Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.242.2.1
      1  1.242.2.1   thorpej /*	$NetBSD: kern_lwp.c,v 1.242.2.1 2021/04/03 22:29:00 thorpej Exp $	*/
      2        1.2   thorpej 
      3        1.2   thorpej /*-
      4      1.220        ad  * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
      5      1.220        ad  *     The NetBSD Foundation, Inc.
      6        1.2   thorpej  * All rights reserved.
      7        1.2   thorpej  *
      8        1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      9       1.52        ad  * by Nathan J. Williams, and Andrew Doran.
     10        1.2   thorpej  *
     11        1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     12        1.2   thorpej  * modification, are permitted provided that the following conditions
     13        1.2   thorpej  * are met:
     14        1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     15        1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     16        1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18        1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     19        1.2   thorpej  *
     20        1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21        1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22        1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23        1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24        1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25        1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26        1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27        1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28        1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29        1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30        1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31        1.2   thorpej  */
     32        1.9     lukem 
     33       1.52        ad /*
     34       1.52        ad  * Overview
     35       1.52        ad  *
     36       1.66        ad  *	Lightweight processes (LWPs) are the basic unit or thread of
     37       1.52        ad  *	execution within the kernel.  The core state of an LWP is described
     38       1.66        ad  *	by "struct lwp", also known as lwp_t.
     39       1.52        ad  *
     40       1.52        ad  *	Each LWP is contained within a process (described by "struct proc"),
     41       1.52        ad  *	Every process contains at least one LWP, but may contain more.  The
     42       1.52        ad  *	process describes attributes shared among all of its LWPs such as a
     43       1.52        ad  *	private address space, global execution state (stopped, active,
     44       1.52        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     45       1.66        ad  *	machine, multiple LWPs be executing concurrently in the kernel.
     46       1.52        ad  *
     47       1.52        ad  * Execution states
     48       1.52        ad  *
     49       1.52        ad  *	At any given time, an LWP has overall state that is described by
     50       1.52        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     51       1.52        ad  *	set is guaranteed to represent the absolute, current state of the
     52       1.52        ad  *	LWP:
     53      1.101     rmind  *
     54      1.101     rmind  *	LSONPROC
     55      1.101     rmind  *
     56      1.101     rmind  *		On processor: the LWP is executing on a CPU, either in the
     57      1.101     rmind  *		kernel or in user space.
     58      1.101     rmind  *
     59      1.101     rmind  *	LSRUN
     60      1.101     rmind  *
     61      1.101     rmind  *		Runnable: the LWP is parked on a run queue, and may soon be
     62      1.101     rmind  *		chosen to run by an idle processor, or by a processor that
     63      1.101     rmind  *		has been asked to preempt a currently runnning but lower
     64      1.134     rmind  *		priority LWP.
     65      1.101     rmind  *
     66      1.101     rmind  *	LSIDL
     67      1.101     rmind  *
     68      1.238        ad  *		Idle: the LWP has been created but has not yet executed, or
     69      1.238        ad  *		it has ceased executing a unit of work and is waiting to be
     70      1.238        ad  *		started again.  This state exists so that the LWP can occupy
     71      1.238        ad  *		a slot in the process & PID table, but without having to
     72      1.238        ad  *		worry about being touched; lookups of the LWP by ID will
     73      1.238        ad  *		fail while in this state.  The LWP will become visible for
     74      1.238        ad  *		lookup once its state transitions further.  Some special
     75      1.238        ad  *		kernel threads also (ab)use this state to indicate that they
     76      1.238        ad  *		are idle (soft interrupts and idle LWPs).
     77      1.101     rmind  *
     78      1.101     rmind  *	LSSUSPENDED:
     79      1.101     rmind  *
     80      1.101     rmind  *		Suspended: the LWP has had its execution suspended by
     81       1.52        ad  *		another LWP in the same process using the _lwp_suspend()
     82       1.52        ad  *		system call.  User-level LWPs also enter the suspended
     83       1.52        ad  *		state when the system is shutting down.
     84       1.52        ad  *
     85       1.52        ad  *	The second set represent a "statement of intent" on behalf of the
     86       1.52        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     87       1.66        ad  *	sleeping or idle. It is expected to take the necessary action to
     88      1.101     rmind  *	stop executing or become "running" again within a short timeframe.
     89      1.227        ad  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     90      1.101     rmind  *	Importantly, it indicates that its state is tied to a CPU.
     91      1.101     rmind  *
     92      1.101     rmind  *	LSZOMB:
     93      1.101     rmind  *
     94      1.101     rmind  *		Dead or dying: the LWP has released most of its resources
     95      1.129        ad  *		and is about to switch away into oblivion, or has already
     96       1.66        ad  *		switched away.  When it switches away, its few remaining
     97       1.66        ad  *		resources can be collected.
     98      1.101     rmind  *
     99      1.101     rmind  *	LSSLEEP:
    100      1.101     rmind  *
    101      1.101     rmind  *		Sleeping: the LWP has entered itself onto a sleep queue, and
    102      1.101     rmind  *		has switched away or will switch away shortly to allow other
    103       1.66        ad  *		LWPs to run on the CPU.
    104      1.101     rmind  *
    105      1.101     rmind  *	LSSTOP:
    106      1.101     rmind  *
    107      1.101     rmind  *		Stopped: the LWP has been stopped as a result of a job
    108      1.101     rmind  *		control signal, or as a result of the ptrace() interface.
    109      1.101     rmind  *
    110      1.101     rmind  *		Stopped LWPs may run briefly within the kernel to handle
    111      1.101     rmind  *		signals that they receive, but will not return to user space
    112      1.101     rmind  *		until their process' state is changed away from stopped.
    113      1.101     rmind  *
    114      1.101     rmind  *		Single LWPs within a process can not be set stopped
    115      1.101     rmind  *		selectively: all actions that can stop or continue LWPs
    116      1.101     rmind  *		occur at the process level.
    117      1.101     rmind  *
    118       1.52        ad  * State transitions
    119       1.52        ad  *
    120       1.66        ad  *	Note that the LSSTOP state may only be set when returning to
    121       1.66        ad  *	user space in userret(), or when sleeping interruptably.  The
    122       1.66        ad  *	LSSUSPENDED state may only be set in userret().  Before setting
    123       1.66        ad  *	those states, we try to ensure that the LWPs will release all
    124       1.66        ad  *	locks that they hold, and at a minimum try to ensure that the
    125       1.66        ad  *	LWP can be set runnable again by a signal.
    126       1.52        ad  *
    127       1.52        ad  *	LWPs may transition states in the following ways:
    128       1.52        ad  *
    129       1.52        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    130      1.129        ad  *		    				    > SLEEP
    131      1.129        ad  *		    				    > STOPPED
    132       1.52        ad  *						    > SUSPENDED
    133       1.52        ad  *						    > ZOMB
    134      1.129        ad  *						    > IDL (special cases)
    135       1.52        ad  *
    136       1.52        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137      1.129        ad  *	            > SLEEP
    138       1.52        ad  *
    139       1.52        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140      1.101     rmind  *		    > RUN			    > SUSPENDED
    141      1.101     rmind  *		    > STOPPED			    > STOPPED
    142      1.129        ad  *						    > ONPROC (special cases)
    143       1.52        ad  *
    144      1.129        ad  *	Some state transitions are only possible with kernel threads (eg
    145      1.129        ad  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    146      1.129        ad  *	free of unwanted side effects.
    147       1.66        ad  *
    148      1.114     rmind  * Migration
    149      1.114     rmind  *
    150      1.114     rmind  *	Migration of threads from one CPU to another could be performed
    151      1.114     rmind  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    152      1.114     rmind  *	functions.  The universal lwp_migrate() function should be used for
    153      1.114     rmind  *	any other cases.  Subsystems in the kernel must be aware that CPU
    154      1.114     rmind  *	of LWP may change, while it is not locked.
    155      1.114     rmind  *
    156       1.52        ad  * Locking
    157       1.52        ad  *
    158       1.52        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    159       1.66        ad  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    160       1.52        ad  *	each field are documented in sys/lwp.h.
    161       1.52        ad  *
    162       1.66        ad  *	State transitions must be made with the LWP's general lock held,
    163      1.152     rmind  *	and may cause the LWP's lock pointer to change.  Manipulation of
    164       1.66        ad  *	the general lock is not performed directly, but through calls to
    165      1.152     rmind  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    166      1.152     rmind  *	adaptive locks are not allowed to be released while the LWP's lock
    167      1.152     rmind  *	is being held (unlike for other spin-locks).
    168       1.52        ad  *
    169       1.52        ad  *	States and their associated locks:
    170       1.52        ad  *
    171      1.212        ad  *	LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
    172       1.52        ad  *
    173      1.212        ad  *		Always covered by spc_lwplock, which protects LWPs not
    174      1.212        ad  *		associated with any other sync object.  This is a per-CPU
    175      1.212        ad  *		lock and matches lwp::l_cpu.
    176       1.52        ad  *
    177      1.212        ad  *	LSRUN:
    178       1.52        ad  *
    179       1.64      yamt  *		Always covered by spc_mutex, which protects the run queues.
    180      1.129        ad  *		This is a per-CPU lock and matches lwp::l_cpu.
    181       1.52        ad  *
    182       1.52        ad  *	LSSLEEP:
    183       1.52        ad  *
    184      1.212        ad  *		Covered by a lock associated with the sleep queue (sometimes
    185      1.221        ad  *		a turnstile sleep queue) that the LWP resides on.  This can
    186      1.221        ad  *		be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
    187       1.52        ad  *
    188      1.212        ad  *	LSSTOP:
    189      1.101     rmind  *
    190       1.52        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    191       1.66        ad  *		l_mutex references the sleep queue lock.  If the LWP was
    192       1.52        ad  *		runnable or on the CPU when halted, or has been removed from
    193       1.66        ad  *		the sleep queue since halted, then the lock is spc_lwplock.
    194       1.52        ad  *
    195       1.52        ad  *	The lock order is as follows:
    196       1.52        ad  *
    197      1.212        ad  *		sleepq -> turnstile -> spc_lwplock -> spc_mutex
    198       1.52        ad  *
    199  1.242.2.1   thorpej  *	Each process has a scheduler state lock (proc::p_lock), and a
    200       1.52        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    201       1.52        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    202      1.103        ad  *	following states, p_lock must be held and the process wide counters
    203       1.52        ad  *	adjusted:
    204       1.52        ad  *
    205       1.52        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    206       1.52        ad  *
    207      1.129        ad  *	(But not always for kernel threads.  There are some special cases
    208      1.212        ad  *	as mentioned above: soft interrupts, and the idle loops.)
    209      1.129        ad  *
    210       1.52        ad  *	Note that an LWP is considered running or likely to run soon if in
    211       1.52        ad  *	one of the following states.  This affects the value of p_nrlwps:
    212       1.52        ad  *
    213       1.52        ad  *		LSRUN, LSONPROC, LSSLEEP
    214       1.52        ad  *
    215      1.103        ad  *	p_lock does not need to be held when transitioning among these
    216      1.129        ad  *	three states, hence p_lock is rarely taken for state transitions.
    217       1.52        ad  */
    218       1.52        ad 
    219        1.9     lukem #include <sys/cdefs.h>
    220  1.242.2.1   thorpej __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.242.2.1 2021/04/03 22:29:00 thorpej Exp $");
    221        1.8    martin 
    222       1.84      yamt #include "opt_ddb.h"
    223       1.52        ad #include "opt_lockdebug.h"
    224      1.139    darran #include "opt_dtrace.h"
    225        1.2   thorpej 
    226       1.47   hannken #define _LWP_API_PRIVATE
    227       1.47   hannken 
    228        1.2   thorpej #include <sys/param.h>
    229        1.2   thorpej #include <sys/systm.h>
    230       1.64      yamt #include <sys/cpu.h>
    231        1.2   thorpej #include <sys/pool.h>
    232        1.2   thorpej #include <sys/proc.h>
    233        1.2   thorpej #include <sys/syscallargs.h>
    234       1.57       dsl #include <sys/syscall_stats.h>
    235       1.37        ad #include <sys/kauth.h>
    236       1.52        ad #include <sys/sleepq.h>
    237       1.52        ad #include <sys/lockdebug.h>
    238       1.52        ad #include <sys/kmem.h>
    239       1.91     rmind #include <sys/pset.h>
    240       1.75        ad #include <sys/intr.h>
    241       1.78        ad #include <sys/lwpctl.h>
    242       1.81        ad #include <sys/atomic.h>
    243      1.131        ad #include <sys/filedesc.h>
    244      1.196   hannken #include <sys/fstrans.h>
    245      1.138    darran #include <sys/dtrace_bsd.h>
    246      1.141    darran #include <sys/sdt.h>
    247      1.203     kamil #include <sys/ptrace.h>
    248      1.157     rmind #include <sys/xcall.h>
    249      1.169  christos #include <sys/uidinfo.h>
    250      1.169  christos #include <sys/sysctl.h>
    251      1.201     ozaki #include <sys/psref.h>
    252      1.208      maxv #include <sys/msan.h>
    253      1.232      maxv #include <sys/kcov.h>
    254      1.233   thorpej #include <sys/cprng.h>
    255      1.236   thorpej #include <sys/futex.h>
    256      1.138    darran 
    257        1.2   thorpej #include <uvm/uvm_extern.h>
    258       1.80     skrll #include <uvm/uvm_object.h>
    259        1.2   thorpej 
    260      1.152     rmind static pool_cache_t	lwp_cache	__read_mostly;
    261      1.152     rmind struct lwplist		alllwp		__cacheline_aligned;
    262       1.41   thorpej 
    263      1.238        ad static int		lwp_ctor(void *, void *, int);
    264      1.157     rmind static void		lwp_dtor(void *, void *);
    265      1.157     rmind 
    266      1.141    darran /* DTrace proc provider probes */
    267      1.180  christos SDT_PROVIDER_DEFINE(proc);
    268      1.180  christos 
    269      1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
    270      1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
    271      1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
    272      1.141    darran 
    273      1.213        ad struct turnstile turnstile0 __cacheline_aligned;
    274      1.147     pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    275      1.147     pooka #ifdef LWP0_CPU_INFO
    276      1.147     pooka 	.l_cpu = LWP0_CPU_INFO,
    277      1.147     pooka #endif
    278      1.154      matt #ifdef LWP0_MD_INITIALIZER
    279      1.154      matt 	.l_md = LWP0_MD_INITIALIZER,
    280      1.154      matt #endif
    281      1.147     pooka 	.l_proc = &proc0,
    282      1.235   thorpej 	.l_lid = 0,		/* we own proc0's slot in the pid table */
    283      1.147     pooka 	.l_flag = LW_SYSTEM,
    284      1.147     pooka 	.l_stat = LSONPROC,
    285      1.147     pooka 	.l_ts = &turnstile0,
    286      1.147     pooka 	.l_syncobj = &sched_syncobj,
    287      1.231        ad 	.l_refcnt = 0,
    288      1.147     pooka 	.l_priority = PRI_USER + NPRI_USER - 1,
    289      1.147     pooka 	.l_inheritedprio = -1,
    290      1.147     pooka 	.l_class = SCHED_OTHER,
    291      1.147     pooka 	.l_psid = PS_NONE,
    292      1.147     pooka 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    293      1.147     pooka 	.l_name = __UNCONST("swapper"),
    294      1.147     pooka 	.l_fd = &filedesc0,
    295      1.147     pooka };
    296      1.147     pooka 
    297      1.169  christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
    298      1.169  christos 
    299      1.169  christos /*
    300      1.169  christos  * sysctl helper routine for kern.maxlwp. Ensures that the new
    301      1.169  christos  * values are not too low or too high.
    302      1.169  christos  */
    303      1.169  christos static int
    304      1.169  christos sysctl_kern_maxlwp(SYSCTLFN_ARGS)
    305      1.169  christos {
    306      1.169  christos 	int error, nmaxlwp;
    307      1.169  christos 	struct sysctlnode node;
    308      1.169  christos 
    309      1.169  christos 	nmaxlwp = maxlwp;
    310      1.169  christos 	node = *rnode;
    311      1.169  christos 	node.sysctl_data = &nmaxlwp;
    312      1.169  christos 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    313      1.169  christos 	if (error || newp == NULL)
    314      1.169  christos 		return error;
    315      1.169  christos 
    316      1.169  christos 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
    317      1.169  christos 		return EINVAL;
    318      1.169  christos 	if (nmaxlwp > cpu_maxlwp())
    319      1.169  christos 		return EINVAL;
    320      1.169  christos 	maxlwp = nmaxlwp;
    321      1.169  christos 
    322      1.169  christos 	return 0;
    323      1.169  christos }
    324      1.169  christos 
    325      1.169  christos static void
    326      1.169  christos sysctl_kern_lwp_setup(void)
    327      1.169  christos {
    328      1.242      maxv 	sysctl_createv(NULL, 0, NULL, NULL,
    329      1.169  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    330      1.169  christos 		       CTLTYPE_INT, "maxlwp",
    331      1.169  christos 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
    332      1.169  christos 		       sysctl_kern_maxlwp, 0, NULL, 0,
    333      1.169  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    334      1.169  christos }
    335      1.169  christos 
    336       1.41   thorpej void
    337       1.41   thorpej lwpinit(void)
    338       1.41   thorpej {
    339       1.41   thorpej 
    340      1.152     rmind 	LIST_INIT(&alllwp);
    341      1.144     pooka 	lwpinit_specificdata();
    342       1.87        ad 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    343      1.238        ad 	    "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL);
    344      1.169  christos 
    345      1.169  christos 	maxlwp = cpu_maxlwp();
    346      1.169  christos 	sysctl_kern_lwp_setup();
    347       1.41   thorpej }
    348       1.41   thorpej 
    349      1.147     pooka void
    350      1.147     pooka lwp0_init(void)
    351      1.147     pooka {
    352      1.147     pooka 	struct lwp *l = &lwp0;
    353      1.147     pooka 
    354      1.147     pooka 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    355      1.147     pooka 
    356      1.147     pooka 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    357      1.147     pooka 
    358      1.147     pooka 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    359      1.147     pooka 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    360      1.147     pooka 	cv_init(&l->l_sigcv, "sigwait");
    361      1.171     rmind 	cv_init(&l->l_waitcv, "vfork");
    362      1.147     pooka 
    363      1.147     pooka 	kauth_cred_hold(proc0.p_cred);
    364      1.147     pooka 	l->l_cred = proc0.p_cred;
    365      1.147     pooka 
    366      1.164      yamt 	kdtrace_thread_ctor(NULL, l);
    367      1.147     pooka 	lwp_initspecific(l);
    368      1.147     pooka 
    369      1.147     pooka 	SYSCALL_TIME_LWP_INIT(l);
    370      1.147     pooka }
    371      1.147     pooka 
    372      1.238        ad /*
    373      1.238        ad  * Initialize the non-zeroed portion of an lwp_t.
    374      1.238        ad  */
    375      1.238        ad static int
    376      1.238        ad lwp_ctor(void *arg, void *obj, int flags)
    377      1.238        ad {
    378      1.238        ad 	lwp_t *l = obj;
    379      1.238        ad 
    380      1.238        ad 	l->l_stat = LSIDL;
    381      1.238        ad 	l->l_cpu = curcpu();
    382      1.238        ad 	l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock;
    383      1.238        ad 	l->l_ts = pool_get(&turnstile_pool, flags);
    384      1.238        ad 
    385      1.238        ad 	if (l->l_ts == NULL) {
    386      1.238        ad 		return ENOMEM;
    387      1.238        ad 	} else {
    388      1.238        ad 		turnstile_ctor(l->l_ts);
    389      1.238        ad 		return 0;
    390      1.238        ad 	}
    391      1.238        ad }
    392      1.238        ad 
    393      1.157     rmind static void
    394      1.157     rmind lwp_dtor(void *arg, void *obj)
    395      1.157     rmind {
    396      1.157     rmind 	lwp_t *l = obj;
    397      1.157     rmind 	(void)l;
    398      1.157     rmind 
    399      1.157     rmind 	/*
    400      1.157     rmind 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    401      1.157     rmind 	 * calls will exit before memory of LWP is returned to the pool, where
    402      1.157     rmind 	 * KVA of LWP structure might be freed and re-used for other purposes.
    403      1.157     rmind 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    404      1.157     rmind 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
    405      1.157     rmind 	 * the value of l->l_cpu must be still valid at this point.
    406      1.238        ad 	 *
    407      1.238        ad 	 * XXX should use epoch based reclamation.
    408      1.157     rmind 	 */
    409      1.157     rmind 	KASSERT(l->l_cpu != NULL);
    410      1.205       uwe 	xc_barrier(0);
    411      1.238        ad 
    412      1.238        ad 	/*
    413      1.238        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
    414      1.238        ad 	 * so if it comes up just drop it quietly and move on.
    415      1.238        ad 	 */
    416      1.238        ad 	if (l->l_ts != &turnstile0)
    417      1.238        ad 		pool_put(&turnstile_pool, l->l_ts);
    418      1.157     rmind }
    419      1.157     rmind 
    420       1.52        ad /*
    421      1.238        ad  * Set an LWP suspended.
    422       1.52        ad  *
    423      1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    424       1.52        ad  * LWP before return.
    425       1.52        ad  */
    426        1.2   thorpej int
    427       1.52        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    428        1.2   thorpej {
    429       1.52        ad 	int error;
    430        1.2   thorpej 
    431      1.103        ad 	KASSERT(mutex_owned(t->l_proc->p_lock));
    432       1.63        ad 	KASSERT(lwp_locked(t, NULL));
    433       1.33       chs 
    434       1.52        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    435        1.2   thorpej 
    436       1.52        ad 	/*
    437       1.52        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    438       1.52        ad 	 * else or deadlock could occur.  We won't return to userspace.
    439        1.2   thorpej 	 */
    440      1.109     rmind 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    441       1.52        ad 		lwp_unlock(t);
    442       1.52        ad 		return (EDEADLK);
    443        1.2   thorpej 	}
    444        1.2   thorpej 
    445      1.204     kamil 	if ((t->l_flag & LW_DBGSUSPEND) != 0) {
    446      1.204     kamil 		lwp_unlock(t);
    447      1.204     kamil 		return 0;
    448      1.204     kamil 	}
    449      1.204     kamil 
    450       1.52        ad 	error = 0;
    451        1.2   thorpej 
    452       1.52        ad 	switch (t->l_stat) {
    453       1.52        ad 	case LSRUN:
    454       1.52        ad 	case LSONPROC:
    455       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    456       1.52        ad 		lwp_need_userret(t);
    457       1.52        ad 		lwp_unlock(t);
    458       1.52        ad 		break;
    459        1.2   thorpej 
    460       1.52        ad 	case LSSLEEP:
    461       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    462        1.2   thorpej 
    463        1.2   thorpej 		/*
    464       1.52        ad 		 * Kick the LWP and try to get it to the kernel boundary
    465       1.52        ad 		 * so that it will release any locks that it holds.
    466       1.52        ad 		 * setrunnable() will release the lock.
    467        1.2   thorpej 		 */
    468       1.56     pavel 		if ((t->l_flag & LW_SINTR) != 0)
    469       1.52        ad 			setrunnable(t);
    470       1.52        ad 		else
    471       1.52        ad 			lwp_unlock(t);
    472       1.52        ad 		break;
    473        1.2   thorpej 
    474       1.52        ad 	case LSSUSPENDED:
    475       1.52        ad 		lwp_unlock(t);
    476       1.52        ad 		break;
    477       1.17      manu 
    478       1.52        ad 	case LSSTOP:
    479       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    480       1.52        ad 		setrunnable(t);
    481       1.52        ad 		break;
    482        1.2   thorpej 
    483       1.52        ad 	case LSIDL:
    484       1.52        ad 	case LSZOMB:
    485       1.52        ad 		error = EINTR; /* It's what Solaris does..... */
    486       1.52        ad 		lwp_unlock(t);
    487       1.52        ad 		break;
    488        1.2   thorpej 	}
    489        1.2   thorpej 
    490       1.69     rmind 	return (error);
    491        1.2   thorpej }
    492        1.2   thorpej 
    493       1.52        ad /*
    494       1.52        ad  * Restart a suspended LWP.
    495       1.52        ad  *
    496      1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    497       1.52        ad  * LWP before return.
    498       1.52        ad  */
    499        1.2   thorpej void
    500        1.2   thorpej lwp_continue(struct lwp *l)
    501        1.2   thorpej {
    502        1.2   thorpej 
    503      1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
    504       1.63        ad 	KASSERT(lwp_locked(l, NULL));
    505       1.52        ad 
    506       1.52        ad 	/* If rebooting or not suspended, then just bail out. */
    507       1.56     pavel 	if ((l->l_flag & LW_WREBOOT) != 0) {
    508       1.52        ad 		lwp_unlock(l);
    509        1.2   thorpej 		return;
    510       1.10      fvdl 	}
    511        1.2   thorpej 
    512       1.56     pavel 	l->l_flag &= ~LW_WSUSPEND;
    513        1.2   thorpej 
    514      1.204     kamil 	if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
    515       1.52        ad 		lwp_unlock(l);
    516       1.52        ad 		return;
    517        1.2   thorpej 	}
    518        1.2   thorpej 
    519       1.52        ad 	/* setrunnable() will release the lock. */
    520       1.52        ad 	setrunnable(l);
    521        1.2   thorpej }
    522        1.2   thorpej 
    523       1.52        ad /*
    524      1.142  christos  * Restart a stopped LWP.
    525      1.142  christos  *
    526      1.142  christos  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    527      1.142  christos  * LWP before return.
    528      1.142  christos  */
    529      1.142  christos void
    530      1.142  christos lwp_unstop(struct lwp *l)
    531      1.142  christos {
    532      1.142  christos 	struct proc *p = l->l_proc;
    533      1.167     rmind 
    534      1.239        ad 	KASSERT(mutex_owned(&proc_lock));
    535      1.142  christos 	KASSERT(mutex_owned(p->p_lock));
    536      1.142  christos 
    537      1.142  christos 	lwp_lock(l);
    538      1.142  christos 
    539      1.204     kamil 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    540      1.204     kamil 
    541      1.142  christos 	/* If not stopped, then just bail out. */
    542      1.142  christos 	if (l->l_stat != LSSTOP) {
    543      1.142  christos 		lwp_unlock(l);
    544      1.142  christos 		return;
    545      1.142  christos 	}
    546      1.142  christos 
    547      1.142  christos 	p->p_stat = SACTIVE;
    548      1.142  christos 	p->p_sflag &= ~PS_STOPPING;
    549      1.142  christos 
    550      1.142  christos 	if (!p->p_waited)
    551      1.142  christos 		p->p_pptr->p_nstopchild--;
    552      1.142  christos 
    553      1.142  christos 	if (l->l_wchan == NULL) {
    554      1.142  christos 		/* setrunnable() will release the lock. */
    555      1.142  christos 		setrunnable(l);
    556      1.183  christos 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
    557      1.163  christos 		/* setrunnable() so we can receive the signal */
    558      1.163  christos 		setrunnable(l);
    559      1.142  christos 	} else {
    560      1.142  christos 		l->l_stat = LSSLEEP;
    561      1.142  christos 		p->p_nrlwps++;
    562      1.142  christos 		lwp_unlock(l);
    563      1.142  christos 	}
    564      1.142  christos }
    565      1.142  christos 
    566      1.142  christos /*
    567       1.52        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    568       1.52        ad  * non-zero, we are waiting for a specific LWP.
    569       1.52        ad  *
    570      1.103        ad  * Must be called with p->p_lock held.
    571       1.52        ad  */
    572        1.2   thorpej int
    573      1.173     rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
    574        1.2   thorpej {
    575      1.173     rmind 	const lwpid_t curlid = l->l_lid;
    576      1.173     rmind 	proc_t *p = l->l_proc;
    577      1.223        ad 	lwp_t *l2, *next;
    578      1.173     rmind 	int error;
    579        1.2   thorpej 
    580      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
    581       1.52        ad 
    582       1.52        ad 	p->p_nlwpwait++;
    583       1.63        ad 	l->l_waitingfor = lid;
    584       1.52        ad 
    585       1.52        ad 	for (;;) {
    586      1.173     rmind 		int nfound;
    587      1.173     rmind 
    588       1.52        ad 		/*
    589       1.52        ad 		 * Avoid a race between exit1() and sigexit(): if the
    590       1.52        ad 		 * process is dumping core, then we need to bail out: call
    591       1.52        ad 		 * into lwp_userret() where we will be suspended until the
    592       1.52        ad 		 * deed is done.
    593       1.52        ad 		 */
    594       1.52        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    595      1.103        ad 			mutex_exit(p->p_lock);
    596       1.52        ad 			lwp_userret(l);
    597      1.173     rmind 			KASSERT(false);
    598       1.52        ad 		}
    599       1.52        ad 
    600       1.52        ad 		/*
    601       1.52        ad 		 * First off, drain any detached LWP that is waiting to be
    602       1.52        ad 		 * reaped.
    603       1.52        ad 		 */
    604       1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    605       1.52        ad 			p->p_zomblwp = NULL;
    606       1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    607      1.103        ad 			mutex_enter(p->p_lock);
    608       1.52        ad 		}
    609       1.52        ad 
    610       1.52        ad 		/*
    611       1.52        ad 		 * Now look for an LWP to collect.  If the whole process is
    612       1.52        ad 		 * exiting, count detached LWPs as eligible to be collected,
    613       1.52        ad 		 * but don't drain them here.
    614       1.52        ad 		 */
    615       1.52        ad 		nfound = 0;
    616       1.63        ad 		error = 0;
    617      1.223        ad 
    618      1.223        ad 		/*
    619      1.238        ad 		 * If given a specific LID, go via pid_table and make sure
    620      1.223        ad 		 * it's not detached.
    621      1.223        ad 		 */
    622      1.223        ad 		if (lid != 0) {
    623      1.235   thorpej 			l2 = proc_find_lwp(p, lid);
    624      1.223        ad 			if (l2 == NULL) {
    625      1.223        ad 				error = ESRCH;
    626      1.223        ad 				break;
    627      1.223        ad 			}
    628      1.223        ad 			KASSERT(l2->l_lid == lid);
    629      1.223        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    630      1.223        ad 				error = EINVAL;
    631      1.223        ad 				break;
    632      1.223        ad 			}
    633      1.223        ad 		} else {
    634      1.223        ad 			l2 = LIST_FIRST(&p->p_lwps);
    635      1.223        ad 		}
    636      1.223        ad 		for (; l2 != NULL; l2 = next) {
    637      1.223        ad 			next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
    638      1.223        ad 
    639       1.63        ad 			/*
    640       1.63        ad 			 * If a specific wait and the target is waiting on
    641       1.63        ad 			 * us, then avoid deadlock.  This also traps LWPs
    642       1.63        ad 			 * that try to wait on themselves.
    643       1.63        ad 			 *
    644       1.63        ad 			 * Note that this does not handle more complicated
    645       1.63        ad 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    646       1.63        ad 			 * can still be killed so it is not a major problem.
    647       1.63        ad 			 */
    648       1.63        ad 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    649       1.63        ad 				error = EDEADLK;
    650       1.63        ad 				break;
    651       1.63        ad 			}
    652       1.63        ad 			if (l2 == l)
    653       1.52        ad 				continue;
    654       1.52        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    655       1.63        ad 				nfound += exiting;
    656       1.63        ad 				continue;
    657       1.63        ad 			}
    658       1.63        ad 			if (lid != 0) {
    659       1.63        ad 				/*
    660       1.63        ad 				 * Mark this LWP as the first waiter, if there
    661       1.63        ad 				 * is no other.
    662       1.63        ad 				 */
    663       1.63        ad 				if (l2->l_waiter == 0)
    664       1.63        ad 					l2->l_waiter = curlid;
    665       1.63        ad 			} else if (l2->l_waiter != 0) {
    666       1.63        ad 				/*
    667       1.63        ad 				 * It already has a waiter - so don't
    668       1.63        ad 				 * collect it.  If the waiter doesn't
    669       1.63        ad 				 * grab it we'll get another chance
    670       1.63        ad 				 * later.
    671       1.63        ad 				 */
    672       1.63        ad 				nfound++;
    673       1.52        ad 				continue;
    674       1.52        ad 			}
    675       1.52        ad 			nfound++;
    676        1.2   thorpej 
    677       1.52        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    678       1.52        ad 			if (l2->l_stat != LSZOMB)
    679       1.52        ad 				continue;
    680        1.2   thorpej 
    681       1.63        ad 			/*
    682       1.63        ad 			 * We're no longer waiting.  Reset the "first waiter"
    683       1.63        ad 			 * pointer on the target, in case it was us.
    684       1.63        ad 			 */
    685       1.63        ad 			l->l_waitingfor = 0;
    686       1.63        ad 			l2->l_waiter = 0;
    687       1.63        ad 			p->p_nlwpwait--;
    688        1.2   thorpej 			if (departed)
    689        1.2   thorpej 				*departed = l2->l_lid;
    690       1.75        ad 			sched_lwp_collect(l2);
    691       1.63        ad 
    692       1.63        ad 			/* lwp_free() releases the proc lock. */
    693       1.63        ad 			lwp_free(l2, false, false);
    694      1.103        ad 			mutex_enter(p->p_lock);
    695       1.52        ad 			return 0;
    696       1.52        ad 		}
    697        1.2   thorpej 
    698       1.63        ad 		if (error != 0)
    699       1.63        ad 			break;
    700       1.52        ad 		if (nfound == 0) {
    701       1.52        ad 			error = ESRCH;
    702       1.52        ad 			break;
    703       1.52        ad 		}
    704       1.63        ad 
    705       1.63        ad 		/*
    706      1.173     rmind 		 * Note: since the lock will be dropped, need to restart on
    707      1.173     rmind 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
    708       1.63        ad 		 */
    709       1.63        ad 		if (exiting) {
    710       1.52        ad 			KASSERT(p->p_nlwps > 1);
    711      1.222        ad 			error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
    712      1.173     rmind 			break;
    713       1.52        ad 		}
    714       1.63        ad 
    715       1.63        ad 		/*
    716      1.234        ad 		 * Break out if all LWPs are in _lwp_wait().  There are
    717      1.234        ad 		 * other ways to hang the process with _lwp_wait(), but the
    718      1.234        ad 		 * sleep is interruptable so little point checking for them.
    719       1.63        ad 		 */
    720      1.234        ad 		if (p->p_nlwpwait == p->p_nlwps) {
    721       1.52        ad 			error = EDEADLK;
    722       1.52        ad 			break;
    723        1.2   thorpej 		}
    724       1.63        ad 
    725       1.63        ad 		/*
    726       1.63        ad 		 * Sit around and wait for something to happen.  We'll be
    727       1.63        ad 		 * awoken if any of the conditions examined change: if an
    728       1.63        ad 		 * LWP exits, is collected, or is detached.
    729       1.63        ad 		 */
    730      1.103        ad 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    731       1.52        ad 			break;
    732        1.2   thorpej 	}
    733        1.2   thorpej 
    734       1.63        ad 	/*
    735       1.63        ad 	 * We didn't find any LWPs to collect, we may have received a
    736       1.63        ad 	 * signal, or some other condition has caused us to bail out.
    737       1.63        ad 	 *
    738       1.63        ad 	 * If waiting on a specific LWP, clear the waiters marker: some
    739       1.63        ad 	 * other LWP may want it.  Then, kick all the remaining waiters
    740       1.63        ad 	 * so that they can re-check for zombies and for deadlock.
    741       1.63        ad 	 */
    742       1.63        ad 	if (lid != 0) {
    743      1.235   thorpej 		l2 = proc_find_lwp(p, lid);
    744      1.223        ad 		KASSERT(l2 == NULL || l2->l_lid == lid);
    745      1.223        ad 
    746      1.223        ad 		if (l2 != NULL && l2->l_waiter == curlid)
    747      1.223        ad 			l2->l_waiter = 0;
    748       1.63        ad 	}
    749       1.52        ad 	p->p_nlwpwait--;
    750       1.63        ad 	l->l_waitingfor = 0;
    751       1.63        ad 	cv_broadcast(&p->p_lwpcv);
    752       1.63        ad 
    753       1.52        ad 	return error;
    754        1.2   thorpej }
    755        1.2   thorpej 
    756      1.223        ad /*
    757       1.52        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    758       1.52        ad  * The new LWP is created in state LSIDL and must be set running,
    759       1.52        ad  * suspended, or stopped by the caller.
    760       1.52        ad  */
    761        1.2   thorpej int
    762      1.134     rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    763      1.188  christos     void *stack, size_t stacksize, void (*func)(void *), void *arg,
    764      1.188  christos     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
    765      1.188  christos     const stack_t *sigstk)
    766        1.2   thorpej {
    767      1.215        ad 	struct lwp *l2;
    768        1.2   thorpej 
    769      1.107        ad 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    770      1.107        ad 
    771       1.52        ad 	/*
    772      1.215        ad 	 * Enforce limits, excluding the first lwp and kthreads.  We must
    773      1.215        ad 	 * use the process credentials here when adjusting the limit, as
    774      1.215        ad 	 * they are what's tied to the accounting entity.  However for
    775      1.215        ad 	 * authorizing the action, we'll use the LWP's credentials.
    776      1.169  christos 	 */
    777      1.215        ad 	mutex_enter(p2->p_lock);
    778      1.169  christos 	if (p2->p_nlwps != 0 && p2 != &proc0) {
    779      1.215        ad 		uid_t uid = kauth_cred_getuid(p2->p_cred);
    780      1.169  christos 		int count = chglwpcnt(uid, 1);
    781      1.169  christos 		if (__predict_false(count >
    782      1.169  christos 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
    783      1.169  christos 			if (kauth_authorize_process(l1->l_cred,
    784      1.169  christos 			    KAUTH_PROCESS_RLIMIT, p2,
    785      1.169  christos 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    786      1.169  christos 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
    787      1.169  christos 			    != 0) {
    788      1.170  christos 				(void)chglwpcnt(uid, -1);
    789      1.215        ad 				mutex_exit(p2->p_lock);
    790      1.170  christos 				return EAGAIN;
    791      1.169  christos 			}
    792      1.169  christos 		}
    793      1.169  christos 	}
    794      1.169  christos 
    795      1.169  christos 	/*
    796       1.52        ad 	 * First off, reap any detached LWP waiting to be collected.
    797       1.52        ad 	 * We can re-use its LWP structure and turnstile.
    798       1.52        ad 	 */
    799      1.215        ad 	if ((l2 = p2->p_zomblwp) != NULL) {
    800      1.215        ad 		p2->p_zomblwp = NULL;
    801      1.215        ad 		lwp_free(l2, true, false);
    802      1.215        ad 		/* p2 now unlocked by lwp_free() */
    803      1.238        ad 		KASSERT(l2->l_ts != NULL);
    804       1.75        ad 		KASSERT(l2->l_inheritedprio == -1);
    805       1.60      yamt 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    806      1.238        ad 		memset(&l2->l_startzero, 0, sizeof(*l2) -
    807      1.238        ad 		    offsetof(lwp_t, l_startzero));
    808      1.215        ad 	} else {
    809      1.215        ad 		mutex_exit(p2->p_lock);
    810      1.215        ad 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    811      1.238        ad 		memset(&l2->l_startzero, 0, sizeof(*l2) -
    812      1.238        ad 		    offsetof(lwp_t, l_startzero));
    813      1.215        ad 		SLIST_INIT(&l2->l_pi_lenders);
    814       1.52        ad 	}
    815        1.2   thorpej 
    816      1.238        ad 	/*
    817      1.238        ad 	 * Because of lockless lookup via pid_table, the LWP can be locked
    818      1.238        ad 	 * and inspected briefly even after it's freed, so a few fields are
    819      1.238        ad 	 * kept stable.
    820      1.238        ad 	 */
    821      1.238        ad 	KASSERT(l2->l_stat == LSIDL);
    822      1.238        ad 	KASSERT(l2->l_cpu != NULL);
    823      1.238        ad 	KASSERT(l2->l_ts != NULL);
    824      1.238        ad 	KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock);
    825      1.238        ad 
    826        1.2   thorpej 	l2->l_proc = p2;
    827      1.231        ad 	l2->l_refcnt = 0;
    828       1.75        ad 	l2->l_class = sclass;
    829      1.116        ad 
    830      1.116        ad 	/*
    831      1.235   thorpej 	 * Allocate a process ID for this LWP.  We need to do this now
    832      1.235   thorpej 	 * while we can still unwind if it fails.  Beacuse we're marked
    833      1.238        ad 	 * as LSIDL, no lookups by the ID will succeed.
    834      1.235   thorpej 	 *
    835      1.235   thorpej 	 * N.B. this will always succeed for the first LWP in a process,
    836      1.235   thorpej 	 * because proc_alloc_lwpid() will usurp the slot.  Also note
    837      1.235   thorpej 	 * that l2->l_proc MUST be valid so that lookups of the proc
    838      1.235   thorpej 	 * will succeed, even if the LWP itself is not visible.
    839      1.235   thorpej 	 */
    840      1.235   thorpej 	if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
    841      1.235   thorpej 		pool_cache_put(lwp_cache, l2);
    842      1.235   thorpej 		return EAGAIN;
    843      1.235   thorpej 	}
    844      1.235   thorpej 
    845      1.235   thorpej 	/*
    846      1.116        ad 	 * If vfork(), we want the LWP to run fast and on the same CPU
    847      1.116        ad 	 * as its parent, so that it can reuse the VM context and cache
    848      1.116        ad 	 * footprint on the local CPU.
    849      1.116        ad 	 */
    850      1.116        ad 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    851       1.82        ad 	l2->l_kpribase = PRI_KERNEL;
    852       1.52        ad 	l2->l_priority = l1->l_priority;
    853       1.75        ad 	l2->l_inheritedprio = -1;
    854      1.185  christos 	l2->l_protectprio = -1;
    855      1.185  christos 	l2->l_auxprio = -1;
    856      1.222        ad 	l2->l_flag = 0;
    857       1.88        ad 	l2->l_pflag = LP_MPSAFE;
    858      1.131        ad 	TAILQ_INIT(&l2->l_ld_locks);
    859      1.197     ozaki 	l2->l_psrefs = 0;
    860      1.208      maxv 	kmsan_lwp_alloc(l2);
    861      1.131        ad 
    862      1.131        ad 	/*
    863      1.156     pooka 	 * For vfork, borrow parent's lwpctl context if it exists.
    864      1.156     pooka 	 * This also causes us to return via lwp_userret.
    865      1.156     pooka 	 */
    866      1.156     pooka 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    867      1.156     pooka 		l2->l_lwpctl = l1->l_lwpctl;
    868      1.156     pooka 		l2->l_flag |= LW_LWPCTL;
    869      1.156     pooka 	}
    870      1.156     pooka 
    871      1.156     pooka 	/*
    872      1.131        ad 	 * If not the first LWP in the process, grab a reference to the
    873      1.131        ad 	 * descriptor table.
    874      1.131        ad 	 */
    875       1.97        ad 	l2->l_fd = p2->p_fd;
    876      1.131        ad 	if (p2->p_nlwps != 0) {
    877      1.131        ad 		KASSERT(l1->l_proc == p2);
    878      1.136     rmind 		fd_hold(l2);
    879      1.131        ad 	} else {
    880      1.131        ad 		KASSERT(l1->l_proc != p2);
    881      1.131        ad 	}
    882       1.41   thorpej 
    883       1.56     pavel 	if (p2->p_flag & PK_SYSTEM) {
    884      1.134     rmind 		/* Mark it as a system LWP. */
    885       1.56     pavel 		l2->l_flag |= LW_SYSTEM;
    886       1.52        ad 	}
    887        1.2   thorpej 
    888      1.138    darran 	kdtrace_thread_ctor(NULL, l2);
    889       1.73     rmind 	lwp_initspecific(l2);
    890       1.75        ad 	sched_lwp_fork(l1, l2);
    891       1.37        ad 	lwp_update_creds(l2);
    892       1.70        ad 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    893       1.70        ad 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    894       1.52        ad 	cv_init(&l2->l_sigcv, "sigwait");
    895      1.171     rmind 	cv_init(&l2->l_waitcv, "vfork");
    896       1.52        ad 	l2->l_syncobj = &sched_syncobj;
    897      1.201     ozaki 	PSREF_DEBUG_INIT_LWP(l2);
    898        1.2   thorpej 
    899        1.2   thorpej 	if (rnewlwpp != NULL)
    900        1.2   thorpej 		*rnewlwpp = l2;
    901        1.2   thorpej 
    902      1.158      matt 	/*
    903      1.158      matt 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    904      1.158      matt 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    905      1.158      matt 	 */
    906      1.158      matt 	pcu_save_all(l1);
    907      1.225    dogcow #if PCU_UNIT_COUNT > 0
    908      1.224  riastrad 	l2->l_pcu_valid = l1->l_pcu_valid;
    909      1.225    dogcow #endif
    910      1.158      matt 
    911      1.137     rmind 	uvm_lwp_setuarea(l2, uaddr);
    912      1.190     skrll 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
    913        1.2   thorpej 
    914      1.235   thorpej 	mutex_enter(p2->p_lock);
    915       1.52        ad 	if ((flags & LWP_DETACHED) != 0) {
    916       1.52        ad 		l2->l_prflag = LPR_DETACHED;
    917       1.52        ad 		p2->p_ndlwps++;
    918       1.52        ad 	} else
    919       1.52        ad 		l2->l_prflag = 0;
    920       1.52        ad 
    921      1.223        ad 	if (l1->l_proc == p2) {
    922      1.223        ad 		/*
    923      1.223        ad 		 * These flags are set while p_lock is held.  Copy with
    924      1.223        ad 		 * p_lock held too, so the LWP doesn't sneak into the
    925      1.223        ad 		 * process without them being set.
    926      1.223        ad 		 */
    927      1.222        ad 		l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
    928      1.223        ad 	} else {
    929      1.223        ad 		/* fork(): pending core/exit doesn't apply to child. */
    930      1.222        ad 		l2->l_flag |= (l1->l_flag & LW_WREBOOT);
    931      1.223        ad 	}
    932      1.222        ad 
    933      1.188  christos 	l2->l_sigstk = *sigstk;
    934      1.188  christos 	l2->l_sigmask = *sigmask;
    935      1.176  christos 	TAILQ_INIT(&l2->l_sigpend.sp_info);
    936       1.52        ad 	sigemptyset(&l2->l_sigpend.sp_set);
    937      1.174       dsl 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    938        1.2   thorpej 	p2->p_nlwps++;
    939      1.149      yamt 	p2->p_nrlwps++;
    940        1.2   thorpej 
    941      1.162     rmind 	KASSERT(l2->l_affinity == NULL);
    942      1.162     rmind 
    943      1.210        ad 	/* Inherit the affinity mask. */
    944      1.210        ad 	if (l1->l_affinity) {
    945      1.210        ad 		/*
    946      1.210        ad 		 * Note that we hold the state lock while inheriting
    947      1.210        ad 		 * the affinity to avoid race with sched_setaffinity().
    948      1.210        ad 		 */
    949      1.210        ad 		lwp_lock(l1);
    950      1.162     rmind 		if (l1->l_affinity) {
    951      1.210        ad 			kcpuset_use(l1->l_affinity);
    952      1.210        ad 			l2->l_affinity = l1->l_affinity;
    953      1.117  christos 		}
    954      1.210        ad 		lwp_unlock(l1);
    955       1.91     rmind 	}
    956      1.223        ad 
    957      1.223        ad 	/* This marks the end of the "must be atomic" section. */
    958      1.128     rmind 	mutex_exit(p2->p_lock);
    959      1.128     rmind 
    960      1.180  christos 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
    961      1.141    darran 
    962      1.239        ad 	mutex_enter(&proc_lock);
    963      1.128     rmind 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    964      1.210        ad 	/* Inherit a processor-set */
    965      1.210        ad 	l2->l_psid = l1->l_psid;
    966      1.239        ad 	mutex_exit(&proc_lock);
    967       1.91     rmind 
    968       1.57       dsl 	SYSCALL_TIME_LWP_INIT(l2);
    969       1.57       dsl 
    970       1.16      manu 	if (p2->p_emul->e_lwp_fork)
    971       1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    972       1.16      manu 
    973        1.2   thorpej 	return (0);
    974        1.2   thorpej }
    975        1.2   thorpej 
    976        1.2   thorpej /*
    977      1.212        ad  * Set a new LWP running.  If the process is stopping, then the LWP is
    978      1.212        ad  * created stopped.
    979      1.212        ad  */
    980      1.212        ad void
    981      1.212        ad lwp_start(lwp_t *l, int flags)
    982      1.212        ad {
    983      1.212        ad 	proc_t *p = l->l_proc;
    984      1.212        ad 
    985      1.212        ad 	mutex_enter(p->p_lock);
    986      1.212        ad 	lwp_lock(l);
    987      1.212        ad 	KASSERT(l->l_stat == LSIDL);
    988      1.212        ad 	if ((flags & LWP_SUSPENDED) != 0) {
    989      1.212        ad 		/* It'll suspend itself in lwp_userret(). */
    990      1.212        ad 		l->l_flag |= LW_WSUSPEND;
    991      1.212        ad 	}
    992      1.212        ad 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
    993      1.212        ad 		KASSERT(l->l_wchan == NULL);
    994      1.212        ad 	    	l->l_stat = LSSTOP;
    995      1.212        ad 		p->p_nrlwps--;
    996      1.212        ad 		lwp_unlock(l);
    997      1.212        ad 	} else {
    998      1.212        ad 		setrunnable(l);
    999      1.212        ad 		/* LWP now unlocked */
   1000      1.212        ad 	}
   1001      1.212        ad 	mutex_exit(p->p_lock);
   1002      1.212        ad }
   1003      1.212        ad 
   1004      1.212        ad /*
   1005       1.64      yamt  * Called by MD code when a new LWP begins execution.  Must be called
   1006       1.64      yamt  * with the previous LWP locked (so at splsched), or if there is no
   1007       1.64      yamt  * previous LWP, at splsched.
   1008       1.64      yamt  */
   1009       1.64      yamt void
   1010      1.178      matt lwp_startup(struct lwp *prev, struct lwp *new_lwp)
   1011       1.64      yamt {
   1012      1.227        ad 	kmutex_t *lock;
   1013      1.218        ad 
   1014      1.178      matt 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
   1015      1.218        ad 	KASSERT(kpreempt_disabled());
   1016      1.218        ad 	KASSERT(prev != NULL);
   1017      1.227        ad 	KASSERT((prev->l_pflag & LP_RUNNING) != 0);
   1018      1.218        ad 	KASSERT(curcpu()->ci_mtx_count == -2);
   1019      1.218        ad 
   1020      1.227        ad 	/*
   1021      1.227        ad 	 * Immediately mark the previous LWP as no longer running and unlock
   1022      1.227        ad 	 * (to keep lock wait times short as possible).  If a zombie, don't
   1023      1.227        ad 	 * touch after clearing LP_RUNNING as it could be reaped by another
   1024      1.227        ad 	 * CPU.  Issue a memory barrier to ensure this.
   1025      1.227        ad 	 */
   1026      1.227        ad 	lock = prev->l_mutex;
   1027      1.227        ad 	if (__predict_false(prev->l_stat == LSZOMB)) {
   1028      1.227        ad 		membar_sync();
   1029      1.227        ad 	}
   1030      1.227        ad 	prev->l_pflag &= ~LP_RUNNING;
   1031      1.227        ad 	mutex_spin_exit(lock);
   1032       1.64      yamt 
   1033      1.218        ad 	/* Correct spin mutex count after mi_switch(). */
   1034      1.218        ad 	curcpu()->ci_mtx_count = 0;
   1035      1.141    darran 
   1036      1.218        ad 	/* Install new VM context. */
   1037      1.218        ad 	if (__predict_true(new_lwp->l_proc->p_vmspace)) {
   1038      1.218        ad 		pmap_activate(new_lwp);
   1039       1.64      yamt 	}
   1040      1.218        ad 
   1041      1.218        ad 	/* We remain at IPL_SCHED from mi_switch() - reset it. */
   1042      1.181     skrll 	spl0();
   1043      1.161  christos 
   1044       1.64      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
   1045      1.218        ad 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
   1046      1.218        ad 
   1047      1.218        ad 	/* For kthreads, acquire kernel lock if not MPSAFE. */
   1048      1.218        ad 	if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
   1049      1.178      matt 		KERNEL_LOCK(1, new_lwp);
   1050       1.65        ad 	}
   1051       1.64      yamt }
   1052       1.64      yamt 
   1053       1.64      yamt /*
   1054       1.65        ad  * Exit an LWP.
   1055      1.241        ad  *
   1056      1.241        ad  * *** WARNING *** This can be called with (l != curlwp) in error paths.
   1057        1.2   thorpej  */
   1058        1.2   thorpej void
   1059        1.2   thorpej lwp_exit(struct lwp *l)
   1060        1.2   thorpej {
   1061        1.2   thorpej 	struct proc *p = l->l_proc;
   1062       1.52        ad 	struct lwp *l2;
   1063       1.65        ad 	bool current;
   1064       1.65        ad 
   1065       1.65        ad 	current = (l == curlwp);
   1066        1.2   thorpej 
   1067      1.114     rmind 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
   1068      1.131        ad 	KASSERT(p == curproc);
   1069        1.2   thorpej 
   1070      1.180  christos 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
   1071      1.141    darran 
   1072      1.220        ad 	/* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
   1073      1.218        ad 	LOCKDEBUG_BARRIER(NULL, 0);
   1074      1.220        ad 	KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
   1075       1.16      manu 
   1076        1.2   thorpej 	/*
   1077       1.52        ad 	 * If we are the last live LWP in a process, we need to exit the
   1078       1.52        ad 	 * entire process.  We do so with an exit status of zero, because
   1079       1.52        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
   1080       1.52        ad 	 *
   1081       1.52        ad 	 * We are not quite a zombie yet, but for accounting purposes we
   1082       1.52        ad 	 * must increment the count of zombies here.
   1083       1.45   thorpej 	 *
   1084       1.45   thorpej 	 * Note: the last LWP's specificdata will be deleted here.
   1085        1.2   thorpej 	 */
   1086      1.103        ad 	mutex_enter(p->p_lock);
   1087       1.52        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
   1088       1.65        ad 		KASSERT(current == true);
   1089      1.172      matt 		KASSERT(p != &proc0);
   1090      1.184  christos 		exit1(l, 0, 0);
   1091       1.19  jdolecek 		/* NOTREACHED */
   1092        1.2   thorpej 	}
   1093       1.52        ad 	p->p_nzlwps++;
   1094      1.233   thorpej 
   1095      1.233   thorpej 	/*
   1096      1.233   thorpej 	 * Perform any required thread cleanup.  Do this early so
   1097      1.235   thorpej 	 * anyone wanting to look us up with lwp_getref_lwpid() will
   1098      1.235   thorpej 	 * fail to find us before we become a zombie.
   1099      1.233   thorpej 	 *
   1100      1.233   thorpej 	 * N.B. this will unlock p->p_lock on our behalf.
   1101      1.233   thorpej 	 */
   1102      1.233   thorpej 	lwp_thread_cleanup(l);
   1103       1.52        ad 
   1104       1.52        ad 	if (p->p_emul->e_lwp_exit)
   1105       1.52        ad 		(*p->p_emul->e_lwp_exit)(l);
   1106        1.2   thorpej 
   1107      1.131        ad 	/* Drop filedesc reference. */
   1108      1.131        ad 	fd_free();
   1109      1.131        ad 
   1110      1.196   hannken 	/* Release fstrans private data. */
   1111      1.196   hannken 	fstrans_lwp_dtor(l);
   1112      1.196   hannken 
   1113       1.45   thorpej 	/* Delete the specificdata while it's still safe to sleep. */
   1114      1.145     pooka 	lwp_finispecific(l);
   1115       1.45   thorpej 
   1116       1.52        ad 	/*
   1117       1.52        ad 	 * Release our cached credentials.
   1118       1.52        ad 	 */
   1119       1.37        ad 	kauth_cred_free(l->l_cred);
   1120       1.70        ad 	callout_destroy(&l->l_timeout_ch);
   1121       1.65        ad 
   1122       1.65        ad 	/*
   1123      1.198     kamil 	 * If traced, report LWP exit event to the debugger.
   1124      1.198     kamil 	 *
   1125       1.52        ad 	 * Remove the LWP from the global list.
   1126      1.151       chs 	 * Free its LID from the PID namespace if needed.
   1127       1.52        ad 	 */
   1128      1.239        ad 	mutex_enter(&proc_lock);
   1129      1.198     kamil 
   1130      1.199     kamil 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
   1131      1.198     kamil 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
   1132      1.198     kamil 		mutex_enter(p->p_lock);
   1133      1.202     kamil 		if (ISSET(p->p_sflag, PS_WEXIT)) {
   1134      1.202     kamil 			mutex_exit(p->p_lock);
   1135      1.202     kamil 			/*
   1136      1.202     kamil 			 * We are exiting, bail out without informing parent
   1137      1.202     kamil 			 * about a terminating LWP as it would deadlock.
   1138      1.202     kamil 			 */
   1139      1.202     kamil 		} else {
   1140      1.203     kamil 			eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
   1141      1.239        ad 			mutex_enter(&proc_lock);
   1142      1.202     kamil 		}
   1143      1.198     kamil 	}
   1144      1.198     kamil 
   1145       1.52        ad 	LIST_REMOVE(l, l_list);
   1146      1.239        ad 	mutex_exit(&proc_lock);
   1147       1.19  jdolecek 
   1148       1.52        ad 	/*
   1149       1.52        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
   1150       1.52        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
   1151       1.52        ad 	 * mark it waiting for collection in the proc structure.  Note that
   1152       1.52        ad 	 * before we can do that, we need to free any other dead, deatched
   1153       1.52        ad 	 * LWP waiting to meet its maker.
   1154      1.231        ad 	 *
   1155      1.231        ad 	 * All conditions need to be observed upon under the same hold of
   1156      1.231        ad 	 * p_lock, because if the lock is dropped any of them can change.
   1157       1.52        ad 	 */
   1158      1.103        ad 	mutex_enter(p->p_lock);
   1159      1.231        ad 	for (;;) {
   1160      1.233   thorpej 		if (lwp_drainrefs(l))
   1161      1.231        ad 			continue;
   1162      1.231        ad 		if ((l->l_prflag & LPR_DETACHED) != 0) {
   1163      1.231        ad 			if ((l2 = p->p_zomblwp) != NULL) {
   1164      1.231        ad 				p->p_zomblwp = NULL;
   1165      1.231        ad 				lwp_free(l2, false, false);
   1166      1.231        ad 				/* proc now unlocked */
   1167      1.231        ad 				mutex_enter(p->p_lock);
   1168      1.231        ad 				continue;
   1169      1.231        ad 			}
   1170      1.231        ad 			p->p_zomblwp = l;
   1171       1.52        ad 		}
   1172      1.231        ad 		break;
   1173       1.52        ad 	}
   1174       1.31      yamt 
   1175       1.52        ad 	/*
   1176       1.52        ad 	 * If we find a pending signal for the process and we have been
   1177      1.151       chs 	 * asked to check for signals, then we lose: arrange to have
   1178       1.52        ad 	 * all other LWPs in the process check for signals.
   1179       1.52        ad 	 */
   1180       1.56     pavel 	if ((l->l_flag & LW_PENDSIG) != 0 &&
   1181       1.52        ad 	    firstsig(&p->p_sigpend.sp_set) != 0) {
   1182       1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1183       1.52        ad 			lwp_lock(l2);
   1184      1.209        ad 			signotify(l2);
   1185       1.52        ad 			lwp_unlock(l2);
   1186       1.52        ad 		}
   1187       1.31      yamt 	}
   1188       1.31      yamt 
   1189      1.158      matt 	/*
   1190      1.158      matt 	 * Release any PCU resources before becoming a zombie.
   1191      1.158      matt 	 */
   1192      1.158      matt 	pcu_discard_all(l);
   1193      1.158      matt 
   1194       1.52        ad 	lwp_lock(l);
   1195       1.52        ad 	l->l_stat = LSZOMB;
   1196      1.162     rmind 	if (l->l_name != NULL) {
   1197       1.90        ad 		strcpy(l->l_name, "(zombie)");
   1198      1.128     rmind 	}
   1199       1.52        ad 	lwp_unlock(l);
   1200        1.2   thorpej 	p->p_nrlwps--;
   1201       1.52        ad 	cv_broadcast(&p->p_lwpcv);
   1202       1.78        ad 	if (l->l_lwpctl != NULL)
   1203       1.78        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1204      1.103        ad 	mutex_exit(p->p_lock);
   1205       1.52        ad 
   1206       1.52        ad 	/*
   1207       1.52        ad 	 * We can no longer block.  At this point, lwp_free() may already
   1208       1.52        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1209       1.52        ad 	 *
   1210       1.52        ad 	 * Free MD LWP resources.
   1211       1.52        ad 	 */
   1212       1.52        ad 	cpu_lwp_free(l, 0);
   1213        1.2   thorpej 
   1214       1.65        ad 	if (current) {
   1215      1.218        ad 		/* Switch away into oblivion. */
   1216      1.218        ad 		lwp_lock(l);
   1217      1.218        ad 		spc_lock(l->l_cpu);
   1218      1.218        ad 		mi_switch(l);
   1219      1.218        ad 		panic("lwp_exit");
   1220       1.65        ad 	}
   1221        1.2   thorpej }
   1222        1.2   thorpej 
   1223       1.52        ad /*
   1224       1.52        ad  * Free a dead LWP's remaining resources.
   1225       1.52        ad  *
   1226       1.52        ad  * XXXLWP limits.
   1227       1.52        ad  */
   1228       1.52        ad void
   1229       1.63        ad lwp_free(struct lwp *l, bool recycle, bool last)
   1230       1.52        ad {
   1231       1.52        ad 	struct proc *p = l->l_proc;
   1232      1.100        ad 	struct rusage *ru;
   1233       1.52        ad 	ksiginfoq_t kq;
   1234       1.52        ad 
   1235       1.92      yamt 	KASSERT(l != curlwp);
   1236      1.160      yamt 	KASSERT(last || mutex_owned(p->p_lock));
   1237       1.92      yamt 
   1238      1.177  christos 	/*
   1239      1.177  christos 	 * We use the process credentials instead of the lwp credentials here
   1240      1.177  christos 	 * because the lwp credentials maybe cached (just after a setuid call)
   1241      1.177  christos 	 * and we don't want pay for syncing, since the lwp is going away
   1242      1.177  christos 	 * anyway
   1243      1.177  christos 	 */
   1244      1.169  christos 	if (p != &proc0 && p->p_nlwps != 1)
   1245      1.177  christos 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
   1246      1.218        ad 
   1247       1.52        ad 	/*
   1248      1.238        ad 	 * In the unlikely event that the LWP is still on the CPU,
   1249      1.238        ad 	 * then spin until it has switched away.
   1250      1.238        ad 	 */
   1251      1.238        ad 	membar_consumer();
   1252      1.238        ad 	while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
   1253      1.238        ad 		SPINLOCK_BACKOFF_HOOK;
   1254      1.238        ad 	}
   1255      1.238        ad 
   1256      1.238        ad 	/*
   1257      1.238        ad 	 * Now that the LWP's known off the CPU, reset its state back to
   1258      1.238        ad 	 * LSIDL, which defeats anything that might have gotten a hold on
   1259      1.238        ad 	 * the LWP via pid_table before the ID was freed.  It's important
   1260      1.238        ad 	 * to do this with both the LWP locked and p_lock held.
   1261      1.238        ad 	 *
   1262      1.238        ad 	 * Also reset the CPU and lock pointer back to curcpu(), since the
   1263      1.238        ad 	 * LWP will in all likelyhood be cached with the current CPU in
   1264      1.238        ad 	 * lwp_cache when we free it and later allocated from there again
   1265      1.238        ad 	 * (avoid incidental lock contention).
   1266      1.238        ad 	 */
   1267      1.238        ad 	lwp_lock(l);
   1268      1.238        ad 	l->l_stat = LSIDL;
   1269      1.238        ad 	l->l_cpu = curcpu();
   1270      1.238        ad 	lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock);
   1271      1.238        ad 
   1272      1.238        ad 	/*
   1273      1.223        ad 	 * If this was not the last LWP in the process, then adjust counters
   1274      1.223        ad 	 * and unlock.  This is done differently for the last LWP in exit1().
   1275       1.52        ad 	 */
   1276       1.52        ad 	if (!last) {
   1277       1.52        ad 		/*
   1278       1.52        ad 		 * Add the LWP's run time to the process' base value.
   1279       1.52        ad 		 * This needs to co-incide with coming off p_lwps.
   1280       1.52        ad 		 */
   1281       1.86      yamt 		bintime_add(&p->p_rtime, &l->l_rtime);
   1282       1.64      yamt 		p->p_pctcpu += l->l_pctcpu;
   1283      1.100        ad 		ru = &p->p_stats->p_ru;
   1284      1.100        ad 		ruadd(ru, &l->l_ru);
   1285      1.100        ad 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1286      1.100        ad 		ru->ru_nivcsw += l->l_nivcsw;
   1287       1.52        ad 		LIST_REMOVE(l, l_sibling);
   1288       1.52        ad 		p->p_nlwps--;
   1289       1.52        ad 		p->p_nzlwps--;
   1290       1.52        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1291       1.52        ad 			p->p_ndlwps--;
   1292       1.63        ad 
   1293       1.63        ad 		/*
   1294       1.63        ad 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1295       1.63        ad 		 * deadlock.
   1296       1.63        ad 		 */
   1297       1.63        ad 		cv_broadcast(&p->p_lwpcv);
   1298      1.103        ad 		mutex_exit(p->p_lock);
   1299       1.52        ad 
   1300      1.238        ad 		/* Free the LWP ID. */
   1301      1.239        ad 		mutex_enter(&proc_lock);
   1302      1.238        ad 		proc_free_lwpid(p, l->l_lid);
   1303      1.239        ad 		mutex_exit(&proc_lock);
   1304       1.63        ad 	}
   1305       1.52        ad 
   1306       1.52        ad 	/*
   1307       1.52        ad 	 * Destroy the LWP's remaining signal information.
   1308       1.52        ad 	 */
   1309       1.52        ad 	ksiginfo_queue_init(&kq);
   1310       1.52        ad 	sigclear(&l->l_sigpend, NULL, &kq);
   1311       1.52        ad 	ksiginfo_queue_drain(&kq);
   1312       1.52        ad 	cv_destroy(&l->l_sigcv);
   1313      1.171     rmind 	cv_destroy(&l->l_waitcv);
   1314        1.2   thorpej 
   1315       1.19  jdolecek 	/*
   1316      1.162     rmind 	 * Free lwpctl structure and affinity.
   1317      1.162     rmind 	 */
   1318      1.162     rmind 	if (l->l_lwpctl) {
   1319      1.162     rmind 		lwp_ctl_free(l);
   1320      1.162     rmind 	}
   1321      1.162     rmind 	if (l->l_affinity) {
   1322      1.162     rmind 		kcpuset_unuse(l->l_affinity, NULL);
   1323      1.162     rmind 		l->l_affinity = NULL;
   1324      1.162     rmind 	}
   1325      1.162     rmind 
   1326      1.162     rmind 	/*
   1327      1.238        ad 	 * Free remaining data structures and the LWP itself unless the
   1328      1.238        ad 	 * caller wants to recycle.
   1329       1.19  jdolecek 	 */
   1330       1.90        ad 	if (l->l_name != NULL)
   1331       1.90        ad 		kmem_free(l->l_name, MAXCOMLEN);
   1332      1.135     rmind 
   1333      1.208      maxv 	kmsan_lwp_free(l);
   1334      1.232      maxv 	kcov_lwp_free(l);
   1335       1.52        ad 	cpu_lwp_free2(l);
   1336       1.19  jdolecek 	uvm_lwp_exit(l);
   1337      1.134     rmind 
   1338       1.60      yamt 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1339       1.75        ad 	KASSERT(l->l_inheritedprio == -1);
   1340      1.155      matt 	KASSERT(l->l_blcnt == 0);
   1341      1.138    darran 	kdtrace_thread_dtor(NULL, l);
   1342       1.52        ad 	if (!recycle)
   1343       1.87        ad 		pool_cache_put(lwp_cache, l);
   1344        1.2   thorpej }
   1345        1.2   thorpej 
   1346        1.2   thorpej /*
   1347       1.91     rmind  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1348       1.91     rmind  */
   1349       1.91     rmind void
   1350      1.114     rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1351       1.91     rmind {
   1352      1.114     rmind 	struct schedstate_percpu *tspc;
   1353      1.121     rmind 	int lstat = l->l_stat;
   1354      1.121     rmind 
   1355       1.91     rmind 	KASSERT(lwp_locked(l, NULL));
   1356      1.114     rmind 	KASSERT(tci != NULL);
   1357      1.114     rmind 
   1358      1.121     rmind 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1359      1.227        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1360      1.121     rmind 		lstat = LSONPROC;
   1361      1.121     rmind 	}
   1362      1.121     rmind 
   1363      1.114     rmind 	/*
   1364      1.114     rmind 	 * The destination CPU could be changed while previous migration
   1365      1.114     rmind 	 * was not finished.
   1366      1.114     rmind 	 */
   1367      1.121     rmind 	if (l->l_target_cpu != NULL) {
   1368      1.114     rmind 		l->l_target_cpu = tci;
   1369      1.114     rmind 		lwp_unlock(l);
   1370      1.114     rmind 		return;
   1371      1.114     rmind 	}
   1372       1.91     rmind 
   1373      1.114     rmind 	/* Nothing to do if trying to migrate to the same CPU */
   1374      1.114     rmind 	if (l->l_cpu == tci) {
   1375       1.91     rmind 		lwp_unlock(l);
   1376       1.91     rmind 		return;
   1377       1.91     rmind 	}
   1378       1.91     rmind 
   1379      1.114     rmind 	KASSERT(l->l_target_cpu == NULL);
   1380      1.114     rmind 	tspc = &tci->ci_schedstate;
   1381      1.121     rmind 	switch (lstat) {
   1382       1.91     rmind 	case LSRUN:
   1383      1.134     rmind 		l->l_target_cpu = tci;
   1384      1.134     rmind 		break;
   1385       1.91     rmind 	case LSSLEEP:
   1386      1.114     rmind 		l->l_cpu = tci;
   1387       1.91     rmind 		break;
   1388      1.212        ad 	case LSIDL:
   1389       1.91     rmind 	case LSSTOP:
   1390       1.91     rmind 	case LSSUSPENDED:
   1391      1.114     rmind 		l->l_cpu = tci;
   1392      1.114     rmind 		if (l->l_wchan == NULL) {
   1393      1.114     rmind 			lwp_unlock_to(l, tspc->spc_lwplock);
   1394      1.114     rmind 			return;
   1395       1.91     rmind 		}
   1396      1.114     rmind 		break;
   1397       1.91     rmind 	case LSONPROC:
   1398      1.114     rmind 		l->l_target_cpu = tci;
   1399      1.114     rmind 		spc_lock(l->l_cpu);
   1400      1.212        ad 		sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
   1401      1.212        ad 		/* spc now unlocked */
   1402       1.91     rmind 		break;
   1403       1.91     rmind 	}
   1404       1.91     rmind 	lwp_unlock(l);
   1405       1.91     rmind }
   1406       1.91     rmind 
   1407      1.237   thorpej #define	lwp_find_exclude(l)					\
   1408      1.237   thorpej 	((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB)
   1409      1.237   thorpej 
   1410       1.91     rmind /*
   1411       1.94     rmind  * Find the LWP in the process.  Arguments may be zero, in such case,
   1412       1.94     rmind  * the calling process and first LWP in the list will be used.
   1413      1.103        ad  * On success - returns proc locked.
   1414      1.237   thorpej  *
   1415      1.237   thorpej  * => pid == 0 -> look in curproc.
   1416      1.237   thorpej  * => pid == -1 -> match any proc.
   1417      1.237   thorpej  * => otherwise look up the proc.
   1418      1.237   thorpej  *
   1419      1.237   thorpej  * => lid == 0 -> first LWP in the proc
   1420      1.237   thorpej  * => otherwise specific LWP
   1421       1.91     rmind  */
   1422       1.91     rmind struct lwp *
   1423       1.91     rmind lwp_find2(pid_t pid, lwpid_t lid)
   1424       1.91     rmind {
   1425       1.91     rmind 	proc_t *p;
   1426       1.91     rmind 	lwp_t *l;
   1427       1.91     rmind 
   1428      1.237   thorpej 	/* First LWP of specified proc. */
   1429      1.237   thorpej 	if (lid == 0) {
   1430      1.237   thorpej 		switch (pid) {
   1431      1.237   thorpej 		case -1:
   1432      1.237   thorpej 			/* No lookup keys. */
   1433      1.237   thorpej 			return NULL;
   1434      1.237   thorpej 		case 0:
   1435      1.237   thorpej 			p = curproc;
   1436      1.237   thorpej 			mutex_enter(p->p_lock);
   1437      1.237   thorpej 			break;
   1438      1.237   thorpej 		default:
   1439      1.239        ad 			mutex_enter(&proc_lock);
   1440      1.237   thorpej 			p = proc_find(pid);
   1441      1.237   thorpej 			if (__predict_false(p == NULL)) {
   1442      1.239        ad 				mutex_exit(&proc_lock);
   1443      1.237   thorpej 				return NULL;
   1444      1.237   thorpej 			}
   1445      1.237   thorpej 			mutex_enter(p->p_lock);
   1446      1.239        ad 			mutex_exit(&proc_lock);
   1447      1.237   thorpej 			break;
   1448      1.237   thorpej 		}
   1449      1.237   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1450      1.237   thorpej 			if (__predict_true(!lwp_find_exclude(l)))
   1451      1.237   thorpej 				break;
   1452      1.150     rmind 		}
   1453      1.237   thorpej 		goto out;
   1454      1.237   thorpej 	}
   1455      1.237   thorpej 
   1456      1.237   thorpej 	l = proc_find_lwp_acquire_proc(lid, &p);
   1457      1.237   thorpej 	if (l == NULL)
   1458      1.237   thorpej 		return NULL;
   1459      1.237   thorpej 	KASSERT(p != NULL);
   1460      1.237   thorpej 	KASSERT(mutex_owned(p->p_lock));
   1461      1.237   thorpej 
   1462      1.237   thorpej 	if (__predict_false(lwp_find_exclude(l))) {
   1463      1.237   thorpej 		l = NULL;
   1464      1.237   thorpej 		goto out;
   1465      1.150     rmind 	}
   1466      1.237   thorpej 
   1467      1.237   thorpej 	/* Apply proc filter, if applicable. */
   1468      1.237   thorpej 	switch (pid) {
   1469      1.237   thorpej 	case -1:
   1470      1.237   thorpej 		/* Match anything. */
   1471      1.237   thorpej 		break;
   1472      1.237   thorpej 	case 0:
   1473      1.237   thorpej 		if (p != curproc)
   1474      1.237   thorpej 			l = NULL;
   1475      1.237   thorpej 		break;
   1476      1.237   thorpej 	default:
   1477      1.237   thorpej 		if (p->p_pid != pid)
   1478      1.237   thorpej 			l = NULL;
   1479      1.237   thorpej 		break;
   1480       1.94     rmind 	}
   1481      1.237   thorpej 
   1482      1.237   thorpej  out:
   1483      1.237   thorpej 	if (__predict_false(l == NULL)) {
   1484      1.103        ad 		mutex_exit(p->p_lock);
   1485      1.103        ad 	}
   1486       1.91     rmind 	return l;
   1487       1.91     rmind }
   1488       1.91     rmind 
   1489       1.91     rmind /*
   1490      1.168      yamt  * Look up a live LWP within the specified process.
   1491       1.52        ad  *
   1492      1.223        ad  * Must be called with p->p_lock held (as it looks at the radix tree,
   1493      1.223        ad  * and also wants to exclude idle and zombie LWPs).
   1494       1.52        ad  */
   1495       1.52        ad struct lwp *
   1496      1.151       chs lwp_find(struct proc *p, lwpid_t id)
   1497       1.52        ad {
   1498       1.52        ad 	struct lwp *l;
   1499       1.52        ad 
   1500      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1501       1.52        ad 
   1502      1.235   thorpej 	l = proc_find_lwp(p, id);
   1503      1.223        ad 	KASSERT(l == NULL || l->l_lid == id);
   1504       1.52        ad 
   1505       1.52        ad 	/*
   1506       1.52        ad 	 * No need to lock - all of these conditions will
   1507       1.52        ad 	 * be visible with the process level mutex held.
   1508       1.52        ad 	 */
   1509      1.237   thorpej 	if (__predict_false(l != NULL && lwp_find_exclude(l)))
   1510       1.52        ad 		l = NULL;
   1511       1.52        ad 
   1512       1.52        ad 	return l;
   1513       1.52        ad }
   1514       1.52        ad 
   1515       1.52        ad /*
   1516       1.37        ad  * Update an LWP's cached credentials to mirror the process' master copy.
   1517       1.37        ad  *
   1518       1.37        ad  * This happens early in the syscall path, on user trap, and on LWP
   1519       1.37        ad  * creation.  A long-running LWP can also voluntarily choose to update
   1520      1.179       snj  * its credentials by calling this routine.  This may be called from
   1521       1.37        ad  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1522       1.37        ad  */
   1523       1.37        ad void
   1524       1.37        ad lwp_update_creds(struct lwp *l)
   1525       1.37        ad {
   1526       1.37        ad 	kauth_cred_t oc;
   1527       1.37        ad 	struct proc *p;
   1528       1.37        ad 
   1529       1.37        ad 	p = l->l_proc;
   1530       1.37        ad 	oc = l->l_cred;
   1531       1.37        ad 
   1532      1.103        ad 	mutex_enter(p->p_lock);
   1533       1.37        ad 	kauth_cred_hold(p->p_cred);
   1534       1.37        ad 	l->l_cred = p->p_cred;
   1535       1.98        ad 	l->l_prflag &= ~LPR_CRMOD;
   1536      1.103        ad 	mutex_exit(p->p_lock);
   1537       1.88        ad 	if (oc != NULL)
   1538       1.37        ad 		kauth_cred_free(oc);
   1539       1.52        ad }
   1540       1.52        ad 
   1541       1.52        ad /*
   1542       1.52        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
   1543       1.52        ad  * one we specify.
   1544       1.52        ad  */
   1545       1.52        ad int
   1546       1.52        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
   1547       1.52        ad {
   1548       1.52        ad 	kmutex_t *cur = l->l_mutex;
   1549       1.52        ad 
   1550       1.52        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1551       1.52        ad }
   1552       1.52        ad 
   1553       1.52        ad /*
   1554       1.52        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
   1555       1.52        ad  */
   1556      1.211        ad kmutex_t *
   1557      1.178      matt lwp_setlock(struct lwp *l, kmutex_t *mtx)
   1558       1.52        ad {
   1559      1.211        ad 	kmutex_t *oldmtx = l->l_mutex;
   1560       1.52        ad 
   1561      1.211        ad 	KASSERT(mutex_owned(oldmtx));
   1562       1.52        ad 
   1563      1.107        ad 	membar_exit();
   1564      1.178      matt 	l->l_mutex = mtx;
   1565      1.211        ad 	return oldmtx;
   1566       1.52        ad }
   1567       1.52        ad 
   1568       1.52        ad /*
   1569       1.52        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1570       1.52        ad  * must be held.
   1571       1.52        ad  */
   1572       1.52        ad void
   1573      1.178      matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
   1574       1.52        ad {
   1575       1.52        ad 	kmutex_t *old;
   1576       1.52        ad 
   1577      1.152     rmind 	KASSERT(lwp_locked(l, NULL));
   1578       1.52        ad 
   1579       1.52        ad 	old = l->l_mutex;
   1580      1.107        ad 	membar_exit();
   1581      1.178      matt 	l->l_mutex = mtx;
   1582       1.52        ad 	mutex_spin_exit(old);
   1583       1.52        ad }
   1584       1.52        ad 
   1585       1.60      yamt int
   1586       1.60      yamt lwp_trylock(struct lwp *l)
   1587       1.60      yamt {
   1588       1.60      yamt 	kmutex_t *old;
   1589       1.60      yamt 
   1590       1.60      yamt 	for (;;) {
   1591       1.60      yamt 		if (!mutex_tryenter(old = l->l_mutex))
   1592       1.60      yamt 			return 0;
   1593       1.60      yamt 		if (__predict_true(l->l_mutex == old))
   1594       1.60      yamt 			return 1;
   1595       1.60      yamt 		mutex_spin_exit(old);
   1596       1.60      yamt 	}
   1597       1.60      yamt }
   1598       1.60      yamt 
   1599      1.134     rmind void
   1600      1.211        ad lwp_unsleep(lwp_t *l, bool unlock)
   1601       1.96        ad {
   1602       1.96        ad 
   1603       1.96        ad 	KASSERT(mutex_owned(l->l_mutex));
   1604      1.211        ad 	(*l->l_syncobj->sobj_unsleep)(l, unlock);
   1605       1.96        ad }
   1606       1.96        ad 
   1607       1.52        ad /*
   1608       1.56     pavel  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1609       1.52        ad  * set.
   1610       1.52        ad  */
   1611       1.52        ad void
   1612       1.52        ad lwp_userret(struct lwp *l)
   1613       1.52        ad {
   1614       1.52        ad 	struct proc *p;
   1615       1.52        ad 	int sig;
   1616       1.52        ad 
   1617      1.114     rmind 	KASSERT(l == curlwp);
   1618      1.114     rmind 	KASSERT(l->l_stat == LSONPROC);
   1619       1.52        ad 	p = l->l_proc;
   1620       1.52        ad 
   1621       1.52        ad 	/*
   1622      1.167     rmind 	 * It is safe to do this read unlocked on a MP system..
   1623       1.52        ad 	 */
   1624      1.167     rmind 	while ((l->l_flag & LW_USERRET) != 0) {
   1625       1.52        ad 		/*
   1626       1.52        ad 		 * Process pending signals first, unless the process
   1627       1.61        ad 		 * is dumping core or exiting, where we will instead
   1628      1.101     rmind 		 * enter the LW_WSUSPEND case below.
   1629       1.52        ad 		 */
   1630       1.61        ad 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1631       1.61        ad 		    LW_PENDSIG) {
   1632      1.103        ad 			mutex_enter(p->p_lock);
   1633       1.52        ad 			while ((sig = issignal(l)) != 0)
   1634       1.52        ad 				postsig(sig);
   1635      1.103        ad 			mutex_exit(p->p_lock);
   1636       1.52        ad 		}
   1637       1.52        ad 
   1638       1.52        ad 		/*
   1639       1.52        ad 		 * Core-dump or suspend pending.
   1640       1.52        ad 		 *
   1641      1.159      matt 		 * In case of core dump, suspend ourselves, so that the kernel
   1642      1.159      matt 		 * stack and therefore the userland registers saved in the
   1643      1.159      matt 		 * trapframe are around for coredump() to write them out.
   1644      1.159      matt 		 * We also need to save any PCU resources that we have so that
   1645      1.159      matt 		 * they accessible for coredump().  We issue a wakeup on
   1646      1.159      matt 		 * p->p_lwpcv so that sigexit() will write the core file out
   1647      1.159      matt 		 * once all other LWPs are suspended.
   1648       1.52        ad 		 */
   1649       1.56     pavel 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1650      1.159      matt 			pcu_save_all(l);
   1651      1.103        ad 			mutex_enter(p->p_lock);
   1652       1.52        ad 			p->p_nrlwps--;
   1653       1.52        ad 			cv_broadcast(&p->p_lwpcv);
   1654       1.52        ad 			lwp_lock(l);
   1655       1.52        ad 			l->l_stat = LSSUSPENDED;
   1656      1.104        ad 			lwp_unlock(l);
   1657      1.103        ad 			mutex_exit(p->p_lock);
   1658      1.104        ad 			lwp_lock(l);
   1659      1.217        ad 			spc_lock(l->l_cpu);
   1660       1.64      yamt 			mi_switch(l);
   1661       1.52        ad 		}
   1662       1.52        ad 
   1663       1.52        ad 		/* Process is exiting. */
   1664       1.56     pavel 		if ((l->l_flag & LW_WEXIT) != 0) {
   1665       1.52        ad 			lwp_exit(l);
   1666       1.52        ad 			KASSERT(0);
   1667       1.52        ad 			/* NOTREACHED */
   1668       1.52        ad 		}
   1669      1.156     pooka 
   1670      1.156     pooka 		/* update lwpctl processor (for vfork child_return) */
   1671      1.156     pooka 		if (l->l_flag & LW_LWPCTL) {
   1672      1.156     pooka 			lwp_lock(l);
   1673      1.156     pooka 			KASSERT(kpreempt_disabled());
   1674      1.156     pooka 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1675      1.156     pooka 			l->l_lwpctl->lc_pctr++;
   1676      1.156     pooka 			l->l_flag &= ~LW_LWPCTL;
   1677      1.156     pooka 			lwp_unlock(l);
   1678      1.156     pooka 		}
   1679       1.52        ad 	}
   1680       1.52        ad }
   1681       1.52        ad 
   1682       1.52        ad /*
   1683       1.52        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1684       1.52        ad  */
   1685       1.52        ad void
   1686       1.52        ad lwp_need_userret(struct lwp *l)
   1687       1.52        ad {
   1688      1.209        ad 
   1689      1.209        ad 	KASSERT(!cpu_intr_p());
   1690       1.63        ad 	KASSERT(lwp_locked(l, NULL));
   1691       1.52        ad 
   1692       1.52        ad 	/*
   1693      1.209        ad 	 * If the LWP is in any state other than LSONPROC, we know that it
   1694      1.209        ad 	 * is executing in-kernel and will hit userret() on the way out.
   1695      1.209        ad 	 *
   1696      1.209        ad 	 * If the LWP is curlwp, then we know we'll be back out to userspace
   1697      1.209        ad 	 * soon (can't be called from a hardware interrupt here).
   1698      1.209        ad 	 *
   1699      1.209        ad 	 * Otherwise, we can't be sure what the LWP is doing, so first make
   1700      1.209        ad 	 * sure the update to l_flag will be globally visible, and then
   1701      1.209        ad 	 * force the LWP to take a trip through trap() where it will do
   1702      1.209        ad 	 * userret().
   1703      1.209        ad 	 */
   1704      1.209        ad 	if (l->l_stat == LSONPROC && l != curlwp) {
   1705      1.209        ad 		membar_producer();
   1706      1.209        ad 		cpu_signotify(l);
   1707      1.209        ad 	}
   1708       1.52        ad }
   1709       1.52        ad 
   1710       1.52        ad /*
   1711       1.52        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1712       1.52        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1713       1.52        ad  */
   1714       1.52        ad void
   1715       1.52        ad lwp_addref(struct lwp *l)
   1716       1.52        ad {
   1717      1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1718      1.237   thorpej 	KASSERT(l->l_stat != LSZOMB);
   1719      1.237   thorpej 	l->l_refcnt++;
   1720       1.52        ad }
   1721       1.52        ad 
   1722       1.52        ad /*
   1723       1.52        ad  * Remove one reference to an LWP.  If this is the last reference,
   1724       1.52        ad  * then we must finalize the LWP's death.
   1725       1.52        ad  */
   1726       1.52        ad void
   1727       1.52        ad lwp_delref(struct lwp *l)
   1728       1.52        ad {
   1729       1.52        ad 	struct proc *p = l->l_proc;
   1730       1.52        ad 
   1731      1.103        ad 	mutex_enter(p->p_lock);
   1732      1.142  christos 	lwp_delref2(l);
   1733      1.142  christos 	mutex_exit(p->p_lock);
   1734      1.142  christos }
   1735      1.142  christos 
   1736      1.142  christos /*
   1737      1.142  christos  * Remove one reference to an LWP.  If this is the last reference,
   1738      1.142  christos  * then we must finalize the LWP's death.  The proc mutex is held
   1739      1.142  christos  * on entry.
   1740      1.142  christos  */
   1741      1.142  christos void
   1742      1.142  christos lwp_delref2(struct lwp *l)
   1743      1.142  christos {
   1744      1.142  christos 	struct proc *p = l->l_proc;
   1745      1.142  christos 
   1746      1.142  christos 	KASSERT(mutex_owned(p->p_lock));
   1747       1.72        ad 	KASSERT(l->l_stat != LSZOMB);
   1748      1.237   thorpej 	KASSERT(l->l_refcnt > 0);
   1749      1.231        ad 
   1750      1.237   thorpej 	if (--l->l_refcnt == 0)
   1751       1.76        ad 		cv_broadcast(&p->p_lwpcv);
   1752       1.52        ad }
   1753       1.52        ad 
   1754       1.52        ad /*
   1755      1.233   thorpej  * Drain all references to the current LWP.  Returns true if
   1756      1.233   thorpej  * we blocked.
   1757       1.52        ad  */
   1758      1.233   thorpej bool
   1759       1.52        ad lwp_drainrefs(struct lwp *l)
   1760       1.52        ad {
   1761       1.52        ad 	struct proc *p = l->l_proc;
   1762      1.233   thorpej 	bool rv = false;
   1763       1.52        ad 
   1764      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1765       1.52        ad 
   1766      1.233   thorpej 	l->l_prflag |= LPR_DRAINING;
   1767      1.233   thorpej 
   1768      1.237   thorpej 	while (l->l_refcnt > 0) {
   1769      1.233   thorpej 		rv = true;
   1770      1.103        ad 		cv_wait(&p->p_lwpcv, p->p_lock);
   1771      1.233   thorpej 	}
   1772      1.233   thorpej 	return rv;
   1773       1.37        ad }
   1774       1.41   thorpej 
   1775       1.41   thorpej /*
   1776      1.127        ad  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1777      1.127        ad  * be held.
   1778      1.127        ad  */
   1779      1.127        ad bool
   1780      1.127        ad lwp_alive(lwp_t *l)
   1781      1.127        ad {
   1782      1.127        ad 
   1783      1.127        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1784      1.127        ad 
   1785      1.127        ad 	switch (l->l_stat) {
   1786      1.127        ad 	case LSSLEEP:
   1787      1.127        ad 	case LSRUN:
   1788      1.127        ad 	case LSONPROC:
   1789      1.127        ad 	case LSSTOP:
   1790      1.127        ad 	case LSSUSPENDED:
   1791      1.127        ad 		return true;
   1792      1.127        ad 	default:
   1793      1.127        ad 		return false;
   1794      1.127        ad 	}
   1795      1.127        ad }
   1796      1.127        ad 
   1797      1.127        ad /*
   1798      1.127        ad  * Return first live LWP in the process.
   1799      1.127        ad  */
   1800      1.127        ad lwp_t *
   1801      1.127        ad lwp_find_first(proc_t *p)
   1802      1.127        ad {
   1803      1.127        ad 	lwp_t *l;
   1804      1.127        ad 
   1805      1.127        ad 	KASSERT(mutex_owned(p->p_lock));
   1806      1.127        ad 
   1807      1.127        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1808      1.127        ad 		if (lwp_alive(l)) {
   1809      1.127        ad 			return l;
   1810      1.127        ad 		}
   1811      1.127        ad 	}
   1812      1.127        ad 
   1813      1.127        ad 	return NULL;
   1814      1.127        ad }
   1815      1.127        ad 
   1816      1.127        ad /*
   1817       1.78        ad  * Allocate a new lwpctl structure for a user LWP.
   1818       1.78        ad  */
   1819       1.78        ad int
   1820       1.78        ad lwp_ctl_alloc(vaddr_t *uaddr)
   1821       1.78        ad {
   1822       1.78        ad 	lcproc_t *lp;
   1823       1.78        ad 	u_int bit, i, offset;
   1824       1.78        ad 	struct uvm_object *uao;
   1825       1.78        ad 	int error;
   1826       1.78        ad 	lcpage_t *lcp;
   1827       1.78        ad 	proc_t *p;
   1828       1.78        ad 	lwp_t *l;
   1829       1.78        ad 
   1830       1.78        ad 	l = curlwp;
   1831       1.78        ad 	p = l->l_proc;
   1832       1.78        ad 
   1833      1.156     pooka 	/* don't allow a vforked process to create lwp ctls */
   1834      1.156     pooka 	if (p->p_lflag & PL_PPWAIT)
   1835      1.156     pooka 		return EBUSY;
   1836      1.156     pooka 
   1837       1.81        ad 	if (l->l_lcpage != NULL) {
   1838       1.81        ad 		lcp = l->l_lcpage;
   1839       1.81        ad 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1840      1.143     njoly 		return 0;
   1841       1.81        ad 	}
   1842       1.78        ad 
   1843       1.78        ad 	/* First time around, allocate header structure for the process. */
   1844       1.78        ad 	if ((lp = p->p_lwpctl) == NULL) {
   1845       1.78        ad 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1846       1.78        ad 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1847       1.78        ad 		lp->lp_uao = NULL;
   1848       1.78        ad 		TAILQ_INIT(&lp->lp_pages);
   1849      1.103        ad 		mutex_enter(p->p_lock);
   1850       1.78        ad 		if (p->p_lwpctl == NULL) {
   1851       1.78        ad 			p->p_lwpctl = lp;
   1852      1.103        ad 			mutex_exit(p->p_lock);
   1853       1.78        ad 		} else {
   1854      1.103        ad 			mutex_exit(p->p_lock);
   1855       1.78        ad 			mutex_destroy(&lp->lp_lock);
   1856       1.78        ad 			kmem_free(lp, sizeof(*lp));
   1857       1.78        ad 			lp = p->p_lwpctl;
   1858       1.78        ad 		}
   1859       1.78        ad 	}
   1860       1.78        ad 
   1861       1.78        ad  	/*
   1862       1.78        ad  	 * Set up an anonymous memory region to hold the shared pages.
   1863       1.78        ad  	 * Map them into the process' address space.  The user vmspace
   1864       1.78        ad  	 * gets the first reference on the UAO.
   1865       1.78        ad  	 */
   1866       1.78        ad 	mutex_enter(&lp->lp_lock);
   1867       1.78        ad 	if (lp->lp_uao == NULL) {
   1868       1.78        ad 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1869       1.78        ad 		lp->lp_cur = 0;
   1870       1.78        ad 		lp->lp_max = LWPCTL_UAREA_SZ;
   1871       1.78        ad 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1872      1.182    martin 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
   1873      1.182    martin 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1874       1.78        ad 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1875       1.78        ad 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1876       1.78        ad 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1877       1.78        ad 		if (error != 0) {
   1878       1.78        ad 			uao_detach(lp->lp_uao);
   1879       1.78        ad 			lp->lp_uao = NULL;
   1880       1.78        ad 			mutex_exit(&lp->lp_lock);
   1881       1.78        ad 			return error;
   1882       1.78        ad 		}
   1883       1.78        ad 	}
   1884       1.78        ad 
   1885       1.78        ad 	/* Get a free block and allocate for this LWP. */
   1886       1.78        ad 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1887       1.78        ad 		if (lcp->lcp_nfree != 0)
   1888       1.78        ad 			break;
   1889       1.78        ad 	}
   1890       1.78        ad 	if (lcp == NULL) {
   1891       1.78        ad 		/* Nothing available - try to set up a free page. */
   1892       1.78        ad 		if (lp->lp_cur == lp->lp_max) {
   1893       1.78        ad 			mutex_exit(&lp->lp_lock);
   1894       1.78        ad 			return ENOMEM;
   1895       1.78        ad 		}
   1896       1.78        ad 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1897      1.189       chs 
   1898       1.78        ad 		/*
   1899       1.78        ad 		 * Wire the next page down in kernel space.  Since this
   1900       1.78        ad 		 * is a new mapping, we must add a reference.
   1901       1.78        ad 		 */
   1902       1.78        ad 		uao = lp->lp_uao;
   1903       1.78        ad 		(*uao->pgops->pgo_reference)(uao);
   1904       1.99        ad 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1905       1.78        ad 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1906       1.78        ad 		    uao, lp->lp_cur, PAGE_SIZE,
   1907       1.78        ad 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1908       1.78        ad 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1909       1.78        ad 		if (error != 0) {
   1910       1.78        ad 			mutex_exit(&lp->lp_lock);
   1911       1.78        ad 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1912       1.78        ad 			(*uao->pgops->pgo_detach)(uao);
   1913       1.78        ad 			return error;
   1914       1.78        ad 		}
   1915       1.89      yamt 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1916       1.89      yamt 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1917       1.89      yamt 		if (error != 0) {
   1918       1.89      yamt 			mutex_exit(&lp->lp_lock);
   1919       1.89      yamt 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1920       1.89      yamt 			    lcp->lcp_kaddr + PAGE_SIZE);
   1921       1.89      yamt 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1922       1.89      yamt 			return error;
   1923       1.89      yamt 		}
   1924       1.78        ad 		/* Prepare the page descriptor and link into the list. */
   1925       1.78        ad 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1926       1.78        ad 		lp->lp_cur += PAGE_SIZE;
   1927       1.78        ad 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1928       1.78        ad 		lcp->lcp_rotor = 0;
   1929       1.78        ad 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1930       1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1931       1.78        ad 	}
   1932       1.78        ad 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1933       1.78        ad 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1934       1.78        ad 			i = 0;
   1935       1.78        ad 	}
   1936       1.78        ad 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1937      1.193     kamil 	lcp->lcp_bitmap[i] ^= (1U << bit);
   1938       1.78        ad 	lcp->lcp_rotor = i;
   1939       1.78        ad 	lcp->lcp_nfree--;
   1940       1.78        ad 	l->l_lcpage = lcp;
   1941       1.78        ad 	offset = (i << 5) + bit;
   1942       1.78        ad 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1943       1.78        ad 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1944       1.78        ad 	mutex_exit(&lp->lp_lock);
   1945       1.78        ad 
   1946      1.107        ad 	KPREEMPT_DISABLE(l);
   1947      1.195     skrll 	l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
   1948      1.107        ad 	KPREEMPT_ENABLE(l);
   1949       1.78        ad 
   1950       1.78        ad 	return 0;
   1951       1.78        ad }
   1952       1.78        ad 
   1953       1.78        ad /*
   1954       1.78        ad  * Free an lwpctl structure back to the per-process list.
   1955       1.78        ad  */
   1956       1.78        ad void
   1957       1.78        ad lwp_ctl_free(lwp_t *l)
   1958       1.78        ad {
   1959      1.156     pooka 	struct proc *p = l->l_proc;
   1960       1.78        ad 	lcproc_t *lp;
   1961       1.78        ad 	lcpage_t *lcp;
   1962       1.78        ad 	u_int map, offset;
   1963       1.78        ad 
   1964      1.156     pooka 	/* don't free a lwp context we borrowed for vfork */
   1965      1.156     pooka 	if (p->p_lflag & PL_PPWAIT) {
   1966      1.156     pooka 		l->l_lwpctl = NULL;
   1967      1.156     pooka 		return;
   1968      1.156     pooka 	}
   1969      1.156     pooka 
   1970      1.156     pooka 	lp = p->p_lwpctl;
   1971       1.78        ad 	KASSERT(lp != NULL);
   1972       1.78        ad 
   1973       1.78        ad 	lcp = l->l_lcpage;
   1974       1.78        ad 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1975       1.78        ad 	KASSERT(offset < LWPCTL_PER_PAGE);
   1976       1.78        ad 
   1977       1.78        ad 	mutex_enter(&lp->lp_lock);
   1978       1.78        ad 	lcp->lcp_nfree++;
   1979       1.78        ad 	map = offset >> 5;
   1980      1.194     kamil 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
   1981       1.78        ad 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1982       1.78        ad 		lcp->lcp_rotor = map;
   1983       1.78        ad 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1984       1.78        ad 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1985       1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1986       1.78        ad 	}
   1987       1.78        ad 	mutex_exit(&lp->lp_lock);
   1988       1.78        ad }
   1989       1.78        ad 
   1990       1.78        ad /*
   1991       1.78        ad  * Process is exiting; tear down lwpctl state.  This can only be safely
   1992       1.78        ad  * called by the last LWP in the process.
   1993       1.78        ad  */
   1994       1.78        ad void
   1995       1.78        ad lwp_ctl_exit(void)
   1996       1.78        ad {
   1997       1.78        ad 	lcpage_t *lcp, *next;
   1998       1.78        ad 	lcproc_t *lp;
   1999       1.78        ad 	proc_t *p;
   2000       1.78        ad 	lwp_t *l;
   2001       1.78        ad 
   2002       1.78        ad 	l = curlwp;
   2003       1.78        ad 	l->l_lwpctl = NULL;
   2004       1.95        ad 	l->l_lcpage = NULL;
   2005       1.78        ad 	p = l->l_proc;
   2006       1.78        ad 	lp = p->p_lwpctl;
   2007       1.78        ad 
   2008       1.78        ad 	KASSERT(lp != NULL);
   2009       1.78        ad 	KASSERT(p->p_nlwps == 1);
   2010       1.78        ad 
   2011       1.78        ad 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   2012       1.78        ad 		next = TAILQ_NEXT(lcp, lcp_chain);
   2013       1.78        ad 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   2014       1.78        ad 		    lcp->lcp_kaddr + PAGE_SIZE);
   2015       1.78        ad 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   2016       1.78        ad 	}
   2017       1.78        ad 
   2018       1.78        ad 	if (lp->lp_uao != NULL) {
   2019       1.78        ad 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   2020       1.78        ad 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   2021       1.78        ad 	}
   2022       1.78        ad 
   2023       1.78        ad 	mutex_destroy(&lp->lp_lock);
   2024       1.78        ad 	kmem_free(lp, sizeof(*lp));
   2025       1.78        ad 	p->p_lwpctl = NULL;
   2026       1.78        ad }
   2027       1.84      yamt 
   2028      1.130        ad /*
   2029      1.130        ad  * Return the current LWP's "preemption counter".  Used to detect
   2030      1.130        ad  * preemption across operations that can tolerate preemption without
   2031      1.130        ad  * crashing, but which may generate incorrect results if preempted.
   2032      1.130        ad  */
   2033      1.130        ad uint64_t
   2034      1.130        ad lwp_pctr(void)
   2035      1.130        ad {
   2036      1.130        ad 
   2037      1.130        ad 	return curlwp->l_ncsw;
   2038      1.130        ad }
   2039      1.130        ad 
   2040      1.151       chs /*
   2041      1.151       chs  * Set an LWP's private data pointer.
   2042      1.151       chs  */
   2043      1.151       chs int
   2044      1.151       chs lwp_setprivate(struct lwp *l, void *ptr)
   2045      1.151       chs {
   2046      1.151       chs 	int error = 0;
   2047      1.151       chs 
   2048      1.151       chs 	l->l_private = ptr;
   2049      1.151       chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
   2050      1.151       chs 	error = cpu_lwp_setprivate(l, ptr);
   2051      1.151       chs #endif
   2052      1.151       chs 	return error;
   2053      1.151       chs }
   2054      1.151       chs 
   2055      1.233   thorpej /*
   2056      1.233   thorpej  * Perform any thread-related cleanup on LWP exit.
   2057      1.233   thorpej  * N.B. l->l_proc->p_lock must be HELD on entry but will
   2058      1.233   thorpej  * be released before returning!
   2059      1.233   thorpej  */
   2060      1.233   thorpej void
   2061      1.233   thorpej lwp_thread_cleanup(struct lwp *l)
   2062      1.233   thorpej {
   2063      1.235   thorpej 	const lwpid_t tid = l->l_lid;
   2064      1.233   thorpej 
   2065      1.236   thorpej 	KASSERT((tid & FUTEX_TID_MASK) == tid);
   2066      1.233   thorpej 	KASSERT(mutex_owned(l->l_proc->p_lock));
   2067      1.233   thorpej 
   2068      1.235   thorpej 	mutex_exit(l->l_proc->p_lock);
   2069      1.236   thorpej 
   2070      1.236   thorpej 	/*
   2071      1.236   thorpej 	 * If the LWP has robust futexes, release them all
   2072      1.236   thorpej 	 * now.
   2073      1.236   thorpej 	 */
   2074      1.236   thorpej 	if (__predict_false(l->l_robust_head != 0)) {
   2075      1.236   thorpej 		futex_release_all_lwp(l, tid);
   2076      1.236   thorpej 	}
   2077      1.233   thorpej }
   2078      1.233   thorpej 
   2079       1.84      yamt #if defined(DDB)
   2080      1.153     rmind #include <machine/pcb.h>
   2081      1.153     rmind 
   2082       1.84      yamt void
   2083       1.84      yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2084       1.84      yamt {
   2085       1.84      yamt 	lwp_t *l;
   2086       1.84      yamt 
   2087       1.84      yamt 	LIST_FOREACH(l, &alllwp, l_list) {
   2088       1.84      yamt 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   2089       1.84      yamt 
   2090       1.84      yamt 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   2091       1.84      yamt 			continue;
   2092       1.84      yamt 		}
   2093       1.84      yamt 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   2094       1.84      yamt 		    (void *)addr, (void *)stack,
   2095       1.84      yamt 		    (size_t)(addr - stack), l);
   2096       1.84      yamt 	}
   2097       1.84      yamt }
   2098       1.84      yamt #endif /* defined(DDB) */
   2099