.223        ad 		 * subsequent threads the distinction of using LID 1.
    971  1.207     joerg 		 */
    972  1.223        ad 		lid = l1->l_lid;
    973  1.223        ad 		p2->p_nlwpid = 2;
    974  1.151       chs 	} else {
    975  1.223        ad 		/* Scan the radix tree for a free LID. */
    976  1.151       chs 		lid = 0;
    977  1.151       chs 	}
    978  1.151       chs 
    979  1.223        ad 	/*
    980  1.223        ad 	 * Allocate LID if needed, and insert into the radix tree.  The
    981  1.223        ad 	 * first LWP in most processes has a LID of 1.  It turns out that if
    982  1.223        ad 	 * you insert an item with a key of zero to a radixtree, it's stored
    983  1.223        ad 	 * directly in the root (p_lwptree) and no extra memory is
    984  1.223        ad 	 * allocated.  We therefore always subtract 1 from the LID, which
    985  1.223        ad 	 * means no memory is allocated for the tree unless the program is
    986  1.223        ad 	 * using threads.  NB: the allocation and insert must take place
    987  1.223        ad 	 * under the same hold of p_lock.
    988  1.223        ad 	 */
    989  1.103        ad 	mutex_enter(p2->p_lock);
    990  1.223        ad 	for (;;) {
    991  1.223        ad 		int error;
    992  1.223        ad 
    993  1.223        ad 		l2->l_lid = (lid == 0 ? lwp_find_free_lid(p2) : lid);
    994  1.223        ad 
    995  1.223        ad 		rw_enter(&p2->p_treelock, RW_WRITER);
    996  1.223        ad 		error = radix_tree_insert_node(&p2->p_lwptree,
    997  1.223        ad 		    (uint64_t)(l2->l_lid - 1), l2);
    998  1.223        ad 		rw_exit(&p2->p_treelock);
    999  1.223        ad 
   1000  1.223        ad 		if (__predict_true(error == 0)) {
   1001  1.223        ad 			if (lid == 0)
   1002  1.223        ad 				p2->p_nlwpid = l2->l_lid + 1;
   1003  1.223        ad 			break;
   1004  1.223        ad 		}
   1005  1.223        ad 
   1006  1.223        ad 		KASSERT(error == ENOMEM);
   1007  1.223        ad 		mutex_exit(p2->p_lock);
   1008  1.223        ad 		radix_tree_await_memory();
   1009  1.223        ad 		mutex_enter(p2->p_lock);
   1010  1.223        ad 	}
   1011   1.52        ad 
   1012   1.52        ad 	if ((flags & LWP_DETACHED) != 0) {
   1013   1.52        ad 		l2->l_prflag = LPR_DETACHED;
   1014   1.52        ad 		p2->p_ndlwps++;
   1015   1.52        ad 	} else
   1016   1.52        ad 		l2->l_prflag = 0;
   1017   1.52        ad 
   1018  1.223        ad 	if (l1->l_proc == p2) {
   1019  1.223        ad 		/*
   1020  1.223        ad 		 * These flags are set while p_lock is held.  Copy with
   1021  1.223        ad 		 * p_lock held too, so the LWP doesn't sneak into the
   1022  1.223        ad 		 * process without them being set.
   1023  1.223        ad 		 */
   1024  1.222        ad 		l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
   1025  1.223        ad 	} else {
   1026  1.223        ad 		/* fork(): pending core/exit doesn't apply to child. */
   1027  1.222        ad 		l2->l_flag |= (l1->l_flag & LW_WREBOOT);
   1028  1.223        ad 	}
   1029  1.222        ad 
   1030  1.188  christos 	l2->l_sigstk = *sigstk;
   1031  1.188  christos 	l2->l_sigmask = *sigmask;
   1032  1.176  christos 	TAILQ_INIT(&l2->l_sigpend.sp_info);
   1033   1.52        ad 	sigemptyset(&l2->l_sigpend.sp_set);
   1034  1.174       dsl 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
   1035    1.2   thorpej 	p2->p_nlwps++;
   1036  1.149      yamt 	p2->p_nrlwps++;
   1037    1.2   thorpej 
   1038  1.162     rmind 	KASSERT(l2->l_affinity == NULL);
   1039  1.162     rmind 
   1040  1.210        ad 	/* Inherit the affinity mask. */
   1041  1.210        ad 	if (l1->l_affinity) {
   1042  1.210        ad 		/*
   1043  1.210        ad 		 * Note that we hold the state lock while inheriting
   1044  1.210        ad 		 * the affinity to avoid race with sched_setaffinity().
   1045  1.210        ad 		 */
   1046  1.210        ad 		lwp_lock(l1);
   1047  1.162     rmind 		if (l1->l_affinity) {
   1048  1.210        ad 			kcpuset_use(l1->l_affinity);
   1049  1.210        ad 			l2->l_affinity = l1->l_affinity;
   1050  1.117  christos 		}
   1051  1.210        ad 		lwp_unlock(l1);
   1052   1.91     rmind 	}
   1053  1.223        ad 
   1054  1.223        ad 	/* This marks the end of the "must be atomic" section. */
   1055  1.128     rmind 	mutex_exit(p2->p_lock);
   1056  1.128     rmind 
   1057  1.180  christos 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
   1058  1.141    darran 
   1059  1.128     rmind 	mutex_enter(proc_lock);
   1060  1.128     rmind 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
   1061  1.210        ad 	/* Inherit a processor-set */
   1062  1.210        ad 	l2->l_psid = l1->l_psid;
   1063  1.128     rmind 	mutex_exit(proc_lock);
   1064   1.91     rmind 
   1065   1.57       dsl 	SYSCALL_TIME_LWP_INIT(l2);
   1066   1.57       dsl 
   1067   1.16      manu 	if (p2->p_emul->e_lwp_fork)
   1068   1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
   1069   1.16      manu 
   1070    1.2   thorpej 	return (0);
   1071    1.2   thorpej }
   1072    1.2   thorpej 
   1073    1.2   thorpej /*
   1074  1.212        ad  * Set a new LWP running.  If the process is stopping, then the LWP is
   1075  1.212        ad  * created stopped.
   1076  1.212        ad  */
   1077  1.212        ad void
   1078  1.212        ad lwp_start(lwp_t *l, int flags)
   1079  1.212        ad {
   1080  1.212        ad 	proc_t *p = l->l_proc;
   1081  1.212        ad 
   1082  1.212        ad 	mutex_enter(p->p_lock);
   1083  1.212        ad 	lwp_lock(l);
   1084  1.212        ad 	KASSERT(l->l_stat == LSIDL);
   1085  1.212        ad 	if ((flags & LWP_SUSPENDED) != 0) {
   1086  1.212        ad 		/* It'll suspend itself in lwp_userret(). */
   1087  1.212        ad 		l->l_flag |= LW_WSUSPEND;
   1088  1.212        ad 	}
   1089  1.212        ad 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1090  1.212        ad 		KASSERT(l->l_wchan == NULL);
   1091  1.212        ad 	    	l->l_stat = LSSTOP;
   1092  1.212        ad 		p->p_nrlwps--;
   1093  1.212        ad 		lwp_unlock(l);
   1094  1.212        ad 	} else {
   1095  1.212        ad 		setrunnable(l);
   1096  1.212        ad 		/* LWP now unlocked */
   1097  1.212        ad 	}
   1098  1.212        ad 	mutex_exit(p->p_lock);
   1099  1.212        ad }
   1100  1.212        ad 
   1101  1.212        ad /*
   1102   1.64      yamt  * Called by MD code when a new LWP begins execution.  Must be called
   1103   1.64      yamt  * with the previous LWP locked (so at splsched), or if there is no
   1104   1.64      yamt  * previous LWP, at splsched.
   1105   1.64      yamt  */
   1106   1.64      yamt void
   1107  1.178      matt lwp_startup(struct lwp *prev, struct lwp *new_lwp)
   1108   1.64      yamt {
   1109  1.227        ad 	kmutex_t *lock;
   1110  1.218        ad 
   1111  1.178      matt 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
   1112  1.218        ad 	KASSERT(kpreempt_disabled());
   1113  1.218        ad 	KASSERT(prev != NULL);
   1114  1.227        ad 	KASSERT((prev->l_pflag & LP_RUNNING) != 0);
   1115  1.218        ad 	KASSERT(curcpu()->ci_mtx_count == -2);
   1116  1.218        ad 
   1117  1.227        ad 	/*
   1118  1.227        ad 	 * Immediately mark the previous LWP as no longer running and unlock
   1119  1.227        ad 	 * (to keep lock wait times short as possible).  If a zombie, don't
   1120  1.227        ad 	 * touch after clearing LP_RUNNING as it could be reaped by another
   1121  1.227        ad 	 * CPU.  Issue a memory barrier to ensure this.
   1122  1.227        ad 	 */
   1123  1.227        ad 	lock = prev->l_mutex;
   1124  1.227        ad 	if (__predict_false(prev->l_stat == LSZOMB)) {
   1125  1.227        ad 		membar_sync();
   1126  1.227        ad 	}
   1127  1.227        ad 	prev->l_pflag &= ~LP_RUNNING;
   1128  1.227        ad 	mutex_spin_exit(lock);
   1129   1.64      yamt 
   1130  1.218        ad 	/* Correct spin mutex count after mi_switch(). */
   1131  1.218        ad 	curcpu()->ci_mtx_count = 0;
   1132  1.141    darran 
   1133  1.218        ad 	/* Install new VM context. */
   1134  1.218        ad 	if (__predict_true(new_lwp->l_proc->p_vmspace)) {
   1135  1.218        ad 		pmap_activate(new_lwp);
   1136   1.64      yamt 	}
   1137  1.218        ad 
   1138  1.218        ad 	/* We remain at IPL_SCHED from mi_switch() - reset it. */
   1139  1.181     skrll 	spl0();
   1140  1.161  christos 
   1141   1.64      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
   1142  1.218        ad 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
   1143  1.218        ad 
   1144  1.218        ad 	/* For kthreads, acquire kernel lock if not MPSAFE. */
   1145  1.218        ad 	if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
   1146  1.178      matt 		KERNEL_LOCK(1, new_lwp);
   1147   1.65        ad 	}
   1148   1.64      yamt }
   1149   1.64      yamt 
   1150   1.64      yamt /*
   1151   1.65        ad  * Exit an LWP.
   1152    1.2   thorpej  */
   1153    1.2   thorpej void
   1154    1.2   thorpej lwp_exit(struct lwp *l)
   1155    1.2   thorpej {
   1156    1.2   thorpej 	struct proc *p = l->l_proc;
   1157   1.52        ad 	struct lwp *l2;
   1158   1.65        ad 	bool current;
   1159   1.65        ad 
   1160   1.65        ad 	current = (l == curlwp);
   1161    1.2   thorpej 
   1162  1.114     rmind 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
   1163  1.131        ad 	KASSERT(p == curproc);
   1164    1.2   thorpej 
   1165  1.180  christos 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
   1166  1.141    darran 
   1167  1.220        ad 	/* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
   1168  1.218        ad 	LOCKDEBUG_BARRIER(NULL, 0);
   1169  1.220        ad 	KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
   1170   1.16      manu 
   1171    1.2   thorpej 	/*
   1172   1.52        ad 	 * If we are the last live LWP in a process, we need to exit the
   1173   1.52        ad 	 * entire process.  We do so with an exit status of zero, because
   1174   1.52        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
   1175   1.52        ad 	 *
   1176   1.52        ad 	 * We are not quite a zombie yet, but for accounting purposes we
   1177   1.52        ad 	 * must increment the count of zombies here.
   1178   1.45   thorpej 	 *
   1179   1.45   thorpej 	 * Note: the last LWP's specificdata will be deleted here.
   1180    1.2   thorpej 	 */
   1181  1.103        ad 	mutex_enter(p->p_lock);
   1182   1.52        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
   1183   1.65        ad 		KASSERT(current == true);
   1184  1.172      matt 		KASSERT(p != &proc0);
   1185  1.184  christos 		exit1(l, 0, 0);
   1186   1.19  jdolecek 		/* NOTREACHED */
   1187    1.2   thorpej 	}
   1188   1.52        ad 	p->p_nzlwps++;
   1189  1.233   thorpej 
   1190  1.233   thorpej 	/*
   1191  1.233   thorpej 	 * Perform any required thread cleanup.  Do this early so
   1192  1.233   thorpej 	 * anyone wanting to look us up by our global thread ID
   1193  1.233   thorpej 	 * will fail to find us.
   1194  1.233   thorpej 	 *
   1195  1.233   thorpej 	 * N.B. this will unlock p->p_lock on our behalf.
   1196  1.233   thorpej 	 */
   1197  1.233   thorpej 	lwp_thread_cleanup(l);
   1198   1.52        ad 
   1199   1.52        ad 	if (p->p_emul->e_lwp_exit)
   1200   1.52        ad 		(*p->p_emul->e_lwp_exit)(l);
   1201    1.2   thorpej 
   1202  1.131        ad 	/* Drop filedesc reference. */
   1203  1.131        ad 	fd_free();
   1204  1.131        ad 
   1205  1.196   hannken 	/* Release fstrans private data. */
   1206  1.196   hannken 	fstrans_lwp_dtor(l);
   1207  1.196   hannken 
   1208   1.45   thorpej 	/* Delete the specificdata while it's still safe to sleep. */
   1209  1.145     pooka 	lwp_finispecific(l);
   1210   1.45   thorpej 
   1211   1.52        ad 	/*
   1212   1.52        ad 	 * Release our cached credentials.
   1213   1.52        ad 	 */
   1214   1.37        ad 	kauth_cred_free(l->l_cred);
   1215   1.70        ad 	callout_destroy(&l->l_timeout_ch);
   1216   1.65        ad 
   1217   1.65        ad 	/*
   1218  1.198     kamil 	 * If traced, report LWP exit event to the debugger.
   1219  1.198     kamil 	 *
   1220   1.52        ad 	 * Remove the LWP from the global list.
   1221  1.151       chs 	 * Free its LID from the PID namespace if needed.
   1222   1.52        ad 	 */
   1223  1.102        ad 	mutex_enter(proc_lock);
   1224  1.198     kamil 
   1225  1.199     kamil 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
   1226  1.198     kamil 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
   1227  1.198     kamil 		mutex_enter(p->p_lock);
   1228  1.202     kamil 		if (ISSET(p->p_sflag, PS_WEXIT)) {
   1229  1.202     kamil 			mutex_exit(p->p_lock);
   1230  1.202     kamil 			/*
   1231  1.202     kamil 			 * We are exiting, bail out without informing parent
   1232  1.202     kamil 			 * about a terminating LWP as it would deadlock.
   1233  1.202     kamil 			 */
   1234  1.202     kamil 		} else {
   1235  1.203     kamil 			eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
   1236  1.202     kamil 			mutex_enter(proc_lock);
   1237  1.202     kamil 		}
   1238  1.198     kamil 	}
   1239  1.198     kamil 
   1240   1.52        ad 	LIST_REMOVE(l, l_list);
   1241  1.151       chs 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
   1242  1.151       chs 		proc_free_pid(l->l_lid);
   1243  1.151       chs 	}
   1244  1.102        ad 	mutex_exit(proc_lock);
   1245   1.19  jdolecek 
   1246   1.52        ad 	/*
   1247   1.52        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
   1248   1.52        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
   1249   1.52        ad 	 * mark it waiting for collection in the proc structure.  Note that
   1250   1.52        ad 	 * before we can do that, we need to free any other dead, deatched
   1251   1.52        ad 	 * LWP waiting to meet its maker.
   1252  1.231        ad 	 *
   1253  1.231        ad 	 * All conditions need to be observed upon under the same hold of
   1254  1.231        ad 	 * p_lock, because if the lock is dropped any of them can change.
   1255   1.52        ad 	 */
   1256  1.103        ad 	mutex_enter(p->p_lock);
   1257  1.231        ad 	for (;;) {
   1258  1.233   thorpej 		if (lwp_drainrefs(l))
   1259  1.231        ad 			continue;
   1260  1.231        ad 		if ((l->l_prflag & LPR_DETACHED) != 0) {
   1261  1.231        ad 			if ((l2 = p->p_zomblwp) != NULL) {
   1262  1.231        ad 				p->p_zomblwp = NULL;
   1263  1.231        ad 				lwp_free(l2, false, false);
   1264  1.231        ad 				/* proc now unlocked */
   1265  1.231        ad 				mutex_enter(p->p_lock);
   1266  1.231        ad 				continue;
   1267  1.231        ad 			}
   1268  1.231        ad 			p->p_zomblwp = l;
   1269   1.52        ad 		}
   1270  1.231        ad 		break;
   1271   1.52        ad 	}
   1272   1.31      yamt 
   1273   1.52        ad 	/*
   1274   1.52        ad 	 * If we find a pending signal for the process and we have been
   1275  1.151       chs 	 * asked to check for signals, then we lose: arrange to have
   1276   1.52        ad 	 * all other LWPs in the process check for signals.
   1277   1.52        ad 	 */
   1278   1.56     pavel 	if ((l->l_flag & LW_PENDSIG) != 0 &&
   1279   1.52        ad 	    firstsig(&p->p_sigpend.sp_set) != 0) {
   1280   1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1281   1.52        ad 			lwp_lock(l2);
   1282  1.209        ad 			signotify(l2);
   1283   1.52        ad 			lwp_unlock(l2);
   1284   1.52        ad 		}
   1285   1.31      yamt 	}
   1286   1.31      yamt 
   1287  1.158      matt 	/*
   1288  1.158      matt 	 * Release any PCU resources before becoming a zombie.
   1289  1.158      matt 	 */
   1290  1.158      matt 	pcu_discard_all(l);
   1291  1.158      matt 
   1292   1.52        ad 	lwp_lock(l);
   1293   1.52        ad 	l->l_stat = LSZOMB;
   1294  1.162     rmind 	if (l->l_name != NULL) {
   1295   1.90        ad 		strcpy(l->l_name, "(zombie)");
   1296  1.128     rmind 	}
   1297   1.52        ad 	lwp_unlock(l);
   1298    1.2   thorpej 	p->p_nrlwps--;
   1299   1.52        ad 	cv_broadcast(&p->p_lwpcv);
   1300   1.78        ad 	if (l->l_lwpctl != NULL)
   1301   1.78        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1302  1.103        ad 	mutex_exit(p->p_lock);
   1303   1.52        ad 
   1304   1.52        ad 	/*
   1305   1.52        ad 	 * We can no longer block.  At this point, lwp_free() may already
   1306   1.52        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1307   1.52        ad 	 *
   1308   1.52        ad 	 * Free MD LWP resources.
   1309   1.52        ad 	 */
   1310   1.52        ad 	cpu_lwp_free(l, 0);
   1311    1.2   thorpej 
   1312   1.65        ad 	if (current) {
   1313  1.218        ad 		/* Switch away into oblivion. */
   1314  1.218        ad 		lwp_lock(l);
   1315  1.218        ad 		spc_lock(l->l_cpu);
   1316  1.218        ad 		mi_switch(l);
   1317  1.218        ad 		panic("lwp_exit");
   1318   1.65        ad 	}
   1319    1.2   thorpej }
   1320    1.2   thorpej 
   1321   1.52        ad /*
   1322   1.52        ad  * Free a dead LWP's remaining resources.
   1323   1.52        ad  *
   1324   1.52        ad  * XXXLWP limits.
   1325   1.52        ad  */
   1326   1.52        ad void
   1327   1.63        ad lwp_free(struct lwp *l, bool recycle, bool last)
   1328   1.52        ad {
   1329   1.52        ad 	struct proc *p = l->l_proc;
   1330  1.100        ad 	struct rusage *ru;
   1331  1.223        ad 	struct lwp *l2 __diagused;
   1332   1.52        ad 	ksiginfoq_t kq;
   1333   1.52        ad 
   1334   1.92      yamt 	KASSERT(l != curlwp);
   1335  1.160      yamt 	KASSERT(last || mutex_owned(p->p_lock));
   1336   1.92      yamt 
   1337  1.177  christos 	/*
   1338  1.177  christos 	 * We use the process credentials instead of the lwp credentials here
   1339  1.177  christos 	 * because the lwp credentials maybe cached (just after a setuid call)
   1340  1.177  christos 	 * and we don't want pay for syncing, since the lwp is going away
   1341  1.177  christos 	 * anyway
   1342  1.177  christos 	 */
   1343  1.169  christos 	if (p != &proc0 && p->p_nlwps != 1)
   1344  1.177  christos 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
   1345  1.218        ad 
   1346   1.52        ad 	/*
   1347  1.223        ad 	 * If this was not the last LWP in the process, then adjust counters
   1348  1.223        ad 	 * and unlock.  This is done differently for the last LWP in exit1().
   1349   1.52        ad 	 */
   1350   1.52        ad 	if (!last) {
   1351   1.52        ad 		/*
   1352   1.52        ad 		 * Add the LWP's run time to the process' base value.
   1353   1.52        ad 		 * This needs to co-incide with coming off p_lwps.
   1354   1.52        ad 		 */
   1355   1.86      yamt 		bintime_add(&p->p_rtime, &l->l_rtime);
   1356   1.64      yamt 		p->p_pctcpu += l->l_pctcpu;
   1357  1.100        ad 		ru = &p->p_stats->p_ru;
   1358  1.100        ad 		ruadd(ru, &l->l_ru);
   1359  1.100        ad 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1360  1.100        ad 		ru->ru_nivcsw += l->l_nivcsw;
   1361   1.52        ad 		LIST_REMOVE(l, l_sibling);
   1362   1.52        ad 		p->p_nlwps--;
   1363   1.52        ad 		p->p_nzlwps--;
   1364   1.52        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1365   1.52        ad 			p->p_ndlwps--;
   1366   1.63        ad 
   1367  1.223        ad 		/* Make note of the LID being free, and remove from tree. */
   1368  1.223        ad 		if (l->l_lid < p->p_nlwpid)
   1369  1.223        ad 			p->p_nlwpid = l->l_lid;
   1370  1.223        ad 		rw_enter(&p->p_treelock, RW_WRITER);
   1371  1.223        ad 		l2 = radix_tree_remove_node(&p->p_lwptree,
   1372  1.223        ad 		    (uint64_t)(l->l_lid - 1));
   1373  1.223        ad 		KASSERT(l2 == l);
   1374  1.223        ad 		rw_exit(&p->p_treelock);
   1375  1.223        ad 
   1376   1.63        ad 		/*
   1377   1.63        ad 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1378   1.63        ad 		 * deadlock.
   1379   1.63        ad 		 */
   1380   1.63        ad 		cv_broadcast(&p->p_lwpcv);
   1381  1.103        ad 		mutex_exit(p->p_lock);
   1382   1.63        ad 	}
   1383   1.52        ad 
   1384   1.63        ad 	/*
   1385   1.63        ad 	 * In the unlikely event that the LWP is still on the CPU,
   1386  1.228        ad 	 * then spin until it has switched away.
   1387   1.63        ad 	 */
   1388  1.227        ad 	membar_consumer();
   1389  1.227        ad 	while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
   1390  1.219        ad 		SPINLOCK_BACKOFF_HOOK;
   1391   1.63        ad 	}
   1392   1.52        ad 
   1393   1.52        ad 	/*
   1394   1.52        ad 	 * Destroy the LWP's remaining signal information.
   1395   1.52        ad 	 */
   1396   1.52        ad 	ksiginfo_queue_init(&kq);
   1397   1.52        ad 	sigclear(&l->l_sigpend, NULL, &kq);
   1398   1.52        ad 	ksiginfo_queue_drain(&kq);
   1399   1.52        ad 	cv_destroy(&l->l_sigcv);
   1400  1.171     rmind 	cv_destroy(&l->l_waitcv);
   1401    1.2   thorpej 
   1402   1.19  jdolecek 	/*
   1403  1.162     rmind 	 * Free lwpctl structure and affinity.
   1404  1.162     rmind 	 */
   1405  1.162     rmind 	if (l->l_lwpctl) {
   1406  1.162     rmind 		lwp_ctl_free(l);
   1407  1.162     rmind 	}
   1408  1.162     rmind 	if (l->l_affinity) {
   1409  1.162     rmind 		kcpuset_unuse(l->l_affinity, NULL);
   1410  1.162     rmind 		l->l_affinity = NULL;
   1411  1.162     rmind 	}
   1412  1.162     rmind 
   1413  1.162     rmind 	/*
   1414   1.52        ad 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1415   1.93      yamt 	 * caller wants to recycle them.  Also, free the scheduler specific
   1416   1.93      yamt 	 * data.
   1417   1.52        ad 	 *
   1418   1.52        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1419   1.52        ad 	 * so if it comes up just drop it quietly and move on.
   1420   1.52        ad 	 *
   1421   1.52        ad 	 * We don't recycle the VM resources at this time.
   1422   1.19  jdolecek 	 */
   1423   1.64      yamt 
   1424   1.52        ad 	if (!recycle && l->l_ts != &turnstile0)
   1425   1.76        ad 		pool_cache_put(turnstile_cache, l->l_ts);
   1426   1.90        ad 	if (l->l_name != NULL)
   1427   1.90        ad 		kmem_free(l->l_name, MAXCOMLEN);
   1428  1.135     rmind 
   1429  1.208      maxv 	kmsan_lwp_free(l);
   1430  1.232      maxv 	kcov_lwp_free(l);
   1431   1.52        ad 	cpu_lwp_free2(l);
   1432   1.19  jdolecek 	uvm_lwp_exit(l);
   1433  1.134     rmind 
   1434   1.60      yamt 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1435   1.75        ad 	KASSERT(l->l_inheritedprio == -1);
   1436  1.155      matt 	KASSERT(l->l_blcnt == 0);
   1437  1.138    darran 	kdtrace_thread_dtor(NULL, l);
   1438   1.52        ad 	if (!recycle)
   1439   1.87        ad 		pool_cache_put(lwp_cache, l);
   1440    1.2   thorpej }
   1441    1.2   thorpej 
   1442    1.2   thorpej /*
   1443   1.91     rmind  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1444   1.91     rmind  */
   1445   1.91     rmind void
   1446  1.114     rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1447   1.91     rmind {
   1448  1.114     rmind 	struct schedstate_percpu *tspc;
   1449  1.121     rmind 	int lstat = l->l_stat;
   1450  1.121     rmind 
   1451   1.91     rmind 	KASSERT(lwp_locked(l, NULL));
   1452  1.114     rmind 	KASSERT(tci != NULL);
   1453  1.114     rmind 
   1454  1.121     rmind 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1455  1.227        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1456  1.121     rmind 		lstat = LSONPROC;
   1457  1.121     rmind 	}
   1458  1.121     rmind 
   1459  1.114     rmind 	/*
   1460  1.114     rmind 	 * The destination CPU could be changed while previous migration
   1461  1.114     rmind 	 * was not finished.
   1462  1.114     rmind 	 */
   1463  1.121     rmind 	if (l->l_target_cpu != NULL) {
   1464  1.114     rmind 		l->l_target_cpu = tci;
   1465  1.114     rmind 		lwp_unlock(l);
   1466  1.114     rmind 		return;
   1467  1.114     rmind 	}
   1468   1.91     rmind 
   1469  1.114     rmind 	/* Nothing to do if trying to migrate to the same CPU */
   1470  1.114     rmind 	if (l->l_cpu == tci) {
   1471   1.91     rmind 		lwp_unlock(l);
   1472   1.91     rmind 		return;
   1473   1.91     rmind 	}
   1474   1.91     rmind 
   1475  1.114     rmind 	KASSERT(l->l_target_cpu == NULL);
   1476  1.114     rmind 	tspc = &tci->ci_schedstate;
   1477  1.121     rmind 	switch (lstat) {
   1478   1.91     rmind 	case LSRUN:
   1479  1.134     rmind 		l->l_target_cpu = tci;
   1480  1.134     rmind 		break;
   1481   1.91     rmind 	case LSSLEEP:
   1482  1.114     rmind 		l->l_cpu = tci;
   1483   1.91     rmind 		break;
   1484  1.212        ad 	case LSIDL:
   1485   1.91     rmind 	case LSSTOP:
   1486   1.91     rmind 	case LSSUSPENDED:
   1487  1.114     rmind 		l->l_cpu = tci;
   1488  1.114     rmind 		if (l->l_wchan == NULL) {
   1489  1.114     rmind 			lwp_unlock_to(l, tspc->spc_lwplock);
   1490  1.114     rmind 			return;
   1491   1.91     rmind 		}
   1492  1.114     rmind 		break;
   1493   1.91     rmind 	case LSONPROC:
   1494  1.114     rmind 		l->l_target_cpu = tci;
   1495  1.114     rmind 		spc_lock(l->l_cpu);
   1496  1.212        ad 		sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
   1497  1.212        ad 		/* spc now unlocked */
   1498   1.91     rmind 		break;
   1499   1.91     rmind 	}
   1500   1.91     rmind 	lwp_unlock(l);
   1501   1.91     rmind }
   1502   1.91     rmind 
   1503   1.91     rmind /*
   1504   1.94     rmind  * Find the LWP in the process.  Arguments may be zero, in such case,
   1505   1.94     rmind  * the calling process and first LWP in the list will be used.
   1506  1.103        ad  * On success - returns proc locked.
   1507   1.91     rmind  */
   1508   1.91     rmind struct lwp *
   1509   1.91     rmind lwp_find2(pid_t pid, lwpid_t lid)
   1510   1.91     rmind {
   1511   1.91     rmind 	proc_t *p;
   1512   1.91     rmind 	lwp_t *l;
   1513   1.91     rmind 
   1514  1.150     rmind 	/* Find the process. */
   1515   1.94     rmind 	if (pid != 0) {
   1516  1.150     rmind 		mutex_enter(proc_lock);
   1517  1.150     rmind 		p = proc_find(pid);
   1518  1.150     rmind 		if (p == NULL) {
   1519  1.150     rmind 			mutex_exit(proc_lock);
   1520  1.150     rmind 			return NULL;
   1521  1.150     rmind 		}
   1522  1.150     rmind 		mutex_enter(p->p_lock);
   1523  1.102        ad 		mutex_exit(proc_lock);
   1524  1.150     rmind 	} else {
   1525  1.150     rmind 		p = curlwp->l_proc;
   1526  1.150     rmind 		mutex_enter(p->p_lock);
   1527  1.150     rmind 	}
   1528  1.150     rmind 	/* Find the thread. */
   1529  1.150     rmind 	if (lid != 0) {
   1530  1.150     rmind 		l = lwp_find(p, lid);
   1531  1.150     rmind 	} else {
   1532  1.150     rmind 		l = LIST_FIRST(&p->p_lwps);
   1533   1.94     rmind 	}
   1534  1.103        ad 	if (l == NULL) {
   1535  1.103        ad 		mutex_exit(p->p_lock);
   1536  1.103        ad 	}
   1537   1.91     rmind 	return l;
   1538   1.91     rmind }
   1539   1.91     rmind 
   1540   1.91     rmind /*
   1541  1.168      yamt  * Look up a live LWP within the specified process.
   1542   1.52        ad  *
   1543  1.223        ad  * Must be called with p->p_lock held (as it looks at the radix tree,
   1544  1.223        ad  * and also wants to exclude idle and zombie LWPs).
   1545   1.52        ad  */
   1546   1.52        ad struct lwp *
   1547  1.151       chs lwp_find(struct proc *p, lwpid_t id)
   1548   1.52        ad {
   1549   1.52        ad 	struct lwp *l;
   1550   1.52        ad 
   1551  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1552   1.52        ad 
   1553  1.223        ad 	l = radix_tree_lookup_node(&p->p_lwptree, (uint64_t)(id - 1));
   1554  1.223        ad 	KASSERT(l == NULL || l->l_lid == id);
   1555   1.52        ad 
   1556   1.52        ad 	/*
   1557   1.52        ad 	 * No need to lock - all of these conditions will
   1558   1.52        ad 	 * be visible with the process level mutex held.
   1559   1.52        ad 	 */
   1560   1.52        ad 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1561   1.52        ad 		l = NULL;
   1562   1.52        ad 
   1563   1.52        ad 	return l;
   1564   1.52        ad }
   1565   1.52        ad 
   1566   1.52        ad /*
   1567   1.37        ad  * Update an LWP's cached credentials to mirror the process' master copy.
   1568   1.37        ad  *
   1569   1.37        ad  * This happens early in the syscall path, on user trap, and on LWP
   1570   1.37        ad  * creation.  A long-running LWP can also voluntarily choose to update
   1571  1.179       snj  * its credentials by calling this routine.  This may be called from
   1572   1.37        ad  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1573   1.37        ad  */
   1574   1.37        ad void
   1575   1.37        ad lwp_update_creds(struct lwp *l)
   1576   1.37        ad {
   1577   1.37        ad 	kauth_cred_t oc;
   1578   1.37        ad 	struct proc *p;
   1579   1.37        ad 
   1580   1.37        ad 	p = l->l_proc;
   1581   1.37        ad 	oc = l->l_cred;
   1582   1.37        ad 
   1583  1.103        ad 	mutex_enter(p->p_lock);
   1584   1.37        ad 	kauth_cred_hold(p->p_cred);
   1585   1.37        ad 	l->l_cred = p->p_cred;
   1586   1.98        ad 	l->l_prflag &= ~LPR_CRMOD;
   1587  1.103        ad 	mutex_exit(p->p_lock);
   1588   1.88        ad 	if (oc != NULL)
   1589   1.37        ad 		kauth_cred_free(oc);
   1590   1.52        ad }
   1591   1.52        ad 
   1592   1.52        ad /*
   1593   1.52        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
   1594   1.52        ad  * one we specify.
   1595   1.52        ad  */
   1596   1.52        ad int
   1597   1.52        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
   1598   1.52        ad {
   1599   1.52        ad 	kmutex_t *cur = l->l_mutex;
   1600   1.52        ad 
   1601   1.52        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1602   1.52        ad }
   1603   1.52        ad 
   1604   1.52        ad /*
   1605   1.52        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
   1606   1.52        ad  */
   1607  1.211        ad kmutex_t *
   1608  1.178      matt lwp_setlock(struct lwp *l, kmutex_t *mtx)
   1609   1.52        ad {
   1610  1.211        ad 	kmutex_t *oldmtx = l->l_mutex;
   1611   1.52        ad 
   1612  1.211        ad 	KASSERT(mutex_owned(oldmtx));
   1613   1.52        ad 
   1614  1.107        ad 	membar_exit();
   1615  1.178      matt 	l->l_mutex = mtx;
   1616  1.211        ad 	return oldmtx;
   1617   1.52        ad }
   1618   1.52        ad 
   1619   1.52        ad /*
   1620   1.52        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1621   1.52        ad  * must be held.
   1622   1.52        ad  */
   1623   1.52        ad void
   1624  1.178      matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
   1625   1.52        ad {
   1626   1.52        ad 	kmutex_t *old;
   1627   1.52        ad 
   1628  1.152     rmind 	KASSERT(lwp_locked(l, NULL));
   1629   1.52        ad 
   1630   1.52        ad 	old = l->l_mutex;
   1631  1.107        ad 	membar_exit();
   1632  1.178      matt 	l->l_mutex = mtx;
   1633   1.52        ad 	mutex_spin_exit(old);
   1634   1.52        ad }
   1635   1.52        ad 
   1636   1.60      yamt int
   1637   1.60      yamt lwp_trylock(struct lwp *l)
   1638   1.60      yamt {
   1639   1.60      yamt 	kmutex_t *old;
   1640   1.60      yamt 
   1641   1.60      yamt 	for (;;) {
   1642   1.60      yamt 		if (!mutex_tryenter(old = l->l_mutex))
   1643   1.60      yamt 			return 0;
   1644   1.60      yamt 		if (__predict_true(l->l_mutex == old))
   1645   1.60      yamt 			return 1;
   1646   1.60      yamt 		mutex_spin_exit(old);
   1647   1.60      yamt 	}
   1648   1.60      yamt }
   1649   1.60      yamt 
   1650  1.134     rmind void
   1651  1.211        ad lwp_unsleep(lwp_t *l, bool unlock)
   1652   1.96        ad {
   1653   1.96        ad 
   1654   1.96        ad 	KASSERT(mutex_owned(l->l_mutex));
   1655  1.211        ad 	(*l->l_syncobj->sobj_unsleep)(l, unlock);
   1656   1.96        ad }
   1657   1.96        ad 
   1658   1.52        ad /*
   1659   1.56     pavel  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1660   1.52        ad  * set.
   1661   1.52        ad  */
   1662   1.52        ad void
   1663   1.52        ad lwp_userret(struct lwp *l)
   1664   1.52        ad {
   1665   1.52        ad 	struct proc *p;
   1666   1.52        ad 	int sig;
   1667   1.52        ad 
   1668  1.114     rmind 	KASSERT(l == curlwp);
   1669  1.114     rmind 	KASSERT(l->l_stat == LSONPROC);
   1670   1.52        ad 	p = l->l_proc;
   1671   1.52        ad 
   1672   1.52        ad 	/*
   1673  1.167     rmind 	 * It is safe to do this read unlocked on a MP system..
   1674   1.52        ad 	 */
   1675  1.167     rmind 	while ((l->l_flag & LW_USERRET) != 0) {
   1676   1.52        ad 		/*
   1677   1.52        ad 		 * Process pending signals first, unless the process
   1678   1.61        ad 		 * is dumping core or exiting, where we will instead
   1679  1.101     rmind 		 * enter the LW_WSUSPEND case below.
   1680   1.52        ad 		 */
   1681   1.61        ad 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1682   1.61        ad 		    LW_PENDSIG) {
   1683  1.103        ad 			mutex_enter(p->p_lock);
   1684   1.52        ad 			while ((sig = issignal(l)) != 0)
   1685   1.52        ad 				postsig(sig);
   1686  1.103        ad 			mutex_exit(p->p_lock);
   1687   1.52        ad 		}
   1688   1.52        ad 
   1689   1.52        ad 		/*
   1690   1.52        ad 		 * Core-dump or suspend pending.
   1691   1.52        ad 		 *
   1692  1.159      matt 		 * In case of core dump, suspend ourselves, so that the kernel
   1693  1.159      matt 		 * stack and therefore the userland registers saved in the
   1694  1.159      matt 		 * trapframe are around for coredump() to write them out.
   1695  1.159      matt 		 * We also need to save any PCU resources that we have so that
   1696  1.159      matt 		 * they accessible for coredump().  We issue a wakeup on
   1697  1.159      matt 		 * p->p_lwpcv so that sigexit() will write the core file out
   1698  1.159      matt 		 * once all other LWPs are suspended.
   1699   1.52        ad 		 */
   1700   1.56     pavel 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1701  1.159      matt 			pcu_save_all(l);
   1702  1.103        ad 			mutex_enter(p->p_lock);
   1703   1.52        ad 			p->p_nrlwps--;
   1704   1.52        ad 			cv_broadcast(&p->p_lwpcv);
   1705   1.52        ad 			lwp_lock(l);
   1706   1.52        ad 			l->l_stat = LSSUSPENDED;
   1707  1.104        ad 			lwp_unlock(l);
   1708  1.103        ad 			mutex_exit(p->p_lock);
   1709  1.104        ad 			lwp_lock(l);
   1710  1.217        ad 			spc_lock(l->l_cpu);
   1711   1.64      yamt 			mi_switch(l);
   1712   1.52        ad 		}
   1713   1.52        ad 
   1714   1.52        ad 		/* Process is exiting. */
   1715   1.56     pavel 		if ((l->l_flag & LW_WEXIT) != 0) {
   1716   1.52        ad 			lwp_exit(l);
   1717   1.52        ad 			KASSERT(0);
   1718   1.52        ad 			/* NOTREACHED */
   1719   1.52        ad 		}
   1720  1.156     pooka 
   1721  1.156     pooka 		/* update lwpctl processor (for vfork child_return) */
   1722  1.156     pooka 		if (l->l_flag & LW_LWPCTL) {
   1723  1.156     pooka 			lwp_lock(l);
   1724  1.156     pooka 			KASSERT(kpreempt_disabled());
   1725  1.156     pooka 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1726  1.156     pooka 			l->l_lwpctl->lc_pctr++;
   1727  1.156     pooka 			l->l_flag &= ~LW_LWPCTL;
   1728  1.156     pooka 			lwp_unlock(l);
   1729  1.156     pooka 		}
   1730   1.52        ad 	}
   1731   1.52        ad }
   1732   1.52        ad 
   1733   1.52        ad /*
   1734   1.52        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1735   1.52        ad  */
   1736   1.52        ad void
   1737   1.52        ad lwp_need_userret(struct lwp *l)
   1738   1.52        ad {
   1739  1.209        ad 
   1740  1.209        ad 	KASSERT(!cpu_intr_p());
   1741   1.63        ad 	KASSERT(lwp_locked(l, NULL));
   1742   1.52        ad 
   1743   1.52        ad 	/*
   1744  1.209        ad 	 * If the LWP is in any state other than LSONPROC, we know that it
   1745  1.209        ad 	 * is executing in-kernel and will hit userret() on the way out.
   1746  1.209        ad 	 *
   1747  1.209        ad 	 * If the LWP is curlwp, then we know we'll be back out to userspace
   1748  1.209        ad 	 * soon (can't be called from a hardware interrupt here).
   1749  1.209        ad 	 *
   1750  1.209        ad 	 * Otherwise, we can't be sure what the LWP is doing, so first make
   1751  1.209        ad 	 * sure the update to l_flag will be globally visible, and then
   1752  1.209        ad 	 * force the LWP to take a trip through trap() where it will do
   1753  1.209        ad 	 * userret().
   1754  1.209        ad 	 */
   1755  1.209        ad 	if (l->l_stat == LSONPROC && l != curlwp) {
   1756  1.209        ad 		membar_producer();
   1757  1.209        ad 		cpu_signotify(l);
   1758  1.209        ad 	}
   1759   1.52        ad }
   1760   1.52        ad 
   1761   1.52        ad /*
   1762  1.233   thorpej  * Add one reference to an LWP.  Interlocked against lwp_drainrefs()
   1763  1.233   thorpej  * either by holding the proc's lock or by holding lwp_threadid_lock.
   1764  1.233   thorpej  */
   1765  1.233   thorpej static void
   1766  1.233   thorpej lwp_addref2(struct lwp *l)
   1767  1.233   thorpej {
   1768  1.233   thorpej 
   1769  1.233   thorpej 	KASSERT(l->l_stat != LSZOMB);
   1770  1.233   thorpej 
   1771  1.233   thorpej 	atomic_inc_uint(&l->l_refcnt);
   1772  1.233   thorpej }
   1773  1.233   thorpej 
   1774  1.233   thorpej /*
   1775   1.52        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1776   1.52        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1777   1.52        ad  */
   1778   1.52        ad void
   1779   1.52        ad lwp_addref(struct lwp *l)
   1780   1.52        ad {
   1781   1.52        ad 
   1782  1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1783  1.233   thorpej 	lwp_addref2(l);
   1784   1.52        ad }
   1785   1.52        ad 
   1786   1.52        ad /*
   1787   1.52        ad  * Remove one reference to an LWP.  If this is the last reference,
   1788   1.52        ad  * then we must finalize the LWP's death.
   1789   1.52        ad  */
   1790   1.52        ad void
   1791   1.52        ad lwp_delref(struct lwp *l)
   1792   1.52        ad {
   1793   1.52        ad 	struct proc *p = l->l_proc;
   1794   1.52        ad 
   1795  1.103        ad 	mutex_enter(p->p_lock);
   1796  1.142  christos 	lwp_delref2(l);
   1797  1.142  christos 	mutex_exit(p->p_lock);
   1798  1.142  christos }
   1799  1.142  christos 
   1800  1.142  christos /*
   1801  1.142  christos  * Remove one reference to an LWP.  If this is the last reference,
   1802  1.142  christos  * then we must finalize the LWP's death.  The proc mutex is held
   1803  1.142  christos  * on entry.
   1804  1.142  christos  */
   1805  1.142  christos void
   1806  1.142  christos lwp_delref2(struct lwp *l)
   1807  1.142  christos {
   1808  1.142  christos 	struct proc *p = l->l_proc;
   1809  1.142  christos 
   1810  1.142  christos 	KASSERT(mutex_owned(p->p_lock));
   1811   1.72        ad 	KASSERT(l->l_stat != LSZOMB);
   1812  1.233   thorpej 	KASSERT(atomic_load_relaxed(&l->l_refcnt) > 0);
   1813  1.231        ad 
   1814  1.233   thorpej 	if (atomic_dec_uint_nv(&l->l_refcnt) == 0)
   1815   1.76        ad 		cv_broadcast(&p->p_lwpcv);
   1816   1.52        ad }
   1817   1.52        ad 
   1818   1.52        ad /*
   1819  1.233   thorpej  * Drain all references to the current LWP.  Returns true if
   1820  1.233   thorpej  * we blocked.
   1821   1.52        ad  */
   1822  1.233   thorpej bool
   1823   1.52        ad lwp_drainrefs(struct lwp *l)
   1824   1.52        ad {
   1825   1.52        ad 	struct proc *p = l->l_proc;
   1826  1.233   thorpej 	bool rv = false;
   1827   1.52        ad 
   1828  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1829   1.52        ad 
   1830  1.233   thorpej 	/*
   1831  1.233   thorpej 	 * Lookups in the lwp_threadid_map hold lwp_threadid_lock
   1832  1.233   thorpej 	 * as a reader, increase l_refcnt, release it, and then
   1833  1.233   thorpej 	 * acquire p_lock to check for LPR_DRAINING.  By taking
   1834  1.233   thorpej 	 * lwp_threadid_lock as a writer here we ensure that either
   1835  1.233   thorpej 	 * we see the increase in l_refcnt or that they see LPR_DRAINING.
   1836  1.233   thorpej 	 */
   1837  1.233   thorpej 	rw_enter(&lwp_threadid_lock, RW_WRITER);
   1838  1.233   thorpej 	l->l_prflag |= LPR_DRAINING;
   1839  1.233   thorpej 	rw_exit(&lwp_threadid_lock);
   1840  1.233   thorpej 
   1841  1.233   thorpej 	while (atomic_load_relaxed(&l->l_refcnt) > 0) {
   1842  1.233   thorpej 		rv = true;
   1843  1.103        ad 		cv_wait(&p->p_lwpcv, p->p_lock);
   1844  1.233   thorpej 	}
   1845  1.233   thorpej 	return rv;
   1846   1.37        ad }
   1847   1.41   thorpej 
   1848   1.41   thorpej /*
   1849  1.127        ad  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1850  1.127        ad  * be held.
   1851  1.127        ad  */
   1852  1.127        ad bool
   1853  1.127        ad lwp_alive(lwp_t *l)
   1854  1.127        ad {
   1855  1.127        ad 
   1856  1.127        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1857  1.127        ad 
   1858  1.127        ad 	switch (l->l_stat) {
   1859  1.127        ad 	case LSSLEEP:
   1860  1.127        ad 	case LSRUN:
   1861  1.127        ad 	case LSONPROC:
   1862  1.127        ad 	case LSSTOP:
   1863  1.127        ad 	case LSSUSPENDED:
   1864  1.127        ad 		return true;
   1865  1.127        ad 	default:
   1866  1.127        ad 		return false;
   1867  1.127        ad 	}
   1868  1.127        ad }
   1869  1.127        ad 
   1870  1.127        ad /*
   1871  1.127        ad  * Return first live LWP in the process.
   1872  1.127        ad  */
   1873  1.127        ad lwp_t *
   1874  1.127        ad lwp_find_first(proc_t *p)
   1875  1.127        ad {
   1876  1.127        ad 	lwp_t *l;
   1877  1.127        ad 
   1878  1.127        ad 	KASSERT(mutex_owned(p->p_lock));
   1879  1.127        ad 
   1880  1.127        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1881  1.127        ad 		if (lwp_alive(l)) {
   1882  1.127        ad 			return l;
   1883  1.127        ad 		}
   1884  1.127        ad 	}
   1885  1.127        ad 
   1886  1.127        ad 	return NULL;
   1887  1.127        ad }
   1888  1.127        ad 
   1889  1.127        ad /*
   1890   1.78        ad  * Allocate a new lwpctl structure for a user LWP.
   1891   1.78        ad  */
   1892   1.78        ad int
   1893   1.78        ad lwp_ctl_alloc(vaddr_t *uaddr)
   1894   1.78        ad {
   1895   1.78        ad 	lcproc_t *lp;
   1896   1.78        ad 	u_int bit, i, offset;
   1897   1.78        ad 	struct uvm_object *uao;
   1898   1.78        ad 	int error;
   1899   1.78        ad 	lcpage_t *lcp;
   1900   1.78        ad 	proc_t *p;
   1901   1.78        ad 	lwp_t *l;
   1902   1.78        ad 
   1903   1.78        ad 	l = curlwp;
   1904   1.78        ad 	p = l->l_proc;
   1905   1.78        ad 
   1906  1.156     pooka 	/* don't allow a vforked process to create lwp ctls */
   1907  1.156     pooka 	if (p->p_lflag & PL_PPWAIT)
   1908  1.156     pooka 		return EBUSY;
   1909  1.156     pooka 
   1910   1.81        ad 	if (l->l_lcpage != NULL) {
   1911   1.81        ad 		lcp = l->l_lcpage;
   1912   1.81        ad 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1913  1.143     njoly 		return 0;
   1914   1.81        ad 	}
   1915   1.78        ad 
   1916   1.78        ad 	/* First time around, allocate header structure for the process. */
   1917   1.78        ad 	if ((lp = p->p_lwpctl) == NULL) {
   1918   1.78        ad 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1919   1.78        ad 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1920   1.78        ad 		lp->lp_uao = NULL;
   1921   1.78        ad 		TAILQ_INIT(&lp->lp_pages);
   1922  1.103        ad 		mutex_enter(p->p_lock);
   1923   1.78        ad 		if (p->p_lwpctl == NULL) {
   1924   1.78        ad 			p->p_lwpctl = lp;
   1925  1.103        ad 			mutex_exit(p->p_lock);
   1926   1.78        ad 		} else {
   1927  1.103        ad 			mutex_exit(p->p_lock);
   1928   1.78        ad 			mutex_destroy(&lp->lp_lock);
   1929   1.78        ad 			kmem_free(lp, sizeof(*lp));
   1930   1.78        ad 			lp = p->p_lwpctl;
   1931   1.78        ad 		}
   1932   1.78        ad 	}
   1933   1.78        ad 
   1934   1.78        ad  	/*
   1935   1.78        ad  	 * Set up an anonymous memory region to hold the shared pages.
   1936   1.78        ad  	 * Map them into the process' address space.  The user vmspace
   1937   1.78        ad  	 * gets the first reference on the UAO.
   1938   1.78        ad  	 */
   1939   1.78        ad 	mutex_enter(&lp->lp_lock);
   1940   1.78        ad 	if (lp->lp_uao == NULL) {
   1941   1.78        ad 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1942   1.78        ad 		lp->lp_cur = 0;
   1943   1.78        ad 		lp->lp_max = LWPCTL_UAREA_SZ;
   1944   1.78        ad 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1945  1.182    martin 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
   1946  1.182    martin 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1947   1.78        ad 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1948   1.78        ad 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1949   1.78        ad 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1950   1.78        ad 		if (error != 0) {
   1951   1.78        ad 			uao_detach(lp->lp_uao);
   1952   1.78        ad 			lp->lp_uao = NULL;
   1953   1.78        ad 			mutex_exit(&lp->lp_lock);
   1954   1.78        ad 			return error;
   1955   1.78        ad 		}
   1956   1.78        ad 	}
   1957   1.78        ad 
   1958   1.78        ad 	/* Get a free block and allocate for this LWP. */
   1959   1.78        ad 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1960   1.78        ad 		if (lcp->lcp_nfree != 0)
   1961   1.78        ad 			break;
   1962   1.78        ad 	}
   1963   1.78        ad 	if (lcp == NULL) {
   1964   1.78        ad 		/* Nothing available - try to set up a free page. */
   1965   1.78        ad 		if (lp->lp_cur == lp->lp_max) {
   1966   1.78        ad 			mutex_exit(&lp->lp_lock);
   1967   1.78        ad 			return ENOMEM;
   1968   1.78        ad 		}
   1969   1.78        ad 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1970  1.189       chs 
   1971   1.78        ad 		/*
   1972   1.78        ad 		 * Wire the next page down in kernel space.  Since this
   1973   1.78        ad 		 * is a new mapping, we must add a reference.
   1974   1.78        ad 		 */
   1975   1.78        ad 		uao = lp->lp_uao;
   1976   1.78        ad 		(*uao->pgops->pgo_reference)(uao);
   1977   1.99        ad 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1978   1.78        ad 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1979   1.78        ad 		    uao, lp->lp_cur, PAGE_SIZE,
   1980   1.78        ad 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1981   1.78        ad 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1982   1.78        ad 		if (error != 0) {
   1983   1.78        ad 			mutex_exit(&lp->lp_lock);
   1984   1.78        ad 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1985   1.78        ad 			(*uao->pgops->pgo_detach)(uao);
   1986   1.78        ad 			return error;
   1987   1.78        ad 		}
   1988   1.89      yamt 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1989   1.89      yamt 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1990   1.89      yamt 		if (error != 0) {
   1991   1.89      yamt 			mutex_exit(&lp->lp_lock);
   1992   1.89      yamt 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1993   1.89      yamt 			    lcp->lcp_kaddr + PAGE_SIZE);
   1994   1.89      yamt 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1995   1.89      yamt 			return error;
   1996   1.89      yamt 		}
   1997   1.78        ad 		/* Prepare the page descriptor and link into the list. */
   1998   1.78        ad 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1999   1.78        ad 		lp->lp_cur += PAGE_SIZE;
   2000   1.78        ad 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   2001   1.78        ad 		lcp->lcp_rotor = 0;
   2002   1.78        ad 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   2003   1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   2004   1.78        ad 	}
   2005   1.78        ad 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   2006   1.78        ad 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   2007   1.78        ad 			i = 0;
   2008   1.78        ad 	}
   2009   1.78        ad 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   2010  1.193     kamil 	lcp->lcp_bitmap[i] ^= (1U << bit);
   2011   1.78        ad 	lcp->lcp_rotor = i;
   2012   1.78        ad 	lcp->lcp_nfree--;
   2013   1.78        ad 	l->l_lcpage = lcp;
   2014   1.78        ad 	offset = (i << 5) + bit;
   2015   1.78        ad 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   2016   1.78        ad 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   2017   1.78        ad 	mutex_exit(&lp->lp_lock);
   2018   1.78        ad 
   2019  1.107        ad 	KPREEMPT_DISABLE(l);
   2020  1.195     skrll 	l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
   2021  1.107        ad 	KPREEMPT_ENABLE(l);
   2022   1.78        ad 
   2023   1.78        ad 	return 0;
   2024   1.78        ad }
   2025   1.78        ad 
   2026   1.78        ad /*
   2027   1.78        ad  * Free an lwpctl structure back to the per-process list.
   2028   1.78        ad  */
   2029   1.78        ad void
   2030   1.78        ad lwp_ctl_free(lwp_t *l)
   2031   1.78        ad {
   2032  1.156     pooka 	struct proc *p = l->l_proc;
   2033   1.78        ad 	lcproc_t *lp;
   2034   1.78        ad 	lcpage_t *lcp;
   2035   1.78        ad 	u_int map, offset;
   2036   1.78        ad 
   2037  1.156     pooka 	/* don't free a lwp context we borrowed for vfork */
   2038  1.156     pooka 	if (p->p_lflag & PL_PPWAIT) {
   2039  1.156     pooka 		l->l_lwpctl = NULL;
   2040  1.156     pooka 		return;
   2041  1.156     pooka 	}
   2042  1.156     pooka 
   2043  1.156     pooka 	lp = p->p_lwpctl;
   2044   1.78        ad 	KASSERT(lp != NULL);
   2045   1.78        ad 
   2046   1.78        ad 	lcp = l->l_lcpage;
   2047   1.78        ad 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   2048   1.78        ad 	KASSERT(offset < LWPCTL_PER_PAGE);
   2049   1.78        ad 
   2050   1.78        ad 	mutex_enter(&lp->lp_lock);
   2051   1.78        ad 	lcp->lcp_nfree++;
   2052   1.78        ad 	map = offset >> 5;
   2053  1.194     kamil 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
   2054   1.78        ad 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   2055   1.78        ad 		lcp->lcp_rotor = map;
   2056   1.78        ad 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   2057   1.78        ad 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   2058   1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   2059   1.78        ad 	}
   2060   1.78        ad 	mutex_exit(&lp->lp_lock);
   2061   1.78        ad }
   2062   1.78        ad 
   2063   1.78        ad /*
   2064   1.78        ad  * Process is exiting; tear down lwpctl state.  This can only be safely
   2065   1.78        ad  * called by the last LWP in the process.
   2066   1.78        ad  */
   2067   1.78        ad void
   2068   1.78        ad lwp_ctl_exit(void)
   2069   1.78        ad {
   2070   1.78        ad 	lcpage_t *lcp, *next;
   2071   1.78        ad 	lcproc_t *lp;
   2072   1.78        ad 	proc_t *p;
   2073   1.78        ad 	lwp_t *l;
   2074   1.78        ad 
   2075   1.78        ad 	l = curlwp;
   2076   1.78        ad 	l->l_lwpctl = NULL;
   2077   1.95        ad 	l->l_lcpage = NULL;
   2078   1.78        ad 	p = l->l_proc;
   2079   1.78        ad 	lp = p->p_lwpctl;
   2080   1.78        ad 
   2081   1.78        ad 	KASSERT(lp != NULL);
   2082   1.78        ad 	KASSERT(p->p_nlwps == 1);
   2083   1.78        ad 
   2084   1.78        ad 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   2085   1.78        ad 		next = TAILQ_NEXT(lcp, lcp_chain);
   2086   1.78        ad 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   2087   1.78        ad 		    lcp->lcp_kaddr + PAGE_SIZE);
   2088   1.78        ad 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   2089   1.78        ad 	}
   2090   1.78        ad 
   2091   1.78        ad 	if (lp->lp_uao != NULL) {
   2092   1.78        ad 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   2093   1.78        ad 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   2094   1.78        ad 	}
   2095   1.78        ad 
   2096   1.78        ad 	mutex_destroy(&lp->lp_lock);
   2097   1.78        ad 	kmem_free(lp, sizeof(*lp));
   2098   1.78        ad 	p->p_lwpctl = NULL;
   2099   1.78        ad }
   2100   1.84      yamt 
   2101  1.130        ad /*
   2102  1.130        ad  * Return the current LWP's "preemption counter".  Used to detect
   2103  1.130        ad  * preemption across operations that can tolerate preemption without
   2104  1.130        ad  * crashing, but which may generate incorrect results if preempted.
   2105  1.130        ad  */
   2106  1.130        ad uint64_t
   2107  1.130        ad lwp_pctr(void)
   2108  1.130        ad {
   2109  1.130        ad 
   2110  1.130        ad 	return curlwp->l_ncsw;
   2111  1.130        ad }
   2112  1.130        ad 
   2113  1.151       chs /*
   2114  1.151       chs  * Set an LWP's private data pointer.
   2115  1.151       chs  */
   2116  1.151       chs int
   2117  1.151       chs lwp_setprivate(struct lwp *l, void *ptr)
   2118  1.151       chs {
   2119  1.151       chs 	int error = 0;
   2120  1.151       chs 
   2121  1.151       chs 	l->l_private = ptr;
   2122  1.151       chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
   2123  1.151       chs 	error = cpu_lwp_setprivate(l, ptr);
   2124  1.151       chs #endif
   2125  1.151       chs 	return error;
   2126  1.151       chs }
   2127  1.151       chs 
   2128  1.226        ad /*
   2129  1.226        ad  * Renumber the first and only LWP in a process on exec() or fork().
   2130  1.226        ad  * Don't bother with p_treelock here as this is the only live LWP in
   2131  1.226        ad  * the proc right now.
   2132  1.226        ad  */
   2133  1.226        ad void
   2134  1.226        ad lwp_renumber(lwp_t *l, lwpid_t lid)
   2135  1.226        ad {
   2136  1.226        ad 	lwp_t *l2 __diagused;
   2137  1.226        ad 	proc_t *p = l->l_proc;
   2138  1.226        ad 	int error;
   2139  1.226        ad 
   2140  1.226        ad 	KASSERT(p->p_nlwps == 1);
   2141  1.226        ad 
   2142  1.226        ad 	while (l->l_lid != lid) {
   2143  1.226        ad 		mutex_enter(p->p_lock);
   2144  1.226        ad 		error = radix_tree_insert_node(&p->p_lwptree, lid - 1, l);
   2145  1.226        ad 		if (error == 0) {
   2146  1.226        ad 			l2 = radix_tree_remove_node(&p->p_lwptree,
   2147  1.226        ad 			    (uint64_t)(l->l_lid - 1));
   2148  1.226        ad 			KASSERT(l2 == l);
   2149  1.226        ad 			p->p_nlwpid = lid + 1;
   2150  1.226        ad 			l->l_lid = lid;
   2151  1.226        ad 		}
   2152  1.226        ad 		mutex_exit(p->p_lock);
   2153  1.226        ad 
   2154  1.226        ad 		if (error == 0)
   2155  1.226        ad 			break;
   2156  1.226        ad 
   2157  1.226        ad 		KASSERT(error == ENOMEM);
   2158  1.226        ad 		radix_tree_await_memory();
   2159  1.226        ad 	}
   2160  1.226        ad }
   2161  1.226        ad 
   2162  1.233   thorpej #define	LWP_TID_MASK	0x3fffffff		/* placeholder */
   2163  1.233   thorpej 
   2164  1.233   thorpej static void
   2165  1.233   thorpej lwp_threadid_init(void)
   2166  1.233   thorpej {
   2167  1.233   thorpej 	rw_init(&lwp_threadid_lock);
   2168  1.233   thorpej 	lwp_threadid_map = thmap_create(0, NULL, THMAP_NOCOPY);
   2169  1.233   thorpej }
   2170  1.233   thorpej 
   2171  1.233   thorpej static void
   2172  1.233   thorpej lwp_threadid_alloc(struct lwp * const l)
   2173  1.233   thorpej {
   2174  1.233   thorpej 
   2175  1.233   thorpej 	KASSERT(l == curlwp);
   2176  1.233   thorpej 	KASSERT(l->l___tid == 0);
   2177  1.233   thorpej 
   2178  1.233   thorpej 	for (;;) {
   2179  1.233   thorpej 		l->l___tid = cprng_fast32() & LWP_TID_MASK;
   2180  1.233   thorpej 		if (l->l___tid != 0 &&
   2181  1.233   thorpej 		    /*
   2182  1.233   thorpej 		     * There is no need to take the lwp_threadid_lock
   2183  1.233   thorpej 		     * while inserting into the map: internally, the
   2184  1.233   thorpej 		     * map is already concurrency-safe, and the lock
   2185  1.233   thorpej 		     * is only needed to serialize removal with respect
   2186  1.233   thorpej 		     * to lookup.
   2187  1.233   thorpej 		     */
   2188  1.233   thorpej 		    thmap_put(lwp_threadid_map,
   2189  1.233   thorpej 			      &l->l___tid, sizeof(l->l___tid), l) == l) {
   2190  1.233   thorpej 			/* claimed! */
   2191  1.233   thorpej 			return;
   2192  1.233   thorpej 		}
   2193  1.233   thorpej 		preempt_point();
   2194  1.233   thorpej 	}
   2195  1.233   thorpej }
   2196  1.233   thorpej 
   2197  1.233   thorpej static inline void
   2198  1.233   thorpej lwp_threadid_gc_serialize(void)
   2199  1.233   thorpej {
   2200  1.233   thorpej 
   2201  1.233   thorpej 	/*
   2202  1.233   thorpej 	 * By acquiring the lock as a writer, we will know that
   2203  1.233   thorpej 	 * all of the existing readers have drained away and thus
   2204  1.233   thorpej 	 * the GC is safe.
   2205  1.233   thorpej 	 */
   2206  1.233   thorpej 	rw_enter(&lwp_threadid_lock, RW_WRITER);
   2207  1.233   thorpej 	rw_exit(&lwp_threadid_lock);
   2208  1.233   thorpej }
   2209  1.233   thorpej 
   2210  1.233   thorpej static void
   2211  1.233   thorpej lwp_threadid_free(struct lwp * const l)
   2212  1.233   thorpej {
   2213  1.233   thorpej 
   2214  1.233   thorpej 	KASSERT(l == curlwp);
   2215  1.233   thorpej 	KASSERT(l->l___tid != 0);
   2216  1.233   thorpej 
   2217  1.233   thorpej 	/*
   2218  1.233   thorpej 	 * Ensure that anyone who finds this entry in the lock-free lookup
   2219  1.233   thorpej 	 * path sees that the key has been deleted by serialzing with the
   2220  1.233   thorpej 	 * examination of l___tid.
   2221  1.233   thorpej 	 *
   2222  1.233   thorpej 	 * N.B. l___tid field must be zapped *after* deleting from the map
   2223  1.233   thorpej 	 * because that field is being used as the key storage by thmap.
   2224  1.233   thorpej 	 */
   2225  1.233   thorpej 	KASSERT(mutex_owned(l->l_proc->p_lock));
   2226  1.233   thorpej 	struct lwp * const ldiag __diagused = thmap_del(lwp_threadid_map,
   2227  1.233   thorpej 	    &l->l___tid, sizeof(l->l___tid));
   2228  1.233   thorpej 	l->l___tid = 0;
   2229  1.233   thorpej 	mutex_exit(l->l_proc->p_lock);
   2230  1.233   thorpej 
   2231  1.233   thorpej 	KASSERT(l == ldiag);
   2232  1.233   thorpej 
   2233  1.233   thorpej 	void * const gc_ref = thmap_stage_gc(lwp_threadid_map);
   2234  1.233   thorpej 	lwp_threadid_gc_serialize();
   2235  1.233   thorpej 	thmap_gc(lwp_threadid_map, gc_ref);
   2236  1.233   thorpej }
   2237  1.233   thorpej 
   2238  1.233   thorpej /*
   2239  1.233   thorpej  * Return the current LWP's global thread ID.  Only the current LWP
   2240  1.233   thorpej  * should ever use this value, unless it is guaranteed that the LWP
   2241  1.233   thorpej  * is paused (and then it should be accessed directly, rather than
   2242  1.233   thorpej  * by this accessor).
   2243  1.233   thorpej  */
   2244  1.233   thorpej lwpid_t
   2245  1.233   thorpej lwp_gettid(void)
   2246  1.233   thorpej {
   2247  1.233   thorpej 	struct lwp * const l = curlwp;
   2248  1.233   thorpej 
   2249  1.233   thorpej 	if (l->l___tid == 0)
   2250  1.233   thorpej 		lwp_threadid_alloc(l);
   2251  1.233   thorpej 
   2252  1.233   thorpej 	return l->l___tid;
   2253  1.233   thorpej }
   2254  1.233   thorpej 
   2255  1.233   thorpej /*
   2256  1.233   thorpej  * Lookup an LWP by global thread ID.  Care must be taken because
   2257  1.233   thorpej  * callers of this are operating outside the normal locking protocol.
   2258  1.233   thorpej  * We return the LWP with an additional reference that must be dropped
   2259  1.233   thorpej  * with lwp_delref().
   2260  1.233   thorpej  */
   2261  1.233   thorpej struct lwp *
   2262  1.233   thorpej lwp_getref_tid(lwpid_t tid)
   2263  1.233   thorpej {
   2264  1.233   thorpej 	struct lwp *l, *rv;
   2265  1.233   thorpej 
   2266  1.233   thorpej 	rw_enter(&lwp_threadid_lock, RW_READER);
   2267  1.233   thorpej 	l = thmap_get(lwp_threadid_map, &tid, sizeof(&tid));
   2268  1.233   thorpej 	if (__predict_false(l == NULL)) {
   2269  1.233   thorpej 		rw_exit(&lwp_threadid_lock);
   2270  1.233   thorpej 		return NULL;
   2271  1.233   thorpej 	}
   2272  1.233   thorpej 
   2273  1.233   thorpej 	/*
   2274  1.233   thorpej 	 * Acquire a reference on the lwp.  It is safe to do this unlocked
   2275  1.233   thorpej 	 * here because lwp_drainrefs() serializes with us by taking the
   2276  1.233   thorpej 	 * lwp_threadid_lock as a writer.
   2277  1.233   thorpej 	 */
   2278  1.233   thorpej 	lwp_addref2(l);
   2279  1.233   thorpej 	rw_exit(&lwp_threadid_lock);
   2280  1.233   thorpej 
   2281  1.233   thorpej 	/*
   2282  1.233   thorpej 	 * Now verify that our reference is valid.
   2283  1.233   thorpej 	 */
   2284  1.233   thorpej 	mutex_enter(l->l_proc->p_lock);
   2285  1.233   thorpej 	if (__predict_false((l->l_prflag & LPR_DRAINING) != 0 ||
   2286  1.233   thorpej 			    l->l___tid == 0)) {
   2287  1.233   thorpej 		lwp_delref2(l);
   2288  1.233   thorpej 		rv = NULL;
   2289  1.233   thorpej 	} else {
   2290  1.233   thorpej 		rv = l;
   2291  1.233   thorpej 	}
   2292  1.233   thorpej 	mutex_exit(l->l_proc->p_lock);
   2293  1.233   thorpej 
   2294  1.233   thorpej 	return rv;
   2295  1.233   thorpej }
   2296  1.233   thorpej 
   2297  1.233   thorpej /*
   2298  1.233   thorpej  * Perform any thread-related cleanup on LWP exit.
   2299  1.233   thorpej  * N.B. l->l_proc->p_lock must be HELD on entry but will
   2300  1.233   thorpej  * be released before returning!
   2301  1.233   thorpej  */
   2302  1.233   thorpej void
   2303  1.233   thorpej lwp_thread_cleanup(struct lwp *l)
   2304  1.233   thorpej {
   2305  1.233   thorpej 	KASSERT(l == curlwp);
   2306  1.233   thorpej 	const lwpid_t tid = l->l___tid;
   2307  1.233   thorpej 
   2308  1.233   thorpej 	KASSERT(mutex_owned(l->l_proc->p_lock));
   2309  1.233   thorpej 
   2310  1.233   thorpej 	if (__predict_false(tid != 0)) {
   2311  1.233   thorpej 		/*
   2312  1.233   thorpej 		 * Drop our thread ID.  This will also unlock
   2313  1.233   thorpej 		 * our proc.
   2314  1.233   thorpej 		 */
   2315  1.233   thorpej 		lwp_threadid_free(l);
   2316  1.233   thorpej 	} else {
   2317  1.233   thorpej 		/*
   2318  1.233   thorpej 		 * No thread cleanup was required; just unlock
   2319  1.233   thorpej 		 * the proc.
   2320  1.233   thorpej 		 */
   2321  1.233   thorpej 		mutex_exit(l->l_proc->p_lock);
   2322  1.233   thorpej 	}
   2323  1.233   thorpej }
   2324  1.233   thorpej 
   2325   1.84      yamt #if defined(DDB)
   2326  1.153     rmind #include <machine/pcb.h>
   2327  1.153     rmind 
   2328   1.84      yamt void
   2329   1.84      yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2330   1.84      yamt {
   2331   1.84      yamt 	lwp_t *l;
   2332   1.84      yamt 
   2333   1.84      yamt 	LIST_FOREACH(l, &alllwp, l_list) {
   2334   1.84      yamt 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   2335   1.84      yamt 
   2336   1.84      yamt 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   2337   1.84      yamt 			continue;
   2338   1.84      yamt 		}
   2339   1.84      yamt 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   2340   1.84      yamt 		    (void *)addr, (void *)stack,
   2341   1.84      yamt 		    (size_t)(addr - stack), l);
   2342   1.84      yamt 	}
   2343   1.84      yamt }
   2344   1.84      yamt #endif /* defined(DDB) */
   2345