kern_lwp.c revision 1.236 1 1.236 thorpej /* $NetBSD: kern_lwp.c,v 1.236 2020/04/26 18:53:33 thorpej Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.220 ad * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
5 1.220 ad * The NetBSD Foundation, Inc.
6 1.2 thorpej * All rights reserved.
7 1.2 thorpej *
8 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.52 ad * by Nathan J. Williams, and Andrew Doran.
10 1.2 thorpej *
11 1.2 thorpej * Redistribution and use in source and binary forms, with or without
12 1.2 thorpej * modification, are permitted provided that the following conditions
13 1.2 thorpej * are met:
14 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.2 thorpej * notice, this list of conditions and the following disclaimer.
16 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.2 thorpej * documentation and/or other materials provided with the distribution.
19 1.2 thorpej *
20 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.2 thorpej */
32 1.9 lukem
33 1.52 ad /*
34 1.52 ad * Overview
35 1.52 ad *
36 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of
37 1.52 ad * execution within the kernel. The core state of an LWP is described
38 1.66 ad * by "struct lwp", also known as lwp_t.
39 1.52 ad *
40 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
41 1.52 ad * Every process contains at least one LWP, but may contain more. The
42 1.52 ad * process describes attributes shared among all of its LWPs such as a
43 1.52 ad * private address space, global execution state (stopped, active,
44 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
45 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel.
46 1.52 ad *
47 1.52 ad * Execution states
48 1.52 ad *
49 1.52 ad * At any given time, an LWP has overall state that is described by
50 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
51 1.52 ad * set is guaranteed to represent the absolute, current state of the
52 1.52 ad * LWP:
53 1.101 rmind *
54 1.101 rmind * LSONPROC
55 1.101 rmind *
56 1.101 rmind * On processor: the LWP is executing on a CPU, either in the
57 1.101 rmind * kernel or in user space.
58 1.101 rmind *
59 1.101 rmind * LSRUN
60 1.101 rmind *
61 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be
62 1.101 rmind * chosen to run by an idle processor, or by a processor that
63 1.101 rmind * has been asked to preempt a currently runnning but lower
64 1.134 rmind * priority LWP.
65 1.101 rmind *
66 1.101 rmind * LSIDL
67 1.101 rmind *
68 1.101 rmind * Idle: the LWP has been created but has not yet executed,
69 1.66 ad * or it has ceased executing a unit of work and is waiting
70 1.66 ad * to be started again.
71 1.101 rmind *
72 1.101 rmind * LSSUSPENDED:
73 1.101 rmind *
74 1.101 rmind * Suspended: the LWP has had its execution suspended by
75 1.52 ad * another LWP in the same process using the _lwp_suspend()
76 1.52 ad * system call. User-level LWPs also enter the suspended
77 1.52 ad * state when the system is shutting down.
78 1.52 ad *
79 1.52 ad * The second set represent a "statement of intent" on behalf of the
80 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
81 1.66 ad * sleeping or idle. It is expected to take the necessary action to
82 1.101 rmind * stop executing or become "running" again within a short timeframe.
83 1.227 ad * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 1.101 rmind * Importantly, it indicates that its state is tied to a CPU.
85 1.101 rmind *
86 1.235 thorpej * LSLARVAL:
87 1.235 thorpej *
88 1.235 thorpej * Born, but not fully mature: the LWP is in the process
89 1.235 thorpej * of being constructed. This state exists so that the
90 1.235 thorpej * LWP can occupy a slot in the PID table, but without
91 1.235 thorpej * having to worry about being touched; lookups of the
92 1.235 thorpej * LWP will fail while in this state. The LWP will become
93 1.235 thorpej * visible in the PID table once its state transitions
94 1.235 thorpej * to LSIDL.
95 1.235 thorpej *
96 1.101 rmind * LSZOMB:
97 1.101 rmind *
98 1.101 rmind * Dead or dying: the LWP has released most of its resources
99 1.129 ad * and is about to switch away into oblivion, or has already
100 1.66 ad * switched away. When it switches away, its few remaining
101 1.66 ad * resources can be collected.
102 1.101 rmind *
103 1.101 rmind * LSSLEEP:
104 1.101 rmind *
105 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and
106 1.101 rmind * has switched away or will switch away shortly to allow other
107 1.66 ad * LWPs to run on the CPU.
108 1.101 rmind *
109 1.101 rmind * LSSTOP:
110 1.101 rmind *
111 1.101 rmind * Stopped: the LWP has been stopped as a result of a job
112 1.101 rmind * control signal, or as a result of the ptrace() interface.
113 1.101 rmind *
114 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle
115 1.101 rmind * signals that they receive, but will not return to user space
116 1.101 rmind * until their process' state is changed away from stopped.
117 1.101 rmind *
118 1.101 rmind * Single LWPs within a process can not be set stopped
119 1.101 rmind * selectively: all actions that can stop or continue LWPs
120 1.101 rmind * occur at the process level.
121 1.101 rmind *
122 1.52 ad * State transitions
123 1.52 ad *
124 1.66 ad * Note that the LSSTOP state may only be set when returning to
125 1.66 ad * user space in userret(), or when sleeping interruptably. The
126 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting
127 1.66 ad * those states, we try to ensure that the LWPs will release all
128 1.66 ad * locks that they hold, and at a minimum try to ensure that the
129 1.66 ad * LWP can be set runnable again by a signal.
130 1.52 ad *
131 1.52 ad * LWPs may transition states in the following ways:
132 1.52 ad *
133 1.235 thorpej * LARVAL ----> IDL
134 1.235 thorpej *
135 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
136 1.129 ad * > SLEEP
137 1.129 ad * > STOPPED
138 1.52 ad * > SUSPENDED
139 1.52 ad * > ZOMB
140 1.129 ad * > IDL (special cases)
141 1.52 ad *
142 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
143 1.129 ad * > SLEEP
144 1.52 ad *
145 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
146 1.101 rmind * > RUN > SUSPENDED
147 1.101 rmind * > STOPPED > STOPPED
148 1.129 ad * > ONPROC (special cases)
149 1.52 ad *
150 1.129 ad * Some state transitions are only possible with kernel threads (eg
151 1.129 ad * ONPROC -> IDL) and happen under tightly controlled circumstances
152 1.129 ad * free of unwanted side effects.
153 1.66 ad *
154 1.114 rmind * Migration
155 1.114 rmind *
156 1.114 rmind * Migration of threads from one CPU to another could be performed
157 1.114 rmind * internally by the scheduler via sched_takecpu() or sched_catchlwp()
158 1.114 rmind * functions. The universal lwp_migrate() function should be used for
159 1.114 rmind * any other cases. Subsystems in the kernel must be aware that CPU
160 1.114 rmind * of LWP may change, while it is not locked.
161 1.114 rmind *
162 1.52 ad * Locking
163 1.52 ad *
164 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
165 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering
166 1.52 ad * each field are documented in sys/lwp.h.
167 1.52 ad *
168 1.66 ad * State transitions must be made with the LWP's general lock held,
169 1.152 rmind * and may cause the LWP's lock pointer to change. Manipulation of
170 1.66 ad * the general lock is not performed directly, but through calls to
171 1.152 rmind * lwp_lock(), lwp_unlock() and others. It should be noted that the
172 1.152 rmind * adaptive locks are not allowed to be released while the LWP's lock
173 1.152 rmind * is being held (unlike for other spin-locks).
174 1.52 ad *
175 1.52 ad * States and their associated locks:
176 1.52 ad *
177 1.212 ad * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
178 1.52 ad *
179 1.212 ad * Always covered by spc_lwplock, which protects LWPs not
180 1.212 ad * associated with any other sync object. This is a per-CPU
181 1.212 ad * lock and matches lwp::l_cpu.
182 1.52 ad *
183 1.212 ad * LSRUN:
184 1.52 ad *
185 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
186 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
187 1.52 ad *
188 1.52 ad * LSSLEEP:
189 1.52 ad *
190 1.212 ad * Covered by a lock associated with the sleep queue (sometimes
191 1.221 ad * a turnstile sleep queue) that the LWP resides on. This can
192 1.221 ad * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
193 1.52 ad *
194 1.212 ad * LSSTOP:
195 1.101 rmind *
196 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
197 1.66 ad * l_mutex references the sleep queue lock. If the LWP was
198 1.52 ad * runnable or on the CPU when halted, or has been removed from
199 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock.
200 1.52 ad *
201 1.52 ad * The lock order is as follows:
202 1.52 ad *
203 1.212 ad * sleepq -> turnstile -> spc_lwplock -> spc_mutex
204 1.52 ad *
205 1.103 ad * Each process has an scheduler state lock (proc::p_lock), and a
206 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
207 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
208 1.103 ad * following states, p_lock must be held and the process wide counters
209 1.52 ad * adjusted:
210 1.52 ad *
211 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
212 1.52 ad *
213 1.129 ad * (But not always for kernel threads. There are some special cases
214 1.212 ad * as mentioned above: soft interrupts, and the idle loops.)
215 1.129 ad *
216 1.52 ad * Note that an LWP is considered running or likely to run soon if in
217 1.52 ad * one of the following states. This affects the value of p_nrlwps:
218 1.52 ad *
219 1.52 ad * LSRUN, LSONPROC, LSSLEEP
220 1.52 ad *
221 1.103 ad * p_lock does not need to be held when transitioning among these
222 1.129 ad * three states, hence p_lock is rarely taken for state transitions.
223 1.52 ad */
224 1.52 ad
225 1.9 lukem #include <sys/cdefs.h>
226 1.236 thorpej __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.236 2020/04/26 18:53:33 thorpej Exp $");
227 1.8 martin
228 1.84 yamt #include "opt_ddb.h"
229 1.52 ad #include "opt_lockdebug.h"
230 1.139 darran #include "opt_dtrace.h"
231 1.2 thorpej
232 1.47 hannken #define _LWP_API_PRIVATE
233 1.47 hannken
234 1.2 thorpej #include <sys/param.h>
235 1.2 thorpej #include <sys/systm.h>
236 1.64 yamt #include <sys/cpu.h>
237 1.2 thorpej #include <sys/pool.h>
238 1.2 thorpej #include <sys/proc.h>
239 1.2 thorpej #include <sys/syscallargs.h>
240 1.57 dsl #include <sys/syscall_stats.h>
241 1.37 ad #include <sys/kauth.h>
242 1.52 ad #include <sys/sleepq.h>
243 1.52 ad #include <sys/lockdebug.h>
244 1.52 ad #include <sys/kmem.h>
245 1.91 rmind #include <sys/pset.h>
246 1.75 ad #include <sys/intr.h>
247 1.78 ad #include <sys/lwpctl.h>
248 1.81 ad #include <sys/atomic.h>
249 1.131 ad #include <sys/filedesc.h>
250 1.196 hannken #include <sys/fstrans.h>
251 1.138 darran #include <sys/dtrace_bsd.h>
252 1.141 darran #include <sys/sdt.h>
253 1.203 kamil #include <sys/ptrace.h>
254 1.157 rmind #include <sys/xcall.h>
255 1.169 christos #include <sys/uidinfo.h>
256 1.169 christos #include <sys/sysctl.h>
257 1.201 ozaki #include <sys/psref.h>
258 1.208 maxv #include <sys/msan.h>
259 1.232 maxv #include <sys/kcov.h>
260 1.233 thorpej #include <sys/cprng.h>
261 1.236 thorpej #include <sys/futex.h>
262 1.138 darran
263 1.2 thorpej #include <uvm/uvm_extern.h>
264 1.80 skrll #include <uvm/uvm_object.h>
265 1.2 thorpej
266 1.152 rmind static pool_cache_t lwp_cache __read_mostly;
267 1.152 rmind struct lwplist alllwp __cacheline_aligned;
268 1.41 thorpej
269 1.233 thorpej /*
270 1.233 thorpej * Lookups by global thread ID operate outside of the normal LWP
271 1.233 thorpej * locking protocol.
272 1.233 thorpej *
273 1.235 thorpej * => When we look up an LWP in the table, we take lwp_threadid_lock as
274 1.233 thorpej * a READER. While still holding the lock, we add a reference to
275 1.233 thorpej * the LWP (using atomics). After adding the reference, we drop the
276 1.233 thorpej * lwp_threadid_lock. We now take p_lock and check the state of the
277 1.235 thorpej * LWP. If the LWP is draining its references, we drop the reference
278 1.235 thorpej * we took and return NULL. Otherwise, the lookup has succeeded and
279 1.235 thorpej * the LWP is returned with a reference count that the caller is
280 1.235 thorpej * responsible for dropping.
281 1.233 thorpej *
282 1.233 thorpej * => When a LWP is exiting, it also drains off any references being
283 1.233 thorpej * held by others. However, the reference in the lookup path is taken
284 1.233 thorpej * outside the normal locking protocol. There needs to be additional
285 1.233 thorpej * serialization so that EITHER lwp_drainrefs() sees the incremented
286 1.235 thorpej * reference count so that it knows to wait, OR lwp_getref_lwpid() sees
287 1.233 thorpej * that the LWP is waiting to drain and thus drops the reference
288 1.233 thorpej * immediately. This is achieved by taking lwp_threadid_lock as a
289 1.233 thorpej * WRITER when setting LPR_DRAINING. Note the locking order:
290 1.233 thorpej *
291 1.233 thorpej * p_lock -> lwp_threadid_lock
292 1.233 thorpej */
293 1.233 thorpej static krwlock_t lwp_threadid_lock __cacheline_aligned;
294 1.233 thorpej
295 1.157 rmind static void lwp_dtor(void *, void *);
296 1.157 rmind
297 1.141 darran /* DTrace proc provider probes */
298 1.180 christos SDT_PROVIDER_DEFINE(proc);
299 1.180 christos
300 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
301 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
302 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
303 1.141 darran
304 1.213 ad struct turnstile turnstile0 __cacheline_aligned;
305 1.147 pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
306 1.147 pooka #ifdef LWP0_CPU_INFO
307 1.147 pooka .l_cpu = LWP0_CPU_INFO,
308 1.147 pooka #endif
309 1.154 matt #ifdef LWP0_MD_INITIALIZER
310 1.154 matt .l_md = LWP0_MD_INITIALIZER,
311 1.154 matt #endif
312 1.147 pooka .l_proc = &proc0,
313 1.235 thorpej .l_lid = 0, /* we own proc0's slot in the pid table */
314 1.147 pooka .l_flag = LW_SYSTEM,
315 1.147 pooka .l_stat = LSONPROC,
316 1.147 pooka .l_ts = &turnstile0,
317 1.147 pooka .l_syncobj = &sched_syncobj,
318 1.231 ad .l_refcnt = 0,
319 1.147 pooka .l_priority = PRI_USER + NPRI_USER - 1,
320 1.147 pooka .l_inheritedprio = -1,
321 1.147 pooka .l_class = SCHED_OTHER,
322 1.147 pooka .l_psid = PS_NONE,
323 1.147 pooka .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
324 1.147 pooka .l_name = __UNCONST("swapper"),
325 1.147 pooka .l_fd = &filedesc0,
326 1.147 pooka };
327 1.147 pooka
328 1.233 thorpej static void lwp_threadid_init(void);
329 1.169 christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
330 1.169 christos
331 1.169 christos /*
332 1.169 christos * sysctl helper routine for kern.maxlwp. Ensures that the new
333 1.169 christos * values are not too low or too high.
334 1.169 christos */
335 1.169 christos static int
336 1.169 christos sysctl_kern_maxlwp(SYSCTLFN_ARGS)
337 1.169 christos {
338 1.169 christos int error, nmaxlwp;
339 1.169 christos struct sysctlnode node;
340 1.169 christos
341 1.169 christos nmaxlwp = maxlwp;
342 1.169 christos node = *rnode;
343 1.169 christos node.sysctl_data = &nmaxlwp;
344 1.169 christos error = sysctl_lookup(SYSCTLFN_CALL(&node));
345 1.169 christos if (error || newp == NULL)
346 1.169 christos return error;
347 1.169 christos
348 1.169 christos if (nmaxlwp < 0 || nmaxlwp >= 65536)
349 1.169 christos return EINVAL;
350 1.169 christos if (nmaxlwp > cpu_maxlwp())
351 1.169 christos return EINVAL;
352 1.169 christos maxlwp = nmaxlwp;
353 1.169 christos
354 1.169 christos return 0;
355 1.169 christos }
356 1.169 christos
357 1.169 christos static void
358 1.169 christos sysctl_kern_lwp_setup(void)
359 1.169 christos {
360 1.169 christos struct sysctllog *clog = NULL;
361 1.169 christos
362 1.169 christos sysctl_createv(&clog, 0, NULL, NULL,
363 1.169 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
364 1.169 christos CTLTYPE_INT, "maxlwp",
365 1.169 christos SYSCTL_DESCR("Maximum number of simultaneous threads"),
366 1.169 christos sysctl_kern_maxlwp, 0, NULL, 0,
367 1.169 christos CTL_KERN, CTL_CREATE, CTL_EOL);
368 1.169 christos }
369 1.169 christos
370 1.41 thorpej void
371 1.41 thorpej lwpinit(void)
372 1.41 thorpej {
373 1.41 thorpej
374 1.152 rmind LIST_INIT(&alllwp);
375 1.144 pooka lwpinit_specificdata();
376 1.87 ad lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
377 1.157 rmind "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
378 1.169 christos
379 1.169 christos maxlwp = cpu_maxlwp();
380 1.169 christos sysctl_kern_lwp_setup();
381 1.233 thorpej lwp_threadid_init();
382 1.41 thorpej }
383 1.41 thorpej
384 1.147 pooka void
385 1.147 pooka lwp0_init(void)
386 1.147 pooka {
387 1.147 pooka struct lwp *l = &lwp0;
388 1.147 pooka
389 1.147 pooka KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
390 1.147 pooka
391 1.147 pooka LIST_INSERT_HEAD(&alllwp, l, l_list);
392 1.147 pooka
393 1.147 pooka callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
394 1.147 pooka callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
395 1.147 pooka cv_init(&l->l_sigcv, "sigwait");
396 1.171 rmind cv_init(&l->l_waitcv, "vfork");
397 1.147 pooka
398 1.147 pooka kauth_cred_hold(proc0.p_cred);
399 1.147 pooka l->l_cred = proc0.p_cred;
400 1.147 pooka
401 1.164 yamt kdtrace_thread_ctor(NULL, l);
402 1.147 pooka lwp_initspecific(l);
403 1.147 pooka
404 1.147 pooka SYSCALL_TIME_LWP_INIT(l);
405 1.147 pooka }
406 1.147 pooka
407 1.157 rmind static void
408 1.157 rmind lwp_dtor(void *arg, void *obj)
409 1.157 rmind {
410 1.157 rmind lwp_t *l = obj;
411 1.157 rmind (void)l;
412 1.157 rmind
413 1.157 rmind /*
414 1.157 rmind * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
415 1.157 rmind * calls will exit before memory of LWP is returned to the pool, where
416 1.157 rmind * KVA of LWP structure might be freed and re-used for other purposes.
417 1.157 rmind * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
418 1.157 rmind * callers, therefore cross-call to all CPUs will do the job. Also,
419 1.157 rmind * the value of l->l_cpu must be still valid at this point.
420 1.157 rmind */
421 1.157 rmind KASSERT(l->l_cpu != NULL);
422 1.205 uwe xc_barrier(0);
423 1.157 rmind }
424 1.157 rmind
425 1.52 ad /*
426 1.52 ad * Set an suspended.
427 1.52 ad *
428 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
429 1.52 ad * LWP before return.
430 1.52 ad */
431 1.2 thorpej int
432 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
433 1.2 thorpej {
434 1.52 ad int error;
435 1.2 thorpej
436 1.103 ad KASSERT(mutex_owned(t->l_proc->p_lock));
437 1.63 ad KASSERT(lwp_locked(t, NULL));
438 1.33 chs
439 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
440 1.2 thorpej
441 1.52 ad /*
442 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
443 1.52 ad * else or deadlock could occur. We won't return to userspace.
444 1.2 thorpej */
445 1.109 rmind if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
446 1.52 ad lwp_unlock(t);
447 1.52 ad return (EDEADLK);
448 1.2 thorpej }
449 1.2 thorpej
450 1.204 kamil if ((t->l_flag & LW_DBGSUSPEND) != 0) {
451 1.204 kamil lwp_unlock(t);
452 1.204 kamil return 0;
453 1.204 kamil }
454 1.204 kamil
455 1.52 ad error = 0;
456 1.2 thorpej
457 1.52 ad switch (t->l_stat) {
458 1.52 ad case LSRUN:
459 1.52 ad case LSONPROC:
460 1.56 pavel t->l_flag |= LW_WSUSPEND;
461 1.52 ad lwp_need_userret(t);
462 1.52 ad lwp_unlock(t);
463 1.52 ad break;
464 1.2 thorpej
465 1.52 ad case LSSLEEP:
466 1.56 pavel t->l_flag |= LW_WSUSPEND;
467 1.2 thorpej
468 1.2 thorpej /*
469 1.52 ad * Kick the LWP and try to get it to the kernel boundary
470 1.52 ad * so that it will release any locks that it holds.
471 1.52 ad * setrunnable() will release the lock.
472 1.2 thorpej */
473 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
474 1.52 ad setrunnable(t);
475 1.52 ad else
476 1.52 ad lwp_unlock(t);
477 1.52 ad break;
478 1.2 thorpej
479 1.52 ad case LSSUSPENDED:
480 1.52 ad lwp_unlock(t);
481 1.52 ad break;
482 1.17 manu
483 1.52 ad case LSSTOP:
484 1.56 pavel t->l_flag |= LW_WSUSPEND;
485 1.52 ad setrunnable(t);
486 1.52 ad break;
487 1.2 thorpej
488 1.52 ad case LSIDL:
489 1.52 ad case LSZOMB:
490 1.52 ad error = EINTR; /* It's what Solaris does..... */
491 1.52 ad lwp_unlock(t);
492 1.52 ad break;
493 1.2 thorpej }
494 1.2 thorpej
495 1.69 rmind return (error);
496 1.2 thorpej }
497 1.2 thorpej
498 1.52 ad /*
499 1.52 ad * Restart a suspended LWP.
500 1.52 ad *
501 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
502 1.52 ad * LWP before return.
503 1.52 ad */
504 1.2 thorpej void
505 1.2 thorpej lwp_continue(struct lwp *l)
506 1.2 thorpej {
507 1.2 thorpej
508 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
509 1.63 ad KASSERT(lwp_locked(l, NULL));
510 1.52 ad
511 1.52 ad /* If rebooting or not suspended, then just bail out. */
512 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
513 1.52 ad lwp_unlock(l);
514 1.2 thorpej return;
515 1.10 fvdl }
516 1.2 thorpej
517 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
518 1.2 thorpej
519 1.204 kamil if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
520 1.52 ad lwp_unlock(l);
521 1.52 ad return;
522 1.2 thorpej }
523 1.2 thorpej
524 1.52 ad /* setrunnable() will release the lock. */
525 1.52 ad setrunnable(l);
526 1.2 thorpej }
527 1.2 thorpej
528 1.52 ad /*
529 1.142 christos * Restart a stopped LWP.
530 1.142 christos *
531 1.142 christos * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
532 1.142 christos * LWP before return.
533 1.142 christos */
534 1.142 christos void
535 1.142 christos lwp_unstop(struct lwp *l)
536 1.142 christos {
537 1.142 christos struct proc *p = l->l_proc;
538 1.167 rmind
539 1.142 christos KASSERT(mutex_owned(proc_lock));
540 1.142 christos KASSERT(mutex_owned(p->p_lock));
541 1.142 christos
542 1.142 christos lwp_lock(l);
543 1.142 christos
544 1.204 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
545 1.204 kamil
546 1.142 christos /* If not stopped, then just bail out. */
547 1.142 christos if (l->l_stat != LSSTOP) {
548 1.142 christos lwp_unlock(l);
549 1.142 christos return;
550 1.142 christos }
551 1.142 christos
552 1.142 christos p->p_stat = SACTIVE;
553 1.142 christos p->p_sflag &= ~PS_STOPPING;
554 1.142 christos
555 1.142 christos if (!p->p_waited)
556 1.142 christos p->p_pptr->p_nstopchild--;
557 1.142 christos
558 1.142 christos if (l->l_wchan == NULL) {
559 1.142 christos /* setrunnable() will release the lock. */
560 1.142 christos setrunnable(l);
561 1.183 christos } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
562 1.163 christos /* setrunnable() so we can receive the signal */
563 1.163 christos setrunnable(l);
564 1.142 christos } else {
565 1.142 christos l->l_stat = LSSLEEP;
566 1.142 christos p->p_nrlwps++;
567 1.142 christos lwp_unlock(l);
568 1.142 christos }
569 1.142 christos }
570 1.142 christos
571 1.142 christos /*
572 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
573 1.52 ad * non-zero, we are waiting for a specific LWP.
574 1.52 ad *
575 1.103 ad * Must be called with p->p_lock held.
576 1.52 ad */
577 1.2 thorpej int
578 1.173 rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
579 1.2 thorpej {
580 1.173 rmind const lwpid_t curlid = l->l_lid;
581 1.173 rmind proc_t *p = l->l_proc;
582 1.223 ad lwp_t *l2, *next;
583 1.173 rmind int error;
584 1.2 thorpej
585 1.103 ad KASSERT(mutex_owned(p->p_lock));
586 1.52 ad
587 1.52 ad p->p_nlwpwait++;
588 1.63 ad l->l_waitingfor = lid;
589 1.52 ad
590 1.52 ad for (;;) {
591 1.173 rmind int nfound;
592 1.173 rmind
593 1.52 ad /*
594 1.52 ad * Avoid a race between exit1() and sigexit(): if the
595 1.52 ad * process is dumping core, then we need to bail out: call
596 1.52 ad * into lwp_userret() where we will be suspended until the
597 1.52 ad * deed is done.
598 1.52 ad */
599 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
600 1.103 ad mutex_exit(p->p_lock);
601 1.52 ad lwp_userret(l);
602 1.173 rmind KASSERT(false);
603 1.52 ad }
604 1.52 ad
605 1.52 ad /*
606 1.52 ad * First off, drain any detached LWP that is waiting to be
607 1.52 ad * reaped.
608 1.52 ad */
609 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
610 1.52 ad p->p_zomblwp = NULL;
611 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
612 1.103 ad mutex_enter(p->p_lock);
613 1.52 ad }
614 1.52 ad
615 1.52 ad /*
616 1.52 ad * Now look for an LWP to collect. If the whole process is
617 1.52 ad * exiting, count detached LWPs as eligible to be collected,
618 1.52 ad * but don't drain them here.
619 1.52 ad */
620 1.52 ad nfound = 0;
621 1.63 ad error = 0;
622 1.223 ad
623 1.223 ad /*
624 1.223 ad * If given a specific LID, go via the tree and make sure
625 1.223 ad * it's not detached.
626 1.223 ad */
627 1.223 ad if (lid != 0) {
628 1.235 thorpej l2 = proc_find_lwp(p, lid);
629 1.223 ad if (l2 == NULL) {
630 1.223 ad error = ESRCH;
631 1.223 ad break;
632 1.223 ad }
633 1.223 ad KASSERT(l2->l_lid == lid);
634 1.223 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
635 1.223 ad error = EINVAL;
636 1.223 ad break;
637 1.223 ad }
638 1.223 ad } else {
639 1.223 ad l2 = LIST_FIRST(&p->p_lwps);
640 1.223 ad }
641 1.223 ad for (; l2 != NULL; l2 = next) {
642 1.223 ad next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
643 1.223 ad
644 1.63 ad /*
645 1.63 ad * If a specific wait and the target is waiting on
646 1.63 ad * us, then avoid deadlock. This also traps LWPs
647 1.63 ad * that try to wait on themselves.
648 1.63 ad *
649 1.63 ad * Note that this does not handle more complicated
650 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
651 1.63 ad * can still be killed so it is not a major problem.
652 1.63 ad */
653 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
654 1.63 ad error = EDEADLK;
655 1.63 ad break;
656 1.63 ad }
657 1.63 ad if (l2 == l)
658 1.52 ad continue;
659 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
660 1.63 ad nfound += exiting;
661 1.63 ad continue;
662 1.63 ad }
663 1.63 ad if (lid != 0) {
664 1.63 ad /*
665 1.63 ad * Mark this LWP as the first waiter, if there
666 1.63 ad * is no other.
667 1.63 ad */
668 1.63 ad if (l2->l_waiter == 0)
669 1.63 ad l2->l_waiter = curlid;
670 1.63 ad } else if (l2->l_waiter != 0) {
671 1.63 ad /*
672 1.63 ad * It already has a waiter - so don't
673 1.63 ad * collect it. If the waiter doesn't
674 1.63 ad * grab it we'll get another chance
675 1.63 ad * later.
676 1.63 ad */
677 1.63 ad nfound++;
678 1.52 ad continue;
679 1.52 ad }
680 1.52 ad nfound++;
681 1.2 thorpej
682 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
683 1.52 ad if (l2->l_stat != LSZOMB)
684 1.52 ad continue;
685 1.2 thorpej
686 1.63 ad /*
687 1.63 ad * We're no longer waiting. Reset the "first waiter"
688 1.63 ad * pointer on the target, in case it was us.
689 1.63 ad */
690 1.63 ad l->l_waitingfor = 0;
691 1.63 ad l2->l_waiter = 0;
692 1.63 ad p->p_nlwpwait--;
693 1.2 thorpej if (departed)
694 1.2 thorpej *departed = l2->l_lid;
695 1.75 ad sched_lwp_collect(l2);
696 1.63 ad
697 1.63 ad /* lwp_free() releases the proc lock. */
698 1.63 ad lwp_free(l2, false, false);
699 1.103 ad mutex_enter(p->p_lock);
700 1.52 ad return 0;
701 1.52 ad }
702 1.2 thorpej
703 1.63 ad if (error != 0)
704 1.63 ad break;
705 1.52 ad if (nfound == 0) {
706 1.52 ad error = ESRCH;
707 1.52 ad break;
708 1.52 ad }
709 1.63 ad
710 1.63 ad /*
711 1.173 rmind * Note: since the lock will be dropped, need to restart on
712 1.173 rmind * wakeup to run all LWPs again, e.g. there may be new LWPs.
713 1.63 ad */
714 1.63 ad if (exiting) {
715 1.52 ad KASSERT(p->p_nlwps > 1);
716 1.222 ad error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
717 1.173 rmind break;
718 1.52 ad }
719 1.63 ad
720 1.63 ad /*
721 1.234 ad * Break out if all LWPs are in _lwp_wait(). There are
722 1.234 ad * other ways to hang the process with _lwp_wait(), but the
723 1.234 ad * sleep is interruptable so little point checking for them.
724 1.63 ad */
725 1.234 ad if (p->p_nlwpwait == p->p_nlwps) {
726 1.52 ad error = EDEADLK;
727 1.52 ad break;
728 1.2 thorpej }
729 1.63 ad
730 1.63 ad /*
731 1.63 ad * Sit around and wait for something to happen. We'll be
732 1.63 ad * awoken if any of the conditions examined change: if an
733 1.63 ad * LWP exits, is collected, or is detached.
734 1.63 ad */
735 1.103 ad if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
736 1.52 ad break;
737 1.2 thorpej }
738 1.2 thorpej
739 1.63 ad /*
740 1.63 ad * We didn't find any LWPs to collect, we may have received a
741 1.63 ad * signal, or some other condition has caused us to bail out.
742 1.63 ad *
743 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
744 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
745 1.63 ad * so that they can re-check for zombies and for deadlock.
746 1.63 ad */
747 1.63 ad if (lid != 0) {
748 1.235 thorpej l2 = proc_find_lwp(p, lid);
749 1.223 ad KASSERT(l2 == NULL || l2->l_lid == lid);
750 1.223 ad
751 1.223 ad if (l2 != NULL && l2->l_waiter == curlid)
752 1.223 ad l2->l_waiter = 0;
753 1.63 ad }
754 1.52 ad p->p_nlwpwait--;
755 1.63 ad l->l_waitingfor = 0;
756 1.63 ad cv_broadcast(&p->p_lwpcv);
757 1.63 ad
758 1.52 ad return error;
759 1.2 thorpej }
760 1.2 thorpej
761 1.223 ad /*
762 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
763 1.52 ad * The new LWP is created in state LSIDL and must be set running,
764 1.52 ad * suspended, or stopped by the caller.
765 1.52 ad */
766 1.2 thorpej int
767 1.134 rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
768 1.188 christos void *stack, size_t stacksize, void (*func)(void *), void *arg,
769 1.188 christos lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
770 1.188 christos const stack_t *sigstk)
771 1.2 thorpej {
772 1.215 ad struct lwp *l2;
773 1.52 ad turnstile_t *ts;
774 1.2 thorpej
775 1.107 ad KASSERT(l1 == curlwp || l1->l_proc == &proc0);
776 1.107 ad
777 1.52 ad /*
778 1.215 ad * Enforce limits, excluding the first lwp and kthreads. We must
779 1.215 ad * use the process credentials here when adjusting the limit, as
780 1.215 ad * they are what's tied to the accounting entity. However for
781 1.215 ad * authorizing the action, we'll use the LWP's credentials.
782 1.169 christos */
783 1.215 ad mutex_enter(p2->p_lock);
784 1.169 christos if (p2->p_nlwps != 0 && p2 != &proc0) {
785 1.215 ad uid_t uid = kauth_cred_getuid(p2->p_cred);
786 1.169 christos int count = chglwpcnt(uid, 1);
787 1.169 christos if (__predict_false(count >
788 1.169 christos p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
789 1.169 christos if (kauth_authorize_process(l1->l_cred,
790 1.169 christos KAUTH_PROCESS_RLIMIT, p2,
791 1.169 christos KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
792 1.169 christos &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
793 1.169 christos != 0) {
794 1.170 christos (void)chglwpcnt(uid, -1);
795 1.215 ad mutex_exit(p2->p_lock);
796 1.170 christos return EAGAIN;
797 1.169 christos }
798 1.169 christos }
799 1.169 christos }
800 1.169 christos
801 1.169 christos /*
802 1.52 ad * First off, reap any detached LWP waiting to be collected.
803 1.52 ad * We can re-use its LWP structure and turnstile.
804 1.52 ad */
805 1.215 ad if ((l2 = p2->p_zomblwp) != NULL) {
806 1.215 ad p2->p_zomblwp = NULL;
807 1.215 ad lwp_free(l2, true, false);
808 1.215 ad /* p2 now unlocked by lwp_free() */
809 1.52 ad ts = l2->l_ts;
810 1.75 ad KASSERT(l2->l_inheritedprio == -1);
811 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
812 1.52 ad memset(l2, 0, sizeof(*l2));
813 1.52 ad l2->l_ts = ts;
814 1.215 ad } else {
815 1.215 ad mutex_exit(p2->p_lock);
816 1.215 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK);
817 1.215 ad memset(l2, 0, sizeof(*l2));
818 1.235 thorpej ts = l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
819 1.215 ad SLIST_INIT(&l2->l_pi_lenders);
820 1.52 ad }
821 1.2 thorpej
822 1.235 thorpej l2->l_stat = LSLARVAL;
823 1.2 thorpej l2->l_proc = p2;
824 1.231 ad l2->l_refcnt = 0;
825 1.75 ad l2->l_class = sclass;
826 1.116 ad
827 1.116 ad /*
828 1.235 thorpej * Allocate a process ID for this LWP. We need to do this now
829 1.235 thorpej * while we can still unwind if it fails. Beacuse we're marked
830 1.235 thorpej * as LARVAL, no lookups by the ID will succeed.
831 1.235 thorpej *
832 1.235 thorpej * N.B. this will always succeed for the first LWP in a process,
833 1.235 thorpej * because proc_alloc_lwpid() will usurp the slot. Also note
834 1.235 thorpej * that l2->l_proc MUST be valid so that lookups of the proc
835 1.235 thorpej * will succeed, even if the LWP itself is not visible.
836 1.235 thorpej */
837 1.235 thorpej if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
838 1.235 thorpej if (ts != &turnstile0)
839 1.235 thorpej pool_cache_put(turnstile_cache, ts);
840 1.235 thorpej l2->l_ts = NULL;
841 1.235 thorpej pool_cache_put(lwp_cache, l2);
842 1.235 thorpej return EAGAIN;
843 1.235 thorpej }
844 1.235 thorpej
845 1.235 thorpej /*
846 1.116 ad * If vfork(), we want the LWP to run fast and on the same CPU
847 1.116 ad * as its parent, so that it can reuse the VM context and cache
848 1.116 ad * footprint on the local CPU.
849 1.116 ad */
850 1.116 ad l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
851 1.82 ad l2->l_kpribase = PRI_KERNEL;
852 1.52 ad l2->l_priority = l1->l_priority;
853 1.75 ad l2->l_inheritedprio = -1;
854 1.185 christos l2->l_protectprio = -1;
855 1.185 christos l2->l_auxprio = -1;
856 1.222 ad l2->l_flag = 0;
857 1.88 ad l2->l_pflag = LP_MPSAFE;
858 1.131 ad TAILQ_INIT(&l2->l_ld_locks);
859 1.197 ozaki l2->l_psrefs = 0;
860 1.208 maxv kmsan_lwp_alloc(l2);
861 1.131 ad
862 1.131 ad /*
863 1.156 pooka * For vfork, borrow parent's lwpctl context if it exists.
864 1.156 pooka * This also causes us to return via lwp_userret.
865 1.156 pooka */
866 1.156 pooka if (flags & LWP_VFORK && l1->l_lwpctl) {
867 1.156 pooka l2->l_lwpctl = l1->l_lwpctl;
868 1.156 pooka l2->l_flag |= LW_LWPCTL;
869 1.156 pooka }
870 1.156 pooka
871 1.156 pooka /*
872 1.131 ad * If not the first LWP in the process, grab a reference to the
873 1.131 ad * descriptor table.
874 1.131 ad */
875 1.97 ad l2->l_fd = p2->p_fd;
876 1.131 ad if (p2->p_nlwps != 0) {
877 1.131 ad KASSERT(l1->l_proc == p2);
878 1.136 rmind fd_hold(l2);
879 1.131 ad } else {
880 1.131 ad KASSERT(l1->l_proc != p2);
881 1.131 ad }
882 1.41 thorpej
883 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
884 1.134 rmind /* Mark it as a system LWP. */
885 1.56 pavel l2->l_flag |= LW_SYSTEM;
886 1.52 ad }
887 1.2 thorpej
888 1.107 ad kpreempt_disable();
889 1.212 ad l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
890 1.107 ad l2->l_cpu = l1->l_cpu;
891 1.107 ad kpreempt_enable();
892 1.107 ad
893 1.138 darran kdtrace_thread_ctor(NULL, l2);
894 1.73 rmind lwp_initspecific(l2);
895 1.75 ad sched_lwp_fork(l1, l2);
896 1.37 ad lwp_update_creds(l2);
897 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
898 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
899 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
900 1.171 rmind cv_init(&l2->l_waitcv, "vfork");
901 1.52 ad l2->l_syncobj = &sched_syncobj;
902 1.201 ozaki PSREF_DEBUG_INIT_LWP(l2);
903 1.2 thorpej
904 1.2 thorpej if (rnewlwpp != NULL)
905 1.2 thorpej *rnewlwpp = l2;
906 1.2 thorpej
907 1.158 matt /*
908 1.158 matt * PCU state needs to be saved before calling uvm_lwp_fork() so that
909 1.158 matt * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
910 1.158 matt */
911 1.158 matt pcu_save_all(l1);
912 1.225 dogcow #if PCU_UNIT_COUNT > 0
913 1.224 riastrad l2->l_pcu_valid = l1->l_pcu_valid;
914 1.225 dogcow #endif
915 1.158 matt
916 1.137 rmind uvm_lwp_setuarea(l2, uaddr);
917 1.190 skrll uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
918 1.2 thorpej
919 1.235 thorpej mutex_enter(p2->p_lock);
920 1.151 chs
921 1.223 ad /*
922 1.235 thorpej * This renders l2 visible in the pid table once p2->p_lock is
923 1.235 thorpej * released.
924 1.223 ad */
925 1.235 thorpej l2->l_stat = LSIDL;
926 1.52 ad
927 1.52 ad if ((flags & LWP_DETACHED) != 0) {
928 1.52 ad l2->l_prflag = LPR_DETACHED;
929 1.52 ad p2->p_ndlwps++;
930 1.52 ad } else
931 1.52 ad l2->l_prflag = 0;
932 1.52 ad
933 1.223 ad if (l1->l_proc == p2) {
934 1.223 ad /*
935 1.223 ad * These flags are set while p_lock is held. Copy with
936 1.223 ad * p_lock held too, so the LWP doesn't sneak into the
937 1.223 ad * process without them being set.
938 1.223 ad */
939 1.222 ad l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
940 1.223 ad } else {
941 1.223 ad /* fork(): pending core/exit doesn't apply to child. */
942 1.222 ad l2->l_flag |= (l1->l_flag & LW_WREBOOT);
943 1.223 ad }
944 1.222 ad
945 1.188 christos l2->l_sigstk = *sigstk;
946 1.188 christos l2->l_sigmask = *sigmask;
947 1.176 christos TAILQ_INIT(&l2->l_sigpend.sp_info);
948 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
949 1.174 dsl LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
950 1.2 thorpej p2->p_nlwps++;
951 1.149 yamt p2->p_nrlwps++;
952 1.2 thorpej
953 1.162 rmind KASSERT(l2->l_affinity == NULL);
954 1.162 rmind
955 1.210 ad /* Inherit the affinity mask. */
956 1.210 ad if (l1->l_affinity) {
957 1.210 ad /*
958 1.210 ad * Note that we hold the state lock while inheriting
959 1.210 ad * the affinity to avoid race with sched_setaffinity().
960 1.210 ad */
961 1.210 ad lwp_lock(l1);
962 1.162 rmind if (l1->l_affinity) {
963 1.210 ad kcpuset_use(l1->l_affinity);
964 1.210 ad l2->l_affinity = l1->l_affinity;
965 1.117 christos }
966 1.210 ad lwp_unlock(l1);
967 1.91 rmind }
968 1.223 ad
969 1.223 ad /* This marks the end of the "must be atomic" section. */
970 1.128 rmind mutex_exit(p2->p_lock);
971 1.128 rmind
972 1.180 christos SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
973 1.141 darran
974 1.128 rmind mutex_enter(proc_lock);
975 1.128 rmind LIST_INSERT_HEAD(&alllwp, l2, l_list);
976 1.210 ad /* Inherit a processor-set */
977 1.210 ad l2->l_psid = l1->l_psid;
978 1.128 rmind mutex_exit(proc_lock);
979 1.91 rmind
980 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
981 1.57 dsl
982 1.16 manu if (p2->p_emul->e_lwp_fork)
983 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
984 1.16 manu
985 1.2 thorpej return (0);
986 1.2 thorpej }
987 1.2 thorpej
988 1.2 thorpej /*
989 1.212 ad * Set a new LWP running. If the process is stopping, then the LWP is
990 1.212 ad * created stopped.
991 1.212 ad */
992 1.212 ad void
993 1.212 ad lwp_start(lwp_t *l, int flags)
994 1.212 ad {
995 1.212 ad proc_t *p = l->l_proc;
996 1.212 ad
997 1.212 ad mutex_enter(p->p_lock);
998 1.212 ad lwp_lock(l);
999 1.212 ad KASSERT(l->l_stat == LSIDL);
1000 1.212 ad if ((flags & LWP_SUSPENDED) != 0) {
1001 1.212 ad /* It'll suspend itself in lwp_userret(). */
1002 1.212 ad l->l_flag |= LW_WSUSPEND;
1003 1.212 ad }
1004 1.212 ad if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1005 1.212 ad KASSERT(l->l_wchan == NULL);
1006 1.212 ad l->l_stat = LSSTOP;
1007 1.212 ad p->p_nrlwps--;
1008 1.212 ad lwp_unlock(l);
1009 1.212 ad } else {
1010 1.212 ad setrunnable(l);
1011 1.212 ad /* LWP now unlocked */
1012 1.212 ad }
1013 1.212 ad mutex_exit(p->p_lock);
1014 1.212 ad }
1015 1.212 ad
1016 1.212 ad /*
1017 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
1018 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
1019 1.64 yamt * previous LWP, at splsched.
1020 1.64 yamt */
1021 1.64 yamt void
1022 1.178 matt lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1023 1.64 yamt {
1024 1.227 ad kmutex_t *lock;
1025 1.218 ad
1026 1.178 matt KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1027 1.218 ad KASSERT(kpreempt_disabled());
1028 1.218 ad KASSERT(prev != NULL);
1029 1.227 ad KASSERT((prev->l_pflag & LP_RUNNING) != 0);
1030 1.218 ad KASSERT(curcpu()->ci_mtx_count == -2);
1031 1.218 ad
1032 1.227 ad /*
1033 1.227 ad * Immediately mark the previous LWP as no longer running and unlock
1034 1.227 ad * (to keep lock wait times short as possible). If a zombie, don't
1035 1.227 ad * touch after clearing LP_RUNNING as it could be reaped by another
1036 1.227 ad * CPU. Issue a memory barrier to ensure this.
1037 1.227 ad */
1038 1.227 ad lock = prev->l_mutex;
1039 1.227 ad if (__predict_false(prev->l_stat == LSZOMB)) {
1040 1.227 ad membar_sync();
1041 1.227 ad }
1042 1.227 ad prev->l_pflag &= ~LP_RUNNING;
1043 1.227 ad mutex_spin_exit(lock);
1044 1.64 yamt
1045 1.218 ad /* Correct spin mutex count after mi_switch(). */
1046 1.218 ad curcpu()->ci_mtx_count = 0;
1047 1.141 darran
1048 1.218 ad /* Install new VM context. */
1049 1.218 ad if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1050 1.218 ad pmap_activate(new_lwp);
1051 1.64 yamt }
1052 1.218 ad
1053 1.218 ad /* We remain at IPL_SCHED from mi_switch() - reset it. */
1054 1.181 skrll spl0();
1055 1.161 christos
1056 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
1057 1.218 ad SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1058 1.218 ad
1059 1.218 ad /* For kthreads, acquire kernel lock if not MPSAFE. */
1060 1.218 ad if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1061 1.178 matt KERNEL_LOCK(1, new_lwp);
1062 1.65 ad }
1063 1.64 yamt }
1064 1.64 yamt
1065 1.64 yamt /*
1066 1.65 ad * Exit an LWP.
1067 1.2 thorpej */
1068 1.2 thorpej void
1069 1.2 thorpej lwp_exit(struct lwp *l)
1070 1.2 thorpej {
1071 1.2 thorpej struct proc *p = l->l_proc;
1072 1.52 ad struct lwp *l2;
1073 1.65 ad bool current;
1074 1.65 ad
1075 1.65 ad current = (l == curlwp);
1076 1.2 thorpej
1077 1.114 rmind KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1078 1.131 ad KASSERT(p == curproc);
1079 1.2 thorpej
1080 1.180 christos SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1081 1.141 darran
1082 1.220 ad /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1083 1.218 ad LOCKDEBUG_BARRIER(NULL, 0);
1084 1.220 ad KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1085 1.16 manu
1086 1.2 thorpej /*
1087 1.52 ad * If we are the last live LWP in a process, we need to exit the
1088 1.52 ad * entire process. We do so with an exit status of zero, because
1089 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
1090 1.52 ad *
1091 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
1092 1.52 ad * must increment the count of zombies here.
1093 1.45 thorpej *
1094 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
1095 1.2 thorpej */
1096 1.103 ad mutex_enter(p->p_lock);
1097 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
1098 1.65 ad KASSERT(current == true);
1099 1.172 matt KASSERT(p != &proc0);
1100 1.184 christos exit1(l, 0, 0);
1101 1.19 jdolecek /* NOTREACHED */
1102 1.2 thorpej }
1103 1.52 ad p->p_nzlwps++;
1104 1.233 thorpej
1105 1.233 thorpej /*
1106 1.233 thorpej * Perform any required thread cleanup. Do this early so
1107 1.235 thorpej * anyone wanting to look us up with lwp_getref_lwpid() will
1108 1.235 thorpej * fail to find us before we become a zombie.
1109 1.233 thorpej *
1110 1.233 thorpej * N.B. this will unlock p->p_lock on our behalf.
1111 1.233 thorpej */
1112 1.233 thorpej lwp_thread_cleanup(l);
1113 1.52 ad
1114 1.52 ad if (p->p_emul->e_lwp_exit)
1115 1.52 ad (*p->p_emul->e_lwp_exit)(l);
1116 1.2 thorpej
1117 1.131 ad /* Drop filedesc reference. */
1118 1.131 ad fd_free();
1119 1.131 ad
1120 1.196 hannken /* Release fstrans private data. */
1121 1.196 hannken fstrans_lwp_dtor(l);
1122 1.196 hannken
1123 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
1124 1.145 pooka lwp_finispecific(l);
1125 1.45 thorpej
1126 1.52 ad /*
1127 1.52 ad * Release our cached credentials.
1128 1.52 ad */
1129 1.37 ad kauth_cred_free(l->l_cred);
1130 1.70 ad callout_destroy(&l->l_timeout_ch);
1131 1.65 ad
1132 1.65 ad /*
1133 1.198 kamil * If traced, report LWP exit event to the debugger.
1134 1.198 kamil *
1135 1.52 ad * Remove the LWP from the global list.
1136 1.151 chs * Free its LID from the PID namespace if needed.
1137 1.52 ad */
1138 1.102 ad mutex_enter(proc_lock);
1139 1.198 kamil
1140 1.199 kamil if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1141 1.198 kamil (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1142 1.198 kamil mutex_enter(p->p_lock);
1143 1.202 kamil if (ISSET(p->p_sflag, PS_WEXIT)) {
1144 1.202 kamil mutex_exit(p->p_lock);
1145 1.202 kamil /*
1146 1.202 kamil * We are exiting, bail out without informing parent
1147 1.202 kamil * about a terminating LWP as it would deadlock.
1148 1.202 kamil */
1149 1.202 kamil } else {
1150 1.203 kamil eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1151 1.202 kamil mutex_enter(proc_lock);
1152 1.202 kamil }
1153 1.198 kamil }
1154 1.198 kamil
1155 1.52 ad LIST_REMOVE(l, l_list);
1156 1.102 ad mutex_exit(proc_lock);
1157 1.19 jdolecek
1158 1.52 ad /*
1159 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
1160 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
1161 1.52 ad * mark it waiting for collection in the proc structure. Note that
1162 1.52 ad * before we can do that, we need to free any other dead, deatched
1163 1.52 ad * LWP waiting to meet its maker.
1164 1.231 ad *
1165 1.231 ad * All conditions need to be observed upon under the same hold of
1166 1.231 ad * p_lock, because if the lock is dropped any of them can change.
1167 1.52 ad */
1168 1.103 ad mutex_enter(p->p_lock);
1169 1.231 ad for (;;) {
1170 1.233 thorpej if (lwp_drainrefs(l))
1171 1.231 ad continue;
1172 1.231 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
1173 1.231 ad if ((l2 = p->p_zomblwp) != NULL) {
1174 1.231 ad p->p_zomblwp = NULL;
1175 1.231 ad lwp_free(l2, false, false);
1176 1.231 ad /* proc now unlocked */
1177 1.231 ad mutex_enter(p->p_lock);
1178 1.231 ad continue;
1179 1.231 ad }
1180 1.231 ad p->p_zomblwp = l;
1181 1.52 ad }
1182 1.231 ad break;
1183 1.52 ad }
1184 1.31 yamt
1185 1.52 ad /*
1186 1.52 ad * If we find a pending signal for the process and we have been
1187 1.151 chs * asked to check for signals, then we lose: arrange to have
1188 1.52 ad * all other LWPs in the process check for signals.
1189 1.52 ad */
1190 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
1191 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
1192 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1193 1.52 ad lwp_lock(l2);
1194 1.209 ad signotify(l2);
1195 1.52 ad lwp_unlock(l2);
1196 1.52 ad }
1197 1.31 yamt }
1198 1.31 yamt
1199 1.158 matt /*
1200 1.158 matt * Release any PCU resources before becoming a zombie.
1201 1.158 matt */
1202 1.158 matt pcu_discard_all(l);
1203 1.158 matt
1204 1.52 ad lwp_lock(l);
1205 1.52 ad l->l_stat = LSZOMB;
1206 1.162 rmind if (l->l_name != NULL) {
1207 1.90 ad strcpy(l->l_name, "(zombie)");
1208 1.128 rmind }
1209 1.52 ad lwp_unlock(l);
1210 1.2 thorpej p->p_nrlwps--;
1211 1.52 ad cv_broadcast(&p->p_lwpcv);
1212 1.78 ad if (l->l_lwpctl != NULL)
1213 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1214 1.103 ad mutex_exit(p->p_lock);
1215 1.52 ad
1216 1.52 ad /*
1217 1.52 ad * We can no longer block. At this point, lwp_free() may already
1218 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1219 1.52 ad *
1220 1.52 ad * Free MD LWP resources.
1221 1.52 ad */
1222 1.52 ad cpu_lwp_free(l, 0);
1223 1.2 thorpej
1224 1.65 ad if (current) {
1225 1.218 ad /* Switch away into oblivion. */
1226 1.218 ad lwp_lock(l);
1227 1.218 ad spc_lock(l->l_cpu);
1228 1.218 ad mi_switch(l);
1229 1.218 ad panic("lwp_exit");
1230 1.65 ad }
1231 1.2 thorpej }
1232 1.2 thorpej
1233 1.52 ad /*
1234 1.52 ad * Free a dead LWP's remaining resources.
1235 1.52 ad *
1236 1.52 ad * XXXLWP limits.
1237 1.52 ad */
1238 1.52 ad void
1239 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
1240 1.52 ad {
1241 1.52 ad struct proc *p = l->l_proc;
1242 1.100 ad struct rusage *ru;
1243 1.52 ad ksiginfoq_t kq;
1244 1.52 ad
1245 1.92 yamt KASSERT(l != curlwp);
1246 1.160 yamt KASSERT(last || mutex_owned(p->p_lock));
1247 1.92 yamt
1248 1.177 christos /*
1249 1.177 christos * We use the process credentials instead of the lwp credentials here
1250 1.177 christos * because the lwp credentials maybe cached (just after a setuid call)
1251 1.177 christos * and we don't want pay for syncing, since the lwp is going away
1252 1.177 christos * anyway
1253 1.177 christos */
1254 1.169 christos if (p != &proc0 && p->p_nlwps != 1)
1255 1.177 christos (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1256 1.218 ad
1257 1.52 ad /*
1258 1.223 ad * If this was not the last LWP in the process, then adjust counters
1259 1.223 ad * and unlock. This is done differently for the last LWP in exit1().
1260 1.52 ad */
1261 1.52 ad if (!last) {
1262 1.52 ad /*
1263 1.52 ad * Add the LWP's run time to the process' base value.
1264 1.52 ad * This needs to co-incide with coming off p_lwps.
1265 1.52 ad */
1266 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime);
1267 1.64 yamt p->p_pctcpu += l->l_pctcpu;
1268 1.100 ad ru = &p->p_stats->p_ru;
1269 1.100 ad ruadd(ru, &l->l_ru);
1270 1.100 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1271 1.100 ad ru->ru_nivcsw += l->l_nivcsw;
1272 1.52 ad LIST_REMOVE(l, l_sibling);
1273 1.52 ad p->p_nlwps--;
1274 1.52 ad p->p_nzlwps--;
1275 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
1276 1.52 ad p->p_ndlwps--;
1277 1.63 ad
1278 1.235 thorpej /* Free the LWP ID. */
1279 1.235 thorpej proc_free_lwpid(p, l->l_lid);
1280 1.223 ad
1281 1.63 ad /*
1282 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
1283 1.63 ad * deadlock.
1284 1.63 ad */
1285 1.63 ad cv_broadcast(&p->p_lwpcv);
1286 1.103 ad mutex_exit(p->p_lock);
1287 1.63 ad }
1288 1.52 ad
1289 1.63 ad /*
1290 1.63 ad * In the unlikely event that the LWP is still on the CPU,
1291 1.228 ad * then spin until it has switched away.
1292 1.63 ad */
1293 1.227 ad membar_consumer();
1294 1.227 ad while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
1295 1.219 ad SPINLOCK_BACKOFF_HOOK;
1296 1.63 ad }
1297 1.52 ad
1298 1.52 ad /*
1299 1.52 ad * Destroy the LWP's remaining signal information.
1300 1.52 ad */
1301 1.52 ad ksiginfo_queue_init(&kq);
1302 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
1303 1.52 ad ksiginfo_queue_drain(&kq);
1304 1.52 ad cv_destroy(&l->l_sigcv);
1305 1.171 rmind cv_destroy(&l->l_waitcv);
1306 1.2 thorpej
1307 1.19 jdolecek /*
1308 1.162 rmind * Free lwpctl structure and affinity.
1309 1.162 rmind */
1310 1.162 rmind if (l->l_lwpctl) {
1311 1.162 rmind lwp_ctl_free(l);
1312 1.162 rmind }
1313 1.162 rmind if (l->l_affinity) {
1314 1.162 rmind kcpuset_unuse(l->l_affinity, NULL);
1315 1.162 rmind l->l_affinity = NULL;
1316 1.162 rmind }
1317 1.162 rmind
1318 1.162 rmind /*
1319 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
1320 1.93 yamt * caller wants to recycle them. Also, free the scheduler specific
1321 1.93 yamt * data.
1322 1.52 ad *
1323 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
1324 1.52 ad * so if it comes up just drop it quietly and move on.
1325 1.52 ad *
1326 1.52 ad * We don't recycle the VM resources at this time.
1327 1.19 jdolecek */
1328 1.64 yamt
1329 1.52 ad if (!recycle && l->l_ts != &turnstile0)
1330 1.76 ad pool_cache_put(turnstile_cache, l->l_ts);
1331 1.90 ad if (l->l_name != NULL)
1332 1.90 ad kmem_free(l->l_name, MAXCOMLEN);
1333 1.135 rmind
1334 1.208 maxv kmsan_lwp_free(l);
1335 1.232 maxv kcov_lwp_free(l);
1336 1.52 ad cpu_lwp_free2(l);
1337 1.19 jdolecek uvm_lwp_exit(l);
1338 1.134 rmind
1339 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1340 1.75 ad KASSERT(l->l_inheritedprio == -1);
1341 1.155 matt KASSERT(l->l_blcnt == 0);
1342 1.138 darran kdtrace_thread_dtor(NULL, l);
1343 1.52 ad if (!recycle)
1344 1.87 ad pool_cache_put(lwp_cache, l);
1345 1.2 thorpej }
1346 1.2 thorpej
1347 1.2 thorpej /*
1348 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP.
1349 1.91 rmind */
1350 1.91 rmind void
1351 1.114 rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
1352 1.91 rmind {
1353 1.114 rmind struct schedstate_percpu *tspc;
1354 1.121 rmind int lstat = l->l_stat;
1355 1.121 rmind
1356 1.91 rmind KASSERT(lwp_locked(l, NULL));
1357 1.114 rmind KASSERT(tci != NULL);
1358 1.114 rmind
1359 1.121 rmind /* If LWP is still on the CPU, it must be handled like LSONPROC */
1360 1.227 ad if ((l->l_pflag & LP_RUNNING) != 0) {
1361 1.121 rmind lstat = LSONPROC;
1362 1.121 rmind }
1363 1.121 rmind
1364 1.114 rmind /*
1365 1.114 rmind * The destination CPU could be changed while previous migration
1366 1.114 rmind * was not finished.
1367 1.114 rmind */
1368 1.121 rmind if (l->l_target_cpu != NULL) {
1369 1.114 rmind l->l_target_cpu = tci;
1370 1.114 rmind lwp_unlock(l);
1371 1.114 rmind return;
1372 1.114 rmind }
1373 1.91 rmind
1374 1.114 rmind /* Nothing to do if trying to migrate to the same CPU */
1375 1.114 rmind if (l->l_cpu == tci) {
1376 1.91 rmind lwp_unlock(l);
1377 1.91 rmind return;
1378 1.91 rmind }
1379 1.91 rmind
1380 1.114 rmind KASSERT(l->l_target_cpu == NULL);
1381 1.114 rmind tspc = &tci->ci_schedstate;
1382 1.121 rmind switch (lstat) {
1383 1.91 rmind case LSRUN:
1384 1.134 rmind l->l_target_cpu = tci;
1385 1.134 rmind break;
1386 1.91 rmind case LSSLEEP:
1387 1.114 rmind l->l_cpu = tci;
1388 1.91 rmind break;
1389 1.212 ad case LSIDL:
1390 1.91 rmind case LSSTOP:
1391 1.91 rmind case LSSUSPENDED:
1392 1.114 rmind l->l_cpu = tci;
1393 1.114 rmind if (l->l_wchan == NULL) {
1394 1.114 rmind lwp_unlock_to(l, tspc->spc_lwplock);
1395 1.114 rmind return;
1396 1.91 rmind }
1397 1.114 rmind break;
1398 1.91 rmind case LSONPROC:
1399 1.114 rmind l->l_target_cpu = tci;
1400 1.114 rmind spc_lock(l->l_cpu);
1401 1.212 ad sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1402 1.212 ad /* spc now unlocked */
1403 1.91 rmind break;
1404 1.91 rmind }
1405 1.91 rmind lwp_unlock(l);
1406 1.91 rmind }
1407 1.91 rmind
1408 1.91 rmind /*
1409 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case,
1410 1.94 rmind * the calling process and first LWP in the list will be used.
1411 1.103 ad * On success - returns proc locked.
1412 1.91 rmind */
1413 1.91 rmind struct lwp *
1414 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid)
1415 1.91 rmind {
1416 1.91 rmind proc_t *p;
1417 1.91 rmind lwp_t *l;
1418 1.91 rmind
1419 1.150 rmind /* Find the process. */
1420 1.94 rmind if (pid != 0) {
1421 1.150 rmind mutex_enter(proc_lock);
1422 1.150 rmind p = proc_find(pid);
1423 1.150 rmind if (p == NULL) {
1424 1.150 rmind mutex_exit(proc_lock);
1425 1.150 rmind return NULL;
1426 1.150 rmind }
1427 1.150 rmind mutex_enter(p->p_lock);
1428 1.102 ad mutex_exit(proc_lock);
1429 1.150 rmind } else {
1430 1.150 rmind p = curlwp->l_proc;
1431 1.150 rmind mutex_enter(p->p_lock);
1432 1.150 rmind }
1433 1.150 rmind /* Find the thread. */
1434 1.150 rmind if (lid != 0) {
1435 1.150 rmind l = lwp_find(p, lid);
1436 1.150 rmind } else {
1437 1.150 rmind l = LIST_FIRST(&p->p_lwps);
1438 1.94 rmind }
1439 1.103 ad if (l == NULL) {
1440 1.103 ad mutex_exit(p->p_lock);
1441 1.103 ad }
1442 1.91 rmind return l;
1443 1.91 rmind }
1444 1.91 rmind
1445 1.91 rmind /*
1446 1.168 yamt * Look up a live LWP within the specified process.
1447 1.52 ad *
1448 1.223 ad * Must be called with p->p_lock held (as it looks at the radix tree,
1449 1.223 ad * and also wants to exclude idle and zombie LWPs).
1450 1.52 ad */
1451 1.52 ad struct lwp *
1452 1.151 chs lwp_find(struct proc *p, lwpid_t id)
1453 1.52 ad {
1454 1.52 ad struct lwp *l;
1455 1.52 ad
1456 1.103 ad KASSERT(mutex_owned(p->p_lock));
1457 1.52 ad
1458 1.235 thorpej l = proc_find_lwp(p, id);
1459 1.223 ad KASSERT(l == NULL || l->l_lid == id);
1460 1.52 ad
1461 1.52 ad /*
1462 1.52 ad * No need to lock - all of these conditions will
1463 1.52 ad * be visible with the process level mutex held.
1464 1.52 ad */
1465 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1466 1.52 ad l = NULL;
1467 1.52 ad
1468 1.52 ad return l;
1469 1.52 ad }
1470 1.52 ad
1471 1.52 ad /*
1472 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1473 1.37 ad *
1474 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1475 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1476 1.179 snj * its credentials by calling this routine. This may be called from
1477 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1478 1.37 ad */
1479 1.37 ad void
1480 1.37 ad lwp_update_creds(struct lwp *l)
1481 1.37 ad {
1482 1.37 ad kauth_cred_t oc;
1483 1.37 ad struct proc *p;
1484 1.37 ad
1485 1.37 ad p = l->l_proc;
1486 1.37 ad oc = l->l_cred;
1487 1.37 ad
1488 1.103 ad mutex_enter(p->p_lock);
1489 1.37 ad kauth_cred_hold(p->p_cred);
1490 1.37 ad l->l_cred = p->p_cred;
1491 1.98 ad l->l_prflag &= ~LPR_CRMOD;
1492 1.103 ad mutex_exit(p->p_lock);
1493 1.88 ad if (oc != NULL)
1494 1.37 ad kauth_cred_free(oc);
1495 1.52 ad }
1496 1.52 ad
1497 1.52 ad /*
1498 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1499 1.52 ad * one we specify.
1500 1.52 ad */
1501 1.52 ad int
1502 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1503 1.52 ad {
1504 1.52 ad kmutex_t *cur = l->l_mutex;
1505 1.52 ad
1506 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1507 1.52 ad }
1508 1.52 ad
1509 1.52 ad /*
1510 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1511 1.52 ad */
1512 1.211 ad kmutex_t *
1513 1.178 matt lwp_setlock(struct lwp *l, kmutex_t *mtx)
1514 1.52 ad {
1515 1.211 ad kmutex_t *oldmtx = l->l_mutex;
1516 1.52 ad
1517 1.211 ad KASSERT(mutex_owned(oldmtx));
1518 1.52 ad
1519 1.107 ad membar_exit();
1520 1.178 matt l->l_mutex = mtx;
1521 1.211 ad return oldmtx;
1522 1.52 ad }
1523 1.52 ad
1524 1.52 ad /*
1525 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1526 1.52 ad * must be held.
1527 1.52 ad */
1528 1.52 ad void
1529 1.178 matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1530 1.52 ad {
1531 1.52 ad kmutex_t *old;
1532 1.52 ad
1533 1.152 rmind KASSERT(lwp_locked(l, NULL));
1534 1.52 ad
1535 1.52 ad old = l->l_mutex;
1536 1.107 ad membar_exit();
1537 1.178 matt l->l_mutex = mtx;
1538 1.52 ad mutex_spin_exit(old);
1539 1.52 ad }
1540 1.52 ad
1541 1.60 yamt int
1542 1.60 yamt lwp_trylock(struct lwp *l)
1543 1.60 yamt {
1544 1.60 yamt kmutex_t *old;
1545 1.60 yamt
1546 1.60 yamt for (;;) {
1547 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1548 1.60 yamt return 0;
1549 1.60 yamt if (__predict_true(l->l_mutex == old))
1550 1.60 yamt return 1;
1551 1.60 yamt mutex_spin_exit(old);
1552 1.60 yamt }
1553 1.60 yamt }
1554 1.60 yamt
1555 1.134 rmind void
1556 1.211 ad lwp_unsleep(lwp_t *l, bool unlock)
1557 1.96 ad {
1558 1.96 ad
1559 1.96 ad KASSERT(mutex_owned(l->l_mutex));
1560 1.211 ad (*l->l_syncobj->sobj_unsleep)(l, unlock);
1561 1.96 ad }
1562 1.96 ad
1563 1.52 ad /*
1564 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1565 1.52 ad * set.
1566 1.52 ad */
1567 1.52 ad void
1568 1.52 ad lwp_userret(struct lwp *l)
1569 1.52 ad {
1570 1.52 ad struct proc *p;
1571 1.52 ad int sig;
1572 1.52 ad
1573 1.114 rmind KASSERT(l == curlwp);
1574 1.114 rmind KASSERT(l->l_stat == LSONPROC);
1575 1.52 ad p = l->l_proc;
1576 1.52 ad
1577 1.52 ad /*
1578 1.167 rmind * It is safe to do this read unlocked on a MP system..
1579 1.52 ad */
1580 1.167 rmind while ((l->l_flag & LW_USERRET) != 0) {
1581 1.52 ad /*
1582 1.52 ad * Process pending signals first, unless the process
1583 1.61 ad * is dumping core or exiting, where we will instead
1584 1.101 rmind * enter the LW_WSUSPEND case below.
1585 1.52 ad */
1586 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1587 1.61 ad LW_PENDSIG) {
1588 1.103 ad mutex_enter(p->p_lock);
1589 1.52 ad while ((sig = issignal(l)) != 0)
1590 1.52 ad postsig(sig);
1591 1.103 ad mutex_exit(p->p_lock);
1592 1.52 ad }
1593 1.52 ad
1594 1.52 ad /*
1595 1.52 ad * Core-dump or suspend pending.
1596 1.52 ad *
1597 1.159 matt * In case of core dump, suspend ourselves, so that the kernel
1598 1.159 matt * stack and therefore the userland registers saved in the
1599 1.159 matt * trapframe are around for coredump() to write them out.
1600 1.159 matt * We also need to save any PCU resources that we have so that
1601 1.159 matt * they accessible for coredump(). We issue a wakeup on
1602 1.159 matt * p->p_lwpcv so that sigexit() will write the core file out
1603 1.159 matt * once all other LWPs are suspended.
1604 1.52 ad */
1605 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1606 1.159 matt pcu_save_all(l);
1607 1.103 ad mutex_enter(p->p_lock);
1608 1.52 ad p->p_nrlwps--;
1609 1.52 ad cv_broadcast(&p->p_lwpcv);
1610 1.52 ad lwp_lock(l);
1611 1.52 ad l->l_stat = LSSUSPENDED;
1612 1.104 ad lwp_unlock(l);
1613 1.103 ad mutex_exit(p->p_lock);
1614 1.104 ad lwp_lock(l);
1615 1.217 ad spc_lock(l->l_cpu);
1616 1.64 yamt mi_switch(l);
1617 1.52 ad }
1618 1.52 ad
1619 1.52 ad /* Process is exiting. */
1620 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1621 1.52 ad lwp_exit(l);
1622 1.52 ad KASSERT(0);
1623 1.52 ad /* NOTREACHED */
1624 1.52 ad }
1625 1.156 pooka
1626 1.156 pooka /* update lwpctl processor (for vfork child_return) */
1627 1.156 pooka if (l->l_flag & LW_LWPCTL) {
1628 1.156 pooka lwp_lock(l);
1629 1.156 pooka KASSERT(kpreempt_disabled());
1630 1.156 pooka l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1631 1.156 pooka l->l_lwpctl->lc_pctr++;
1632 1.156 pooka l->l_flag &= ~LW_LWPCTL;
1633 1.156 pooka lwp_unlock(l);
1634 1.156 pooka }
1635 1.52 ad }
1636 1.52 ad }
1637 1.52 ad
1638 1.52 ad /*
1639 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1640 1.52 ad */
1641 1.52 ad void
1642 1.52 ad lwp_need_userret(struct lwp *l)
1643 1.52 ad {
1644 1.209 ad
1645 1.209 ad KASSERT(!cpu_intr_p());
1646 1.63 ad KASSERT(lwp_locked(l, NULL));
1647 1.52 ad
1648 1.52 ad /*
1649 1.209 ad * If the LWP is in any state other than LSONPROC, we know that it
1650 1.209 ad * is executing in-kernel and will hit userret() on the way out.
1651 1.209 ad *
1652 1.209 ad * If the LWP is curlwp, then we know we'll be back out to userspace
1653 1.209 ad * soon (can't be called from a hardware interrupt here).
1654 1.209 ad *
1655 1.209 ad * Otherwise, we can't be sure what the LWP is doing, so first make
1656 1.209 ad * sure the update to l_flag will be globally visible, and then
1657 1.209 ad * force the LWP to take a trip through trap() where it will do
1658 1.209 ad * userret().
1659 1.209 ad */
1660 1.209 ad if (l->l_stat == LSONPROC && l != curlwp) {
1661 1.209 ad membar_producer();
1662 1.209 ad cpu_signotify(l);
1663 1.209 ad }
1664 1.52 ad }
1665 1.52 ad
1666 1.52 ad /*
1667 1.233 thorpej * Add one reference to an LWP. Interlocked against lwp_drainrefs()
1668 1.233 thorpej * either by holding the proc's lock or by holding lwp_threadid_lock.
1669 1.235 thorpej * If callers don't hold the proc's lock, then they must check for a
1670 1.235 thorpej * larva after acquiring the reference. References can't be added to
1671 1.235 thorpej * zombies because references have already been drained off before the
1672 1.235 thorpej * state changes to LSZOMB.
1673 1.233 thorpej */
1674 1.233 thorpej static void
1675 1.233 thorpej lwp_addref2(struct lwp *l)
1676 1.233 thorpej {
1677 1.233 thorpej KASSERT(l->l_stat != LSZOMB);
1678 1.233 thorpej atomic_inc_uint(&l->l_refcnt);
1679 1.233 thorpej }
1680 1.233 thorpej
1681 1.233 thorpej /*
1682 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1683 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1684 1.52 ad */
1685 1.52 ad void
1686 1.52 ad lwp_addref(struct lwp *l)
1687 1.52 ad {
1688 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1689 1.233 thorpej lwp_addref2(l);
1690 1.52 ad }
1691 1.52 ad
1692 1.52 ad /*
1693 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1694 1.52 ad * then we must finalize the LWP's death.
1695 1.52 ad */
1696 1.52 ad void
1697 1.52 ad lwp_delref(struct lwp *l)
1698 1.52 ad {
1699 1.52 ad struct proc *p = l->l_proc;
1700 1.52 ad
1701 1.103 ad mutex_enter(p->p_lock);
1702 1.142 christos lwp_delref2(l);
1703 1.142 christos mutex_exit(p->p_lock);
1704 1.142 christos }
1705 1.142 christos
1706 1.142 christos /*
1707 1.142 christos * Remove one reference to an LWP. If this is the last reference,
1708 1.142 christos * then we must finalize the LWP's death. The proc mutex is held
1709 1.142 christos * on entry.
1710 1.142 christos */
1711 1.142 christos void
1712 1.142 christos lwp_delref2(struct lwp *l)
1713 1.142 christos {
1714 1.142 christos struct proc *p = l->l_proc;
1715 1.142 christos
1716 1.142 christos KASSERT(mutex_owned(p->p_lock));
1717 1.72 ad KASSERT(l->l_stat != LSZOMB);
1718 1.233 thorpej KASSERT(atomic_load_relaxed(&l->l_refcnt) > 0);
1719 1.231 ad
1720 1.233 thorpej if (atomic_dec_uint_nv(&l->l_refcnt) == 0)
1721 1.76 ad cv_broadcast(&p->p_lwpcv);
1722 1.52 ad }
1723 1.52 ad
1724 1.52 ad /*
1725 1.233 thorpej * Drain all references to the current LWP. Returns true if
1726 1.233 thorpej * we blocked.
1727 1.52 ad */
1728 1.233 thorpej bool
1729 1.52 ad lwp_drainrefs(struct lwp *l)
1730 1.52 ad {
1731 1.52 ad struct proc *p = l->l_proc;
1732 1.233 thorpej bool rv = false;
1733 1.52 ad
1734 1.103 ad KASSERT(mutex_owned(p->p_lock));
1735 1.52 ad
1736 1.233 thorpej /*
1737 1.235 thorpej * Lookups by thread ID hold lwp_threadid_lock as a reader,
1738 1.235 thorpej * increase l_refcnt, release it, and then acquire p_lock to
1739 1.235 thorpej * check for LPR_DRAINING. By taking lwp_threadid_lock as a
1740 1.235 thorpej * writer here we ensure that either we see the increase in
1741 1.235 thorpej * l_refcnt or that they see LPR_DRAINING.
1742 1.233 thorpej */
1743 1.233 thorpej rw_enter(&lwp_threadid_lock, RW_WRITER);
1744 1.233 thorpej l->l_prflag |= LPR_DRAINING;
1745 1.233 thorpej rw_exit(&lwp_threadid_lock);
1746 1.233 thorpej
1747 1.233 thorpej while (atomic_load_relaxed(&l->l_refcnt) > 0) {
1748 1.233 thorpej rv = true;
1749 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
1750 1.233 thorpej }
1751 1.233 thorpej return rv;
1752 1.37 ad }
1753 1.41 thorpej
1754 1.41 thorpej /*
1755 1.127 ad * Return true if the specified LWP is 'alive'. Only p->p_lock need
1756 1.127 ad * be held.
1757 1.127 ad */
1758 1.127 ad bool
1759 1.127 ad lwp_alive(lwp_t *l)
1760 1.127 ad {
1761 1.127 ad
1762 1.127 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1763 1.127 ad
1764 1.127 ad switch (l->l_stat) {
1765 1.127 ad case LSSLEEP:
1766 1.127 ad case LSRUN:
1767 1.127 ad case LSONPROC:
1768 1.127 ad case LSSTOP:
1769 1.127 ad case LSSUSPENDED:
1770 1.127 ad return true;
1771 1.127 ad default:
1772 1.127 ad return false;
1773 1.127 ad }
1774 1.127 ad }
1775 1.127 ad
1776 1.127 ad /*
1777 1.127 ad * Return first live LWP in the process.
1778 1.127 ad */
1779 1.127 ad lwp_t *
1780 1.127 ad lwp_find_first(proc_t *p)
1781 1.127 ad {
1782 1.127 ad lwp_t *l;
1783 1.127 ad
1784 1.127 ad KASSERT(mutex_owned(p->p_lock));
1785 1.127 ad
1786 1.127 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1787 1.127 ad if (lwp_alive(l)) {
1788 1.127 ad return l;
1789 1.127 ad }
1790 1.127 ad }
1791 1.127 ad
1792 1.127 ad return NULL;
1793 1.127 ad }
1794 1.127 ad
1795 1.127 ad /*
1796 1.78 ad * Allocate a new lwpctl structure for a user LWP.
1797 1.78 ad */
1798 1.78 ad int
1799 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr)
1800 1.78 ad {
1801 1.78 ad lcproc_t *lp;
1802 1.78 ad u_int bit, i, offset;
1803 1.78 ad struct uvm_object *uao;
1804 1.78 ad int error;
1805 1.78 ad lcpage_t *lcp;
1806 1.78 ad proc_t *p;
1807 1.78 ad lwp_t *l;
1808 1.78 ad
1809 1.78 ad l = curlwp;
1810 1.78 ad p = l->l_proc;
1811 1.78 ad
1812 1.156 pooka /* don't allow a vforked process to create lwp ctls */
1813 1.156 pooka if (p->p_lflag & PL_PPWAIT)
1814 1.156 pooka return EBUSY;
1815 1.156 pooka
1816 1.81 ad if (l->l_lcpage != NULL) {
1817 1.81 ad lcp = l->l_lcpage;
1818 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1819 1.143 njoly return 0;
1820 1.81 ad }
1821 1.78 ad
1822 1.78 ad /* First time around, allocate header structure for the process. */
1823 1.78 ad if ((lp = p->p_lwpctl) == NULL) {
1824 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1825 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1826 1.78 ad lp->lp_uao = NULL;
1827 1.78 ad TAILQ_INIT(&lp->lp_pages);
1828 1.103 ad mutex_enter(p->p_lock);
1829 1.78 ad if (p->p_lwpctl == NULL) {
1830 1.78 ad p->p_lwpctl = lp;
1831 1.103 ad mutex_exit(p->p_lock);
1832 1.78 ad } else {
1833 1.103 ad mutex_exit(p->p_lock);
1834 1.78 ad mutex_destroy(&lp->lp_lock);
1835 1.78 ad kmem_free(lp, sizeof(*lp));
1836 1.78 ad lp = p->p_lwpctl;
1837 1.78 ad }
1838 1.78 ad }
1839 1.78 ad
1840 1.78 ad /*
1841 1.78 ad * Set up an anonymous memory region to hold the shared pages.
1842 1.78 ad * Map them into the process' address space. The user vmspace
1843 1.78 ad * gets the first reference on the UAO.
1844 1.78 ad */
1845 1.78 ad mutex_enter(&lp->lp_lock);
1846 1.78 ad if (lp->lp_uao == NULL) {
1847 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1848 1.78 ad lp->lp_cur = 0;
1849 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ;
1850 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1851 1.182 martin (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1852 1.182 martin p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1853 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1854 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1855 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1856 1.78 ad if (error != 0) {
1857 1.78 ad uao_detach(lp->lp_uao);
1858 1.78 ad lp->lp_uao = NULL;
1859 1.78 ad mutex_exit(&lp->lp_lock);
1860 1.78 ad return error;
1861 1.78 ad }
1862 1.78 ad }
1863 1.78 ad
1864 1.78 ad /* Get a free block and allocate for this LWP. */
1865 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1866 1.78 ad if (lcp->lcp_nfree != 0)
1867 1.78 ad break;
1868 1.78 ad }
1869 1.78 ad if (lcp == NULL) {
1870 1.78 ad /* Nothing available - try to set up a free page. */
1871 1.78 ad if (lp->lp_cur == lp->lp_max) {
1872 1.78 ad mutex_exit(&lp->lp_lock);
1873 1.78 ad return ENOMEM;
1874 1.78 ad }
1875 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1876 1.189 chs
1877 1.78 ad /*
1878 1.78 ad * Wire the next page down in kernel space. Since this
1879 1.78 ad * is a new mapping, we must add a reference.
1880 1.78 ad */
1881 1.78 ad uao = lp->lp_uao;
1882 1.78 ad (*uao->pgops->pgo_reference)(uao);
1883 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map);
1884 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1885 1.78 ad uao, lp->lp_cur, PAGE_SIZE,
1886 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1887 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1888 1.78 ad if (error != 0) {
1889 1.78 ad mutex_exit(&lp->lp_lock);
1890 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1891 1.78 ad (*uao->pgops->pgo_detach)(uao);
1892 1.78 ad return error;
1893 1.78 ad }
1894 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1895 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1896 1.89 yamt if (error != 0) {
1897 1.89 yamt mutex_exit(&lp->lp_lock);
1898 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr,
1899 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE);
1900 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1901 1.89 yamt return error;
1902 1.89 yamt }
1903 1.78 ad /* Prepare the page descriptor and link into the list. */
1904 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1905 1.78 ad lp->lp_cur += PAGE_SIZE;
1906 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE;
1907 1.78 ad lcp->lcp_rotor = 0;
1908 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1909 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1910 1.78 ad }
1911 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1912 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES)
1913 1.78 ad i = 0;
1914 1.78 ad }
1915 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1;
1916 1.193 kamil lcp->lcp_bitmap[i] ^= (1U << bit);
1917 1.78 ad lcp->lcp_rotor = i;
1918 1.78 ad lcp->lcp_nfree--;
1919 1.78 ad l->l_lcpage = lcp;
1920 1.78 ad offset = (i << 5) + bit;
1921 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1922 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1923 1.78 ad mutex_exit(&lp->lp_lock);
1924 1.78 ad
1925 1.107 ad KPREEMPT_DISABLE(l);
1926 1.195 skrll l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1927 1.107 ad KPREEMPT_ENABLE(l);
1928 1.78 ad
1929 1.78 ad return 0;
1930 1.78 ad }
1931 1.78 ad
1932 1.78 ad /*
1933 1.78 ad * Free an lwpctl structure back to the per-process list.
1934 1.78 ad */
1935 1.78 ad void
1936 1.78 ad lwp_ctl_free(lwp_t *l)
1937 1.78 ad {
1938 1.156 pooka struct proc *p = l->l_proc;
1939 1.78 ad lcproc_t *lp;
1940 1.78 ad lcpage_t *lcp;
1941 1.78 ad u_int map, offset;
1942 1.78 ad
1943 1.156 pooka /* don't free a lwp context we borrowed for vfork */
1944 1.156 pooka if (p->p_lflag & PL_PPWAIT) {
1945 1.156 pooka l->l_lwpctl = NULL;
1946 1.156 pooka return;
1947 1.156 pooka }
1948 1.156 pooka
1949 1.156 pooka lp = p->p_lwpctl;
1950 1.78 ad KASSERT(lp != NULL);
1951 1.78 ad
1952 1.78 ad lcp = l->l_lcpage;
1953 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1954 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE);
1955 1.78 ad
1956 1.78 ad mutex_enter(&lp->lp_lock);
1957 1.78 ad lcp->lcp_nfree++;
1958 1.78 ad map = offset >> 5;
1959 1.194 kamil lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1960 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1961 1.78 ad lcp->lcp_rotor = map;
1962 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1963 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1964 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1965 1.78 ad }
1966 1.78 ad mutex_exit(&lp->lp_lock);
1967 1.78 ad }
1968 1.78 ad
1969 1.78 ad /*
1970 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely
1971 1.78 ad * called by the last LWP in the process.
1972 1.78 ad */
1973 1.78 ad void
1974 1.78 ad lwp_ctl_exit(void)
1975 1.78 ad {
1976 1.78 ad lcpage_t *lcp, *next;
1977 1.78 ad lcproc_t *lp;
1978 1.78 ad proc_t *p;
1979 1.78 ad lwp_t *l;
1980 1.78 ad
1981 1.78 ad l = curlwp;
1982 1.78 ad l->l_lwpctl = NULL;
1983 1.95 ad l->l_lcpage = NULL;
1984 1.78 ad p = l->l_proc;
1985 1.78 ad lp = p->p_lwpctl;
1986 1.78 ad
1987 1.78 ad KASSERT(lp != NULL);
1988 1.78 ad KASSERT(p->p_nlwps == 1);
1989 1.78 ad
1990 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1991 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain);
1992 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr,
1993 1.78 ad lcp->lcp_kaddr + PAGE_SIZE);
1994 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1995 1.78 ad }
1996 1.78 ad
1997 1.78 ad if (lp->lp_uao != NULL) {
1998 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1999 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ);
2000 1.78 ad }
2001 1.78 ad
2002 1.78 ad mutex_destroy(&lp->lp_lock);
2003 1.78 ad kmem_free(lp, sizeof(*lp));
2004 1.78 ad p->p_lwpctl = NULL;
2005 1.78 ad }
2006 1.84 yamt
2007 1.130 ad /*
2008 1.130 ad * Return the current LWP's "preemption counter". Used to detect
2009 1.130 ad * preemption across operations that can tolerate preemption without
2010 1.130 ad * crashing, but which may generate incorrect results if preempted.
2011 1.130 ad */
2012 1.130 ad uint64_t
2013 1.130 ad lwp_pctr(void)
2014 1.130 ad {
2015 1.130 ad
2016 1.130 ad return curlwp->l_ncsw;
2017 1.130 ad }
2018 1.130 ad
2019 1.151 chs /*
2020 1.151 chs * Set an LWP's private data pointer.
2021 1.151 chs */
2022 1.151 chs int
2023 1.151 chs lwp_setprivate(struct lwp *l, void *ptr)
2024 1.151 chs {
2025 1.151 chs int error = 0;
2026 1.151 chs
2027 1.151 chs l->l_private = ptr;
2028 1.151 chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
2029 1.151 chs error = cpu_lwp_setprivate(l, ptr);
2030 1.151 chs #endif
2031 1.151 chs return error;
2032 1.151 chs }
2033 1.151 chs
2034 1.233 thorpej static void
2035 1.233 thorpej lwp_threadid_init(void)
2036 1.233 thorpej {
2037 1.233 thorpej rw_init(&lwp_threadid_lock);
2038 1.233 thorpej }
2039 1.233 thorpej
2040 1.233 thorpej /*
2041 1.233 thorpej * Lookup an LWP by global thread ID. Care must be taken because
2042 1.233 thorpej * callers of this are operating outside the normal locking protocol.
2043 1.233 thorpej * We return the LWP with an additional reference that must be dropped
2044 1.233 thorpej * with lwp_delref().
2045 1.233 thorpej */
2046 1.233 thorpej struct lwp *
2047 1.235 thorpej lwp_getref_lwpid(lwpid_t tid)
2048 1.233 thorpej {
2049 1.235 thorpej struct lwp *l;
2050 1.233 thorpej
2051 1.235 thorpej /*
2052 1.235 thorpej * We rely on lwp_thread_cleanup() to hide LWP IDs from us
2053 1.235 thorpej * to ensure that we cannot add a reference do an exiting
2054 1.235 thorpej * LWP.
2055 1.235 thorpej */
2056 1.233 thorpej rw_enter(&lwp_threadid_lock, RW_READER);
2057 1.235 thorpej l = proc_seek_lwpid(tid);
2058 1.233 thorpej if (__predict_false(l == NULL)) {
2059 1.233 thorpej rw_exit(&lwp_threadid_lock);
2060 1.233 thorpej return NULL;
2061 1.233 thorpej }
2062 1.233 thorpej
2063 1.233 thorpej /*
2064 1.233 thorpej * Acquire a reference on the lwp. It is safe to do this unlocked
2065 1.233 thorpej * here because lwp_drainrefs() serializes with us by taking the
2066 1.233 thorpej * lwp_threadid_lock as a writer.
2067 1.233 thorpej */
2068 1.233 thorpej lwp_addref2(l);
2069 1.233 thorpej rw_exit(&lwp_threadid_lock);
2070 1.233 thorpej
2071 1.233 thorpej /*
2072 1.233 thorpej * Now verify that our reference is valid.
2073 1.233 thorpej */
2074 1.235 thorpej struct proc *p = l->l_proc;
2075 1.235 thorpej mutex_enter(p->p_lock);
2076 1.235 thorpej if (__predict_false(l->l_stat == LSLARVAL ||
2077 1.235 thorpej (l->l_prflag & LPR_DRAINING) != 0)) {
2078 1.233 thorpej lwp_delref2(l);
2079 1.235 thorpej l = NULL;
2080 1.233 thorpej }
2081 1.235 thorpej mutex_exit(p->p_lock);
2082 1.233 thorpej
2083 1.235 thorpej return l;
2084 1.233 thorpej }
2085 1.233 thorpej
2086 1.233 thorpej /*
2087 1.233 thorpej * Perform any thread-related cleanup on LWP exit.
2088 1.233 thorpej * N.B. l->l_proc->p_lock must be HELD on entry but will
2089 1.233 thorpej * be released before returning!
2090 1.233 thorpej */
2091 1.233 thorpej void
2092 1.233 thorpej lwp_thread_cleanup(struct lwp *l)
2093 1.233 thorpej {
2094 1.233 thorpej KASSERT(l == curlwp);
2095 1.235 thorpej const lwpid_t tid = l->l_lid;
2096 1.233 thorpej
2097 1.236 thorpej KASSERT((tid & FUTEX_TID_MASK) == tid);
2098 1.233 thorpej KASSERT(mutex_owned(l->l_proc->p_lock));
2099 1.233 thorpej
2100 1.235 thorpej /*
2101 1.235 thorpej * Hide this LWP from seekers (namely lwp_getref_lwpid())
2102 1.235 thorpej * to prevent them from attempting to acquire a reference
2103 1.235 thorpej * on a zombie.
2104 1.235 thorpej */
2105 1.235 thorpej proc_hide_lwpid(tid);
2106 1.235 thorpej
2107 1.235 thorpej mutex_exit(l->l_proc->p_lock);
2108 1.236 thorpej
2109 1.236 thorpej /*
2110 1.236 thorpej * If the LWP has robust futexes, release them all
2111 1.236 thorpej * now.
2112 1.236 thorpej */
2113 1.236 thorpej if (__predict_false(l->l_robust_head != 0)) {
2114 1.236 thorpej futex_release_all_lwp(l, tid);
2115 1.236 thorpej }
2116 1.233 thorpej }
2117 1.233 thorpej
2118 1.84 yamt #if defined(DDB)
2119 1.153 rmind #include <machine/pcb.h>
2120 1.153 rmind
2121 1.84 yamt void
2122 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2123 1.84 yamt {
2124 1.84 yamt lwp_t *l;
2125 1.84 yamt
2126 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) {
2127 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2128 1.84 yamt
2129 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) {
2130 1.84 yamt continue;
2131 1.84 yamt }
2132 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n",
2133 1.84 yamt (void *)addr, (void *)stack,
2134 1.84 yamt (size_t)(addr - stack), l);
2135 1.84 yamt }
2136 1.84 yamt }
2137 1.84 yamt #endif /* defined(DDB) */
2138