kern_lwp.c revision 1.263 1 1.263 ad /* $NetBSD: kern_lwp.c,v 1.263 2023/10/04 22:17:09 ad Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.255 ad * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020, 2023
5 1.220 ad * The NetBSD Foundation, Inc.
6 1.2 thorpej * All rights reserved.
7 1.2 thorpej *
8 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.52 ad * by Nathan J. Williams, and Andrew Doran.
10 1.2 thorpej *
11 1.2 thorpej * Redistribution and use in source and binary forms, with or without
12 1.2 thorpej * modification, are permitted provided that the following conditions
13 1.2 thorpej * are met:
14 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.2 thorpej * notice, this list of conditions and the following disclaimer.
16 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.2 thorpej * documentation and/or other materials provided with the distribution.
19 1.2 thorpej *
20 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.2 thorpej */
32 1.9 lukem
33 1.52 ad /*
34 1.52 ad * Overview
35 1.52 ad *
36 1.66 ad * Lightweight processes (LWPs) are the basic unit or thread of
37 1.52 ad * execution within the kernel. The core state of an LWP is described
38 1.66 ad * by "struct lwp", also known as lwp_t.
39 1.52 ad *
40 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
41 1.52 ad * Every process contains at least one LWP, but may contain more. The
42 1.52 ad * process describes attributes shared among all of its LWPs such as a
43 1.52 ad * private address space, global execution state (stopped, active,
44 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
45 1.66 ad * machine, multiple LWPs be executing concurrently in the kernel.
46 1.52 ad *
47 1.52 ad * Execution states
48 1.52 ad *
49 1.52 ad * At any given time, an LWP has overall state that is described by
50 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
51 1.52 ad * set is guaranteed to represent the absolute, current state of the
52 1.52 ad * LWP:
53 1.101 rmind *
54 1.101 rmind * LSONPROC
55 1.101 rmind *
56 1.101 rmind * On processor: the LWP is executing on a CPU, either in the
57 1.101 rmind * kernel or in user space.
58 1.101 rmind *
59 1.101 rmind * LSRUN
60 1.101 rmind *
61 1.101 rmind * Runnable: the LWP is parked on a run queue, and may soon be
62 1.101 rmind * chosen to run by an idle processor, or by a processor that
63 1.101 rmind * has been asked to preempt a currently runnning but lower
64 1.134 rmind * priority LWP.
65 1.101 rmind *
66 1.101 rmind * LSIDL
67 1.101 rmind *
68 1.238 ad * Idle: the LWP has been created but has not yet executed, or
69 1.238 ad * it has ceased executing a unit of work and is waiting to be
70 1.238 ad * started again. This state exists so that the LWP can occupy
71 1.238 ad * a slot in the process & PID table, but without having to
72 1.238 ad * worry about being touched; lookups of the LWP by ID will
73 1.238 ad * fail while in this state. The LWP will become visible for
74 1.238 ad * lookup once its state transitions further. Some special
75 1.238 ad * kernel threads also (ab)use this state to indicate that they
76 1.238 ad * are idle (soft interrupts and idle LWPs).
77 1.101 rmind *
78 1.101 rmind * LSSUSPENDED:
79 1.101 rmind *
80 1.101 rmind * Suspended: the LWP has had its execution suspended by
81 1.52 ad * another LWP in the same process using the _lwp_suspend()
82 1.52 ad * system call. User-level LWPs also enter the suspended
83 1.52 ad * state when the system is shutting down.
84 1.52 ad *
85 1.52 ad * The second set represent a "statement of intent" on behalf of the
86 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
87 1.66 ad * sleeping or idle. It is expected to take the necessary action to
88 1.101 rmind * stop executing or become "running" again within a short timeframe.
89 1.227 ad * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
90 1.101 rmind * Importantly, it indicates that its state is tied to a CPU.
91 1.101 rmind *
92 1.101 rmind * LSZOMB:
93 1.101 rmind *
94 1.101 rmind * Dead or dying: the LWP has released most of its resources
95 1.129 ad * and is about to switch away into oblivion, or has already
96 1.66 ad * switched away. When it switches away, its few remaining
97 1.66 ad * resources can be collected.
98 1.101 rmind *
99 1.101 rmind * LSSLEEP:
100 1.101 rmind *
101 1.101 rmind * Sleeping: the LWP has entered itself onto a sleep queue, and
102 1.101 rmind * has switched away or will switch away shortly to allow other
103 1.66 ad * LWPs to run on the CPU.
104 1.101 rmind *
105 1.101 rmind * LSSTOP:
106 1.101 rmind *
107 1.101 rmind * Stopped: the LWP has been stopped as a result of a job
108 1.101 rmind * control signal, or as a result of the ptrace() interface.
109 1.101 rmind *
110 1.101 rmind * Stopped LWPs may run briefly within the kernel to handle
111 1.101 rmind * signals that they receive, but will not return to user space
112 1.101 rmind * until their process' state is changed away from stopped.
113 1.101 rmind *
114 1.101 rmind * Single LWPs within a process can not be set stopped
115 1.101 rmind * selectively: all actions that can stop or continue LWPs
116 1.101 rmind * occur at the process level.
117 1.101 rmind *
118 1.52 ad * State transitions
119 1.52 ad *
120 1.66 ad * Note that the LSSTOP state may only be set when returning to
121 1.66 ad * user space in userret(), or when sleeping interruptably. The
122 1.66 ad * LSSUSPENDED state may only be set in userret(). Before setting
123 1.66 ad * those states, we try to ensure that the LWPs will release all
124 1.66 ad * locks that they hold, and at a minimum try to ensure that the
125 1.66 ad * LWP can be set runnable again by a signal.
126 1.52 ad *
127 1.52 ad * LWPs may transition states in the following ways:
128 1.52 ad *
129 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
130 1.129 ad * > SLEEP
131 1.129 ad * > STOPPED
132 1.52 ad * > SUSPENDED
133 1.52 ad * > ZOMB
134 1.129 ad * > IDL (special cases)
135 1.52 ad *
136 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
137 1.129 ad * > SLEEP
138 1.52 ad *
139 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
140 1.101 rmind * > RUN > SUSPENDED
141 1.101 rmind * > STOPPED > STOPPED
142 1.129 ad * > ONPROC (special cases)
143 1.52 ad *
144 1.129 ad * Some state transitions are only possible with kernel threads (eg
145 1.129 ad * ONPROC -> IDL) and happen under tightly controlled circumstances
146 1.129 ad * free of unwanted side effects.
147 1.66 ad *
148 1.114 rmind * Migration
149 1.114 rmind *
150 1.114 rmind * Migration of threads from one CPU to another could be performed
151 1.114 rmind * internally by the scheduler via sched_takecpu() or sched_catchlwp()
152 1.114 rmind * functions. The universal lwp_migrate() function should be used for
153 1.114 rmind * any other cases. Subsystems in the kernel must be aware that CPU
154 1.114 rmind * of LWP may change, while it is not locked.
155 1.114 rmind *
156 1.52 ad * Locking
157 1.52 ad *
158 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
159 1.66 ad * general spin lock pointed to by lwp::l_mutex. The locks covering
160 1.52 ad * each field are documented in sys/lwp.h.
161 1.52 ad *
162 1.66 ad * State transitions must be made with the LWP's general lock held,
163 1.152 rmind * and may cause the LWP's lock pointer to change. Manipulation of
164 1.66 ad * the general lock is not performed directly, but through calls to
165 1.152 rmind * lwp_lock(), lwp_unlock() and others. It should be noted that the
166 1.152 rmind * adaptive locks are not allowed to be released while the LWP's lock
167 1.152 rmind * is being held (unlike for other spin-locks).
168 1.52 ad *
169 1.52 ad * States and their associated locks:
170 1.52 ad *
171 1.212 ad * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
172 1.52 ad *
173 1.212 ad * Always covered by spc_lwplock, which protects LWPs not
174 1.212 ad * associated with any other sync object. This is a per-CPU
175 1.212 ad * lock and matches lwp::l_cpu.
176 1.52 ad *
177 1.212 ad * LSRUN:
178 1.52 ad *
179 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
180 1.129 ad * This is a per-CPU lock and matches lwp::l_cpu.
181 1.52 ad *
182 1.52 ad * LSSLEEP:
183 1.52 ad *
184 1.212 ad * Covered by a lock associated with the sleep queue (sometimes
185 1.221 ad * a turnstile sleep queue) that the LWP resides on. This can
186 1.221 ad * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
187 1.52 ad *
188 1.212 ad * LSSTOP:
189 1.101 rmind *
190 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
191 1.66 ad * l_mutex references the sleep queue lock. If the LWP was
192 1.52 ad * runnable or on the CPU when halted, or has been removed from
193 1.66 ad * the sleep queue since halted, then the lock is spc_lwplock.
194 1.52 ad *
195 1.52 ad * The lock order is as follows:
196 1.52 ad *
197 1.212 ad * sleepq -> turnstile -> spc_lwplock -> spc_mutex
198 1.52 ad *
199 1.243 skrll * Each process has a scheduler state lock (proc::p_lock), and a
200 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
201 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
202 1.103 ad * following states, p_lock must be held and the process wide counters
203 1.52 ad * adjusted:
204 1.52 ad *
205 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
206 1.52 ad *
207 1.129 ad * (But not always for kernel threads. There are some special cases
208 1.212 ad * as mentioned above: soft interrupts, and the idle loops.)
209 1.129 ad *
210 1.52 ad * Note that an LWP is considered running or likely to run soon if in
211 1.52 ad * one of the following states. This affects the value of p_nrlwps:
212 1.52 ad *
213 1.52 ad * LSRUN, LSONPROC, LSSLEEP
214 1.52 ad *
215 1.103 ad * p_lock does not need to be held when transitioning among these
216 1.129 ad * three states, hence p_lock is rarely taken for state transitions.
217 1.52 ad */
218 1.52 ad
219 1.9 lukem #include <sys/cdefs.h>
220 1.263 ad __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.263 2023/10/04 22:17:09 ad Exp $");
221 1.8 martin
222 1.84 yamt #include "opt_ddb.h"
223 1.52 ad #include "opt_lockdebug.h"
224 1.139 darran #include "opt_dtrace.h"
225 1.2 thorpej
226 1.47 hannken #define _LWP_API_PRIVATE
227 1.47 hannken
228 1.2 thorpej #include <sys/param.h>
229 1.2 thorpej #include <sys/systm.h>
230 1.64 yamt #include <sys/cpu.h>
231 1.2 thorpej #include <sys/pool.h>
232 1.2 thorpej #include <sys/proc.h>
233 1.2 thorpej #include <sys/syscallargs.h>
234 1.57 dsl #include <sys/syscall_stats.h>
235 1.37 ad #include <sys/kauth.h>
236 1.52 ad #include <sys/sleepq.h>
237 1.52 ad #include <sys/lockdebug.h>
238 1.52 ad #include <sys/kmem.h>
239 1.91 rmind #include <sys/pset.h>
240 1.75 ad #include <sys/intr.h>
241 1.78 ad #include <sys/lwpctl.h>
242 1.81 ad #include <sys/atomic.h>
243 1.131 ad #include <sys/filedesc.h>
244 1.196 hannken #include <sys/fstrans.h>
245 1.138 darran #include <sys/dtrace_bsd.h>
246 1.141 darran #include <sys/sdt.h>
247 1.203 kamil #include <sys/ptrace.h>
248 1.157 rmind #include <sys/xcall.h>
249 1.169 christos #include <sys/uidinfo.h>
250 1.169 christos #include <sys/sysctl.h>
251 1.201 ozaki #include <sys/psref.h>
252 1.208 maxv #include <sys/msan.h>
253 1.232 maxv #include <sys/kcov.h>
254 1.233 thorpej #include <sys/cprng.h>
255 1.236 thorpej #include <sys/futex.h>
256 1.138 darran
257 1.2 thorpej #include <uvm/uvm_extern.h>
258 1.80 skrll #include <uvm/uvm_object.h>
259 1.2 thorpej
260 1.152 rmind static pool_cache_t lwp_cache __read_mostly;
261 1.152 rmind struct lwplist alllwp __cacheline_aligned;
262 1.41 thorpej
263 1.238 ad static int lwp_ctor(void *, void *, int);
264 1.157 rmind static void lwp_dtor(void *, void *);
265 1.157 rmind
266 1.141 darran /* DTrace proc provider probes */
267 1.180 christos SDT_PROVIDER_DEFINE(proc);
268 1.180 christos
269 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
270 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
271 1.180 christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
272 1.141 darran
273 1.213 ad struct turnstile turnstile0 __cacheline_aligned;
274 1.147 pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
275 1.147 pooka #ifdef LWP0_CPU_INFO
276 1.147 pooka .l_cpu = LWP0_CPU_INFO,
277 1.147 pooka #endif
278 1.154 matt #ifdef LWP0_MD_INITIALIZER
279 1.154 matt .l_md = LWP0_MD_INITIALIZER,
280 1.154 matt #endif
281 1.147 pooka .l_proc = &proc0,
282 1.235 thorpej .l_lid = 0, /* we own proc0's slot in the pid table */
283 1.147 pooka .l_flag = LW_SYSTEM,
284 1.147 pooka .l_stat = LSONPROC,
285 1.147 pooka .l_ts = &turnstile0,
286 1.147 pooka .l_syncobj = &sched_syncobj,
287 1.231 ad .l_refcnt = 0,
288 1.147 pooka .l_priority = PRI_USER + NPRI_USER - 1,
289 1.147 pooka .l_inheritedprio = -1,
290 1.147 pooka .l_class = SCHED_OTHER,
291 1.147 pooka .l_psid = PS_NONE,
292 1.147 pooka .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
293 1.147 pooka .l_name = __UNCONST("swapper"),
294 1.147 pooka .l_fd = &filedesc0,
295 1.147 pooka };
296 1.147 pooka
297 1.249 mrg static int
298 1.249 mrg lwp_maxlwp(void)
299 1.249 mrg {
300 1.249 mrg /* Assume 1 LWP per 1MiB. */
301 1.249 mrg uint64_t lwps_per = ctob(physmem) / (1024 * 1024);
302 1.249 mrg
303 1.249 mrg return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP);
304 1.249 mrg }
305 1.249 mrg
306 1.169 christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
307 1.169 christos
308 1.169 christos /*
309 1.169 christos * sysctl helper routine for kern.maxlwp. Ensures that the new
310 1.169 christos * values are not too low or too high.
311 1.169 christos */
312 1.169 christos static int
313 1.169 christos sysctl_kern_maxlwp(SYSCTLFN_ARGS)
314 1.169 christos {
315 1.169 christos int error, nmaxlwp;
316 1.169 christos struct sysctlnode node;
317 1.169 christos
318 1.169 christos nmaxlwp = maxlwp;
319 1.169 christos node = *rnode;
320 1.169 christos node.sysctl_data = &nmaxlwp;
321 1.169 christos error = sysctl_lookup(SYSCTLFN_CALL(&node));
322 1.169 christos if (error || newp == NULL)
323 1.169 christos return error;
324 1.169 christos
325 1.249 mrg if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP)
326 1.169 christos return EINVAL;
327 1.249 mrg if (nmaxlwp > lwp_maxlwp())
328 1.169 christos return EINVAL;
329 1.169 christos maxlwp = nmaxlwp;
330 1.169 christos
331 1.169 christos return 0;
332 1.169 christos }
333 1.169 christos
334 1.169 christos static void
335 1.169 christos sysctl_kern_lwp_setup(void)
336 1.169 christos {
337 1.242 maxv sysctl_createv(NULL, 0, NULL, NULL,
338 1.169 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
339 1.169 christos CTLTYPE_INT, "maxlwp",
340 1.169 christos SYSCTL_DESCR("Maximum number of simultaneous threads"),
341 1.169 christos sysctl_kern_maxlwp, 0, NULL, 0,
342 1.169 christos CTL_KERN, CTL_CREATE, CTL_EOL);
343 1.169 christos }
344 1.169 christos
345 1.41 thorpej void
346 1.41 thorpej lwpinit(void)
347 1.41 thorpej {
348 1.41 thorpej
349 1.152 rmind LIST_INIT(&alllwp);
350 1.144 pooka lwpinit_specificdata();
351 1.246 thorpej /*
352 1.246 thorpej * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
353 1.246 thorpej * calls will exit before memory of LWPs is returned to the pool, where
354 1.246 thorpej * KVA of LWP structure might be freed and re-used for other purposes.
355 1.246 thorpej * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
356 1.246 thorpej * callers, therefore a regular passive serialization barrier will
357 1.246 thorpej * do the job.
358 1.246 thorpej */
359 1.246 thorpej lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0,
360 1.246 thorpej PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL);
361 1.169 christos
362 1.249 mrg maxlwp = lwp_maxlwp();
363 1.169 christos sysctl_kern_lwp_setup();
364 1.41 thorpej }
365 1.41 thorpej
366 1.147 pooka void
367 1.147 pooka lwp0_init(void)
368 1.147 pooka {
369 1.147 pooka struct lwp *l = &lwp0;
370 1.147 pooka
371 1.147 pooka KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
372 1.147 pooka
373 1.147 pooka LIST_INSERT_HEAD(&alllwp, l, l_list);
374 1.147 pooka
375 1.147 pooka callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
376 1.147 pooka callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
377 1.147 pooka cv_init(&l->l_sigcv, "sigwait");
378 1.171 rmind cv_init(&l->l_waitcv, "vfork");
379 1.147 pooka
380 1.263 ad l->l_cred = kauth_cred_hold(proc0.p_cred);
381 1.147 pooka
382 1.164 yamt kdtrace_thread_ctor(NULL, l);
383 1.147 pooka lwp_initspecific(l);
384 1.147 pooka
385 1.147 pooka SYSCALL_TIME_LWP_INIT(l);
386 1.147 pooka }
387 1.147 pooka
388 1.238 ad /*
389 1.238 ad * Initialize the non-zeroed portion of an lwp_t.
390 1.238 ad */
391 1.238 ad static int
392 1.238 ad lwp_ctor(void *arg, void *obj, int flags)
393 1.238 ad {
394 1.238 ad lwp_t *l = obj;
395 1.238 ad
396 1.238 ad l->l_stat = LSIDL;
397 1.238 ad l->l_cpu = curcpu();
398 1.238 ad l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock;
399 1.255 ad l->l_ts = kmem_alloc(sizeof(*l->l_ts), flags == PR_WAITOK ?
400 1.255 ad KM_SLEEP : KM_NOSLEEP);
401 1.238 ad
402 1.238 ad if (l->l_ts == NULL) {
403 1.238 ad return ENOMEM;
404 1.238 ad } else {
405 1.238 ad turnstile_ctor(l->l_ts);
406 1.238 ad return 0;
407 1.238 ad }
408 1.238 ad }
409 1.238 ad
410 1.157 rmind static void
411 1.245 thorpej lwp_dtor(void *arg, void *obj)
412 1.245 thorpej {
413 1.245 thorpej lwp_t *l = obj;
414 1.245 thorpej
415 1.245 thorpej /*
416 1.245 thorpej * The value of l->l_cpu must still be valid at this point.
417 1.245 thorpej */
418 1.157 rmind KASSERT(l->l_cpu != NULL);
419 1.238 ad
420 1.238 ad /*
421 1.238 ad * We can't return turnstile0 to the pool (it didn't come from it),
422 1.238 ad * so if it comes up just drop it quietly and move on.
423 1.238 ad */
424 1.238 ad if (l->l_ts != &turnstile0)
425 1.255 ad kmem_free(l->l_ts, sizeof(*l->l_ts));
426 1.157 rmind }
427 1.157 rmind
428 1.52 ad /*
429 1.238 ad * Set an LWP suspended.
430 1.52 ad *
431 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
432 1.52 ad * LWP before return.
433 1.52 ad */
434 1.2 thorpej int
435 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
436 1.2 thorpej {
437 1.52 ad int error;
438 1.2 thorpej
439 1.103 ad KASSERT(mutex_owned(t->l_proc->p_lock));
440 1.63 ad KASSERT(lwp_locked(t, NULL));
441 1.33 chs
442 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
443 1.2 thorpej
444 1.52 ad /*
445 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
446 1.52 ad * else or deadlock could occur. We won't return to userspace.
447 1.2 thorpej */
448 1.109 rmind if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
449 1.52 ad lwp_unlock(t);
450 1.52 ad return (EDEADLK);
451 1.2 thorpej }
452 1.2 thorpej
453 1.204 kamil if ((t->l_flag & LW_DBGSUSPEND) != 0) {
454 1.204 kamil lwp_unlock(t);
455 1.204 kamil return 0;
456 1.204 kamil }
457 1.204 kamil
458 1.52 ad error = 0;
459 1.2 thorpej
460 1.52 ad switch (t->l_stat) {
461 1.52 ad case LSRUN:
462 1.52 ad case LSONPROC:
463 1.56 pavel t->l_flag |= LW_WSUSPEND;
464 1.52 ad lwp_need_userret(t);
465 1.52 ad lwp_unlock(t);
466 1.52 ad break;
467 1.2 thorpej
468 1.52 ad case LSSLEEP:
469 1.56 pavel t->l_flag |= LW_WSUSPEND;
470 1.259 ad lwp_need_userret(t);
471 1.2 thorpej
472 1.2 thorpej /*
473 1.52 ad * Kick the LWP and try to get it to the kernel boundary
474 1.52 ad * so that it will release any locks that it holds.
475 1.52 ad * setrunnable() will release the lock.
476 1.2 thorpej */
477 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
478 1.52 ad setrunnable(t);
479 1.52 ad else
480 1.52 ad lwp_unlock(t);
481 1.52 ad break;
482 1.2 thorpej
483 1.52 ad case LSSUSPENDED:
484 1.52 ad lwp_unlock(t);
485 1.52 ad break;
486 1.17 manu
487 1.52 ad case LSSTOP:
488 1.56 pavel t->l_flag |= LW_WSUSPEND;
489 1.259 ad lwp_need_userret(t);
490 1.52 ad setrunnable(t);
491 1.52 ad break;
492 1.2 thorpej
493 1.52 ad case LSIDL:
494 1.52 ad case LSZOMB:
495 1.52 ad error = EINTR; /* It's what Solaris does..... */
496 1.52 ad lwp_unlock(t);
497 1.52 ad break;
498 1.2 thorpej }
499 1.2 thorpej
500 1.69 rmind return (error);
501 1.2 thorpej }
502 1.2 thorpej
503 1.52 ad /*
504 1.52 ad * Restart a suspended LWP.
505 1.52 ad *
506 1.103 ad * Must be called with p_lock held, and the LWP locked. Will unlock the
507 1.52 ad * LWP before return.
508 1.52 ad */
509 1.2 thorpej void
510 1.2 thorpej lwp_continue(struct lwp *l)
511 1.2 thorpej {
512 1.2 thorpej
513 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
514 1.63 ad KASSERT(lwp_locked(l, NULL));
515 1.52 ad
516 1.52 ad /* If rebooting or not suspended, then just bail out. */
517 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
518 1.52 ad lwp_unlock(l);
519 1.2 thorpej return;
520 1.10 fvdl }
521 1.2 thorpej
522 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
523 1.2 thorpej
524 1.204 kamil if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
525 1.52 ad lwp_unlock(l);
526 1.52 ad return;
527 1.2 thorpej }
528 1.2 thorpej
529 1.52 ad /* setrunnable() will release the lock. */
530 1.52 ad setrunnable(l);
531 1.2 thorpej }
532 1.2 thorpej
533 1.52 ad /*
534 1.142 christos * Restart a stopped LWP.
535 1.142 christos *
536 1.142 christos * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
537 1.142 christos * LWP before return.
538 1.142 christos */
539 1.142 christos void
540 1.142 christos lwp_unstop(struct lwp *l)
541 1.142 christos {
542 1.142 christos struct proc *p = l->l_proc;
543 1.167 rmind
544 1.239 ad KASSERT(mutex_owned(&proc_lock));
545 1.142 christos KASSERT(mutex_owned(p->p_lock));
546 1.142 christos
547 1.142 christos lwp_lock(l);
548 1.142 christos
549 1.204 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
550 1.204 kamil
551 1.142 christos /* If not stopped, then just bail out. */
552 1.142 christos if (l->l_stat != LSSTOP) {
553 1.142 christos lwp_unlock(l);
554 1.142 christos return;
555 1.142 christos }
556 1.142 christos
557 1.142 christos p->p_stat = SACTIVE;
558 1.142 christos p->p_sflag &= ~PS_STOPPING;
559 1.142 christos
560 1.142 christos if (!p->p_waited)
561 1.142 christos p->p_pptr->p_nstopchild--;
562 1.142 christos
563 1.142 christos if (l->l_wchan == NULL) {
564 1.142 christos /* setrunnable() will release the lock. */
565 1.142 christos setrunnable(l);
566 1.183 christos } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
567 1.163 christos /* setrunnable() so we can receive the signal */
568 1.163 christos setrunnable(l);
569 1.142 christos } else {
570 1.142 christos l->l_stat = LSSLEEP;
571 1.142 christos p->p_nrlwps++;
572 1.142 christos lwp_unlock(l);
573 1.142 christos }
574 1.142 christos }
575 1.142 christos
576 1.142 christos /*
577 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
578 1.52 ad * non-zero, we are waiting for a specific LWP.
579 1.52 ad *
580 1.103 ad * Must be called with p->p_lock held.
581 1.52 ad */
582 1.2 thorpej int
583 1.173 rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
584 1.2 thorpej {
585 1.173 rmind const lwpid_t curlid = l->l_lid;
586 1.173 rmind proc_t *p = l->l_proc;
587 1.223 ad lwp_t *l2, *next;
588 1.173 rmind int error;
589 1.2 thorpej
590 1.103 ad KASSERT(mutex_owned(p->p_lock));
591 1.52 ad
592 1.52 ad p->p_nlwpwait++;
593 1.63 ad l->l_waitingfor = lid;
594 1.52 ad
595 1.52 ad for (;;) {
596 1.173 rmind int nfound;
597 1.173 rmind
598 1.52 ad /*
599 1.52 ad * Avoid a race between exit1() and sigexit(): if the
600 1.52 ad * process is dumping core, then we need to bail out: call
601 1.52 ad * into lwp_userret() where we will be suspended until the
602 1.52 ad * deed is done.
603 1.52 ad */
604 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
605 1.103 ad mutex_exit(p->p_lock);
606 1.52 ad lwp_userret(l);
607 1.173 rmind KASSERT(false);
608 1.52 ad }
609 1.52 ad
610 1.52 ad /*
611 1.52 ad * First off, drain any detached LWP that is waiting to be
612 1.52 ad * reaped.
613 1.52 ad */
614 1.261 ad if ((l2 = p->p_zomblwp) != NULL) {
615 1.52 ad p->p_zomblwp = NULL;
616 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
617 1.103 ad mutex_enter(p->p_lock);
618 1.261 ad continue;
619 1.52 ad }
620 1.52 ad
621 1.52 ad /*
622 1.52 ad * Now look for an LWP to collect. If the whole process is
623 1.52 ad * exiting, count detached LWPs as eligible to be collected,
624 1.52 ad * but don't drain them here.
625 1.52 ad */
626 1.52 ad nfound = 0;
627 1.63 ad error = 0;
628 1.223 ad
629 1.223 ad /*
630 1.238 ad * If given a specific LID, go via pid_table and make sure
631 1.223 ad * it's not detached.
632 1.223 ad */
633 1.223 ad if (lid != 0) {
634 1.235 thorpej l2 = proc_find_lwp(p, lid);
635 1.223 ad if (l2 == NULL) {
636 1.223 ad error = ESRCH;
637 1.223 ad break;
638 1.223 ad }
639 1.223 ad KASSERT(l2->l_lid == lid);
640 1.223 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
641 1.223 ad error = EINVAL;
642 1.223 ad break;
643 1.223 ad }
644 1.223 ad } else {
645 1.223 ad l2 = LIST_FIRST(&p->p_lwps);
646 1.223 ad }
647 1.223 ad for (; l2 != NULL; l2 = next) {
648 1.223 ad next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
649 1.223 ad
650 1.63 ad /*
651 1.63 ad * If a specific wait and the target is waiting on
652 1.63 ad * us, then avoid deadlock. This also traps LWPs
653 1.63 ad * that try to wait on themselves.
654 1.63 ad *
655 1.63 ad * Note that this does not handle more complicated
656 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
657 1.63 ad * can still be killed so it is not a major problem.
658 1.63 ad */
659 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
660 1.63 ad error = EDEADLK;
661 1.63 ad break;
662 1.63 ad }
663 1.63 ad if (l2 == l)
664 1.52 ad continue;
665 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
666 1.63 ad nfound += exiting;
667 1.63 ad continue;
668 1.63 ad }
669 1.63 ad if (lid != 0) {
670 1.63 ad /*
671 1.63 ad * Mark this LWP as the first waiter, if there
672 1.63 ad * is no other.
673 1.63 ad */
674 1.63 ad if (l2->l_waiter == 0)
675 1.63 ad l2->l_waiter = curlid;
676 1.63 ad } else if (l2->l_waiter != 0) {
677 1.63 ad /*
678 1.63 ad * It already has a waiter - so don't
679 1.63 ad * collect it. If the waiter doesn't
680 1.63 ad * grab it we'll get another chance
681 1.63 ad * later.
682 1.63 ad */
683 1.63 ad nfound++;
684 1.52 ad continue;
685 1.52 ad }
686 1.52 ad nfound++;
687 1.2 thorpej
688 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
689 1.52 ad if (l2->l_stat != LSZOMB)
690 1.52 ad continue;
691 1.2 thorpej
692 1.63 ad /*
693 1.63 ad * We're no longer waiting. Reset the "first waiter"
694 1.63 ad * pointer on the target, in case it was us.
695 1.63 ad */
696 1.63 ad l->l_waitingfor = 0;
697 1.63 ad l2->l_waiter = 0;
698 1.63 ad p->p_nlwpwait--;
699 1.2 thorpej if (departed)
700 1.2 thorpej *departed = l2->l_lid;
701 1.75 ad sched_lwp_collect(l2);
702 1.63 ad
703 1.63 ad /* lwp_free() releases the proc lock. */
704 1.63 ad lwp_free(l2, false, false);
705 1.103 ad mutex_enter(p->p_lock);
706 1.52 ad return 0;
707 1.52 ad }
708 1.2 thorpej
709 1.63 ad if (error != 0)
710 1.63 ad break;
711 1.52 ad if (nfound == 0) {
712 1.52 ad error = ESRCH;
713 1.52 ad break;
714 1.52 ad }
715 1.63 ad
716 1.63 ad /*
717 1.173 rmind * Note: since the lock will be dropped, need to restart on
718 1.173 rmind * wakeup to run all LWPs again, e.g. there may be new LWPs.
719 1.63 ad */
720 1.63 ad if (exiting) {
721 1.52 ad KASSERT(p->p_nlwps > 1);
722 1.222 ad error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
723 1.173 rmind break;
724 1.52 ad }
725 1.63 ad
726 1.63 ad /*
727 1.234 ad * Break out if all LWPs are in _lwp_wait(). There are
728 1.234 ad * other ways to hang the process with _lwp_wait(), but the
729 1.234 ad * sleep is interruptable so little point checking for them.
730 1.63 ad */
731 1.234 ad if (p->p_nlwpwait == p->p_nlwps) {
732 1.52 ad error = EDEADLK;
733 1.52 ad break;
734 1.2 thorpej }
735 1.63 ad
736 1.63 ad /*
737 1.63 ad * Sit around and wait for something to happen. We'll be
738 1.63 ad * awoken if any of the conditions examined change: if an
739 1.63 ad * LWP exits, is collected, or is detached.
740 1.63 ad */
741 1.103 ad if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
742 1.52 ad break;
743 1.2 thorpej }
744 1.2 thorpej
745 1.63 ad /*
746 1.63 ad * We didn't find any LWPs to collect, we may have received a
747 1.63 ad * signal, or some other condition has caused us to bail out.
748 1.63 ad *
749 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
750 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
751 1.63 ad * so that they can re-check for zombies and for deadlock.
752 1.63 ad */
753 1.63 ad if (lid != 0) {
754 1.235 thorpej l2 = proc_find_lwp(p, lid);
755 1.223 ad KASSERT(l2 == NULL || l2->l_lid == lid);
756 1.223 ad
757 1.223 ad if (l2 != NULL && l2->l_waiter == curlid)
758 1.223 ad l2->l_waiter = 0;
759 1.63 ad }
760 1.52 ad p->p_nlwpwait--;
761 1.63 ad l->l_waitingfor = 0;
762 1.63 ad cv_broadcast(&p->p_lwpcv);
763 1.63 ad
764 1.52 ad return error;
765 1.2 thorpej }
766 1.2 thorpej
767 1.223 ad /*
768 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
769 1.52 ad * The new LWP is created in state LSIDL and must be set running,
770 1.52 ad * suspended, or stopped by the caller.
771 1.52 ad */
772 1.2 thorpej int
773 1.134 rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
774 1.188 christos void *stack, size_t stacksize, void (*func)(void *), void *arg,
775 1.188 christos lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
776 1.188 christos const stack_t *sigstk)
777 1.2 thorpej {
778 1.215 ad struct lwp *l2;
779 1.2 thorpej
780 1.107 ad KASSERT(l1 == curlwp || l1->l_proc == &proc0);
781 1.107 ad
782 1.52 ad /*
783 1.215 ad * Enforce limits, excluding the first lwp and kthreads. We must
784 1.215 ad * use the process credentials here when adjusting the limit, as
785 1.215 ad * they are what's tied to the accounting entity. However for
786 1.215 ad * authorizing the action, we'll use the LWP's credentials.
787 1.169 christos */
788 1.215 ad mutex_enter(p2->p_lock);
789 1.169 christos if (p2->p_nlwps != 0 && p2 != &proc0) {
790 1.215 ad uid_t uid = kauth_cred_getuid(p2->p_cred);
791 1.169 christos int count = chglwpcnt(uid, 1);
792 1.169 christos if (__predict_false(count >
793 1.169 christos p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
794 1.169 christos if (kauth_authorize_process(l1->l_cred,
795 1.169 christos KAUTH_PROCESS_RLIMIT, p2,
796 1.169 christos KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
797 1.169 christos &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
798 1.169 christos != 0) {
799 1.170 christos (void)chglwpcnt(uid, -1);
800 1.215 ad mutex_exit(p2->p_lock);
801 1.170 christos return EAGAIN;
802 1.169 christos }
803 1.169 christos }
804 1.169 christos }
805 1.169 christos
806 1.169 christos /*
807 1.52 ad * First off, reap any detached LWP waiting to be collected.
808 1.52 ad * We can re-use its LWP structure and turnstile.
809 1.52 ad */
810 1.215 ad if ((l2 = p2->p_zomblwp) != NULL) {
811 1.215 ad p2->p_zomblwp = NULL;
812 1.215 ad lwp_free(l2, true, false);
813 1.215 ad /* p2 now unlocked by lwp_free() */
814 1.238 ad KASSERT(l2->l_ts != NULL);
815 1.75 ad KASSERT(l2->l_inheritedprio == -1);
816 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
817 1.238 ad memset(&l2->l_startzero, 0, sizeof(*l2) -
818 1.238 ad offsetof(lwp_t, l_startzero));
819 1.215 ad } else {
820 1.215 ad mutex_exit(p2->p_lock);
821 1.215 ad l2 = pool_cache_get(lwp_cache, PR_WAITOK);
822 1.238 ad memset(&l2->l_startzero, 0, sizeof(*l2) -
823 1.238 ad offsetof(lwp_t, l_startzero));
824 1.215 ad SLIST_INIT(&l2->l_pi_lenders);
825 1.52 ad }
826 1.2 thorpej
827 1.238 ad /*
828 1.238 ad * Because of lockless lookup via pid_table, the LWP can be locked
829 1.238 ad * and inspected briefly even after it's freed, so a few fields are
830 1.238 ad * kept stable.
831 1.238 ad */
832 1.238 ad KASSERT(l2->l_stat == LSIDL);
833 1.238 ad KASSERT(l2->l_cpu != NULL);
834 1.238 ad KASSERT(l2->l_ts != NULL);
835 1.238 ad KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock);
836 1.238 ad
837 1.2 thorpej l2->l_proc = p2;
838 1.231 ad l2->l_refcnt = 0;
839 1.75 ad l2->l_class = sclass;
840 1.116 ad
841 1.116 ad /*
842 1.235 thorpej * Allocate a process ID for this LWP. We need to do this now
843 1.250 andvar * while we can still unwind if it fails. Because we're marked
844 1.238 ad * as LSIDL, no lookups by the ID will succeed.
845 1.235 thorpej *
846 1.235 thorpej * N.B. this will always succeed for the first LWP in a process,
847 1.235 thorpej * because proc_alloc_lwpid() will usurp the slot. Also note
848 1.235 thorpej * that l2->l_proc MUST be valid so that lookups of the proc
849 1.235 thorpej * will succeed, even if the LWP itself is not visible.
850 1.235 thorpej */
851 1.235 thorpej if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
852 1.235 thorpej pool_cache_put(lwp_cache, l2);
853 1.235 thorpej return EAGAIN;
854 1.235 thorpej }
855 1.235 thorpej
856 1.257 ad /*
857 1.257 ad * If vfork(), we want the LWP to run fast and on the same CPU
858 1.257 ad * as its parent, so that it can reuse the VM context and cache
859 1.257 ad * footprint on the local CPU.
860 1.257 ad */
861 1.257 ad l2->l_boostpri = ((flags & LWP_VFORK) ? PRI_KERNEL : PRI_USER);
862 1.257 ad l2->l_priority = l1->l_priority;
863 1.75 ad l2->l_inheritedprio = -1;
864 1.185 christos l2->l_protectprio = -1;
865 1.185 christos l2->l_auxprio = -1;
866 1.222 ad l2->l_flag = 0;
867 1.88 ad l2->l_pflag = LP_MPSAFE;
868 1.131 ad TAILQ_INIT(&l2->l_ld_locks);
869 1.197 ozaki l2->l_psrefs = 0;
870 1.208 maxv kmsan_lwp_alloc(l2);
871 1.131 ad
872 1.131 ad /*
873 1.156 pooka * For vfork, borrow parent's lwpctl context if it exists.
874 1.156 pooka * This also causes us to return via lwp_userret.
875 1.156 pooka */
876 1.156 pooka if (flags & LWP_VFORK && l1->l_lwpctl) {
877 1.156 pooka l2->l_lwpctl = l1->l_lwpctl;
878 1.156 pooka l2->l_flag |= LW_LWPCTL;
879 1.156 pooka }
880 1.156 pooka
881 1.156 pooka /*
882 1.131 ad * If not the first LWP in the process, grab a reference to the
883 1.131 ad * descriptor table.
884 1.131 ad */
885 1.97 ad l2->l_fd = p2->p_fd;
886 1.131 ad if (p2->p_nlwps != 0) {
887 1.131 ad KASSERT(l1->l_proc == p2);
888 1.136 rmind fd_hold(l2);
889 1.131 ad } else {
890 1.131 ad KASSERT(l1->l_proc != p2);
891 1.131 ad }
892 1.41 thorpej
893 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
894 1.134 rmind /* Mark it as a system LWP. */
895 1.56 pavel l2->l_flag |= LW_SYSTEM;
896 1.52 ad }
897 1.2 thorpej
898 1.138 darran kdtrace_thread_ctor(NULL, l2);
899 1.73 rmind lwp_initspecific(l2);
900 1.75 ad sched_lwp_fork(l1, l2);
901 1.70 ad callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
902 1.70 ad callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
903 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
904 1.171 rmind cv_init(&l2->l_waitcv, "vfork");
905 1.52 ad l2->l_syncobj = &sched_syncobj;
906 1.201 ozaki PSREF_DEBUG_INIT_LWP(l2);
907 1.2 thorpej
908 1.2 thorpej if (rnewlwpp != NULL)
909 1.2 thorpej *rnewlwpp = l2;
910 1.2 thorpej
911 1.158 matt /*
912 1.158 matt * PCU state needs to be saved before calling uvm_lwp_fork() so that
913 1.158 matt * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
914 1.158 matt */
915 1.158 matt pcu_save_all(l1);
916 1.225 dogcow #if PCU_UNIT_COUNT > 0
917 1.224 riastrad l2->l_pcu_valid = l1->l_pcu_valid;
918 1.225 dogcow #endif
919 1.158 matt
920 1.137 rmind uvm_lwp_setuarea(l2, uaddr);
921 1.190 skrll uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
922 1.2 thorpej
923 1.235 thorpej mutex_enter(p2->p_lock);
924 1.263 ad l2->l_cred = kauth_cred_hold(p2->p_cred);
925 1.52 ad if ((flags & LWP_DETACHED) != 0) {
926 1.52 ad l2->l_prflag = LPR_DETACHED;
927 1.52 ad p2->p_ndlwps++;
928 1.52 ad } else
929 1.52 ad l2->l_prflag = 0;
930 1.52 ad
931 1.223 ad if (l1->l_proc == p2) {
932 1.223 ad /*
933 1.223 ad * These flags are set while p_lock is held. Copy with
934 1.223 ad * p_lock held too, so the LWP doesn't sneak into the
935 1.223 ad * process without them being set.
936 1.223 ad */
937 1.222 ad l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
938 1.223 ad } else {
939 1.223 ad /* fork(): pending core/exit doesn't apply to child. */
940 1.222 ad l2->l_flag |= (l1->l_flag & LW_WREBOOT);
941 1.223 ad }
942 1.222 ad
943 1.188 christos l2->l_sigstk = *sigstk;
944 1.188 christos l2->l_sigmask = *sigmask;
945 1.176 christos TAILQ_INIT(&l2->l_sigpend.sp_info);
946 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
947 1.174 dsl LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
948 1.2 thorpej p2->p_nlwps++;
949 1.149 yamt p2->p_nrlwps++;
950 1.2 thorpej
951 1.162 rmind KASSERT(l2->l_affinity == NULL);
952 1.162 rmind
953 1.210 ad /* Inherit the affinity mask. */
954 1.210 ad if (l1->l_affinity) {
955 1.210 ad /*
956 1.210 ad * Note that we hold the state lock while inheriting
957 1.210 ad * the affinity to avoid race with sched_setaffinity().
958 1.210 ad */
959 1.210 ad lwp_lock(l1);
960 1.162 rmind if (l1->l_affinity) {
961 1.210 ad kcpuset_use(l1->l_affinity);
962 1.210 ad l2->l_affinity = l1->l_affinity;
963 1.117 christos }
964 1.210 ad lwp_unlock(l1);
965 1.91 rmind }
966 1.223 ad
967 1.259 ad /* Ensure a trip through lwp_userret() if needed. */
968 1.259 ad if ((l2->l_flag & LW_USERRET) != 0) {
969 1.259 ad lwp_need_userret(l2);
970 1.259 ad }
971 1.259 ad
972 1.223 ad /* This marks the end of the "must be atomic" section. */
973 1.128 rmind mutex_exit(p2->p_lock);
974 1.128 rmind
975 1.180 christos SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
976 1.141 darran
977 1.239 ad mutex_enter(&proc_lock);
978 1.128 rmind LIST_INSERT_HEAD(&alllwp, l2, l_list);
979 1.210 ad /* Inherit a processor-set */
980 1.210 ad l2->l_psid = l1->l_psid;
981 1.239 ad mutex_exit(&proc_lock);
982 1.91 rmind
983 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
984 1.57 dsl
985 1.16 manu if (p2->p_emul->e_lwp_fork)
986 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
987 1.16 manu
988 1.2 thorpej return (0);
989 1.2 thorpej }
990 1.2 thorpej
991 1.2 thorpej /*
992 1.212 ad * Set a new LWP running. If the process is stopping, then the LWP is
993 1.212 ad * created stopped.
994 1.212 ad */
995 1.212 ad void
996 1.212 ad lwp_start(lwp_t *l, int flags)
997 1.212 ad {
998 1.212 ad proc_t *p = l->l_proc;
999 1.212 ad
1000 1.212 ad mutex_enter(p->p_lock);
1001 1.212 ad lwp_lock(l);
1002 1.212 ad KASSERT(l->l_stat == LSIDL);
1003 1.212 ad if ((flags & LWP_SUSPENDED) != 0) {
1004 1.212 ad /* It'll suspend itself in lwp_userret(). */
1005 1.212 ad l->l_flag |= LW_WSUSPEND;
1006 1.260 ad lwp_need_userret(l);
1007 1.212 ad }
1008 1.212 ad if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1009 1.212 ad KASSERT(l->l_wchan == NULL);
1010 1.212 ad l->l_stat = LSSTOP;
1011 1.212 ad p->p_nrlwps--;
1012 1.212 ad lwp_unlock(l);
1013 1.212 ad } else {
1014 1.212 ad setrunnable(l);
1015 1.212 ad /* LWP now unlocked */
1016 1.212 ad }
1017 1.212 ad mutex_exit(p->p_lock);
1018 1.212 ad }
1019 1.212 ad
1020 1.212 ad /*
1021 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
1022 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
1023 1.64 yamt * previous LWP, at splsched.
1024 1.64 yamt */
1025 1.64 yamt void
1026 1.178 matt lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1027 1.64 yamt {
1028 1.227 ad kmutex_t *lock;
1029 1.218 ad
1030 1.178 matt KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1031 1.218 ad KASSERT(kpreempt_disabled());
1032 1.218 ad KASSERT(prev != NULL);
1033 1.227 ad KASSERT((prev->l_pflag & LP_RUNNING) != 0);
1034 1.218 ad KASSERT(curcpu()->ci_mtx_count == -2);
1035 1.218 ad
1036 1.227 ad /*
1037 1.247 riastrad * Immediately mark the previous LWP as no longer running and
1038 1.247 riastrad * unlock (to keep lock wait times short as possible). If a
1039 1.247 riastrad * zombie, don't touch after clearing LP_RUNNING as it could be
1040 1.247 riastrad * reaped by another CPU. Use atomic_store_release to ensure
1041 1.247 riastrad * this -- matches atomic_load_acquire in lwp_free.
1042 1.227 ad */
1043 1.227 ad lock = prev->l_mutex;
1044 1.227 ad if (__predict_false(prev->l_stat == LSZOMB)) {
1045 1.247 riastrad atomic_store_release(&prev->l_pflag,
1046 1.247 riastrad prev->l_pflag & ~LP_RUNNING);
1047 1.247 riastrad } else {
1048 1.247 riastrad prev->l_pflag &= ~LP_RUNNING;
1049 1.227 ad }
1050 1.227 ad mutex_spin_exit(lock);
1051 1.64 yamt
1052 1.218 ad /* Correct spin mutex count after mi_switch(). */
1053 1.218 ad curcpu()->ci_mtx_count = 0;
1054 1.141 darran
1055 1.218 ad /* Install new VM context. */
1056 1.218 ad if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1057 1.218 ad pmap_activate(new_lwp);
1058 1.64 yamt }
1059 1.218 ad
1060 1.218 ad /* We remain at IPL_SCHED from mi_switch() - reset it. */
1061 1.181 skrll spl0();
1062 1.161 christos
1063 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
1064 1.218 ad SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1065 1.218 ad
1066 1.218 ad /* For kthreads, acquire kernel lock if not MPSAFE. */
1067 1.218 ad if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1068 1.178 matt KERNEL_LOCK(1, new_lwp);
1069 1.65 ad }
1070 1.64 yamt }
1071 1.64 yamt
1072 1.64 yamt /*
1073 1.65 ad * Exit an LWP.
1074 1.241 ad *
1075 1.241 ad * *** WARNING *** This can be called with (l != curlwp) in error paths.
1076 1.2 thorpej */
1077 1.2 thorpej void
1078 1.2 thorpej lwp_exit(struct lwp *l)
1079 1.2 thorpej {
1080 1.2 thorpej struct proc *p = l->l_proc;
1081 1.52 ad struct lwp *l2;
1082 1.65 ad bool current;
1083 1.65 ad
1084 1.65 ad current = (l == curlwp);
1085 1.2 thorpej
1086 1.252 riastrad KASSERT(current || l->l_stat == LSIDL);
1087 1.252 riastrad KASSERT(current || l->l_target_cpu == NULL);
1088 1.131 ad KASSERT(p == curproc);
1089 1.2 thorpej
1090 1.180 christos SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1091 1.141 darran
1092 1.220 ad /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1093 1.218 ad LOCKDEBUG_BARRIER(NULL, 0);
1094 1.220 ad KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1095 1.16 manu
1096 1.2 thorpej /*
1097 1.52 ad * If we are the last live LWP in a process, we need to exit the
1098 1.52 ad * entire process. We do so with an exit status of zero, because
1099 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
1100 1.52 ad *
1101 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
1102 1.52 ad * must increment the count of zombies here.
1103 1.45 thorpej *
1104 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
1105 1.2 thorpej */
1106 1.103 ad mutex_enter(p->p_lock);
1107 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
1108 1.65 ad KASSERT(current == true);
1109 1.172 matt KASSERT(p != &proc0);
1110 1.184 christos exit1(l, 0, 0);
1111 1.19 jdolecek /* NOTREACHED */
1112 1.2 thorpej }
1113 1.52 ad p->p_nzlwps++;
1114 1.233 thorpej
1115 1.233 thorpej /*
1116 1.233 thorpej * Perform any required thread cleanup. Do this early so
1117 1.235 thorpej * anyone wanting to look us up with lwp_getref_lwpid() will
1118 1.235 thorpej * fail to find us before we become a zombie.
1119 1.233 thorpej *
1120 1.233 thorpej * N.B. this will unlock p->p_lock on our behalf.
1121 1.233 thorpej */
1122 1.233 thorpej lwp_thread_cleanup(l);
1123 1.52 ad
1124 1.52 ad if (p->p_emul->e_lwp_exit)
1125 1.52 ad (*p->p_emul->e_lwp_exit)(l);
1126 1.2 thorpej
1127 1.131 ad /* Drop filedesc reference. */
1128 1.131 ad fd_free();
1129 1.131 ad
1130 1.196 hannken /* Release fstrans private data. */
1131 1.196 hannken fstrans_lwp_dtor(l);
1132 1.196 hannken
1133 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
1134 1.145 pooka lwp_finispecific(l);
1135 1.45 thorpej
1136 1.52 ad /*
1137 1.52 ad * Release our cached credentials.
1138 1.52 ad */
1139 1.37 ad kauth_cred_free(l->l_cred);
1140 1.70 ad callout_destroy(&l->l_timeout_ch);
1141 1.65 ad
1142 1.65 ad /*
1143 1.198 kamil * If traced, report LWP exit event to the debugger.
1144 1.198 kamil *
1145 1.52 ad * Remove the LWP from the global list.
1146 1.151 chs * Free its LID from the PID namespace if needed.
1147 1.52 ad */
1148 1.239 ad mutex_enter(&proc_lock);
1149 1.198 kamil
1150 1.199 kamil if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1151 1.198 kamil (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1152 1.198 kamil mutex_enter(p->p_lock);
1153 1.202 kamil if (ISSET(p->p_sflag, PS_WEXIT)) {
1154 1.202 kamil mutex_exit(p->p_lock);
1155 1.202 kamil /*
1156 1.202 kamil * We are exiting, bail out without informing parent
1157 1.202 kamil * about a terminating LWP as it would deadlock.
1158 1.202 kamil */
1159 1.202 kamil } else {
1160 1.203 kamil eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1161 1.239 ad mutex_enter(&proc_lock);
1162 1.202 kamil }
1163 1.198 kamil }
1164 1.198 kamil
1165 1.52 ad LIST_REMOVE(l, l_list);
1166 1.239 ad mutex_exit(&proc_lock);
1167 1.19 jdolecek
1168 1.52 ad /*
1169 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
1170 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
1171 1.52 ad * mark it waiting for collection in the proc structure. Note that
1172 1.52 ad * before we can do that, we need to free any other dead, deatched
1173 1.52 ad * LWP waiting to meet its maker.
1174 1.231 ad *
1175 1.231 ad * All conditions need to be observed upon under the same hold of
1176 1.231 ad * p_lock, because if the lock is dropped any of them can change.
1177 1.52 ad */
1178 1.103 ad mutex_enter(p->p_lock);
1179 1.231 ad for (;;) {
1180 1.233 thorpej if (lwp_drainrefs(l))
1181 1.231 ad continue;
1182 1.231 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
1183 1.231 ad if ((l2 = p->p_zomblwp) != NULL) {
1184 1.231 ad p->p_zomblwp = NULL;
1185 1.231 ad lwp_free(l2, false, false);
1186 1.231 ad /* proc now unlocked */
1187 1.231 ad mutex_enter(p->p_lock);
1188 1.231 ad continue;
1189 1.231 ad }
1190 1.231 ad p->p_zomblwp = l;
1191 1.52 ad }
1192 1.231 ad break;
1193 1.52 ad }
1194 1.31 yamt
1195 1.52 ad /*
1196 1.52 ad * If we find a pending signal for the process and we have been
1197 1.151 chs * asked to check for signals, then we lose: arrange to have
1198 1.52 ad * all other LWPs in the process check for signals.
1199 1.52 ad */
1200 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
1201 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
1202 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1203 1.52 ad lwp_lock(l2);
1204 1.209 ad signotify(l2);
1205 1.52 ad lwp_unlock(l2);
1206 1.52 ad }
1207 1.31 yamt }
1208 1.31 yamt
1209 1.158 matt /*
1210 1.158 matt * Release any PCU resources before becoming a zombie.
1211 1.158 matt */
1212 1.158 matt pcu_discard_all(l);
1213 1.158 matt
1214 1.52 ad lwp_lock(l);
1215 1.52 ad l->l_stat = LSZOMB;
1216 1.162 rmind if (l->l_name != NULL) {
1217 1.90 ad strcpy(l->l_name, "(zombie)");
1218 1.128 rmind }
1219 1.52 ad lwp_unlock(l);
1220 1.2 thorpej p->p_nrlwps--;
1221 1.78 ad if (l->l_lwpctl != NULL)
1222 1.78 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1223 1.103 ad mutex_exit(p->p_lock);
1224 1.262 ad cv_broadcast(&p->p_lwpcv);
1225 1.52 ad
1226 1.52 ad /*
1227 1.52 ad * We can no longer block. At this point, lwp_free() may already
1228 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1229 1.52 ad *
1230 1.52 ad * Free MD LWP resources.
1231 1.52 ad */
1232 1.52 ad cpu_lwp_free(l, 0);
1233 1.2 thorpej
1234 1.65 ad if (current) {
1235 1.218 ad /* Switch away into oblivion. */
1236 1.218 ad lwp_lock(l);
1237 1.218 ad spc_lock(l->l_cpu);
1238 1.218 ad mi_switch(l);
1239 1.218 ad panic("lwp_exit");
1240 1.65 ad }
1241 1.2 thorpej }
1242 1.2 thorpej
1243 1.52 ad /*
1244 1.52 ad * Free a dead LWP's remaining resources.
1245 1.52 ad *
1246 1.52 ad * XXXLWP limits.
1247 1.52 ad */
1248 1.52 ad void
1249 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
1250 1.52 ad {
1251 1.52 ad struct proc *p = l->l_proc;
1252 1.100 ad struct rusage *ru;
1253 1.52 ad ksiginfoq_t kq;
1254 1.52 ad
1255 1.92 yamt KASSERT(l != curlwp);
1256 1.160 yamt KASSERT(last || mutex_owned(p->p_lock));
1257 1.92 yamt
1258 1.177 christos /*
1259 1.177 christos * We use the process credentials instead of the lwp credentials here
1260 1.177 christos * because the lwp credentials maybe cached (just after a setuid call)
1261 1.177 christos * and we don't want pay for syncing, since the lwp is going away
1262 1.177 christos * anyway
1263 1.177 christos */
1264 1.169 christos if (p != &proc0 && p->p_nlwps != 1)
1265 1.177 christos (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1266 1.218 ad
1267 1.52 ad /*
1268 1.238 ad * In the unlikely event that the LWP is still on the CPU,
1269 1.238 ad * then spin until it has switched away.
1270 1.247 riastrad *
1271 1.247 riastrad * atomic_load_acquire matches atomic_store_release in
1272 1.247 riastrad * lwp_startup and mi_switch.
1273 1.238 ad */
1274 1.247 riastrad while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING)
1275 1.247 riastrad != 0)) {
1276 1.238 ad SPINLOCK_BACKOFF_HOOK;
1277 1.238 ad }
1278 1.238 ad
1279 1.238 ad /*
1280 1.238 ad * Now that the LWP's known off the CPU, reset its state back to
1281 1.238 ad * LSIDL, which defeats anything that might have gotten a hold on
1282 1.238 ad * the LWP via pid_table before the ID was freed. It's important
1283 1.238 ad * to do this with both the LWP locked and p_lock held.
1284 1.238 ad *
1285 1.238 ad * Also reset the CPU and lock pointer back to curcpu(), since the
1286 1.238 ad * LWP will in all likelyhood be cached with the current CPU in
1287 1.238 ad * lwp_cache when we free it and later allocated from there again
1288 1.238 ad * (avoid incidental lock contention).
1289 1.238 ad */
1290 1.238 ad lwp_lock(l);
1291 1.238 ad l->l_stat = LSIDL;
1292 1.238 ad l->l_cpu = curcpu();
1293 1.238 ad lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock);
1294 1.238 ad
1295 1.238 ad /*
1296 1.223 ad * If this was not the last LWP in the process, then adjust counters
1297 1.223 ad * and unlock. This is done differently for the last LWP in exit1().
1298 1.52 ad */
1299 1.52 ad if (!last) {
1300 1.52 ad /*
1301 1.52 ad * Add the LWP's run time to the process' base value.
1302 1.52 ad * This needs to co-incide with coming off p_lwps.
1303 1.52 ad */
1304 1.86 yamt bintime_add(&p->p_rtime, &l->l_rtime);
1305 1.64 yamt p->p_pctcpu += l->l_pctcpu;
1306 1.100 ad ru = &p->p_stats->p_ru;
1307 1.100 ad ruadd(ru, &l->l_ru);
1308 1.52 ad LIST_REMOVE(l, l_sibling);
1309 1.52 ad p->p_nlwps--;
1310 1.52 ad p->p_nzlwps--;
1311 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
1312 1.52 ad p->p_ndlwps--;
1313 1.262 ad mutex_exit(p->p_lock);
1314 1.63 ad
1315 1.63 ad /*
1316 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
1317 1.63 ad * deadlock.
1318 1.63 ad */
1319 1.63 ad cv_broadcast(&p->p_lwpcv);
1320 1.52 ad
1321 1.238 ad /* Free the LWP ID. */
1322 1.239 ad mutex_enter(&proc_lock);
1323 1.238 ad proc_free_lwpid(p, l->l_lid);
1324 1.239 ad mutex_exit(&proc_lock);
1325 1.63 ad }
1326 1.52 ad
1327 1.52 ad /*
1328 1.52 ad * Destroy the LWP's remaining signal information.
1329 1.52 ad */
1330 1.52 ad ksiginfo_queue_init(&kq);
1331 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
1332 1.52 ad ksiginfo_queue_drain(&kq);
1333 1.52 ad cv_destroy(&l->l_sigcv);
1334 1.171 rmind cv_destroy(&l->l_waitcv);
1335 1.2 thorpej
1336 1.19 jdolecek /*
1337 1.162 rmind * Free lwpctl structure and affinity.
1338 1.162 rmind */
1339 1.162 rmind if (l->l_lwpctl) {
1340 1.162 rmind lwp_ctl_free(l);
1341 1.162 rmind }
1342 1.162 rmind if (l->l_affinity) {
1343 1.162 rmind kcpuset_unuse(l->l_affinity, NULL);
1344 1.162 rmind l->l_affinity = NULL;
1345 1.162 rmind }
1346 1.162 rmind
1347 1.162 rmind /*
1348 1.238 ad * Free remaining data structures and the LWP itself unless the
1349 1.238 ad * caller wants to recycle.
1350 1.19 jdolecek */
1351 1.90 ad if (l->l_name != NULL)
1352 1.90 ad kmem_free(l->l_name, MAXCOMLEN);
1353 1.135 rmind
1354 1.208 maxv kmsan_lwp_free(l);
1355 1.232 maxv kcov_lwp_free(l);
1356 1.52 ad cpu_lwp_free2(l);
1357 1.19 jdolecek uvm_lwp_exit(l);
1358 1.134 rmind
1359 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1360 1.75 ad KASSERT(l->l_inheritedprio == -1);
1361 1.155 matt KASSERT(l->l_blcnt == 0);
1362 1.138 darran kdtrace_thread_dtor(NULL, l);
1363 1.52 ad if (!recycle)
1364 1.87 ad pool_cache_put(lwp_cache, l);
1365 1.2 thorpej }
1366 1.2 thorpej
1367 1.2 thorpej /*
1368 1.91 rmind * Migrate the LWP to the another CPU. Unlocks the LWP.
1369 1.91 rmind */
1370 1.91 rmind void
1371 1.114 rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
1372 1.91 rmind {
1373 1.114 rmind struct schedstate_percpu *tspc;
1374 1.121 rmind int lstat = l->l_stat;
1375 1.121 rmind
1376 1.91 rmind KASSERT(lwp_locked(l, NULL));
1377 1.114 rmind KASSERT(tci != NULL);
1378 1.114 rmind
1379 1.121 rmind /* If LWP is still on the CPU, it must be handled like LSONPROC */
1380 1.227 ad if ((l->l_pflag & LP_RUNNING) != 0) {
1381 1.121 rmind lstat = LSONPROC;
1382 1.121 rmind }
1383 1.121 rmind
1384 1.114 rmind /*
1385 1.114 rmind * The destination CPU could be changed while previous migration
1386 1.114 rmind * was not finished.
1387 1.114 rmind */
1388 1.121 rmind if (l->l_target_cpu != NULL) {
1389 1.114 rmind l->l_target_cpu = tci;
1390 1.114 rmind lwp_unlock(l);
1391 1.114 rmind return;
1392 1.114 rmind }
1393 1.91 rmind
1394 1.114 rmind /* Nothing to do if trying to migrate to the same CPU */
1395 1.114 rmind if (l->l_cpu == tci) {
1396 1.91 rmind lwp_unlock(l);
1397 1.91 rmind return;
1398 1.91 rmind }
1399 1.91 rmind
1400 1.114 rmind KASSERT(l->l_target_cpu == NULL);
1401 1.114 rmind tspc = &tci->ci_schedstate;
1402 1.121 rmind switch (lstat) {
1403 1.91 rmind case LSRUN:
1404 1.134 rmind l->l_target_cpu = tci;
1405 1.134 rmind break;
1406 1.91 rmind case LSSLEEP:
1407 1.114 rmind l->l_cpu = tci;
1408 1.91 rmind break;
1409 1.212 ad case LSIDL:
1410 1.91 rmind case LSSTOP:
1411 1.91 rmind case LSSUSPENDED:
1412 1.114 rmind l->l_cpu = tci;
1413 1.114 rmind if (l->l_wchan == NULL) {
1414 1.114 rmind lwp_unlock_to(l, tspc->spc_lwplock);
1415 1.114 rmind return;
1416 1.91 rmind }
1417 1.114 rmind break;
1418 1.91 rmind case LSONPROC:
1419 1.114 rmind l->l_target_cpu = tci;
1420 1.114 rmind spc_lock(l->l_cpu);
1421 1.212 ad sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1422 1.212 ad /* spc now unlocked */
1423 1.91 rmind break;
1424 1.91 rmind }
1425 1.91 rmind lwp_unlock(l);
1426 1.91 rmind }
1427 1.91 rmind
1428 1.237 thorpej #define lwp_find_exclude(l) \
1429 1.237 thorpej ((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB)
1430 1.237 thorpej
1431 1.91 rmind /*
1432 1.94 rmind * Find the LWP in the process. Arguments may be zero, in such case,
1433 1.94 rmind * the calling process and first LWP in the list will be used.
1434 1.103 ad * On success - returns proc locked.
1435 1.237 thorpej *
1436 1.237 thorpej * => pid == 0 -> look in curproc.
1437 1.237 thorpej * => pid == -1 -> match any proc.
1438 1.237 thorpej * => otherwise look up the proc.
1439 1.237 thorpej *
1440 1.237 thorpej * => lid == 0 -> first LWP in the proc
1441 1.237 thorpej * => otherwise specific LWP
1442 1.91 rmind */
1443 1.91 rmind struct lwp *
1444 1.91 rmind lwp_find2(pid_t pid, lwpid_t lid)
1445 1.91 rmind {
1446 1.91 rmind proc_t *p;
1447 1.91 rmind lwp_t *l;
1448 1.91 rmind
1449 1.237 thorpej /* First LWP of specified proc. */
1450 1.237 thorpej if (lid == 0) {
1451 1.237 thorpej switch (pid) {
1452 1.237 thorpej case -1:
1453 1.237 thorpej /* No lookup keys. */
1454 1.237 thorpej return NULL;
1455 1.237 thorpej case 0:
1456 1.237 thorpej p = curproc;
1457 1.237 thorpej mutex_enter(p->p_lock);
1458 1.237 thorpej break;
1459 1.237 thorpej default:
1460 1.239 ad mutex_enter(&proc_lock);
1461 1.237 thorpej p = proc_find(pid);
1462 1.237 thorpej if (__predict_false(p == NULL)) {
1463 1.239 ad mutex_exit(&proc_lock);
1464 1.237 thorpej return NULL;
1465 1.237 thorpej }
1466 1.237 thorpej mutex_enter(p->p_lock);
1467 1.239 ad mutex_exit(&proc_lock);
1468 1.237 thorpej break;
1469 1.237 thorpej }
1470 1.237 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1471 1.237 thorpej if (__predict_true(!lwp_find_exclude(l)))
1472 1.237 thorpej break;
1473 1.150 rmind }
1474 1.237 thorpej goto out;
1475 1.237 thorpej }
1476 1.237 thorpej
1477 1.237 thorpej l = proc_find_lwp_acquire_proc(lid, &p);
1478 1.237 thorpej if (l == NULL)
1479 1.237 thorpej return NULL;
1480 1.237 thorpej KASSERT(p != NULL);
1481 1.237 thorpej KASSERT(mutex_owned(p->p_lock));
1482 1.237 thorpej
1483 1.237 thorpej if (__predict_false(lwp_find_exclude(l))) {
1484 1.237 thorpej l = NULL;
1485 1.237 thorpej goto out;
1486 1.150 rmind }
1487 1.237 thorpej
1488 1.237 thorpej /* Apply proc filter, if applicable. */
1489 1.237 thorpej switch (pid) {
1490 1.237 thorpej case -1:
1491 1.237 thorpej /* Match anything. */
1492 1.237 thorpej break;
1493 1.237 thorpej case 0:
1494 1.237 thorpej if (p != curproc)
1495 1.237 thorpej l = NULL;
1496 1.237 thorpej break;
1497 1.237 thorpej default:
1498 1.237 thorpej if (p->p_pid != pid)
1499 1.237 thorpej l = NULL;
1500 1.237 thorpej break;
1501 1.94 rmind }
1502 1.237 thorpej
1503 1.237 thorpej out:
1504 1.237 thorpej if (__predict_false(l == NULL)) {
1505 1.103 ad mutex_exit(p->p_lock);
1506 1.103 ad }
1507 1.91 rmind return l;
1508 1.91 rmind }
1509 1.91 rmind
1510 1.91 rmind /*
1511 1.168 yamt * Look up a live LWP within the specified process.
1512 1.52 ad *
1513 1.223 ad * Must be called with p->p_lock held (as it looks at the radix tree,
1514 1.223 ad * and also wants to exclude idle and zombie LWPs).
1515 1.52 ad */
1516 1.52 ad struct lwp *
1517 1.151 chs lwp_find(struct proc *p, lwpid_t id)
1518 1.52 ad {
1519 1.52 ad struct lwp *l;
1520 1.52 ad
1521 1.103 ad KASSERT(mutex_owned(p->p_lock));
1522 1.52 ad
1523 1.235 thorpej l = proc_find_lwp(p, id);
1524 1.223 ad KASSERT(l == NULL || l->l_lid == id);
1525 1.52 ad
1526 1.52 ad /*
1527 1.52 ad * No need to lock - all of these conditions will
1528 1.52 ad * be visible with the process level mutex held.
1529 1.52 ad */
1530 1.237 thorpej if (__predict_false(l != NULL && lwp_find_exclude(l)))
1531 1.52 ad l = NULL;
1532 1.52 ad
1533 1.52 ad return l;
1534 1.52 ad }
1535 1.52 ad
1536 1.52 ad /*
1537 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1538 1.37 ad *
1539 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1540 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1541 1.179 snj * its credentials by calling this routine. This may be called from
1542 1.251 riastrad * LWP_CACHE_CREDS(), which checks l->l_prflag & LPR_CRMOD beforehand.
1543 1.37 ad */
1544 1.37 ad void
1545 1.37 ad lwp_update_creds(struct lwp *l)
1546 1.37 ad {
1547 1.37 ad kauth_cred_t oc;
1548 1.37 ad struct proc *p;
1549 1.37 ad
1550 1.37 ad p = l->l_proc;
1551 1.37 ad oc = l->l_cred;
1552 1.37 ad
1553 1.103 ad mutex_enter(p->p_lock);
1554 1.37 ad kauth_cred_hold(p->p_cred);
1555 1.37 ad l->l_cred = p->p_cred;
1556 1.98 ad l->l_prflag &= ~LPR_CRMOD;
1557 1.103 ad mutex_exit(p->p_lock);
1558 1.88 ad if (oc != NULL)
1559 1.37 ad kauth_cred_free(oc);
1560 1.52 ad }
1561 1.52 ad
1562 1.52 ad /*
1563 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1564 1.52 ad * one we specify.
1565 1.52 ad */
1566 1.52 ad int
1567 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1568 1.52 ad {
1569 1.52 ad kmutex_t *cur = l->l_mutex;
1570 1.52 ad
1571 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1572 1.52 ad }
1573 1.52 ad
1574 1.52 ad /*
1575 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1576 1.52 ad */
1577 1.211 ad kmutex_t *
1578 1.178 matt lwp_setlock(struct lwp *l, kmutex_t *mtx)
1579 1.52 ad {
1580 1.211 ad kmutex_t *oldmtx = l->l_mutex;
1581 1.52 ad
1582 1.211 ad KASSERT(mutex_owned(oldmtx));
1583 1.52 ad
1584 1.248 riastrad atomic_store_release(&l->l_mutex, mtx);
1585 1.211 ad return oldmtx;
1586 1.52 ad }
1587 1.52 ad
1588 1.52 ad /*
1589 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1590 1.52 ad * must be held.
1591 1.52 ad */
1592 1.52 ad void
1593 1.178 matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1594 1.52 ad {
1595 1.52 ad kmutex_t *old;
1596 1.52 ad
1597 1.152 rmind KASSERT(lwp_locked(l, NULL));
1598 1.52 ad
1599 1.52 ad old = l->l_mutex;
1600 1.248 riastrad atomic_store_release(&l->l_mutex, mtx);
1601 1.52 ad mutex_spin_exit(old);
1602 1.52 ad }
1603 1.52 ad
1604 1.60 yamt int
1605 1.60 yamt lwp_trylock(struct lwp *l)
1606 1.60 yamt {
1607 1.60 yamt kmutex_t *old;
1608 1.60 yamt
1609 1.60 yamt for (;;) {
1610 1.248 riastrad if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex)))
1611 1.60 yamt return 0;
1612 1.248 riastrad if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old))
1613 1.60 yamt return 1;
1614 1.60 yamt mutex_spin_exit(old);
1615 1.60 yamt }
1616 1.60 yamt }
1617 1.60 yamt
1618 1.134 rmind void
1619 1.211 ad lwp_unsleep(lwp_t *l, bool unlock)
1620 1.96 ad {
1621 1.96 ad
1622 1.96 ad KASSERT(mutex_owned(l->l_mutex));
1623 1.211 ad (*l->l_syncobj->sobj_unsleep)(l, unlock);
1624 1.96 ad }
1625 1.96 ad
1626 1.52 ad /*
1627 1.256 ad * Lock an LWP.
1628 1.256 ad */
1629 1.256 ad void
1630 1.256 ad lwp_lock(lwp_t *l)
1631 1.256 ad {
1632 1.256 ad kmutex_t *old = atomic_load_consume(&l->l_mutex);
1633 1.256 ad
1634 1.256 ad /*
1635 1.256 ad * Note: mutex_spin_enter() will have posted a read barrier.
1636 1.256 ad * Re-test l->l_mutex. If it has changed, we need to try again.
1637 1.256 ad */
1638 1.256 ad mutex_spin_enter(old);
1639 1.256 ad while (__predict_false(atomic_load_relaxed(&l->l_mutex) != old)) {
1640 1.256 ad mutex_spin_exit(old);
1641 1.256 ad old = atomic_load_consume(&l->l_mutex);
1642 1.256 ad mutex_spin_enter(old);
1643 1.256 ad }
1644 1.256 ad }
1645 1.256 ad
1646 1.256 ad /*
1647 1.256 ad * Unlock an LWP.
1648 1.256 ad */
1649 1.256 ad void
1650 1.256 ad lwp_unlock(lwp_t *l)
1651 1.256 ad {
1652 1.256 ad
1653 1.256 ad mutex_spin_exit(l->l_mutex);
1654 1.256 ad }
1655 1.256 ad
1656 1.256 ad void
1657 1.256 ad lwp_changepri(lwp_t *l, pri_t pri)
1658 1.256 ad {
1659 1.256 ad
1660 1.256 ad KASSERT(mutex_owned(l->l_mutex));
1661 1.256 ad
1662 1.256 ad if (l->l_priority == pri)
1663 1.256 ad return;
1664 1.256 ad
1665 1.256 ad (*l->l_syncobj->sobj_changepri)(l, pri);
1666 1.256 ad KASSERT(l->l_priority == pri);
1667 1.256 ad }
1668 1.256 ad
1669 1.256 ad void
1670 1.256 ad lwp_lendpri(lwp_t *l, pri_t pri)
1671 1.256 ad {
1672 1.256 ad KASSERT(mutex_owned(l->l_mutex));
1673 1.256 ad
1674 1.256 ad (*l->l_syncobj->sobj_lendpri)(l, pri);
1675 1.256 ad KASSERT(l->l_inheritedprio == pri);
1676 1.256 ad }
1677 1.256 ad
1678 1.256 ad pri_t
1679 1.256 ad lwp_eprio(lwp_t *l)
1680 1.256 ad {
1681 1.256 ad pri_t pri = l->l_priority;
1682 1.256 ad
1683 1.256 ad KASSERT(mutex_owned(l->l_mutex));
1684 1.256 ad
1685 1.256 ad /*
1686 1.256 ad * Timeshared/user LWPs get a temporary priority boost for blocking
1687 1.256 ad * in kernel. This is key to good interactive response on a loaded
1688 1.256 ad * system: without it, things will seem very sluggish to the user.
1689 1.256 ad *
1690 1.256 ad * The function of the boost is to get the LWP onto a CPU and
1691 1.256 ad * running quickly. Once that happens the LWP loses the priority
1692 1.256 ad * boost and could be preempted very quickly by another LWP but that
1693 1.256 ad * won't happen often enough to be a annoyance.
1694 1.256 ad */
1695 1.257 ad if (pri <= MAXPRI_USER && l->l_boostpri > MAXPRI_USER)
1696 1.257 ad pri = (pri >> 1) + l->l_boostpri;
1697 1.256 ad
1698 1.256 ad return MAX(l->l_auxprio, pri);
1699 1.256 ad }
1700 1.256 ad
1701 1.256 ad /*
1702 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1703 1.256 ad * set or a preemption is required.
1704 1.52 ad */
1705 1.52 ad void
1706 1.52 ad lwp_userret(struct lwp *l)
1707 1.52 ad {
1708 1.52 ad struct proc *p;
1709 1.256 ad int sig, f;
1710 1.52 ad
1711 1.114 rmind KASSERT(l == curlwp);
1712 1.114 rmind KASSERT(l->l_stat == LSONPROC);
1713 1.52 ad p = l->l_proc;
1714 1.52 ad
1715 1.256 ad for (;;) {
1716 1.256 ad /*
1717 1.256 ad * This is the main location that user preemptions are
1718 1.256 ad * processed.
1719 1.256 ad */
1720 1.256 ad preempt_point();
1721 1.256 ad
1722 1.256 ad /*
1723 1.256 ad * It is safe to do this unlocked and without raised SPL,
1724 1.256 ad * since whenever a flag of interest is added to l_flag the
1725 1.256 ad * LWP will take an AST and come down this path again. If a
1726 1.256 ad * remote CPU posts the AST, it will be done with an IPI
1727 1.256 ad * (strongly synchronising).
1728 1.256 ad */
1729 1.256 ad if ((f = atomic_load_relaxed(&l->l_flag) & LW_USERRET) == 0) {
1730 1.256 ad return;
1731 1.256 ad }
1732 1.256 ad
1733 1.52 ad /*
1734 1.52 ad * Process pending signals first, unless the process
1735 1.61 ad * is dumping core or exiting, where we will instead
1736 1.101 rmind * enter the LW_WSUSPEND case below.
1737 1.52 ad */
1738 1.256 ad if ((f & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == LW_PENDSIG) {
1739 1.103 ad mutex_enter(p->p_lock);
1740 1.52 ad while ((sig = issignal(l)) != 0)
1741 1.52 ad postsig(sig);
1742 1.103 ad mutex_exit(p->p_lock);
1743 1.256 ad continue;
1744 1.52 ad }
1745 1.52 ad
1746 1.52 ad /*
1747 1.52 ad * Core-dump or suspend pending.
1748 1.52 ad *
1749 1.159 matt * In case of core dump, suspend ourselves, so that the kernel
1750 1.159 matt * stack and therefore the userland registers saved in the
1751 1.159 matt * trapframe are around for coredump() to write them out.
1752 1.159 matt * We also need to save any PCU resources that we have so that
1753 1.159 matt * they accessible for coredump(). We issue a wakeup on
1754 1.159 matt * p->p_lwpcv so that sigexit() will write the core file out
1755 1.159 matt * once all other LWPs are suspended.
1756 1.52 ad */
1757 1.256 ad if ((f & LW_WSUSPEND) != 0) {
1758 1.159 matt pcu_save_all(l);
1759 1.103 ad mutex_enter(p->p_lock);
1760 1.52 ad p->p_nrlwps--;
1761 1.52 ad lwp_lock(l);
1762 1.52 ad l->l_stat = LSSUSPENDED;
1763 1.104 ad lwp_unlock(l);
1764 1.103 ad mutex_exit(p->p_lock);
1765 1.262 ad cv_broadcast(&p->p_lwpcv);
1766 1.104 ad lwp_lock(l);
1767 1.217 ad spc_lock(l->l_cpu);
1768 1.64 yamt mi_switch(l);
1769 1.256 ad continue;
1770 1.52 ad }
1771 1.52 ad
1772 1.256 ad /*
1773 1.256 ad * Process is exiting. The core dump and signal cases must
1774 1.256 ad * be handled first.
1775 1.256 ad */
1776 1.256 ad if ((f & LW_WEXIT) != 0) {
1777 1.52 ad lwp_exit(l);
1778 1.52 ad KASSERT(0);
1779 1.52 ad /* NOTREACHED */
1780 1.52 ad }
1781 1.156 pooka
1782 1.256 ad /*
1783 1.256 ad * Update lwpctl processor (for vfork child_return).
1784 1.256 ad */
1785 1.256 ad if ((f & LW_LWPCTL) != 0) {
1786 1.156 pooka lwp_lock(l);
1787 1.156 pooka KASSERT(kpreempt_disabled());
1788 1.156 pooka l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1789 1.156 pooka l->l_lwpctl->lc_pctr++;
1790 1.156 pooka l->l_flag &= ~LW_LWPCTL;
1791 1.156 pooka lwp_unlock(l);
1792 1.256 ad continue;
1793 1.156 pooka }
1794 1.52 ad }
1795 1.52 ad }
1796 1.52 ad
1797 1.52 ad /*
1798 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1799 1.52 ad */
1800 1.52 ad void
1801 1.52 ad lwp_need_userret(struct lwp *l)
1802 1.52 ad {
1803 1.209 ad
1804 1.209 ad KASSERT(!cpu_intr_p());
1805 1.259 ad KASSERT(lwp_locked(l, NULL) || l->l_stat == LSIDL);
1806 1.52 ad
1807 1.52 ad /*
1808 1.209 ad * If the LWP is in any state other than LSONPROC, we know that it
1809 1.209 ad * is executing in-kernel and will hit userret() on the way out.
1810 1.209 ad *
1811 1.209 ad * If the LWP is curlwp, then we know we'll be back out to userspace
1812 1.209 ad * soon (can't be called from a hardware interrupt here).
1813 1.209 ad *
1814 1.209 ad * Otherwise, we can't be sure what the LWP is doing, so first make
1815 1.209 ad * sure the update to l_flag will be globally visible, and then
1816 1.209 ad * force the LWP to take a trip through trap() where it will do
1817 1.209 ad * userret().
1818 1.209 ad */
1819 1.209 ad if (l->l_stat == LSONPROC && l != curlwp) {
1820 1.209 ad membar_producer();
1821 1.209 ad cpu_signotify(l);
1822 1.209 ad }
1823 1.52 ad }
1824 1.52 ad
1825 1.52 ad /*
1826 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1827 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1828 1.52 ad */
1829 1.52 ad void
1830 1.52 ad lwp_addref(struct lwp *l)
1831 1.52 ad {
1832 1.103 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1833 1.237 thorpej KASSERT(l->l_stat != LSZOMB);
1834 1.237 thorpej l->l_refcnt++;
1835 1.52 ad }
1836 1.52 ad
1837 1.52 ad /*
1838 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1839 1.52 ad * then we must finalize the LWP's death.
1840 1.52 ad */
1841 1.52 ad void
1842 1.52 ad lwp_delref(struct lwp *l)
1843 1.52 ad {
1844 1.52 ad struct proc *p = l->l_proc;
1845 1.52 ad
1846 1.103 ad mutex_enter(p->p_lock);
1847 1.142 christos lwp_delref2(l);
1848 1.142 christos mutex_exit(p->p_lock);
1849 1.142 christos }
1850 1.142 christos
1851 1.142 christos /*
1852 1.142 christos * Remove one reference to an LWP. If this is the last reference,
1853 1.142 christos * then we must finalize the LWP's death. The proc mutex is held
1854 1.142 christos * on entry.
1855 1.142 christos */
1856 1.142 christos void
1857 1.142 christos lwp_delref2(struct lwp *l)
1858 1.142 christos {
1859 1.142 christos struct proc *p = l->l_proc;
1860 1.142 christos
1861 1.142 christos KASSERT(mutex_owned(p->p_lock));
1862 1.72 ad KASSERT(l->l_stat != LSZOMB);
1863 1.237 thorpej KASSERT(l->l_refcnt > 0);
1864 1.231 ad
1865 1.237 thorpej if (--l->l_refcnt == 0)
1866 1.76 ad cv_broadcast(&p->p_lwpcv);
1867 1.52 ad }
1868 1.52 ad
1869 1.52 ad /*
1870 1.233 thorpej * Drain all references to the current LWP. Returns true if
1871 1.233 thorpej * we blocked.
1872 1.52 ad */
1873 1.233 thorpej bool
1874 1.52 ad lwp_drainrefs(struct lwp *l)
1875 1.52 ad {
1876 1.52 ad struct proc *p = l->l_proc;
1877 1.233 thorpej bool rv = false;
1878 1.52 ad
1879 1.103 ad KASSERT(mutex_owned(p->p_lock));
1880 1.52 ad
1881 1.233 thorpej l->l_prflag |= LPR_DRAINING;
1882 1.233 thorpej
1883 1.237 thorpej while (l->l_refcnt > 0) {
1884 1.233 thorpej rv = true;
1885 1.103 ad cv_wait(&p->p_lwpcv, p->p_lock);
1886 1.233 thorpej }
1887 1.233 thorpej return rv;
1888 1.37 ad }
1889 1.41 thorpej
1890 1.41 thorpej /*
1891 1.127 ad * Return true if the specified LWP is 'alive'. Only p->p_lock need
1892 1.127 ad * be held.
1893 1.127 ad */
1894 1.127 ad bool
1895 1.127 ad lwp_alive(lwp_t *l)
1896 1.127 ad {
1897 1.127 ad
1898 1.127 ad KASSERT(mutex_owned(l->l_proc->p_lock));
1899 1.127 ad
1900 1.127 ad switch (l->l_stat) {
1901 1.127 ad case LSSLEEP:
1902 1.127 ad case LSRUN:
1903 1.127 ad case LSONPROC:
1904 1.127 ad case LSSTOP:
1905 1.127 ad case LSSUSPENDED:
1906 1.127 ad return true;
1907 1.127 ad default:
1908 1.127 ad return false;
1909 1.127 ad }
1910 1.127 ad }
1911 1.127 ad
1912 1.127 ad /*
1913 1.127 ad * Return first live LWP in the process.
1914 1.127 ad */
1915 1.127 ad lwp_t *
1916 1.127 ad lwp_find_first(proc_t *p)
1917 1.127 ad {
1918 1.127 ad lwp_t *l;
1919 1.127 ad
1920 1.127 ad KASSERT(mutex_owned(p->p_lock));
1921 1.127 ad
1922 1.127 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1923 1.127 ad if (lwp_alive(l)) {
1924 1.127 ad return l;
1925 1.127 ad }
1926 1.127 ad }
1927 1.127 ad
1928 1.127 ad return NULL;
1929 1.127 ad }
1930 1.127 ad
1931 1.127 ad /*
1932 1.78 ad * Allocate a new lwpctl structure for a user LWP.
1933 1.78 ad */
1934 1.78 ad int
1935 1.78 ad lwp_ctl_alloc(vaddr_t *uaddr)
1936 1.78 ad {
1937 1.78 ad lcproc_t *lp;
1938 1.78 ad u_int bit, i, offset;
1939 1.78 ad struct uvm_object *uao;
1940 1.78 ad int error;
1941 1.78 ad lcpage_t *lcp;
1942 1.78 ad proc_t *p;
1943 1.78 ad lwp_t *l;
1944 1.78 ad
1945 1.78 ad l = curlwp;
1946 1.78 ad p = l->l_proc;
1947 1.78 ad
1948 1.156 pooka /* don't allow a vforked process to create lwp ctls */
1949 1.156 pooka if (p->p_lflag & PL_PPWAIT)
1950 1.156 pooka return EBUSY;
1951 1.156 pooka
1952 1.81 ad if (l->l_lcpage != NULL) {
1953 1.81 ad lcp = l->l_lcpage;
1954 1.81 ad *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1955 1.143 njoly return 0;
1956 1.81 ad }
1957 1.78 ad
1958 1.78 ad /* First time around, allocate header structure for the process. */
1959 1.78 ad if ((lp = p->p_lwpctl) == NULL) {
1960 1.78 ad lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1961 1.78 ad mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1962 1.78 ad lp->lp_uao = NULL;
1963 1.78 ad TAILQ_INIT(&lp->lp_pages);
1964 1.103 ad mutex_enter(p->p_lock);
1965 1.78 ad if (p->p_lwpctl == NULL) {
1966 1.78 ad p->p_lwpctl = lp;
1967 1.103 ad mutex_exit(p->p_lock);
1968 1.78 ad } else {
1969 1.103 ad mutex_exit(p->p_lock);
1970 1.78 ad mutex_destroy(&lp->lp_lock);
1971 1.78 ad kmem_free(lp, sizeof(*lp));
1972 1.78 ad lp = p->p_lwpctl;
1973 1.78 ad }
1974 1.78 ad }
1975 1.78 ad
1976 1.78 ad /*
1977 1.78 ad * Set up an anonymous memory region to hold the shared pages.
1978 1.78 ad * Map them into the process' address space. The user vmspace
1979 1.78 ad * gets the first reference on the UAO.
1980 1.78 ad */
1981 1.78 ad mutex_enter(&lp->lp_lock);
1982 1.78 ad if (lp->lp_uao == NULL) {
1983 1.78 ad lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1984 1.78 ad lp->lp_cur = 0;
1985 1.78 ad lp->lp_max = LWPCTL_UAREA_SZ;
1986 1.78 ad lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1987 1.182 martin (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1988 1.182 martin p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1989 1.78 ad error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1990 1.78 ad LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1991 1.78 ad UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1992 1.78 ad if (error != 0) {
1993 1.78 ad uao_detach(lp->lp_uao);
1994 1.78 ad lp->lp_uao = NULL;
1995 1.78 ad mutex_exit(&lp->lp_lock);
1996 1.78 ad return error;
1997 1.78 ad }
1998 1.78 ad }
1999 1.78 ad
2000 1.78 ad /* Get a free block and allocate for this LWP. */
2001 1.78 ad TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
2002 1.78 ad if (lcp->lcp_nfree != 0)
2003 1.78 ad break;
2004 1.78 ad }
2005 1.78 ad if (lcp == NULL) {
2006 1.78 ad /* Nothing available - try to set up a free page. */
2007 1.78 ad if (lp->lp_cur == lp->lp_max) {
2008 1.78 ad mutex_exit(&lp->lp_lock);
2009 1.78 ad return ENOMEM;
2010 1.78 ad }
2011 1.78 ad lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
2012 1.189 chs
2013 1.78 ad /*
2014 1.78 ad * Wire the next page down in kernel space. Since this
2015 1.78 ad * is a new mapping, we must add a reference.
2016 1.78 ad */
2017 1.78 ad uao = lp->lp_uao;
2018 1.78 ad (*uao->pgops->pgo_reference)(uao);
2019 1.99 ad lcp->lcp_kaddr = vm_map_min(kernel_map);
2020 1.78 ad error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
2021 1.78 ad uao, lp->lp_cur, PAGE_SIZE,
2022 1.78 ad UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
2023 1.78 ad UVM_INH_NONE, UVM_ADV_RANDOM, 0));
2024 1.78 ad if (error != 0) {
2025 1.78 ad mutex_exit(&lp->lp_lock);
2026 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
2027 1.78 ad (*uao->pgops->pgo_detach)(uao);
2028 1.78 ad return error;
2029 1.78 ad }
2030 1.89 yamt error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
2031 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
2032 1.89 yamt if (error != 0) {
2033 1.89 yamt mutex_exit(&lp->lp_lock);
2034 1.89 yamt uvm_unmap(kernel_map, lcp->lcp_kaddr,
2035 1.89 yamt lcp->lcp_kaddr + PAGE_SIZE);
2036 1.89 yamt kmem_free(lcp, LWPCTL_LCPAGE_SZ);
2037 1.89 yamt return error;
2038 1.89 yamt }
2039 1.78 ad /* Prepare the page descriptor and link into the list. */
2040 1.78 ad lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
2041 1.78 ad lp->lp_cur += PAGE_SIZE;
2042 1.78 ad lcp->lcp_nfree = LWPCTL_PER_PAGE;
2043 1.78 ad lcp->lcp_rotor = 0;
2044 1.78 ad memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
2045 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
2046 1.78 ad }
2047 1.78 ad for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
2048 1.78 ad if (++i >= LWPCTL_BITMAP_ENTRIES)
2049 1.78 ad i = 0;
2050 1.78 ad }
2051 1.78 ad bit = ffs(lcp->lcp_bitmap[i]) - 1;
2052 1.193 kamil lcp->lcp_bitmap[i] ^= (1U << bit);
2053 1.78 ad lcp->lcp_rotor = i;
2054 1.78 ad lcp->lcp_nfree--;
2055 1.78 ad l->l_lcpage = lcp;
2056 1.78 ad offset = (i << 5) + bit;
2057 1.78 ad l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
2058 1.78 ad *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
2059 1.78 ad mutex_exit(&lp->lp_lock);
2060 1.78 ad
2061 1.107 ad KPREEMPT_DISABLE(l);
2062 1.195 skrll l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
2063 1.107 ad KPREEMPT_ENABLE(l);
2064 1.78 ad
2065 1.78 ad return 0;
2066 1.78 ad }
2067 1.78 ad
2068 1.78 ad /*
2069 1.78 ad * Free an lwpctl structure back to the per-process list.
2070 1.78 ad */
2071 1.78 ad void
2072 1.78 ad lwp_ctl_free(lwp_t *l)
2073 1.78 ad {
2074 1.156 pooka struct proc *p = l->l_proc;
2075 1.78 ad lcproc_t *lp;
2076 1.78 ad lcpage_t *lcp;
2077 1.78 ad u_int map, offset;
2078 1.78 ad
2079 1.156 pooka /* don't free a lwp context we borrowed for vfork */
2080 1.156 pooka if (p->p_lflag & PL_PPWAIT) {
2081 1.156 pooka l->l_lwpctl = NULL;
2082 1.156 pooka return;
2083 1.156 pooka }
2084 1.156 pooka
2085 1.156 pooka lp = p->p_lwpctl;
2086 1.78 ad KASSERT(lp != NULL);
2087 1.78 ad
2088 1.78 ad lcp = l->l_lcpage;
2089 1.78 ad offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
2090 1.78 ad KASSERT(offset < LWPCTL_PER_PAGE);
2091 1.78 ad
2092 1.78 ad mutex_enter(&lp->lp_lock);
2093 1.78 ad lcp->lcp_nfree++;
2094 1.78 ad map = offset >> 5;
2095 1.194 kamil lcp->lcp_bitmap[map] |= (1U << (offset & 31));
2096 1.78 ad if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
2097 1.78 ad lcp->lcp_rotor = map;
2098 1.78 ad if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
2099 1.78 ad TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
2100 1.78 ad TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
2101 1.78 ad }
2102 1.78 ad mutex_exit(&lp->lp_lock);
2103 1.78 ad }
2104 1.78 ad
2105 1.78 ad /*
2106 1.78 ad * Process is exiting; tear down lwpctl state. This can only be safely
2107 1.78 ad * called by the last LWP in the process.
2108 1.78 ad */
2109 1.78 ad void
2110 1.78 ad lwp_ctl_exit(void)
2111 1.78 ad {
2112 1.78 ad lcpage_t *lcp, *next;
2113 1.78 ad lcproc_t *lp;
2114 1.78 ad proc_t *p;
2115 1.78 ad lwp_t *l;
2116 1.78 ad
2117 1.78 ad l = curlwp;
2118 1.78 ad l->l_lwpctl = NULL;
2119 1.95 ad l->l_lcpage = NULL;
2120 1.78 ad p = l->l_proc;
2121 1.78 ad lp = p->p_lwpctl;
2122 1.78 ad
2123 1.78 ad KASSERT(lp != NULL);
2124 1.78 ad KASSERT(p->p_nlwps == 1);
2125 1.78 ad
2126 1.78 ad for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
2127 1.78 ad next = TAILQ_NEXT(lcp, lcp_chain);
2128 1.78 ad uvm_unmap(kernel_map, lcp->lcp_kaddr,
2129 1.78 ad lcp->lcp_kaddr + PAGE_SIZE);
2130 1.78 ad kmem_free(lcp, LWPCTL_LCPAGE_SZ);
2131 1.78 ad }
2132 1.78 ad
2133 1.78 ad if (lp->lp_uao != NULL) {
2134 1.78 ad uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
2135 1.78 ad lp->lp_uva + LWPCTL_UAREA_SZ);
2136 1.78 ad }
2137 1.78 ad
2138 1.78 ad mutex_destroy(&lp->lp_lock);
2139 1.78 ad kmem_free(lp, sizeof(*lp));
2140 1.78 ad p->p_lwpctl = NULL;
2141 1.78 ad }
2142 1.84 yamt
2143 1.130 ad /*
2144 1.130 ad * Return the current LWP's "preemption counter". Used to detect
2145 1.130 ad * preemption across operations that can tolerate preemption without
2146 1.130 ad * crashing, but which may generate incorrect results if preempted.
2147 1.130 ad */
2148 1.258 ad long
2149 1.130 ad lwp_pctr(void)
2150 1.130 ad {
2151 1.130 ad
2152 1.258 ad return curlwp->l_ru.ru_nvcsw + curlwp->l_ru.ru_nivcsw;
2153 1.130 ad }
2154 1.130 ad
2155 1.151 chs /*
2156 1.151 chs * Set an LWP's private data pointer.
2157 1.151 chs */
2158 1.151 chs int
2159 1.151 chs lwp_setprivate(struct lwp *l, void *ptr)
2160 1.151 chs {
2161 1.151 chs int error = 0;
2162 1.151 chs
2163 1.151 chs l->l_private = ptr;
2164 1.151 chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
2165 1.151 chs error = cpu_lwp_setprivate(l, ptr);
2166 1.151 chs #endif
2167 1.151 chs return error;
2168 1.151 chs }
2169 1.151 chs
2170 1.233 thorpej /*
2171 1.233 thorpej * Perform any thread-related cleanup on LWP exit.
2172 1.233 thorpej * N.B. l->l_proc->p_lock must be HELD on entry but will
2173 1.233 thorpej * be released before returning!
2174 1.233 thorpej */
2175 1.233 thorpej void
2176 1.233 thorpej lwp_thread_cleanup(struct lwp *l)
2177 1.233 thorpej {
2178 1.233 thorpej
2179 1.233 thorpej KASSERT(mutex_owned(l->l_proc->p_lock));
2180 1.235 thorpej mutex_exit(l->l_proc->p_lock);
2181 1.236 thorpej
2182 1.236 thorpej /*
2183 1.236 thorpej * If the LWP has robust futexes, release them all
2184 1.236 thorpej * now.
2185 1.236 thorpej */
2186 1.236 thorpej if (__predict_false(l->l_robust_head != 0)) {
2187 1.244 thorpej futex_release_all_lwp(l);
2188 1.236 thorpej }
2189 1.233 thorpej }
2190 1.233 thorpej
2191 1.84 yamt #if defined(DDB)
2192 1.153 rmind #include <machine/pcb.h>
2193 1.153 rmind
2194 1.84 yamt void
2195 1.84 yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2196 1.84 yamt {
2197 1.84 yamt lwp_t *l;
2198 1.84 yamt
2199 1.84 yamt LIST_FOREACH(l, &alllwp, l_list) {
2200 1.84 yamt uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2201 1.84 yamt
2202 1.84 yamt if (addr < stack || stack + KSTACK_SIZE <= addr) {
2203 1.84 yamt continue;
2204 1.84 yamt }
2205 1.84 yamt (*pr)("%p is %p+%zu, LWP %p's stack\n",
2206 1.84 yamt (void *)addr, (void *)stack,
2207 1.84 yamt (size_t)(addr - stack), l);
2208 1.84 yamt }
2209 1.84 yamt }
2210 1.84 yamt #endif /* defined(DDB) */
2211