Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.265
      1  1.265        ad /*	$NetBSD: kern_lwp.c,v 1.265 2023/10/05 19:41:06 ad Exp $	*/
      2    1.2   thorpej 
      3    1.2   thorpej /*-
      4  1.255        ad  * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  1.220        ad  *     The NetBSD Foundation, Inc.
      6    1.2   thorpej  * All rights reserved.
      7    1.2   thorpej  *
      8    1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      9   1.52        ad  * by Nathan J. Williams, and Andrew Doran.
     10    1.2   thorpej  *
     11    1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     12    1.2   thorpej  * modification, are permitted provided that the following conditions
     13    1.2   thorpej  * are met:
     14    1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     15    1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     16    1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17    1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18    1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     19    1.2   thorpej  *
     20    1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21    1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22    1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23    1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24    1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25    1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26    1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27    1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28    1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29    1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30    1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31    1.2   thorpej  */
     32    1.9     lukem 
     33   1.52        ad /*
     34   1.52        ad  * Overview
     35   1.52        ad  *
     36   1.66        ad  *	Lightweight processes (LWPs) are the basic unit or thread of
     37   1.52        ad  *	execution within the kernel.  The core state of an LWP is described
     38   1.66        ad  *	by "struct lwp", also known as lwp_t.
     39   1.52        ad  *
     40   1.52        ad  *	Each LWP is contained within a process (described by "struct proc"),
     41   1.52        ad  *	Every process contains at least one LWP, but may contain more.  The
     42   1.52        ad  *	process describes attributes shared among all of its LWPs such as a
     43   1.52        ad  *	private address space, global execution state (stopped, active,
     44   1.52        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     45   1.66        ad  *	machine, multiple LWPs be executing concurrently in the kernel.
     46   1.52        ad  *
     47   1.52        ad  * Execution states
     48   1.52        ad  *
     49   1.52        ad  *	At any given time, an LWP has overall state that is described by
     50   1.52        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     51   1.52        ad  *	set is guaranteed to represent the absolute, current state of the
     52   1.52        ad  *	LWP:
     53  1.101     rmind  *
     54  1.101     rmind  *	LSONPROC
     55  1.101     rmind  *
     56  1.101     rmind  *		On processor: the LWP is executing on a CPU, either in the
     57  1.101     rmind  *		kernel or in user space.
     58  1.101     rmind  *
     59  1.101     rmind  *	LSRUN
     60  1.101     rmind  *
     61  1.101     rmind  *		Runnable: the LWP is parked on a run queue, and may soon be
     62  1.101     rmind  *		chosen to run by an idle processor, or by a processor that
     63  1.101     rmind  *		has been asked to preempt a currently runnning but lower
     64  1.134     rmind  *		priority LWP.
     65  1.101     rmind  *
     66  1.101     rmind  *	LSIDL
     67  1.101     rmind  *
     68  1.238        ad  *		Idle: the LWP has been created but has not yet executed, or
     69  1.238        ad  *		it has ceased executing a unit of work and is waiting to be
     70  1.238        ad  *		started again.  This state exists so that the LWP can occupy
     71  1.238        ad  *		a slot in the process & PID table, but without having to
     72  1.238        ad  *		worry about being touched; lookups of the LWP by ID will
     73  1.238        ad  *		fail while in this state.  The LWP will become visible for
     74  1.238        ad  *		lookup once its state transitions further.  Some special
     75  1.238        ad  *		kernel threads also (ab)use this state to indicate that they
     76  1.238        ad  *		are idle (soft interrupts and idle LWPs).
     77  1.101     rmind  *
     78  1.101     rmind  *	LSSUSPENDED:
     79  1.101     rmind  *
     80  1.101     rmind  *		Suspended: the LWP has had its execution suspended by
     81   1.52        ad  *		another LWP in the same process using the _lwp_suspend()
     82   1.52        ad  *		system call.  User-level LWPs also enter the suspended
     83   1.52        ad  *		state when the system is shutting down.
     84   1.52        ad  *
     85   1.52        ad  *	The second set represent a "statement of intent" on behalf of the
     86   1.52        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     87   1.66        ad  *	sleeping or idle. It is expected to take the necessary action to
     88  1.101     rmind  *	stop executing or become "running" again within a short timeframe.
     89  1.227        ad  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     90  1.101     rmind  *	Importantly, it indicates that its state is tied to a CPU.
     91  1.101     rmind  *
     92  1.101     rmind  *	LSZOMB:
     93  1.101     rmind  *
     94  1.101     rmind  *		Dead or dying: the LWP has released most of its resources
     95  1.129        ad  *		and is about to switch away into oblivion, or has already
     96   1.66        ad  *		switched away.  When it switches away, its few remaining
     97   1.66        ad  *		resources can be collected.
     98  1.101     rmind  *
     99  1.101     rmind  *	LSSLEEP:
    100  1.101     rmind  *
    101  1.101     rmind  *		Sleeping: the LWP has entered itself onto a sleep queue, and
    102  1.101     rmind  *		has switched away or will switch away shortly to allow other
    103   1.66        ad  *		LWPs to run on the CPU.
    104  1.101     rmind  *
    105  1.101     rmind  *	LSSTOP:
    106  1.101     rmind  *
    107  1.101     rmind  *		Stopped: the LWP has been stopped as a result of a job
    108  1.101     rmind  *		control signal, or as a result of the ptrace() interface.
    109  1.101     rmind  *
    110  1.101     rmind  *		Stopped LWPs may run briefly within the kernel to handle
    111  1.101     rmind  *		signals that they receive, but will not return to user space
    112  1.101     rmind  *		until their process' state is changed away from stopped.
    113  1.101     rmind  *
    114  1.101     rmind  *		Single LWPs within a process can not be set stopped
    115  1.101     rmind  *		selectively: all actions that can stop or continue LWPs
    116  1.101     rmind  *		occur at the process level.
    117  1.101     rmind  *
    118   1.52        ad  * State transitions
    119   1.52        ad  *
    120   1.66        ad  *	Note that the LSSTOP state may only be set when returning to
    121   1.66        ad  *	user space in userret(), or when sleeping interruptably.  The
    122   1.66        ad  *	LSSUSPENDED state may only be set in userret().  Before setting
    123   1.66        ad  *	those states, we try to ensure that the LWPs will release all
    124   1.66        ad  *	locks that they hold, and at a minimum try to ensure that the
    125   1.66        ad  *	LWP can be set runnable again by a signal.
    126   1.52        ad  *
    127   1.52        ad  *	LWPs may transition states in the following ways:
    128   1.52        ad  *
    129   1.52        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    130  1.129        ad  *		    				    > SLEEP
    131  1.129        ad  *		    				    > STOPPED
    132   1.52        ad  *						    > SUSPENDED
    133   1.52        ad  *						    > ZOMB
    134  1.129        ad  *						    > IDL (special cases)
    135   1.52        ad  *
    136   1.52        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  1.129        ad  *	            > SLEEP
    138   1.52        ad  *
    139   1.52        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  1.101     rmind  *		    > RUN			    > SUSPENDED
    141  1.101     rmind  *		    > STOPPED			    > STOPPED
    142  1.129        ad  *						    > ONPROC (special cases)
    143   1.52        ad  *
    144  1.129        ad  *	Some state transitions are only possible with kernel threads (eg
    145  1.129        ad  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    146  1.129        ad  *	free of unwanted side effects.
    147   1.66        ad  *
    148  1.114     rmind  * Migration
    149  1.114     rmind  *
    150  1.114     rmind  *	Migration of threads from one CPU to another could be performed
    151  1.114     rmind  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    152  1.114     rmind  *	functions.  The universal lwp_migrate() function should be used for
    153  1.114     rmind  *	any other cases.  Subsystems in the kernel must be aware that CPU
    154  1.114     rmind  *	of LWP may change, while it is not locked.
    155  1.114     rmind  *
    156   1.52        ad  * Locking
    157   1.52        ad  *
    158   1.52        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    159   1.66        ad  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    160   1.52        ad  *	each field are documented in sys/lwp.h.
    161   1.52        ad  *
    162   1.66        ad  *	State transitions must be made with the LWP's general lock held,
    163  1.152     rmind  *	and may cause the LWP's lock pointer to change.  Manipulation of
    164   1.66        ad  *	the general lock is not performed directly, but through calls to
    165  1.152     rmind  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    166  1.152     rmind  *	adaptive locks are not allowed to be released while the LWP's lock
    167  1.152     rmind  *	is being held (unlike for other spin-locks).
    168   1.52        ad  *
    169   1.52        ad  *	States and their associated locks:
    170   1.52        ad  *
    171  1.212        ad  *	LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
    172   1.52        ad  *
    173  1.212        ad  *		Always covered by spc_lwplock, which protects LWPs not
    174  1.212        ad  *		associated with any other sync object.  This is a per-CPU
    175  1.212        ad  *		lock and matches lwp::l_cpu.
    176   1.52        ad  *
    177  1.212        ad  *	LSRUN:
    178   1.52        ad  *
    179   1.64      yamt  *		Always covered by spc_mutex, which protects the run queues.
    180  1.129        ad  *		This is a per-CPU lock and matches lwp::l_cpu.
    181   1.52        ad  *
    182   1.52        ad  *	LSSLEEP:
    183   1.52        ad  *
    184  1.212        ad  *		Covered by a lock associated with the sleep queue (sometimes
    185  1.221        ad  *		a turnstile sleep queue) that the LWP resides on.  This can
    186  1.221        ad  *		be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
    187   1.52        ad  *
    188  1.212        ad  *	LSSTOP:
    189  1.101     rmind  *
    190   1.52        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    191   1.66        ad  *		l_mutex references the sleep queue lock.  If the LWP was
    192   1.52        ad  *		runnable or on the CPU when halted, or has been removed from
    193   1.66        ad  *		the sleep queue since halted, then the lock is spc_lwplock.
    194   1.52        ad  *
    195   1.52        ad  *	The lock order is as follows:
    196   1.52        ad  *
    197  1.212        ad  *		sleepq -> turnstile -> spc_lwplock -> spc_mutex
    198   1.52        ad  *
    199  1.243     skrll  *	Each process has a scheduler state lock (proc::p_lock), and a
    200   1.52        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    201   1.52        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    202  1.103        ad  *	following states, p_lock must be held and the process wide counters
    203   1.52        ad  *	adjusted:
    204   1.52        ad  *
    205   1.52        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    206   1.52        ad  *
    207  1.129        ad  *	(But not always for kernel threads.  There are some special cases
    208  1.212        ad  *	as mentioned above: soft interrupts, and the idle loops.)
    209  1.129        ad  *
    210   1.52        ad  *	Note that an LWP is considered running or likely to run soon if in
    211   1.52        ad  *	one of the following states.  This affects the value of p_nrlwps:
    212   1.52        ad  *
    213   1.52        ad  *		LSRUN, LSONPROC, LSSLEEP
    214   1.52        ad  *
    215  1.103        ad  *	p_lock does not need to be held when transitioning among these
    216  1.129        ad  *	three states, hence p_lock is rarely taken for state transitions.
    217   1.52        ad  */
    218   1.52        ad 
    219    1.9     lukem #include <sys/cdefs.h>
    220  1.265        ad __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.265 2023/10/05 19:41:06 ad Exp $");
    221    1.8    martin 
    222   1.84      yamt #include "opt_ddb.h"
    223   1.52        ad #include "opt_lockdebug.h"
    224  1.139    darran #include "opt_dtrace.h"
    225    1.2   thorpej 
    226   1.47   hannken #define _LWP_API_PRIVATE
    227   1.47   hannken 
    228    1.2   thorpej #include <sys/param.h>
    229    1.2   thorpej #include <sys/systm.h>
    230   1.64      yamt #include <sys/cpu.h>
    231    1.2   thorpej #include <sys/pool.h>
    232    1.2   thorpej #include <sys/proc.h>
    233    1.2   thorpej #include <sys/syscallargs.h>
    234   1.57       dsl #include <sys/syscall_stats.h>
    235   1.37        ad #include <sys/kauth.h>
    236   1.52        ad #include <sys/sleepq.h>
    237   1.52        ad #include <sys/lockdebug.h>
    238   1.52        ad #include <sys/kmem.h>
    239   1.91     rmind #include <sys/pset.h>
    240   1.75        ad #include <sys/intr.h>
    241   1.78        ad #include <sys/lwpctl.h>
    242   1.81        ad #include <sys/atomic.h>
    243  1.131        ad #include <sys/filedesc.h>
    244  1.196   hannken #include <sys/fstrans.h>
    245  1.138    darran #include <sys/dtrace_bsd.h>
    246  1.141    darran #include <sys/sdt.h>
    247  1.203     kamil #include <sys/ptrace.h>
    248  1.157     rmind #include <sys/xcall.h>
    249  1.169  christos #include <sys/uidinfo.h>
    250  1.169  christos #include <sys/sysctl.h>
    251  1.201     ozaki #include <sys/psref.h>
    252  1.208      maxv #include <sys/msan.h>
    253  1.232      maxv #include <sys/kcov.h>
    254  1.233   thorpej #include <sys/cprng.h>
    255  1.236   thorpej #include <sys/futex.h>
    256  1.138    darran 
    257    1.2   thorpej #include <uvm/uvm_extern.h>
    258   1.80     skrll #include <uvm/uvm_object.h>
    259    1.2   thorpej 
    260  1.152     rmind static pool_cache_t	lwp_cache	__read_mostly;
    261  1.152     rmind struct lwplist		alllwp		__cacheline_aligned;
    262   1.41   thorpej 
    263  1.238        ad static int		lwp_ctor(void *, void *, int);
    264  1.157     rmind static void		lwp_dtor(void *, void *);
    265  1.157     rmind 
    266  1.141    darran /* DTrace proc provider probes */
    267  1.180  christos SDT_PROVIDER_DEFINE(proc);
    268  1.180  christos 
    269  1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
    270  1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
    271  1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
    272  1.141    darran 
    273  1.213        ad struct turnstile turnstile0 __cacheline_aligned;
    274  1.147     pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    275  1.147     pooka #ifdef LWP0_CPU_INFO
    276  1.147     pooka 	.l_cpu = LWP0_CPU_INFO,
    277  1.147     pooka #endif
    278  1.154      matt #ifdef LWP0_MD_INITIALIZER
    279  1.154      matt 	.l_md = LWP0_MD_INITIALIZER,
    280  1.154      matt #endif
    281  1.147     pooka 	.l_proc = &proc0,
    282  1.235   thorpej 	.l_lid = 0,		/* we own proc0's slot in the pid table */
    283  1.147     pooka 	.l_flag = LW_SYSTEM,
    284  1.147     pooka 	.l_stat = LSONPROC,
    285  1.147     pooka 	.l_ts = &turnstile0,
    286  1.147     pooka 	.l_syncobj = &sched_syncobj,
    287  1.231        ad 	.l_refcnt = 0,
    288  1.147     pooka 	.l_priority = PRI_USER + NPRI_USER - 1,
    289  1.147     pooka 	.l_inheritedprio = -1,
    290  1.147     pooka 	.l_class = SCHED_OTHER,
    291  1.147     pooka 	.l_psid = PS_NONE,
    292  1.147     pooka 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    293  1.147     pooka 	.l_name = __UNCONST("swapper"),
    294  1.147     pooka 	.l_fd = &filedesc0,
    295  1.147     pooka };
    296  1.147     pooka 
    297  1.249       mrg static int
    298  1.249       mrg lwp_maxlwp(void)
    299  1.249       mrg {
    300  1.249       mrg 	/* Assume 1 LWP per 1MiB. */
    301  1.249       mrg 	uint64_t lwps_per = ctob(physmem) / (1024 * 1024);
    302  1.249       mrg 
    303  1.249       mrg 	return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP);
    304  1.249       mrg }
    305  1.249       mrg 
    306  1.169  christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
    307  1.169  christos 
    308  1.169  christos /*
    309  1.169  christos  * sysctl helper routine for kern.maxlwp. Ensures that the new
    310  1.169  christos  * values are not too low or too high.
    311  1.169  christos  */
    312  1.169  christos static int
    313  1.169  christos sysctl_kern_maxlwp(SYSCTLFN_ARGS)
    314  1.169  christos {
    315  1.169  christos 	int error, nmaxlwp;
    316  1.169  christos 	struct sysctlnode node;
    317  1.169  christos 
    318  1.169  christos 	nmaxlwp = maxlwp;
    319  1.169  christos 	node = *rnode;
    320  1.169  christos 	node.sysctl_data = &nmaxlwp;
    321  1.169  christos 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    322  1.169  christos 	if (error || newp == NULL)
    323  1.169  christos 		return error;
    324  1.169  christos 
    325  1.249       mrg 	if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP)
    326  1.169  christos 		return EINVAL;
    327  1.249       mrg 	if (nmaxlwp > lwp_maxlwp())
    328  1.169  christos 		return EINVAL;
    329  1.169  christos 	maxlwp = nmaxlwp;
    330  1.169  christos 
    331  1.169  christos 	return 0;
    332  1.169  christos }
    333  1.169  christos 
    334  1.169  christos static void
    335  1.169  christos sysctl_kern_lwp_setup(void)
    336  1.169  christos {
    337  1.242      maxv 	sysctl_createv(NULL, 0, NULL, NULL,
    338  1.169  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    339  1.169  christos 		       CTLTYPE_INT, "maxlwp",
    340  1.169  christos 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
    341  1.169  christos 		       sysctl_kern_maxlwp, 0, NULL, 0,
    342  1.169  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    343  1.169  christos }
    344  1.169  christos 
    345   1.41   thorpej void
    346   1.41   thorpej lwpinit(void)
    347   1.41   thorpej {
    348   1.41   thorpej 
    349  1.152     rmind 	LIST_INIT(&alllwp);
    350  1.144     pooka 	lwpinit_specificdata();
    351  1.246   thorpej 	/*
    352  1.246   thorpej 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    353  1.246   thorpej 	 * calls will exit before memory of LWPs is returned to the pool, where
    354  1.246   thorpej 	 * KVA of LWP structure might be freed and re-used for other purposes.
    355  1.246   thorpej 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    356  1.246   thorpej 	 * callers, therefore a regular passive serialization barrier will
    357  1.246   thorpej 	 * do the job.
    358  1.246   thorpej 	 */
    359  1.246   thorpej 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0,
    360  1.246   thorpej 	    PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL);
    361  1.169  christos 
    362  1.249       mrg 	maxlwp = lwp_maxlwp();
    363  1.169  christos 	sysctl_kern_lwp_setup();
    364   1.41   thorpej }
    365   1.41   thorpej 
    366  1.147     pooka void
    367  1.147     pooka lwp0_init(void)
    368  1.147     pooka {
    369  1.147     pooka 	struct lwp *l = &lwp0;
    370  1.147     pooka 
    371  1.147     pooka 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    372  1.147     pooka 
    373  1.147     pooka 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    374  1.147     pooka 
    375  1.147     pooka 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    376  1.147     pooka 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    377  1.147     pooka 	cv_init(&l->l_sigcv, "sigwait");
    378  1.171     rmind 	cv_init(&l->l_waitcv, "vfork");
    379  1.147     pooka 
    380  1.263        ad 	l->l_cred = kauth_cred_hold(proc0.p_cred);
    381  1.147     pooka 
    382  1.164      yamt 	kdtrace_thread_ctor(NULL, l);
    383  1.147     pooka 	lwp_initspecific(l);
    384  1.147     pooka 
    385  1.147     pooka 	SYSCALL_TIME_LWP_INIT(l);
    386  1.147     pooka }
    387  1.147     pooka 
    388  1.238        ad /*
    389  1.238        ad  * Initialize the non-zeroed portion of an lwp_t.
    390  1.238        ad  */
    391  1.238        ad static int
    392  1.238        ad lwp_ctor(void *arg, void *obj, int flags)
    393  1.238        ad {
    394  1.238        ad 	lwp_t *l = obj;
    395  1.238        ad 
    396  1.238        ad 	l->l_stat = LSIDL;
    397  1.238        ad 	l->l_cpu = curcpu();
    398  1.238        ad 	l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock;
    399  1.255        ad 	l->l_ts = kmem_alloc(sizeof(*l->l_ts), flags == PR_WAITOK ?
    400  1.255        ad 	    KM_SLEEP : KM_NOSLEEP);
    401  1.238        ad 
    402  1.238        ad 	if (l->l_ts == NULL) {
    403  1.238        ad 		return ENOMEM;
    404  1.238        ad 	} else {
    405  1.238        ad 		turnstile_ctor(l->l_ts);
    406  1.238        ad 		return 0;
    407  1.238        ad 	}
    408  1.238        ad }
    409  1.238        ad 
    410  1.157     rmind static void
    411  1.245   thorpej lwp_dtor(void *arg, void *obj)
    412  1.245   thorpej {
    413  1.245   thorpej 	lwp_t *l = obj;
    414  1.245   thorpej 
    415  1.245   thorpej 	/*
    416  1.245   thorpej 	 * The value of l->l_cpu must still be valid at this point.
    417  1.245   thorpej 	 */
    418  1.157     rmind 	KASSERT(l->l_cpu != NULL);
    419  1.238        ad 
    420  1.238        ad 	/*
    421  1.238        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
    422  1.238        ad 	 * so if it comes up just drop it quietly and move on.
    423  1.238        ad 	 */
    424  1.238        ad 	if (l->l_ts != &turnstile0)
    425  1.255        ad 		kmem_free(l->l_ts, sizeof(*l->l_ts));
    426  1.157     rmind }
    427  1.157     rmind 
    428   1.52        ad /*
    429  1.238        ad  * Set an LWP suspended.
    430   1.52        ad  *
    431  1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    432   1.52        ad  * LWP before return.
    433   1.52        ad  */
    434    1.2   thorpej int
    435   1.52        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    436    1.2   thorpej {
    437   1.52        ad 	int error;
    438    1.2   thorpej 
    439  1.103        ad 	KASSERT(mutex_owned(t->l_proc->p_lock));
    440   1.63        ad 	KASSERT(lwp_locked(t, NULL));
    441   1.33       chs 
    442   1.52        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    443    1.2   thorpej 
    444   1.52        ad 	/*
    445   1.52        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    446   1.52        ad 	 * else or deadlock could occur.  We won't return to userspace.
    447    1.2   thorpej 	 */
    448  1.109     rmind 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    449   1.52        ad 		lwp_unlock(t);
    450   1.52        ad 		return (EDEADLK);
    451    1.2   thorpej 	}
    452    1.2   thorpej 
    453  1.204     kamil 	if ((t->l_flag & LW_DBGSUSPEND) != 0) {
    454  1.204     kamil 		lwp_unlock(t);
    455  1.204     kamil 		return 0;
    456  1.204     kamil 	}
    457  1.204     kamil 
    458   1.52        ad 	error = 0;
    459    1.2   thorpej 
    460   1.52        ad 	switch (t->l_stat) {
    461   1.52        ad 	case LSRUN:
    462   1.52        ad 	case LSONPROC:
    463   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    464   1.52        ad 		lwp_need_userret(t);
    465   1.52        ad 		lwp_unlock(t);
    466   1.52        ad 		break;
    467    1.2   thorpej 
    468   1.52        ad 	case LSSLEEP:
    469   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    470  1.259        ad 		lwp_need_userret(t);
    471    1.2   thorpej 
    472    1.2   thorpej 		/*
    473   1.52        ad 		 * Kick the LWP and try to get it to the kernel boundary
    474   1.52        ad 		 * so that it will release any locks that it holds.
    475   1.52        ad 		 * setrunnable() will release the lock.
    476    1.2   thorpej 		 */
    477   1.56     pavel 		if ((t->l_flag & LW_SINTR) != 0)
    478   1.52        ad 			setrunnable(t);
    479   1.52        ad 		else
    480   1.52        ad 			lwp_unlock(t);
    481   1.52        ad 		break;
    482    1.2   thorpej 
    483   1.52        ad 	case LSSUSPENDED:
    484   1.52        ad 		lwp_unlock(t);
    485   1.52        ad 		break;
    486   1.17      manu 
    487   1.52        ad 	case LSSTOP:
    488   1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    489  1.259        ad 		lwp_need_userret(t);
    490   1.52        ad 		setrunnable(t);
    491   1.52        ad 		break;
    492    1.2   thorpej 
    493   1.52        ad 	case LSIDL:
    494   1.52        ad 	case LSZOMB:
    495   1.52        ad 		error = EINTR; /* It's what Solaris does..... */
    496   1.52        ad 		lwp_unlock(t);
    497   1.52        ad 		break;
    498    1.2   thorpej 	}
    499    1.2   thorpej 
    500   1.69     rmind 	return (error);
    501    1.2   thorpej }
    502    1.2   thorpej 
    503   1.52        ad /*
    504   1.52        ad  * Restart a suspended LWP.
    505   1.52        ad  *
    506  1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    507   1.52        ad  * LWP before return.
    508   1.52        ad  */
    509    1.2   thorpej void
    510    1.2   thorpej lwp_continue(struct lwp *l)
    511    1.2   thorpej {
    512    1.2   thorpej 
    513  1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
    514   1.63        ad 	KASSERT(lwp_locked(l, NULL));
    515   1.52        ad 
    516   1.52        ad 	/* If rebooting or not suspended, then just bail out. */
    517   1.56     pavel 	if ((l->l_flag & LW_WREBOOT) != 0) {
    518   1.52        ad 		lwp_unlock(l);
    519    1.2   thorpej 		return;
    520   1.10      fvdl 	}
    521    1.2   thorpej 
    522   1.56     pavel 	l->l_flag &= ~LW_WSUSPEND;
    523    1.2   thorpej 
    524  1.204     kamil 	if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
    525   1.52        ad 		lwp_unlock(l);
    526   1.52        ad 		return;
    527    1.2   thorpej 	}
    528    1.2   thorpej 
    529   1.52        ad 	/* setrunnable() will release the lock. */
    530   1.52        ad 	setrunnable(l);
    531    1.2   thorpej }
    532    1.2   thorpej 
    533   1.52        ad /*
    534  1.142  christos  * Restart a stopped LWP.
    535  1.142  christos  *
    536  1.142  christos  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    537  1.142  christos  * LWP before return.
    538  1.142  christos  */
    539  1.142  christos void
    540  1.142  christos lwp_unstop(struct lwp *l)
    541  1.142  christos {
    542  1.142  christos 	struct proc *p = l->l_proc;
    543  1.167     rmind 
    544  1.239        ad 	KASSERT(mutex_owned(&proc_lock));
    545  1.142  christos 	KASSERT(mutex_owned(p->p_lock));
    546  1.142  christos 
    547  1.142  christos 	lwp_lock(l);
    548  1.142  christos 
    549  1.204     kamil 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    550  1.204     kamil 
    551  1.142  christos 	/* If not stopped, then just bail out. */
    552  1.142  christos 	if (l->l_stat != LSSTOP) {
    553  1.142  christos 		lwp_unlock(l);
    554  1.142  christos 		return;
    555  1.142  christos 	}
    556  1.142  christos 
    557  1.142  christos 	p->p_stat = SACTIVE;
    558  1.142  christos 	p->p_sflag &= ~PS_STOPPING;
    559  1.142  christos 
    560  1.142  christos 	if (!p->p_waited)
    561  1.142  christos 		p->p_pptr->p_nstopchild--;
    562  1.142  christos 
    563  1.142  christos 	if (l->l_wchan == NULL) {
    564  1.142  christos 		/* setrunnable() will release the lock. */
    565  1.142  christos 		setrunnable(l);
    566  1.183  christos 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
    567  1.163  christos 		/* setrunnable() so we can receive the signal */
    568  1.163  christos 		setrunnable(l);
    569  1.142  christos 	} else {
    570  1.142  christos 		l->l_stat = LSSLEEP;
    571  1.142  christos 		p->p_nrlwps++;
    572  1.142  christos 		lwp_unlock(l);
    573  1.142  christos 	}
    574  1.142  christos }
    575  1.142  christos 
    576  1.142  christos /*
    577   1.52        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    578   1.52        ad  * non-zero, we are waiting for a specific LWP.
    579   1.52        ad  *
    580  1.103        ad  * Must be called with p->p_lock held.
    581   1.52        ad  */
    582    1.2   thorpej int
    583  1.173     rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
    584    1.2   thorpej {
    585  1.173     rmind 	const lwpid_t curlid = l->l_lid;
    586  1.173     rmind 	proc_t *p = l->l_proc;
    587  1.223        ad 	lwp_t *l2, *next;
    588  1.173     rmind 	int error;
    589    1.2   thorpej 
    590  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
    591   1.52        ad 
    592   1.52        ad 	p->p_nlwpwait++;
    593   1.63        ad 	l->l_waitingfor = lid;
    594   1.52        ad 
    595   1.52        ad 	for (;;) {
    596  1.173     rmind 		int nfound;
    597  1.173     rmind 
    598   1.52        ad 		/*
    599   1.52        ad 		 * Avoid a race between exit1() and sigexit(): if the
    600   1.52        ad 		 * process is dumping core, then we need to bail out: call
    601   1.52        ad 		 * into lwp_userret() where we will be suspended until the
    602   1.52        ad 		 * deed is done.
    603   1.52        ad 		 */
    604   1.52        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    605  1.103        ad 			mutex_exit(p->p_lock);
    606   1.52        ad 			lwp_userret(l);
    607  1.173     rmind 			KASSERT(false);
    608   1.52        ad 		}
    609   1.52        ad 
    610   1.52        ad 		/*
    611   1.52        ad 		 * First off, drain any detached LWP that is waiting to be
    612   1.52        ad 		 * reaped.
    613   1.52        ad 		 */
    614  1.261        ad 		if ((l2 = p->p_zomblwp) != NULL) {
    615   1.52        ad 			p->p_zomblwp = NULL;
    616   1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    617  1.103        ad 			mutex_enter(p->p_lock);
    618  1.261        ad 			continue;
    619   1.52        ad 		}
    620   1.52        ad 
    621   1.52        ad 		/*
    622   1.52        ad 		 * Now look for an LWP to collect.  If the whole process is
    623   1.52        ad 		 * exiting, count detached LWPs as eligible to be collected,
    624   1.52        ad 		 * but don't drain them here.
    625   1.52        ad 		 */
    626   1.52        ad 		nfound = 0;
    627   1.63        ad 		error = 0;
    628  1.223        ad 
    629  1.223        ad 		/*
    630  1.238        ad 		 * If given a specific LID, go via pid_table and make sure
    631  1.223        ad 		 * it's not detached.
    632  1.223        ad 		 */
    633  1.223        ad 		if (lid != 0) {
    634  1.235   thorpej 			l2 = proc_find_lwp(p, lid);
    635  1.223        ad 			if (l2 == NULL) {
    636  1.223        ad 				error = ESRCH;
    637  1.223        ad 				break;
    638  1.223        ad 			}
    639  1.223        ad 			KASSERT(l2->l_lid == lid);
    640  1.223        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    641  1.223        ad 				error = EINVAL;
    642  1.223        ad 				break;
    643  1.223        ad 			}
    644  1.223        ad 		} else {
    645  1.223        ad 			l2 = LIST_FIRST(&p->p_lwps);
    646  1.223        ad 		}
    647  1.223        ad 		for (; l2 != NULL; l2 = next) {
    648  1.223        ad 			next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
    649  1.223        ad 
    650   1.63        ad 			/*
    651   1.63        ad 			 * If a specific wait and the target is waiting on
    652   1.63        ad 			 * us, then avoid deadlock.  This also traps LWPs
    653   1.63        ad 			 * that try to wait on themselves.
    654   1.63        ad 			 *
    655   1.63        ad 			 * Note that this does not handle more complicated
    656   1.63        ad 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    657   1.63        ad 			 * can still be killed so it is not a major problem.
    658   1.63        ad 			 */
    659   1.63        ad 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    660   1.63        ad 				error = EDEADLK;
    661   1.63        ad 				break;
    662   1.63        ad 			}
    663   1.63        ad 			if (l2 == l)
    664   1.52        ad 				continue;
    665   1.52        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    666   1.63        ad 				nfound += exiting;
    667   1.63        ad 				continue;
    668   1.63        ad 			}
    669   1.63        ad 			if (lid != 0) {
    670   1.63        ad 				/*
    671   1.63        ad 				 * Mark this LWP as the first waiter, if there
    672   1.63        ad 				 * is no other.
    673   1.63        ad 				 */
    674   1.63        ad 				if (l2->l_waiter == 0)
    675   1.63        ad 					l2->l_waiter = curlid;
    676   1.63        ad 			} else if (l2->l_waiter != 0) {
    677   1.63        ad 				/*
    678   1.63        ad 				 * It already has a waiter - so don't
    679   1.63        ad 				 * collect it.  If the waiter doesn't
    680   1.63        ad 				 * grab it we'll get another chance
    681   1.63        ad 				 * later.
    682   1.63        ad 				 */
    683   1.63        ad 				nfound++;
    684   1.52        ad 				continue;
    685   1.52        ad 			}
    686   1.52        ad 			nfound++;
    687    1.2   thorpej 
    688   1.52        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    689   1.52        ad 			if (l2->l_stat != LSZOMB)
    690   1.52        ad 				continue;
    691    1.2   thorpej 
    692   1.63        ad 			/*
    693   1.63        ad 			 * We're no longer waiting.  Reset the "first waiter"
    694   1.63        ad 			 * pointer on the target, in case it was us.
    695   1.63        ad 			 */
    696   1.63        ad 			l->l_waitingfor = 0;
    697   1.63        ad 			l2->l_waiter = 0;
    698   1.63        ad 			p->p_nlwpwait--;
    699    1.2   thorpej 			if (departed)
    700    1.2   thorpej 				*departed = l2->l_lid;
    701   1.75        ad 			sched_lwp_collect(l2);
    702   1.63        ad 
    703   1.63        ad 			/* lwp_free() releases the proc lock. */
    704   1.63        ad 			lwp_free(l2, false, false);
    705  1.103        ad 			mutex_enter(p->p_lock);
    706   1.52        ad 			return 0;
    707   1.52        ad 		}
    708    1.2   thorpej 
    709   1.63        ad 		if (error != 0)
    710   1.63        ad 			break;
    711   1.52        ad 		if (nfound == 0) {
    712   1.52        ad 			error = ESRCH;
    713   1.52        ad 			break;
    714   1.52        ad 		}
    715   1.63        ad 
    716   1.63        ad 		/*
    717  1.173     rmind 		 * Note: since the lock will be dropped, need to restart on
    718  1.173     rmind 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
    719   1.63        ad 		 */
    720   1.63        ad 		if (exiting) {
    721   1.52        ad 			KASSERT(p->p_nlwps > 1);
    722  1.222        ad 			error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
    723  1.173     rmind 			break;
    724   1.52        ad 		}
    725   1.63        ad 
    726   1.63        ad 		/*
    727  1.234        ad 		 * Break out if all LWPs are in _lwp_wait().  There are
    728  1.234        ad 		 * other ways to hang the process with _lwp_wait(), but the
    729  1.234        ad 		 * sleep is interruptable so little point checking for them.
    730   1.63        ad 		 */
    731  1.234        ad 		if (p->p_nlwpwait == p->p_nlwps) {
    732   1.52        ad 			error = EDEADLK;
    733   1.52        ad 			break;
    734    1.2   thorpej 		}
    735   1.63        ad 
    736   1.63        ad 		/*
    737   1.63        ad 		 * Sit around and wait for something to happen.  We'll be
    738   1.63        ad 		 * awoken if any of the conditions examined change: if an
    739   1.63        ad 		 * LWP exits, is collected, or is detached.
    740   1.63        ad 		 */
    741  1.103        ad 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    742   1.52        ad 			break;
    743    1.2   thorpej 	}
    744    1.2   thorpej 
    745   1.63        ad 	/*
    746   1.63        ad 	 * We didn't find any LWPs to collect, we may have received a
    747   1.63        ad 	 * signal, or some other condition has caused us to bail out.
    748   1.63        ad 	 *
    749   1.63        ad 	 * If waiting on a specific LWP, clear the waiters marker: some
    750   1.63        ad 	 * other LWP may want it.  Then, kick all the remaining waiters
    751   1.63        ad 	 * so that they can re-check for zombies and for deadlock.
    752   1.63        ad 	 */
    753   1.63        ad 	if (lid != 0) {
    754  1.235   thorpej 		l2 = proc_find_lwp(p, lid);
    755  1.223        ad 		KASSERT(l2 == NULL || l2->l_lid == lid);
    756  1.223        ad 
    757  1.223        ad 		if (l2 != NULL && l2->l_waiter == curlid)
    758  1.223        ad 			l2->l_waiter = 0;
    759   1.63        ad 	}
    760   1.52        ad 	p->p_nlwpwait--;
    761   1.63        ad 	l->l_waitingfor = 0;
    762   1.63        ad 	cv_broadcast(&p->p_lwpcv);
    763   1.63        ad 
    764   1.52        ad 	return error;
    765    1.2   thorpej }
    766    1.2   thorpej 
    767  1.223        ad /*
    768   1.52        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    769   1.52        ad  * The new LWP is created in state LSIDL and must be set running,
    770   1.52        ad  * suspended, or stopped by the caller.
    771   1.52        ad  */
    772    1.2   thorpej int
    773  1.134     rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    774  1.188  christos     void *stack, size_t stacksize, void (*func)(void *), void *arg,
    775  1.188  christos     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
    776  1.188  christos     const stack_t *sigstk)
    777    1.2   thorpej {
    778  1.215        ad 	struct lwp *l2;
    779    1.2   thorpej 
    780  1.107        ad 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    781  1.107        ad 
    782   1.52        ad 	/*
    783  1.215        ad 	 * Enforce limits, excluding the first lwp and kthreads.  We must
    784  1.215        ad 	 * use the process credentials here when adjusting the limit, as
    785  1.215        ad 	 * they are what's tied to the accounting entity.  However for
    786  1.215        ad 	 * authorizing the action, we'll use the LWP's credentials.
    787  1.169  christos 	 */
    788  1.215        ad 	mutex_enter(p2->p_lock);
    789  1.169  christos 	if (p2->p_nlwps != 0 && p2 != &proc0) {
    790  1.215        ad 		uid_t uid = kauth_cred_getuid(p2->p_cred);
    791  1.169  christos 		int count = chglwpcnt(uid, 1);
    792  1.169  christos 		if (__predict_false(count >
    793  1.169  christos 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
    794  1.169  christos 			if (kauth_authorize_process(l1->l_cred,
    795  1.169  christos 			    KAUTH_PROCESS_RLIMIT, p2,
    796  1.169  christos 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    797  1.169  christos 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
    798  1.169  christos 			    != 0) {
    799  1.170  christos 				(void)chglwpcnt(uid, -1);
    800  1.215        ad 				mutex_exit(p2->p_lock);
    801  1.170  christos 				return EAGAIN;
    802  1.169  christos 			}
    803  1.169  christos 		}
    804  1.169  christos 	}
    805  1.169  christos 
    806  1.169  christos 	/*
    807   1.52        ad 	 * First off, reap any detached LWP waiting to be collected.
    808   1.52        ad 	 * We can re-use its LWP structure and turnstile.
    809   1.52        ad 	 */
    810  1.215        ad 	if ((l2 = p2->p_zomblwp) != NULL) {
    811  1.215        ad 		p2->p_zomblwp = NULL;
    812  1.215        ad 		lwp_free(l2, true, false);
    813  1.215        ad 		/* p2 now unlocked by lwp_free() */
    814  1.238        ad 		KASSERT(l2->l_ts != NULL);
    815   1.75        ad 		KASSERT(l2->l_inheritedprio == -1);
    816   1.60      yamt 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    817  1.238        ad 		memset(&l2->l_startzero, 0, sizeof(*l2) -
    818  1.238        ad 		    offsetof(lwp_t, l_startzero));
    819  1.215        ad 	} else {
    820  1.215        ad 		mutex_exit(p2->p_lock);
    821  1.215        ad 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    822  1.238        ad 		memset(&l2->l_startzero, 0, sizeof(*l2) -
    823  1.238        ad 		    offsetof(lwp_t, l_startzero));
    824  1.215        ad 		SLIST_INIT(&l2->l_pi_lenders);
    825   1.52        ad 	}
    826    1.2   thorpej 
    827  1.238        ad 	/*
    828  1.238        ad 	 * Because of lockless lookup via pid_table, the LWP can be locked
    829  1.238        ad 	 * and inspected briefly even after it's freed, so a few fields are
    830  1.238        ad 	 * kept stable.
    831  1.238        ad 	 */
    832  1.238        ad 	KASSERT(l2->l_stat == LSIDL);
    833  1.238        ad 	KASSERT(l2->l_cpu != NULL);
    834  1.238        ad 	KASSERT(l2->l_ts != NULL);
    835  1.238        ad 	KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock);
    836  1.238        ad 
    837    1.2   thorpej 	l2->l_proc = p2;
    838  1.231        ad 	l2->l_refcnt = 0;
    839   1.75        ad 	l2->l_class = sclass;
    840  1.116        ad 
    841  1.116        ad 	/*
    842  1.235   thorpej 	 * Allocate a process ID for this LWP.  We need to do this now
    843  1.250    andvar 	 * while we can still unwind if it fails.  Because we're marked
    844  1.238        ad 	 * as LSIDL, no lookups by the ID will succeed.
    845  1.235   thorpej 	 *
    846  1.235   thorpej 	 * N.B. this will always succeed for the first LWP in a process,
    847  1.235   thorpej 	 * because proc_alloc_lwpid() will usurp the slot.  Also note
    848  1.235   thorpej 	 * that l2->l_proc MUST be valid so that lookups of the proc
    849  1.235   thorpej 	 * will succeed, even if the LWP itself is not visible.
    850  1.235   thorpej 	 */
    851  1.235   thorpej 	if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
    852  1.235   thorpej 		pool_cache_put(lwp_cache, l2);
    853  1.235   thorpej 		return EAGAIN;
    854  1.235   thorpej 	}
    855  1.235   thorpej 
    856  1.257        ad 	/*
    857  1.257        ad 	 * If vfork(), we want the LWP to run fast and on the same CPU
    858  1.257        ad 	 * as its parent, so that it can reuse the VM context and cache
    859  1.257        ad 	 * footprint on the local CPU.
    860  1.257        ad 	 */
    861  1.257        ad 	l2->l_boostpri = ((flags & LWP_VFORK) ? PRI_KERNEL : PRI_USER);
    862  1.257        ad  	l2->l_priority = l1->l_priority;
    863   1.75        ad 	l2->l_inheritedprio = -1;
    864  1.185  christos 	l2->l_protectprio = -1;
    865  1.185  christos 	l2->l_auxprio = -1;
    866  1.222        ad 	l2->l_flag = 0;
    867   1.88        ad 	l2->l_pflag = LP_MPSAFE;
    868  1.131        ad 	TAILQ_INIT(&l2->l_ld_locks);
    869  1.197     ozaki 	l2->l_psrefs = 0;
    870  1.208      maxv 	kmsan_lwp_alloc(l2);
    871  1.131        ad 
    872  1.131        ad 	/*
    873  1.156     pooka 	 * For vfork, borrow parent's lwpctl context if it exists.
    874  1.156     pooka 	 * This also causes us to return via lwp_userret.
    875  1.156     pooka 	 */
    876  1.156     pooka 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    877  1.156     pooka 		l2->l_lwpctl = l1->l_lwpctl;
    878  1.156     pooka 		l2->l_flag |= LW_LWPCTL;
    879  1.156     pooka 	}
    880  1.156     pooka 
    881  1.156     pooka 	/*
    882  1.131        ad 	 * If not the first LWP in the process, grab a reference to the
    883  1.131        ad 	 * descriptor table.
    884  1.131        ad 	 */
    885   1.97        ad 	l2->l_fd = p2->p_fd;
    886  1.131        ad 	if (p2->p_nlwps != 0) {
    887  1.131        ad 		KASSERT(l1->l_proc == p2);
    888  1.136     rmind 		fd_hold(l2);
    889  1.131        ad 	} else {
    890  1.131        ad 		KASSERT(l1->l_proc != p2);
    891  1.131        ad 	}
    892   1.41   thorpej 
    893   1.56     pavel 	if (p2->p_flag & PK_SYSTEM) {
    894  1.134     rmind 		/* Mark it as a system LWP. */
    895   1.56     pavel 		l2->l_flag |= LW_SYSTEM;
    896   1.52        ad 	}
    897    1.2   thorpej 
    898  1.138    darran 	kdtrace_thread_ctor(NULL, l2);
    899   1.73     rmind 	lwp_initspecific(l2);
    900   1.75        ad 	sched_lwp_fork(l1, l2);
    901   1.70        ad 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    902   1.70        ad 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    903   1.52        ad 	cv_init(&l2->l_sigcv, "sigwait");
    904  1.171     rmind 	cv_init(&l2->l_waitcv, "vfork");
    905   1.52        ad 	l2->l_syncobj = &sched_syncobj;
    906  1.201     ozaki 	PSREF_DEBUG_INIT_LWP(l2);
    907    1.2   thorpej 
    908    1.2   thorpej 	if (rnewlwpp != NULL)
    909    1.2   thorpej 		*rnewlwpp = l2;
    910    1.2   thorpej 
    911  1.158      matt 	/*
    912  1.158      matt 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    913  1.158      matt 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    914  1.158      matt 	 */
    915  1.158      matt 	pcu_save_all(l1);
    916  1.225    dogcow #if PCU_UNIT_COUNT > 0
    917  1.224  riastrad 	l2->l_pcu_valid = l1->l_pcu_valid;
    918  1.225    dogcow #endif
    919  1.158      matt 
    920  1.137     rmind 	uvm_lwp_setuarea(l2, uaddr);
    921  1.190     skrll 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
    922    1.2   thorpej 
    923  1.235   thorpej 	mutex_enter(p2->p_lock);
    924  1.263        ad 	l2->l_cred = kauth_cred_hold(p2->p_cred);
    925   1.52        ad 	if ((flags & LWP_DETACHED) != 0) {
    926   1.52        ad 		l2->l_prflag = LPR_DETACHED;
    927   1.52        ad 		p2->p_ndlwps++;
    928   1.52        ad 	} else
    929   1.52        ad 		l2->l_prflag = 0;
    930   1.52        ad 
    931  1.223        ad 	if (l1->l_proc == p2) {
    932  1.223        ad 		/*
    933  1.223        ad 		 * These flags are set while p_lock is held.  Copy with
    934  1.223        ad 		 * p_lock held too, so the LWP doesn't sneak into the
    935  1.223        ad 		 * process without them being set.
    936  1.223        ad 		 */
    937  1.222        ad 		l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
    938  1.223        ad 	} else {
    939  1.223        ad 		/* fork(): pending core/exit doesn't apply to child. */
    940  1.222        ad 		l2->l_flag |= (l1->l_flag & LW_WREBOOT);
    941  1.223        ad 	}
    942  1.222        ad 
    943  1.188  christos 	l2->l_sigstk = *sigstk;
    944  1.188  christos 	l2->l_sigmask = *sigmask;
    945  1.176  christos 	TAILQ_INIT(&l2->l_sigpend.sp_info);
    946   1.52        ad 	sigemptyset(&l2->l_sigpend.sp_set);
    947  1.174       dsl 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    948    1.2   thorpej 	p2->p_nlwps++;
    949  1.149      yamt 	p2->p_nrlwps++;
    950    1.2   thorpej 
    951  1.162     rmind 	KASSERT(l2->l_affinity == NULL);
    952  1.162     rmind 
    953  1.210        ad 	/* Inherit the affinity mask. */
    954  1.210        ad 	if (l1->l_affinity) {
    955  1.210        ad 		/*
    956  1.210        ad 		 * Note that we hold the state lock while inheriting
    957  1.210        ad 		 * the affinity to avoid race with sched_setaffinity().
    958  1.210        ad 		 */
    959  1.210        ad 		lwp_lock(l1);
    960  1.162     rmind 		if (l1->l_affinity) {
    961  1.210        ad 			kcpuset_use(l1->l_affinity);
    962  1.210        ad 			l2->l_affinity = l1->l_affinity;
    963  1.117  christos 		}
    964  1.210        ad 		lwp_unlock(l1);
    965   1.91     rmind 	}
    966  1.223        ad 
    967  1.259        ad 	/* Ensure a trip through lwp_userret() if needed. */
    968  1.259        ad 	if ((l2->l_flag & LW_USERRET) != 0) {
    969  1.259        ad 		lwp_need_userret(l2);
    970  1.259        ad 	}
    971  1.259        ad 
    972  1.223        ad 	/* This marks the end of the "must be atomic" section. */
    973  1.128     rmind 	mutex_exit(p2->p_lock);
    974  1.128     rmind 
    975  1.180  christos 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
    976  1.141    darran 
    977  1.239        ad 	mutex_enter(&proc_lock);
    978  1.128     rmind 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    979  1.210        ad 	/* Inherit a processor-set */
    980  1.210        ad 	l2->l_psid = l1->l_psid;
    981  1.239        ad 	mutex_exit(&proc_lock);
    982   1.91     rmind 
    983   1.57       dsl 	SYSCALL_TIME_LWP_INIT(l2);
    984   1.57       dsl 
    985   1.16      manu 	if (p2->p_emul->e_lwp_fork)
    986   1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    987   1.16      manu 
    988    1.2   thorpej 	return (0);
    989    1.2   thorpej }
    990    1.2   thorpej 
    991    1.2   thorpej /*
    992  1.212        ad  * Set a new LWP running.  If the process is stopping, then the LWP is
    993  1.212        ad  * created stopped.
    994  1.212        ad  */
    995  1.212        ad void
    996  1.212        ad lwp_start(lwp_t *l, int flags)
    997  1.212        ad {
    998  1.212        ad 	proc_t *p = l->l_proc;
    999  1.212        ad 
   1000  1.212        ad 	mutex_enter(p->p_lock);
   1001  1.212        ad 	lwp_lock(l);
   1002  1.212        ad 	KASSERT(l->l_stat == LSIDL);
   1003  1.212        ad 	if ((flags & LWP_SUSPENDED) != 0) {
   1004  1.212        ad 		/* It'll suspend itself in lwp_userret(). */
   1005  1.212        ad 		l->l_flag |= LW_WSUSPEND;
   1006  1.260        ad 		lwp_need_userret(l);
   1007  1.212        ad 	}
   1008  1.212        ad 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1009  1.212        ad 		KASSERT(l->l_wchan == NULL);
   1010  1.212        ad 	    	l->l_stat = LSSTOP;
   1011  1.212        ad 		p->p_nrlwps--;
   1012  1.212        ad 		lwp_unlock(l);
   1013  1.212        ad 	} else {
   1014  1.212        ad 		setrunnable(l);
   1015  1.212        ad 		/* LWP now unlocked */
   1016  1.212        ad 	}
   1017  1.212        ad 	mutex_exit(p->p_lock);
   1018  1.212        ad }
   1019  1.212        ad 
   1020  1.212        ad /*
   1021   1.64      yamt  * Called by MD code when a new LWP begins execution.  Must be called
   1022   1.64      yamt  * with the previous LWP locked (so at splsched), or if there is no
   1023   1.64      yamt  * previous LWP, at splsched.
   1024   1.64      yamt  */
   1025   1.64      yamt void
   1026  1.178      matt lwp_startup(struct lwp *prev, struct lwp *new_lwp)
   1027   1.64      yamt {
   1028  1.227        ad 	kmutex_t *lock;
   1029  1.218        ad 
   1030  1.178      matt 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
   1031  1.218        ad 	KASSERT(kpreempt_disabled());
   1032  1.218        ad 	KASSERT(prev != NULL);
   1033  1.227        ad 	KASSERT((prev->l_pflag & LP_RUNNING) != 0);
   1034  1.218        ad 	KASSERT(curcpu()->ci_mtx_count == -2);
   1035  1.218        ad 
   1036  1.227        ad 	/*
   1037  1.247  riastrad 	 * Immediately mark the previous LWP as no longer running and
   1038  1.247  riastrad 	 * unlock (to keep lock wait times short as possible).  If a
   1039  1.247  riastrad 	 * zombie, don't touch after clearing LP_RUNNING as it could be
   1040  1.247  riastrad 	 * reaped by another CPU.  Use atomic_store_release to ensure
   1041  1.247  riastrad 	 * this -- matches atomic_load_acquire in lwp_free.
   1042  1.227        ad 	 */
   1043  1.227        ad 	lock = prev->l_mutex;
   1044  1.227        ad 	if (__predict_false(prev->l_stat == LSZOMB)) {
   1045  1.247  riastrad 		atomic_store_release(&prev->l_pflag,
   1046  1.247  riastrad 		    prev->l_pflag & ~LP_RUNNING);
   1047  1.247  riastrad 	} else {
   1048  1.247  riastrad 		prev->l_pflag &= ~LP_RUNNING;
   1049  1.227        ad 	}
   1050  1.227        ad 	mutex_spin_exit(lock);
   1051   1.64      yamt 
   1052  1.218        ad 	/* Correct spin mutex count after mi_switch(). */
   1053  1.218        ad 	curcpu()->ci_mtx_count = 0;
   1054  1.141    darran 
   1055  1.218        ad 	/* Install new VM context. */
   1056  1.218        ad 	if (__predict_true(new_lwp->l_proc->p_vmspace)) {
   1057  1.218        ad 		pmap_activate(new_lwp);
   1058   1.64      yamt 	}
   1059  1.218        ad 
   1060  1.218        ad 	/* We remain at IPL_SCHED from mi_switch() - reset it. */
   1061  1.181     skrll 	spl0();
   1062  1.161  christos 
   1063   1.64      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
   1064  1.218        ad 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
   1065  1.218        ad 
   1066  1.218        ad 	/* For kthreads, acquire kernel lock if not MPSAFE. */
   1067  1.218        ad 	if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
   1068  1.178      matt 		KERNEL_LOCK(1, new_lwp);
   1069   1.65        ad 	}
   1070   1.64      yamt }
   1071   1.64      yamt 
   1072   1.64      yamt /*
   1073   1.65        ad  * Exit an LWP.
   1074  1.241        ad  *
   1075  1.241        ad  * *** WARNING *** This can be called with (l != curlwp) in error paths.
   1076    1.2   thorpej  */
   1077    1.2   thorpej void
   1078    1.2   thorpej lwp_exit(struct lwp *l)
   1079    1.2   thorpej {
   1080    1.2   thorpej 	struct proc *p = l->l_proc;
   1081   1.52        ad 	struct lwp *l2;
   1082   1.65        ad 	bool current;
   1083   1.65        ad 
   1084   1.65        ad 	current = (l == curlwp);
   1085    1.2   thorpej 
   1086  1.252  riastrad 	KASSERT(current || l->l_stat == LSIDL);
   1087  1.252  riastrad 	KASSERT(current || l->l_target_cpu == NULL);
   1088  1.131        ad 	KASSERT(p == curproc);
   1089    1.2   thorpej 
   1090  1.180  christos 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
   1091  1.141    darran 
   1092  1.220        ad 	/* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
   1093  1.218        ad 	LOCKDEBUG_BARRIER(NULL, 0);
   1094  1.220        ad 	KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
   1095   1.16      manu 
   1096    1.2   thorpej 	/*
   1097   1.52        ad 	 * If we are the last live LWP in a process, we need to exit the
   1098   1.52        ad 	 * entire process.  We do so with an exit status of zero, because
   1099   1.52        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
   1100   1.52        ad 	 *
   1101   1.52        ad 	 * We are not quite a zombie yet, but for accounting purposes we
   1102   1.52        ad 	 * must increment the count of zombies here.
   1103   1.45   thorpej 	 *
   1104   1.45   thorpej 	 * Note: the last LWP's specificdata will be deleted here.
   1105    1.2   thorpej 	 */
   1106  1.103        ad 	mutex_enter(p->p_lock);
   1107   1.52        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
   1108   1.65        ad 		KASSERT(current == true);
   1109  1.172      matt 		KASSERT(p != &proc0);
   1110  1.184  christos 		exit1(l, 0, 0);
   1111   1.19  jdolecek 		/* NOTREACHED */
   1112    1.2   thorpej 	}
   1113   1.52        ad 	p->p_nzlwps++;
   1114  1.233   thorpej 
   1115  1.233   thorpej 	/*
   1116  1.233   thorpej 	 * Perform any required thread cleanup.  Do this early so
   1117  1.235   thorpej 	 * anyone wanting to look us up with lwp_getref_lwpid() will
   1118  1.235   thorpej 	 * fail to find us before we become a zombie.
   1119  1.233   thorpej 	 *
   1120  1.233   thorpej 	 * N.B. this will unlock p->p_lock on our behalf.
   1121  1.233   thorpej 	 */
   1122  1.233   thorpej 	lwp_thread_cleanup(l);
   1123   1.52        ad 
   1124   1.52        ad 	if (p->p_emul->e_lwp_exit)
   1125   1.52        ad 		(*p->p_emul->e_lwp_exit)(l);
   1126    1.2   thorpej 
   1127  1.131        ad 	/* Drop filedesc reference. */
   1128  1.131        ad 	fd_free();
   1129  1.131        ad 
   1130  1.196   hannken 	/* Release fstrans private data. */
   1131  1.196   hannken 	fstrans_lwp_dtor(l);
   1132  1.196   hannken 
   1133   1.45   thorpej 	/* Delete the specificdata while it's still safe to sleep. */
   1134  1.145     pooka 	lwp_finispecific(l);
   1135   1.45   thorpej 
   1136   1.52        ad 	/*
   1137   1.52        ad 	 * Release our cached credentials.
   1138   1.52        ad 	 */
   1139   1.37        ad 	kauth_cred_free(l->l_cred);
   1140   1.70        ad 	callout_destroy(&l->l_timeout_ch);
   1141   1.65        ad 
   1142   1.65        ad 	/*
   1143  1.198     kamil 	 * If traced, report LWP exit event to the debugger.
   1144  1.198     kamil 	 *
   1145   1.52        ad 	 * Remove the LWP from the global list.
   1146  1.151       chs 	 * Free its LID from the PID namespace if needed.
   1147   1.52        ad 	 */
   1148  1.239        ad 	mutex_enter(&proc_lock);
   1149  1.198     kamil 
   1150  1.199     kamil 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
   1151  1.198     kamil 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
   1152  1.198     kamil 		mutex_enter(p->p_lock);
   1153  1.202     kamil 		if (ISSET(p->p_sflag, PS_WEXIT)) {
   1154  1.202     kamil 			mutex_exit(p->p_lock);
   1155  1.202     kamil 			/*
   1156  1.202     kamil 			 * We are exiting, bail out without informing parent
   1157  1.202     kamil 			 * about a terminating LWP as it would deadlock.
   1158  1.202     kamil 			 */
   1159  1.202     kamil 		} else {
   1160  1.203     kamil 			eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
   1161  1.239        ad 			mutex_enter(&proc_lock);
   1162  1.202     kamil 		}
   1163  1.198     kamil 	}
   1164  1.198     kamil 
   1165   1.52        ad 	LIST_REMOVE(l, l_list);
   1166  1.239        ad 	mutex_exit(&proc_lock);
   1167   1.19  jdolecek 
   1168   1.52        ad 	/*
   1169   1.52        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
   1170   1.52        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
   1171   1.52        ad 	 * mark it waiting for collection in the proc structure.  Note that
   1172   1.52        ad 	 * before we can do that, we need to free any other dead, deatched
   1173   1.52        ad 	 * LWP waiting to meet its maker.
   1174  1.231        ad 	 *
   1175  1.231        ad 	 * All conditions need to be observed upon under the same hold of
   1176  1.231        ad 	 * p_lock, because if the lock is dropped any of them can change.
   1177   1.52        ad 	 */
   1178  1.103        ad 	mutex_enter(p->p_lock);
   1179  1.231        ad 	for (;;) {
   1180  1.233   thorpej 		if (lwp_drainrefs(l))
   1181  1.231        ad 			continue;
   1182  1.231        ad 		if ((l->l_prflag & LPR_DETACHED) != 0) {
   1183  1.231        ad 			if ((l2 = p->p_zomblwp) != NULL) {
   1184  1.231        ad 				p->p_zomblwp = NULL;
   1185  1.231        ad 				lwp_free(l2, false, false);
   1186  1.231        ad 				/* proc now unlocked */
   1187  1.231        ad 				mutex_enter(p->p_lock);
   1188  1.231        ad 				continue;
   1189  1.231        ad 			}
   1190  1.231        ad 			p->p_zomblwp = l;
   1191   1.52        ad 		}
   1192  1.231        ad 		break;
   1193   1.52        ad 	}
   1194   1.31      yamt 
   1195   1.52        ad 	/*
   1196   1.52        ad 	 * If we find a pending signal for the process and we have been
   1197  1.151       chs 	 * asked to check for signals, then we lose: arrange to have
   1198   1.52        ad 	 * all other LWPs in the process check for signals.
   1199   1.52        ad 	 */
   1200   1.56     pavel 	if ((l->l_flag & LW_PENDSIG) != 0 &&
   1201   1.52        ad 	    firstsig(&p->p_sigpend.sp_set) != 0) {
   1202   1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1203   1.52        ad 			lwp_lock(l2);
   1204  1.209        ad 			signotify(l2);
   1205   1.52        ad 			lwp_unlock(l2);
   1206   1.52        ad 		}
   1207   1.31      yamt 	}
   1208   1.31      yamt 
   1209  1.158      matt 	/*
   1210  1.158      matt 	 * Release any PCU resources before becoming a zombie.
   1211  1.158      matt 	 */
   1212  1.158      matt 	pcu_discard_all(l);
   1213  1.158      matt 
   1214   1.52        ad 	lwp_lock(l);
   1215   1.52        ad 	l->l_stat = LSZOMB;
   1216  1.162     rmind 	if (l->l_name != NULL) {
   1217   1.90        ad 		strcpy(l->l_name, "(zombie)");
   1218  1.128     rmind 	}
   1219   1.52        ad 	lwp_unlock(l);
   1220    1.2   thorpej 	p->p_nrlwps--;
   1221   1.78        ad 	if (l->l_lwpctl != NULL)
   1222   1.78        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1223  1.103        ad 	mutex_exit(p->p_lock);
   1224  1.262        ad 	cv_broadcast(&p->p_lwpcv);
   1225   1.52        ad 
   1226   1.52        ad 	/*
   1227   1.52        ad 	 * We can no longer block.  At this point, lwp_free() may already
   1228   1.52        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1229   1.52        ad 	 *
   1230   1.52        ad 	 * Free MD LWP resources.
   1231   1.52        ad 	 */
   1232   1.52        ad 	cpu_lwp_free(l, 0);
   1233    1.2   thorpej 
   1234   1.65        ad 	if (current) {
   1235  1.218        ad 		/* Switch away into oblivion. */
   1236  1.218        ad 		lwp_lock(l);
   1237  1.218        ad 		spc_lock(l->l_cpu);
   1238  1.218        ad 		mi_switch(l);
   1239  1.218        ad 		panic("lwp_exit");
   1240   1.65        ad 	}
   1241    1.2   thorpej }
   1242    1.2   thorpej 
   1243   1.52        ad /*
   1244   1.52        ad  * Free a dead LWP's remaining resources.
   1245   1.52        ad  *
   1246   1.52        ad  * XXXLWP limits.
   1247   1.52        ad  */
   1248   1.52        ad void
   1249   1.63        ad lwp_free(struct lwp *l, bool recycle, bool last)
   1250   1.52        ad {
   1251   1.52        ad 	struct proc *p = l->l_proc;
   1252  1.100        ad 	struct rusage *ru;
   1253   1.52        ad 	ksiginfoq_t kq;
   1254   1.52        ad 
   1255   1.92      yamt 	KASSERT(l != curlwp);
   1256  1.160      yamt 	KASSERT(last || mutex_owned(p->p_lock));
   1257   1.92      yamt 
   1258  1.177  christos 	/*
   1259  1.177  christos 	 * We use the process credentials instead of the lwp credentials here
   1260  1.177  christos 	 * because the lwp credentials maybe cached (just after a setuid call)
   1261  1.177  christos 	 * and we don't want pay for syncing, since the lwp is going away
   1262  1.177  christos 	 * anyway
   1263  1.177  christos 	 */
   1264  1.169  christos 	if (p != &proc0 && p->p_nlwps != 1)
   1265  1.177  christos 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
   1266  1.218        ad 
   1267   1.52        ad 	/*
   1268  1.238        ad 	 * In the unlikely event that the LWP is still on the CPU,
   1269  1.238        ad 	 * then spin until it has switched away.
   1270  1.247  riastrad 	 *
   1271  1.247  riastrad 	 * atomic_load_acquire matches atomic_store_release in
   1272  1.247  riastrad 	 * lwp_startup and mi_switch.
   1273  1.238        ad 	 */
   1274  1.247  riastrad 	while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING)
   1275  1.247  riastrad 		!= 0)) {
   1276  1.238        ad 		SPINLOCK_BACKOFF_HOOK;
   1277  1.238        ad 	}
   1278  1.238        ad 
   1279  1.238        ad 	/*
   1280  1.238        ad 	 * Now that the LWP's known off the CPU, reset its state back to
   1281  1.238        ad 	 * LSIDL, which defeats anything that might have gotten a hold on
   1282  1.238        ad 	 * the LWP via pid_table before the ID was freed.  It's important
   1283  1.238        ad 	 * to do this with both the LWP locked and p_lock held.
   1284  1.238        ad 	 *
   1285  1.238        ad 	 * Also reset the CPU and lock pointer back to curcpu(), since the
   1286  1.238        ad 	 * LWP will in all likelyhood be cached with the current CPU in
   1287  1.238        ad 	 * lwp_cache when we free it and later allocated from there again
   1288  1.238        ad 	 * (avoid incidental lock contention).
   1289  1.238        ad 	 */
   1290  1.238        ad 	lwp_lock(l);
   1291  1.238        ad 	l->l_stat = LSIDL;
   1292  1.238        ad 	l->l_cpu = curcpu();
   1293  1.238        ad 	lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock);
   1294  1.238        ad 
   1295  1.238        ad 	/*
   1296  1.223        ad 	 * If this was not the last LWP in the process, then adjust counters
   1297  1.223        ad 	 * and unlock.  This is done differently for the last LWP in exit1().
   1298   1.52        ad 	 */
   1299   1.52        ad 	if (!last) {
   1300   1.52        ad 		/*
   1301   1.52        ad 		 * Add the LWP's run time to the process' base value.
   1302   1.52        ad 		 * This needs to co-incide with coming off p_lwps.
   1303   1.52        ad 		 */
   1304   1.86      yamt 		bintime_add(&p->p_rtime, &l->l_rtime);
   1305   1.64      yamt 		p->p_pctcpu += l->l_pctcpu;
   1306  1.100        ad 		ru = &p->p_stats->p_ru;
   1307  1.100        ad 		ruadd(ru, &l->l_ru);
   1308   1.52        ad 		LIST_REMOVE(l, l_sibling);
   1309   1.52        ad 		p->p_nlwps--;
   1310   1.52        ad 		p->p_nzlwps--;
   1311   1.52        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1312   1.52        ad 			p->p_ndlwps--;
   1313  1.262        ad 		mutex_exit(p->p_lock);
   1314   1.63        ad 
   1315   1.63        ad 		/*
   1316   1.63        ad 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1317   1.63        ad 		 * deadlock.
   1318   1.63        ad 		 */
   1319   1.63        ad 		cv_broadcast(&p->p_lwpcv);
   1320   1.52        ad 
   1321  1.238        ad 		/* Free the LWP ID. */
   1322  1.239        ad 		mutex_enter(&proc_lock);
   1323  1.238        ad 		proc_free_lwpid(p, l->l_lid);
   1324  1.239        ad 		mutex_exit(&proc_lock);
   1325   1.63        ad 	}
   1326   1.52        ad 
   1327   1.52        ad 	/*
   1328   1.52        ad 	 * Destroy the LWP's remaining signal information.
   1329   1.52        ad 	 */
   1330   1.52        ad 	ksiginfo_queue_init(&kq);
   1331   1.52        ad 	sigclear(&l->l_sigpend, NULL, &kq);
   1332   1.52        ad 	ksiginfo_queue_drain(&kq);
   1333   1.52        ad 	cv_destroy(&l->l_sigcv);
   1334  1.171     rmind 	cv_destroy(&l->l_waitcv);
   1335    1.2   thorpej 
   1336   1.19  jdolecek 	/*
   1337  1.162     rmind 	 * Free lwpctl structure and affinity.
   1338  1.162     rmind 	 */
   1339  1.162     rmind 	if (l->l_lwpctl) {
   1340  1.162     rmind 		lwp_ctl_free(l);
   1341  1.162     rmind 	}
   1342  1.162     rmind 	if (l->l_affinity) {
   1343  1.162     rmind 		kcpuset_unuse(l->l_affinity, NULL);
   1344  1.162     rmind 		l->l_affinity = NULL;
   1345  1.162     rmind 	}
   1346  1.162     rmind 
   1347  1.162     rmind 	/*
   1348  1.238        ad 	 * Free remaining data structures and the LWP itself unless the
   1349  1.238        ad 	 * caller wants to recycle.
   1350   1.19  jdolecek 	 */
   1351   1.90        ad 	if (l->l_name != NULL)
   1352   1.90        ad 		kmem_free(l->l_name, MAXCOMLEN);
   1353  1.135     rmind 
   1354  1.208      maxv 	kmsan_lwp_free(l);
   1355  1.232      maxv 	kcov_lwp_free(l);
   1356   1.52        ad 	cpu_lwp_free2(l);
   1357   1.19  jdolecek 	uvm_lwp_exit(l);
   1358  1.134     rmind 
   1359   1.60      yamt 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1360   1.75        ad 	KASSERT(l->l_inheritedprio == -1);
   1361  1.155      matt 	KASSERT(l->l_blcnt == 0);
   1362  1.138    darran 	kdtrace_thread_dtor(NULL, l);
   1363   1.52        ad 	if (!recycle)
   1364   1.87        ad 		pool_cache_put(lwp_cache, l);
   1365    1.2   thorpej }
   1366    1.2   thorpej 
   1367    1.2   thorpej /*
   1368   1.91     rmind  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1369   1.91     rmind  */
   1370   1.91     rmind void
   1371  1.114     rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1372   1.91     rmind {
   1373  1.114     rmind 	struct schedstate_percpu *tspc;
   1374  1.121     rmind 	int lstat = l->l_stat;
   1375  1.121     rmind 
   1376   1.91     rmind 	KASSERT(lwp_locked(l, NULL));
   1377  1.114     rmind 	KASSERT(tci != NULL);
   1378  1.114     rmind 
   1379  1.121     rmind 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1380  1.227        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1381  1.121     rmind 		lstat = LSONPROC;
   1382  1.121     rmind 	}
   1383  1.121     rmind 
   1384  1.114     rmind 	/*
   1385  1.114     rmind 	 * The destination CPU could be changed while previous migration
   1386  1.114     rmind 	 * was not finished.
   1387  1.114     rmind 	 */
   1388  1.121     rmind 	if (l->l_target_cpu != NULL) {
   1389  1.114     rmind 		l->l_target_cpu = tci;
   1390  1.114     rmind 		lwp_unlock(l);
   1391  1.114     rmind 		return;
   1392  1.114     rmind 	}
   1393   1.91     rmind 
   1394  1.114     rmind 	/* Nothing to do if trying to migrate to the same CPU */
   1395  1.114     rmind 	if (l->l_cpu == tci) {
   1396   1.91     rmind 		lwp_unlock(l);
   1397   1.91     rmind 		return;
   1398   1.91     rmind 	}
   1399   1.91     rmind 
   1400  1.114     rmind 	KASSERT(l->l_target_cpu == NULL);
   1401  1.114     rmind 	tspc = &tci->ci_schedstate;
   1402  1.121     rmind 	switch (lstat) {
   1403   1.91     rmind 	case LSRUN:
   1404  1.134     rmind 		l->l_target_cpu = tci;
   1405  1.134     rmind 		break;
   1406   1.91     rmind 	case LSSLEEP:
   1407  1.114     rmind 		l->l_cpu = tci;
   1408   1.91     rmind 		break;
   1409  1.212        ad 	case LSIDL:
   1410   1.91     rmind 	case LSSTOP:
   1411   1.91     rmind 	case LSSUSPENDED:
   1412  1.114     rmind 		l->l_cpu = tci;
   1413  1.114     rmind 		if (l->l_wchan == NULL) {
   1414  1.114     rmind 			lwp_unlock_to(l, tspc->spc_lwplock);
   1415  1.114     rmind 			return;
   1416   1.91     rmind 		}
   1417  1.114     rmind 		break;
   1418   1.91     rmind 	case LSONPROC:
   1419  1.114     rmind 		l->l_target_cpu = tci;
   1420  1.114     rmind 		spc_lock(l->l_cpu);
   1421  1.212        ad 		sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
   1422  1.212        ad 		/* spc now unlocked */
   1423   1.91     rmind 		break;
   1424   1.91     rmind 	}
   1425   1.91     rmind 	lwp_unlock(l);
   1426   1.91     rmind }
   1427   1.91     rmind 
   1428  1.237   thorpej #define	lwp_find_exclude(l)					\
   1429  1.237   thorpej 	((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB)
   1430  1.237   thorpej 
   1431   1.91     rmind /*
   1432   1.94     rmind  * Find the LWP in the process.  Arguments may be zero, in such case,
   1433   1.94     rmind  * the calling process and first LWP in the list will be used.
   1434  1.103        ad  * On success - returns proc locked.
   1435  1.237   thorpej  *
   1436  1.237   thorpej  * => pid == 0 -> look in curproc.
   1437  1.237   thorpej  * => pid == -1 -> match any proc.
   1438  1.237   thorpej  * => otherwise look up the proc.
   1439  1.237   thorpej  *
   1440  1.237   thorpej  * => lid == 0 -> first LWP in the proc
   1441  1.237   thorpej  * => otherwise specific LWP
   1442   1.91     rmind  */
   1443   1.91     rmind struct lwp *
   1444   1.91     rmind lwp_find2(pid_t pid, lwpid_t lid)
   1445   1.91     rmind {
   1446   1.91     rmind 	proc_t *p;
   1447   1.91     rmind 	lwp_t *l;
   1448   1.91     rmind 
   1449  1.237   thorpej 	/* First LWP of specified proc. */
   1450  1.237   thorpej 	if (lid == 0) {
   1451  1.237   thorpej 		switch (pid) {
   1452  1.237   thorpej 		case -1:
   1453  1.237   thorpej 			/* No lookup keys. */
   1454  1.237   thorpej 			return NULL;
   1455  1.237   thorpej 		case 0:
   1456  1.237   thorpej 			p = curproc;
   1457  1.237   thorpej 			mutex_enter(p->p_lock);
   1458  1.237   thorpej 			break;
   1459  1.237   thorpej 		default:
   1460  1.239        ad 			mutex_enter(&proc_lock);
   1461  1.237   thorpej 			p = proc_find(pid);
   1462  1.237   thorpej 			if (__predict_false(p == NULL)) {
   1463  1.239        ad 				mutex_exit(&proc_lock);
   1464  1.237   thorpej 				return NULL;
   1465  1.237   thorpej 			}
   1466  1.237   thorpej 			mutex_enter(p->p_lock);
   1467  1.239        ad 			mutex_exit(&proc_lock);
   1468  1.237   thorpej 			break;
   1469  1.237   thorpej 		}
   1470  1.237   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1471  1.237   thorpej 			if (__predict_true(!lwp_find_exclude(l)))
   1472  1.237   thorpej 				break;
   1473  1.150     rmind 		}
   1474  1.237   thorpej 		goto out;
   1475  1.237   thorpej 	}
   1476  1.237   thorpej 
   1477  1.237   thorpej 	l = proc_find_lwp_acquire_proc(lid, &p);
   1478  1.237   thorpej 	if (l == NULL)
   1479  1.237   thorpej 		return NULL;
   1480  1.237   thorpej 	KASSERT(p != NULL);
   1481  1.237   thorpej 	KASSERT(mutex_owned(p->p_lock));
   1482  1.237   thorpej 
   1483  1.237   thorpej 	if (__predict_false(lwp_find_exclude(l))) {
   1484  1.237   thorpej 		l = NULL;
   1485  1.237   thorpej 		goto out;
   1486  1.150     rmind 	}
   1487  1.237   thorpej 
   1488  1.237   thorpej 	/* Apply proc filter, if applicable. */
   1489  1.237   thorpej 	switch (pid) {
   1490  1.237   thorpej 	case -1:
   1491  1.237   thorpej 		/* Match anything. */
   1492  1.237   thorpej 		break;
   1493  1.237   thorpej 	case 0:
   1494  1.237   thorpej 		if (p != curproc)
   1495  1.237   thorpej 			l = NULL;
   1496  1.237   thorpej 		break;
   1497  1.237   thorpej 	default:
   1498  1.237   thorpej 		if (p->p_pid != pid)
   1499  1.237   thorpej 			l = NULL;
   1500  1.237   thorpej 		break;
   1501   1.94     rmind 	}
   1502  1.237   thorpej 
   1503  1.237   thorpej  out:
   1504  1.237   thorpej 	if (__predict_false(l == NULL)) {
   1505  1.103        ad 		mutex_exit(p->p_lock);
   1506  1.103        ad 	}
   1507   1.91     rmind 	return l;
   1508   1.91     rmind }
   1509   1.91     rmind 
   1510   1.91     rmind /*
   1511  1.168      yamt  * Look up a live LWP within the specified process.
   1512   1.52        ad  *
   1513  1.223        ad  * Must be called with p->p_lock held (as it looks at the radix tree,
   1514  1.223        ad  * and also wants to exclude idle and zombie LWPs).
   1515   1.52        ad  */
   1516   1.52        ad struct lwp *
   1517  1.151       chs lwp_find(struct proc *p, lwpid_t id)
   1518   1.52        ad {
   1519   1.52        ad 	struct lwp *l;
   1520   1.52        ad 
   1521  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1522   1.52        ad 
   1523  1.235   thorpej 	l = proc_find_lwp(p, id);
   1524  1.223        ad 	KASSERT(l == NULL || l->l_lid == id);
   1525   1.52        ad 
   1526   1.52        ad 	/*
   1527   1.52        ad 	 * No need to lock - all of these conditions will
   1528   1.52        ad 	 * be visible with the process level mutex held.
   1529   1.52        ad 	 */
   1530  1.237   thorpej 	if (__predict_false(l != NULL && lwp_find_exclude(l)))
   1531   1.52        ad 		l = NULL;
   1532   1.52        ad 
   1533   1.52        ad 	return l;
   1534   1.52        ad }
   1535   1.52        ad 
   1536   1.52        ad /*
   1537   1.52        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
   1538   1.52        ad  * one we specify.
   1539   1.52        ad  */
   1540   1.52        ad int
   1541   1.52        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
   1542   1.52        ad {
   1543   1.52        ad 	kmutex_t *cur = l->l_mutex;
   1544   1.52        ad 
   1545   1.52        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1546   1.52        ad }
   1547   1.52        ad 
   1548   1.52        ad /*
   1549   1.52        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
   1550   1.52        ad  */
   1551  1.211        ad kmutex_t *
   1552  1.178      matt lwp_setlock(struct lwp *l, kmutex_t *mtx)
   1553   1.52        ad {
   1554  1.211        ad 	kmutex_t *oldmtx = l->l_mutex;
   1555   1.52        ad 
   1556  1.211        ad 	KASSERT(mutex_owned(oldmtx));
   1557   1.52        ad 
   1558  1.248  riastrad 	atomic_store_release(&l->l_mutex, mtx);
   1559  1.211        ad 	return oldmtx;
   1560   1.52        ad }
   1561   1.52        ad 
   1562   1.52        ad /*
   1563   1.52        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1564   1.52        ad  * must be held.
   1565   1.52        ad  */
   1566   1.52        ad void
   1567  1.178      matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
   1568   1.52        ad {
   1569   1.52        ad 	kmutex_t *old;
   1570   1.52        ad 
   1571  1.152     rmind 	KASSERT(lwp_locked(l, NULL));
   1572   1.52        ad 
   1573   1.52        ad 	old = l->l_mutex;
   1574  1.248  riastrad 	atomic_store_release(&l->l_mutex, mtx);
   1575   1.52        ad 	mutex_spin_exit(old);
   1576   1.52        ad }
   1577   1.52        ad 
   1578   1.60      yamt int
   1579   1.60      yamt lwp_trylock(struct lwp *l)
   1580   1.60      yamt {
   1581   1.60      yamt 	kmutex_t *old;
   1582   1.60      yamt 
   1583   1.60      yamt 	for (;;) {
   1584  1.248  riastrad 		if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex)))
   1585   1.60      yamt 			return 0;
   1586  1.248  riastrad 		if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old))
   1587   1.60      yamt 			return 1;
   1588   1.60      yamt 		mutex_spin_exit(old);
   1589   1.60      yamt 	}
   1590   1.60      yamt }
   1591   1.60      yamt 
   1592  1.134     rmind void
   1593  1.211        ad lwp_unsleep(lwp_t *l, bool unlock)
   1594   1.96        ad {
   1595   1.96        ad 
   1596   1.96        ad 	KASSERT(mutex_owned(l->l_mutex));
   1597  1.211        ad 	(*l->l_syncobj->sobj_unsleep)(l, unlock);
   1598   1.96        ad }
   1599   1.96        ad 
   1600   1.52        ad /*
   1601  1.256        ad  * Lock an LWP.
   1602  1.256        ad  */
   1603  1.256        ad void
   1604  1.256        ad lwp_lock(lwp_t *l)
   1605  1.256        ad {
   1606  1.256        ad 	kmutex_t *old = atomic_load_consume(&l->l_mutex);
   1607  1.256        ad 
   1608  1.256        ad 	/*
   1609  1.256        ad 	 * Note: mutex_spin_enter() will have posted a read barrier.
   1610  1.256        ad 	 * Re-test l->l_mutex.  If it has changed, we need to try again.
   1611  1.256        ad 	 */
   1612  1.256        ad 	mutex_spin_enter(old);
   1613  1.256        ad 	while (__predict_false(atomic_load_relaxed(&l->l_mutex) != old)) {
   1614  1.256        ad 		mutex_spin_exit(old);
   1615  1.256        ad 		old = atomic_load_consume(&l->l_mutex);
   1616  1.256        ad 		mutex_spin_enter(old);
   1617  1.256        ad 	}
   1618  1.256        ad }
   1619  1.256        ad 
   1620  1.256        ad /*
   1621  1.256        ad  * Unlock an LWP.
   1622  1.256        ad  */
   1623  1.256        ad void
   1624  1.256        ad lwp_unlock(lwp_t *l)
   1625  1.256        ad {
   1626  1.256        ad 
   1627  1.256        ad 	mutex_spin_exit(l->l_mutex);
   1628  1.256        ad }
   1629  1.256        ad 
   1630  1.256        ad void
   1631  1.256        ad lwp_changepri(lwp_t *l, pri_t pri)
   1632  1.256        ad {
   1633  1.256        ad 
   1634  1.256        ad 	KASSERT(mutex_owned(l->l_mutex));
   1635  1.256        ad 
   1636  1.256        ad 	if (l->l_priority == pri)
   1637  1.256        ad 		return;
   1638  1.256        ad 
   1639  1.256        ad 	(*l->l_syncobj->sobj_changepri)(l, pri);
   1640  1.256        ad 	KASSERT(l->l_priority == pri);
   1641  1.256        ad }
   1642  1.256        ad 
   1643  1.256        ad void
   1644  1.256        ad lwp_lendpri(lwp_t *l, pri_t pri)
   1645  1.256        ad {
   1646  1.256        ad 	KASSERT(mutex_owned(l->l_mutex));
   1647  1.256        ad 
   1648  1.256        ad 	(*l->l_syncobj->sobj_lendpri)(l, pri);
   1649  1.256        ad 	KASSERT(l->l_inheritedprio == pri);
   1650  1.256        ad }
   1651  1.256        ad 
   1652  1.256        ad pri_t
   1653  1.256        ad lwp_eprio(lwp_t *l)
   1654  1.256        ad {
   1655  1.256        ad 	pri_t pri = l->l_priority;
   1656  1.256        ad 
   1657  1.256        ad 	KASSERT(mutex_owned(l->l_mutex));
   1658  1.256        ad 
   1659  1.256        ad 	/*
   1660  1.256        ad 	 * Timeshared/user LWPs get a temporary priority boost for blocking
   1661  1.256        ad 	 * in kernel.  This is key to good interactive response on a loaded
   1662  1.256        ad 	 * system: without it, things will seem very sluggish to the user.
   1663  1.256        ad 	 *
   1664  1.256        ad 	 * The function of the boost is to get the LWP onto a CPU and
   1665  1.256        ad 	 * running quickly.  Once that happens the LWP loses the priority
   1666  1.256        ad 	 * boost and could be preempted very quickly by another LWP but that
   1667  1.256        ad 	 * won't happen often enough to be a annoyance.
   1668  1.256        ad 	 */
   1669  1.257        ad 	if (pri <= MAXPRI_USER && l->l_boostpri > MAXPRI_USER)
   1670  1.257        ad 		pri = (pri >> 1) + l->l_boostpri;
   1671  1.256        ad 
   1672  1.256        ad 	return MAX(l->l_auxprio, pri);
   1673  1.256        ad }
   1674  1.256        ad 
   1675  1.256        ad /*
   1676   1.56     pavel  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1677  1.256        ad  * set or a preemption is required.
   1678   1.52        ad  */
   1679   1.52        ad void
   1680   1.52        ad lwp_userret(struct lwp *l)
   1681   1.52        ad {
   1682   1.52        ad 	struct proc *p;
   1683  1.256        ad 	int sig, f;
   1684   1.52        ad 
   1685  1.114     rmind 	KASSERT(l == curlwp);
   1686  1.114     rmind 	KASSERT(l->l_stat == LSONPROC);
   1687   1.52        ad 	p = l->l_proc;
   1688   1.52        ad 
   1689  1.256        ad 	for (;;) {
   1690  1.256        ad 		/*
   1691  1.256        ad 		 * This is the main location that user preemptions are
   1692  1.256        ad 		 * processed.
   1693  1.256        ad 		 */
   1694  1.256        ad 		preempt_point();
   1695  1.256        ad 
   1696  1.256        ad 		/*
   1697  1.256        ad 		 * It is safe to do this unlocked and without raised SPL,
   1698  1.256        ad 		 * since whenever a flag of interest is added to l_flag the
   1699  1.256        ad 		 * LWP will take an AST and come down this path again.  If a
   1700  1.256        ad 		 * remote CPU posts the AST, it will be done with an IPI
   1701  1.256        ad 		 * (strongly synchronising).
   1702  1.256        ad 		 */
   1703  1.256        ad 		if ((f = atomic_load_relaxed(&l->l_flag) & LW_USERRET) == 0) {
   1704  1.256        ad 			return;
   1705  1.256        ad 		}
   1706  1.256        ad 
   1707   1.52        ad 		/*
   1708  1.265        ad 		 * Start out with the correct credentials.
   1709  1.265        ad 		 */
   1710  1.265        ad 		if ((f & LW_CACHECRED) != 0) {
   1711  1.265        ad 			kauth_cred_t oc = l->l_cred;
   1712  1.265        ad 			mutex_enter(p->p_lock);
   1713  1.265        ad 			l->l_cred = kauth_cred_hold(p->p_cred);
   1714  1.265        ad 			lwp_lock(l);
   1715  1.265        ad 			l->l_flag &= ~LW_CACHECRED;
   1716  1.265        ad 			lwp_unlock(l);
   1717  1.265        ad 			mutex_exit(p->p_lock);
   1718  1.265        ad 			kauth_cred_free(oc);
   1719  1.265        ad 		}
   1720  1.265        ad 
   1721  1.265        ad 		/*
   1722   1.52        ad 		 * Process pending signals first, unless the process
   1723   1.61        ad 		 * is dumping core or exiting, where we will instead
   1724  1.101     rmind 		 * enter the LW_WSUSPEND case below.
   1725   1.52        ad 		 */
   1726  1.256        ad 		if ((f & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == LW_PENDSIG) {
   1727  1.103        ad 			mutex_enter(p->p_lock);
   1728   1.52        ad 			while ((sig = issignal(l)) != 0)
   1729   1.52        ad 				postsig(sig);
   1730  1.103        ad 			mutex_exit(p->p_lock);
   1731  1.256        ad 			continue;
   1732   1.52        ad 		}
   1733   1.52        ad 
   1734   1.52        ad 		/*
   1735   1.52        ad 		 * Core-dump or suspend pending.
   1736   1.52        ad 		 *
   1737  1.159      matt 		 * In case of core dump, suspend ourselves, so that the kernel
   1738  1.159      matt 		 * stack and therefore the userland registers saved in the
   1739  1.159      matt 		 * trapframe are around for coredump() to write them out.
   1740  1.159      matt 		 * We also need to save any PCU resources that we have so that
   1741  1.159      matt 		 * they accessible for coredump().  We issue a wakeup on
   1742  1.159      matt 		 * p->p_lwpcv so that sigexit() will write the core file out
   1743  1.159      matt 		 * once all other LWPs are suspended.
   1744   1.52        ad 		 */
   1745  1.256        ad 		if ((f & LW_WSUSPEND) != 0) {
   1746  1.159      matt 			pcu_save_all(l);
   1747  1.103        ad 			mutex_enter(p->p_lock);
   1748   1.52        ad 			p->p_nrlwps--;
   1749   1.52        ad 			lwp_lock(l);
   1750   1.52        ad 			l->l_stat = LSSUSPENDED;
   1751  1.104        ad 			lwp_unlock(l);
   1752  1.103        ad 			mutex_exit(p->p_lock);
   1753  1.262        ad 			cv_broadcast(&p->p_lwpcv);
   1754  1.104        ad 			lwp_lock(l);
   1755  1.217        ad 			spc_lock(l->l_cpu);
   1756   1.64      yamt 			mi_switch(l);
   1757  1.256        ad 			continue;
   1758   1.52        ad 		}
   1759   1.52        ad 
   1760  1.256        ad 		/*
   1761  1.256        ad 		 * Process is exiting.  The core dump and signal cases must
   1762  1.256        ad 		 * be handled first.
   1763  1.256        ad 		 */
   1764  1.256        ad 		if ((f & LW_WEXIT) != 0) {
   1765   1.52        ad 			lwp_exit(l);
   1766   1.52        ad 			KASSERT(0);
   1767   1.52        ad 			/* NOTREACHED */
   1768   1.52        ad 		}
   1769  1.156     pooka 
   1770  1.256        ad 		/*
   1771  1.256        ad 		 * Update lwpctl processor (for vfork child_return).
   1772  1.256        ad 		 */
   1773  1.256        ad 		if ((f & LW_LWPCTL) != 0) {
   1774  1.156     pooka 			lwp_lock(l);
   1775  1.156     pooka 			KASSERT(kpreempt_disabled());
   1776  1.156     pooka 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1777  1.156     pooka 			l->l_lwpctl->lc_pctr++;
   1778  1.156     pooka 			l->l_flag &= ~LW_LWPCTL;
   1779  1.156     pooka 			lwp_unlock(l);
   1780  1.256        ad 			continue;
   1781  1.156     pooka 		}
   1782   1.52        ad 	}
   1783   1.52        ad }
   1784   1.52        ad 
   1785   1.52        ad /*
   1786   1.52        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1787   1.52        ad  */
   1788   1.52        ad void
   1789   1.52        ad lwp_need_userret(struct lwp *l)
   1790   1.52        ad {
   1791  1.209        ad 
   1792  1.209        ad 	KASSERT(!cpu_intr_p());
   1793  1.259        ad 	KASSERT(lwp_locked(l, NULL) || l->l_stat == LSIDL);
   1794   1.52        ad 
   1795   1.52        ad 	/*
   1796  1.209        ad 	 * If the LWP is in any state other than LSONPROC, we know that it
   1797  1.209        ad 	 * is executing in-kernel and will hit userret() on the way out.
   1798  1.209        ad 	 *
   1799  1.209        ad 	 * If the LWP is curlwp, then we know we'll be back out to userspace
   1800  1.209        ad 	 * soon (can't be called from a hardware interrupt here).
   1801  1.209        ad 	 *
   1802  1.209        ad 	 * Otherwise, we can't be sure what the LWP is doing, so first make
   1803  1.209        ad 	 * sure the update to l_flag will be globally visible, and then
   1804  1.209        ad 	 * force the LWP to take a trip through trap() where it will do
   1805  1.209        ad 	 * userret().
   1806  1.209        ad 	 */
   1807  1.209        ad 	if (l->l_stat == LSONPROC && l != curlwp) {
   1808  1.209        ad 		membar_producer();
   1809  1.209        ad 		cpu_signotify(l);
   1810  1.209        ad 	}
   1811   1.52        ad }
   1812   1.52        ad 
   1813   1.52        ad /*
   1814   1.52        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1815   1.52        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1816   1.52        ad  */
   1817   1.52        ad void
   1818   1.52        ad lwp_addref(struct lwp *l)
   1819   1.52        ad {
   1820  1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1821  1.237   thorpej 	KASSERT(l->l_stat != LSZOMB);
   1822  1.237   thorpej 	l->l_refcnt++;
   1823   1.52        ad }
   1824   1.52        ad 
   1825   1.52        ad /*
   1826   1.52        ad  * Remove one reference to an LWP.  If this is the last reference,
   1827   1.52        ad  * then we must finalize the LWP's death.
   1828   1.52        ad  */
   1829   1.52        ad void
   1830   1.52        ad lwp_delref(struct lwp *l)
   1831   1.52        ad {
   1832   1.52        ad 	struct proc *p = l->l_proc;
   1833   1.52        ad 
   1834  1.103        ad 	mutex_enter(p->p_lock);
   1835  1.142  christos 	lwp_delref2(l);
   1836  1.142  christos 	mutex_exit(p->p_lock);
   1837  1.142  christos }
   1838  1.142  christos 
   1839  1.142  christos /*
   1840  1.142  christos  * Remove one reference to an LWP.  If this is the last reference,
   1841  1.142  christos  * then we must finalize the LWP's death.  The proc mutex is held
   1842  1.142  christos  * on entry.
   1843  1.142  christos  */
   1844  1.142  christos void
   1845  1.142  christos lwp_delref2(struct lwp *l)
   1846  1.142  christos {
   1847  1.142  christos 	struct proc *p = l->l_proc;
   1848  1.142  christos 
   1849  1.142  christos 	KASSERT(mutex_owned(p->p_lock));
   1850   1.72        ad 	KASSERT(l->l_stat != LSZOMB);
   1851  1.237   thorpej 	KASSERT(l->l_refcnt > 0);
   1852  1.231        ad 
   1853  1.237   thorpej 	if (--l->l_refcnt == 0)
   1854   1.76        ad 		cv_broadcast(&p->p_lwpcv);
   1855   1.52        ad }
   1856   1.52        ad 
   1857   1.52        ad /*
   1858  1.233   thorpej  * Drain all references to the current LWP.  Returns true if
   1859  1.233   thorpej  * we blocked.
   1860   1.52        ad  */
   1861  1.233   thorpej bool
   1862   1.52        ad lwp_drainrefs(struct lwp *l)
   1863   1.52        ad {
   1864   1.52        ad 	struct proc *p = l->l_proc;
   1865  1.233   thorpej 	bool rv = false;
   1866   1.52        ad 
   1867  1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1868   1.52        ad 
   1869  1.233   thorpej 	l->l_prflag |= LPR_DRAINING;
   1870  1.233   thorpej 
   1871  1.237   thorpej 	while (l->l_refcnt > 0) {
   1872  1.233   thorpej 		rv = true;
   1873  1.103        ad 		cv_wait(&p->p_lwpcv, p->p_lock);
   1874  1.233   thorpej 	}
   1875  1.233   thorpej 	return rv;
   1876   1.37        ad }
   1877   1.41   thorpej 
   1878   1.41   thorpej /*
   1879  1.127        ad  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1880  1.127        ad  * be held.
   1881  1.127        ad  */
   1882  1.127        ad bool
   1883  1.127        ad lwp_alive(lwp_t *l)
   1884  1.127        ad {
   1885  1.127        ad 
   1886  1.127        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1887  1.127        ad 
   1888  1.127        ad 	switch (l->l_stat) {
   1889  1.127        ad 	case LSSLEEP:
   1890  1.127        ad 	case LSRUN:
   1891  1.127        ad 	case LSONPROC:
   1892  1.127        ad 	case LSSTOP:
   1893  1.127        ad 	case LSSUSPENDED:
   1894  1.127        ad 		return true;
   1895  1.127        ad 	default:
   1896  1.127        ad 		return false;
   1897  1.127        ad 	}
   1898  1.127        ad }
   1899  1.127        ad 
   1900  1.127        ad /*
   1901  1.127        ad  * Return first live LWP in the process.
   1902  1.127        ad  */
   1903  1.127        ad lwp_t *
   1904  1.127        ad lwp_find_first(proc_t *p)
   1905  1.127        ad {
   1906  1.127        ad 	lwp_t *l;
   1907  1.127        ad 
   1908  1.127        ad 	KASSERT(mutex_owned(p->p_lock));
   1909  1.127        ad 
   1910  1.127        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1911  1.127        ad 		if (lwp_alive(l)) {
   1912  1.127        ad 			return l;
   1913  1.127        ad 		}
   1914  1.127        ad 	}
   1915  1.127        ad 
   1916  1.127        ad 	return NULL;
   1917  1.127        ad }
   1918  1.127        ad 
   1919  1.127        ad /*
   1920   1.78        ad  * Allocate a new lwpctl structure for a user LWP.
   1921   1.78        ad  */
   1922   1.78        ad int
   1923   1.78        ad lwp_ctl_alloc(vaddr_t *uaddr)
   1924   1.78        ad {
   1925   1.78        ad 	lcproc_t *lp;
   1926   1.78        ad 	u_int bit, i, offset;
   1927   1.78        ad 	struct uvm_object *uao;
   1928   1.78        ad 	int error;
   1929   1.78        ad 	lcpage_t *lcp;
   1930   1.78        ad 	proc_t *p;
   1931   1.78        ad 	lwp_t *l;
   1932   1.78        ad 
   1933   1.78        ad 	l = curlwp;
   1934   1.78        ad 	p = l->l_proc;
   1935   1.78        ad 
   1936  1.156     pooka 	/* don't allow a vforked process to create lwp ctls */
   1937  1.156     pooka 	if (p->p_lflag & PL_PPWAIT)
   1938  1.156     pooka 		return EBUSY;
   1939  1.156     pooka 
   1940   1.81        ad 	if (l->l_lcpage != NULL) {
   1941   1.81        ad 		lcp = l->l_lcpage;
   1942   1.81        ad 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1943  1.143     njoly 		return 0;
   1944   1.81        ad 	}
   1945   1.78        ad 
   1946   1.78        ad 	/* First time around, allocate header structure for the process. */
   1947   1.78        ad 	if ((lp = p->p_lwpctl) == NULL) {
   1948   1.78        ad 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1949   1.78        ad 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1950   1.78        ad 		lp->lp_uao = NULL;
   1951   1.78        ad 		TAILQ_INIT(&lp->lp_pages);
   1952  1.103        ad 		mutex_enter(p->p_lock);
   1953   1.78        ad 		if (p->p_lwpctl == NULL) {
   1954   1.78        ad 			p->p_lwpctl = lp;
   1955  1.103        ad 			mutex_exit(p->p_lock);
   1956   1.78        ad 		} else {
   1957  1.103        ad 			mutex_exit(p->p_lock);
   1958   1.78        ad 			mutex_destroy(&lp->lp_lock);
   1959   1.78        ad 			kmem_free(lp, sizeof(*lp));
   1960   1.78        ad 			lp = p->p_lwpctl;
   1961   1.78        ad 		}
   1962   1.78        ad 	}
   1963   1.78        ad 
   1964   1.78        ad  	/*
   1965   1.78        ad  	 * Set up an anonymous memory region to hold the shared pages.
   1966   1.78        ad  	 * Map them into the process' address space.  The user vmspace
   1967   1.78        ad  	 * gets the first reference on the UAO.
   1968   1.78        ad  	 */
   1969   1.78        ad 	mutex_enter(&lp->lp_lock);
   1970   1.78        ad 	if (lp->lp_uao == NULL) {
   1971   1.78        ad 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1972   1.78        ad 		lp->lp_cur = 0;
   1973   1.78        ad 		lp->lp_max = LWPCTL_UAREA_SZ;
   1974   1.78        ad 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1975  1.182    martin 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
   1976  1.182    martin 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1977   1.78        ad 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1978   1.78        ad 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1979   1.78        ad 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1980   1.78        ad 		if (error != 0) {
   1981   1.78        ad 			uao_detach(lp->lp_uao);
   1982   1.78        ad 			lp->lp_uao = NULL;
   1983   1.78        ad 			mutex_exit(&lp->lp_lock);
   1984   1.78        ad 			return error;
   1985   1.78        ad 		}
   1986   1.78        ad 	}
   1987   1.78        ad 
   1988   1.78        ad 	/* Get a free block and allocate for this LWP. */
   1989   1.78        ad 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1990   1.78        ad 		if (lcp->lcp_nfree != 0)
   1991   1.78        ad 			break;
   1992   1.78        ad 	}
   1993   1.78        ad 	if (lcp == NULL) {
   1994   1.78        ad 		/* Nothing available - try to set up a free page. */
   1995   1.78        ad 		if (lp->lp_cur == lp->lp_max) {
   1996   1.78        ad 			mutex_exit(&lp->lp_lock);
   1997   1.78        ad 			return ENOMEM;
   1998   1.78        ad 		}
   1999   1.78        ad 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   2000  1.189       chs 
   2001   1.78        ad 		/*
   2002   1.78        ad 		 * Wire the next page down in kernel space.  Since this
   2003   1.78        ad 		 * is a new mapping, we must add a reference.
   2004   1.78        ad 		 */
   2005   1.78        ad 		uao = lp->lp_uao;
   2006   1.78        ad 		(*uao->pgops->pgo_reference)(uao);
   2007   1.99        ad 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   2008   1.78        ad 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   2009   1.78        ad 		    uao, lp->lp_cur, PAGE_SIZE,
   2010   1.78        ad 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   2011   1.78        ad 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   2012   1.78        ad 		if (error != 0) {
   2013   1.78        ad 			mutex_exit(&lp->lp_lock);
   2014   1.78        ad 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   2015   1.78        ad 			(*uao->pgops->pgo_detach)(uao);
   2016   1.78        ad 			return error;
   2017   1.78        ad 		}
   2018   1.89      yamt 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   2019   1.89      yamt 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   2020   1.89      yamt 		if (error != 0) {
   2021   1.89      yamt 			mutex_exit(&lp->lp_lock);
   2022   1.89      yamt 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   2023   1.89      yamt 			    lcp->lcp_kaddr + PAGE_SIZE);
   2024   1.89      yamt 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   2025   1.89      yamt 			return error;
   2026   1.89      yamt 		}
   2027   1.78        ad 		/* Prepare the page descriptor and link into the list. */
   2028   1.78        ad 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   2029   1.78        ad 		lp->lp_cur += PAGE_SIZE;
   2030   1.78        ad 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   2031   1.78        ad 		lcp->lcp_rotor = 0;
   2032   1.78        ad 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   2033   1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   2034   1.78        ad 	}
   2035   1.78        ad 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   2036   1.78        ad 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   2037   1.78        ad 			i = 0;
   2038   1.78        ad 	}
   2039   1.78        ad 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   2040  1.193     kamil 	lcp->lcp_bitmap[i] ^= (1U << bit);
   2041   1.78        ad 	lcp->lcp_rotor = i;
   2042   1.78        ad 	lcp->lcp_nfree--;
   2043   1.78        ad 	l->l_lcpage = lcp;
   2044   1.78        ad 	offset = (i << 5) + bit;
   2045   1.78        ad 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   2046   1.78        ad 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   2047   1.78        ad 	mutex_exit(&lp->lp_lock);
   2048   1.78        ad 
   2049  1.107        ad 	KPREEMPT_DISABLE(l);
   2050  1.195     skrll 	l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
   2051  1.107        ad 	KPREEMPT_ENABLE(l);
   2052   1.78        ad 
   2053   1.78        ad 	return 0;
   2054   1.78        ad }
   2055   1.78        ad 
   2056   1.78        ad /*
   2057   1.78        ad  * Free an lwpctl structure back to the per-process list.
   2058   1.78        ad  */
   2059   1.78        ad void
   2060   1.78        ad lwp_ctl_free(lwp_t *l)
   2061   1.78        ad {
   2062  1.156     pooka 	struct proc *p = l->l_proc;
   2063   1.78        ad 	lcproc_t *lp;
   2064   1.78        ad 	lcpage_t *lcp;
   2065   1.78        ad 	u_int map, offset;
   2066   1.78        ad 
   2067  1.156     pooka 	/* don't free a lwp context we borrowed for vfork */
   2068  1.156     pooka 	if (p->p_lflag & PL_PPWAIT) {
   2069  1.156     pooka 		l->l_lwpctl = NULL;
   2070  1.156     pooka 		return;
   2071  1.156     pooka 	}
   2072  1.156     pooka 
   2073  1.156     pooka 	lp = p->p_lwpctl;
   2074   1.78        ad 	KASSERT(lp != NULL);
   2075   1.78        ad 
   2076   1.78        ad 	lcp = l->l_lcpage;
   2077   1.78        ad 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   2078   1.78        ad 	KASSERT(offset < LWPCTL_PER_PAGE);
   2079   1.78        ad 
   2080   1.78        ad 	mutex_enter(&lp->lp_lock);
   2081   1.78        ad 	lcp->lcp_nfree++;
   2082   1.78        ad 	map = offset >> 5;
   2083  1.194     kamil 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
   2084   1.78        ad 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   2085   1.78        ad 		lcp->lcp_rotor = map;
   2086   1.78        ad 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   2087   1.78        ad 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   2088   1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   2089   1.78        ad 	}
   2090   1.78        ad 	mutex_exit(&lp->lp_lock);
   2091   1.78        ad }
   2092   1.78        ad 
   2093   1.78        ad /*
   2094   1.78        ad  * Process is exiting; tear down lwpctl state.  This can only be safely
   2095   1.78        ad  * called by the last LWP in the process.
   2096   1.78        ad  */
   2097   1.78        ad void
   2098   1.78        ad lwp_ctl_exit(void)
   2099   1.78        ad {
   2100   1.78        ad 	lcpage_t *lcp, *next;
   2101   1.78        ad 	lcproc_t *lp;
   2102   1.78        ad 	proc_t *p;
   2103   1.78        ad 	lwp_t *l;
   2104   1.78        ad 
   2105   1.78        ad 	l = curlwp;
   2106   1.78        ad 	l->l_lwpctl = NULL;
   2107   1.95        ad 	l->l_lcpage = NULL;
   2108   1.78        ad 	p = l->l_proc;
   2109   1.78        ad 	lp = p->p_lwpctl;
   2110   1.78        ad 
   2111   1.78        ad 	KASSERT(lp != NULL);
   2112   1.78        ad 	KASSERT(p->p_nlwps == 1);
   2113   1.78        ad 
   2114   1.78        ad 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   2115   1.78        ad 		next = TAILQ_NEXT(lcp, lcp_chain);
   2116   1.78        ad 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   2117   1.78        ad 		    lcp->lcp_kaddr + PAGE_SIZE);
   2118   1.78        ad 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   2119   1.78        ad 	}
   2120   1.78        ad 
   2121   1.78        ad 	if (lp->lp_uao != NULL) {
   2122   1.78        ad 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   2123   1.78        ad 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   2124   1.78        ad 	}
   2125   1.78        ad 
   2126   1.78        ad 	mutex_destroy(&lp->lp_lock);
   2127   1.78        ad 	kmem_free(lp, sizeof(*lp));
   2128   1.78        ad 	p->p_lwpctl = NULL;
   2129   1.78        ad }
   2130   1.84      yamt 
   2131  1.130        ad /*
   2132  1.130        ad  * Return the current LWP's "preemption counter".  Used to detect
   2133  1.130        ad  * preemption across operations that can tolerate preemption without
   2134  1.130        ad  * crashing, but which may generate incorrect results if preempted.
   2135  1.264  riastrad  *
   2136  1.264  riastrad  * We do arithmetic in unsigned long to avoid undefined behaviour in
   2137  1.264  riastrad  * the event of arithmetic overflow on LP32, and issue __insn_barrier()
   2138  1.264  riastrad  * on both sides so this can safely be used to detect changes to the
   2139  1.264  riastrad  * preemption counter in loops around other memory accesses even in the
   2140  1.264  riastrad  * event of whole-program optimization (e.g., gcc -flto).
   2141  1.130        ad  */
   2142  1.258        ad long
   2143  1.130        ad lwp_pctr(void)
   2144  1.130        ad {
   2145  1.264  riastrad 	unsigned long pctr;
   2146  1.130        ad 
   2147  1.264  riastrad 	__insn_barrier();
   2148  1.264  riastrad 	pctr = curlwp->l_ru.ru_nvcsw;
   2149  1.264  riastrad 	pctr += curlwp->l_ru.ru_nivcsw;
   2150  1.264  riastrad 	__insn_barrier();
   2151  1.264  riastrad 	return pctr;
   2152  1.130        ad }
   2153  1.130        ad 
   2154  1.151       chs /*
   2155  1.151       chs  * Set an LWP's private data pointer.
   2156  1.151       chs  */
   2157  1.151       chs int
   2158  1.151       chs lwp_setprivate(struct lwp *l, void *ptr)
   2159  1.151       chs {
   2160  1.151       chs 	int error = 0;
   2161  1.151       chs 
   2162  1.151       chs 	l->l_private = ptr;
   2163  1.151       chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
   2164  1.151       chs 	error = cpu_lwp_setprivate(l, ptr);
   2165  1.151       chs #endif
   2166  1.151       chs 	return error;
   2167  1.151       chs }
   2168  1.151       chs 
   2169  1.233   thorpej /*
   2170  1.233   thorpej  * Perform any thread-related cleanup on LWP exit.
   2171  1.233   thorpej  * N.B. l->l_proc->p_lock must be HELD on entry but will
   2172  1.233   thorpej  * be released before returning!
   2173  1.233   thorpej  */
   2174  1.233   thorpej void
   2175  1.233   thorpej lwp_thread_cleanup(struct lwp *l)
   2176  1.233   thorpej {
   2177  1.233   thorpej 
   2178  1.233   thorpej 	KASSERT(mutex_owned(l->l_proc->p_lock));
   2179  1.235   thorpej 	mutex_exit(l->l_proc->p_lock);
   2180  1.236   thorpej 
   2181  1.236   thorpej 	/*
   2182  1.236   thorpej 	 * If the LWP has robust futexes, release them all
   2183  1.236   thorpej 	 * now.
   2184  1.236   thorpej 	 */
   2185  1.236   thorpej 	if (__predict_false(l->l_robust_head != 0)) {
   2186  1.244   thorpej 		futex_release_all_lwp(l);
   2187  1.236   thorpej 	}
   2188  1.233   thorpej }
   2189  1.233   thorpej 
   2190   1.84      yamt #if defined(DDB)
   2191  1.153     rmind #include <machine/pcb.h>
   2192  1.153     rmind 
   2193   1.84      yamt void
   2194   1.84      yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2195   1.84      yamt {
   2196   1.84      yamt 	lwp_t *l;
   2197   1.84      yamt 
   2198   1.84      yamt 	LIST_FOREACH(l, &alllwp, l_list) {
   2199   1.84      yamt 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   2200   1.84      yamt 
   2201   1.84      yamt 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   2202   1.84      yamt 			continue;
   2203   1.84      yamt 		}
   2204   1.84      yamt 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   2205   1.84      yamt 		    (void *)addr, (void *)stack,
   2206   1.84      yamt 		    (size_t)(addr - stack), l);
   2207   1.84      yamt 	}
   2208   1.84      yamt }
   2209   1.84      yamt #endif /* defined(DDB) */
   2210