Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.269.2.1
      1  1.269.2.1  perseant /*	$NetBSD: kern_lwp.c,v 1.269.2.1 2025/08/02 05:57:41 perseant Exp $	*/
      2        1.2   thorpej 
      3        1.2   thorpej /*-
      4      1.255        ad  * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5      1.220        ad  *     The NetBSD Foundation, Inc.
      6        1.2   thorpej  * All rights reserved.
      7        1.2   thorpej  *
      8        1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      9       1.52        ad  * by Nathan J. Williams, and Andrew Doran.
     10        1.2   thorpej  *
     11        1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     12        1.2   thorpej  * modification, are permitted provided that the following conditions
     13        1.2   thorpej  * are met:
     14        1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     15        1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     16        1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18        1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     19        1.2   thorpej  *
     20        1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21        1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22        1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23        1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24        1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25        1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26        1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27        1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28        1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29        1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30        1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31        1.2   thorpej  */
     32        1.9     lukem 
     33       1.52        ad /*
     34       1.52        ad  * Overview
     35       1.52        ad  *
     36       1.66        ad  *	Lightweight processes (LWPs) are the basic unit or thread of
     37       1.52        ad  *	execution within the kernel.  The core state of an LWP is described
     38       1.66        ad  *	by "struct lwp", also known as lwp_t.
     39       1.52        ad  *
     40       1.52        ad  *	Each LWP is contained within a process (described by "struct proc"),
     41       1.52        ad  *	Every process contains at least one LWP, but may contain more.  The
     42       1.52        ad  *	process describes attributes shared among all of its LWPs such as a
     43       1.52        ad  *	private address space, global execution state (stopped, active,
     44       1.52        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     45       1.66        ad  *	machine, multiple LWPs be executing concurrently in the kernel.
     46       1.52        ad  *
     47       1.52        ad  * Execution states
     48       1.52        ad  *
     49       1.52        ad  *	At any given time, an LWP has overall state that is described by
     50       1.52        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     51       1.52        ad  *	set is guaranteed to represent the absolute, current state of the
     52       1.52        ad  *	LWP:
     53      1.101     rmind  *
     54      1.101     rmind  *	LSONPROC
     55      1.101     rmind  *
     56      1.101     rmind  *		On processor: the LWP is executing on a CPU, either in the
     57      1.101     rmind  *		kernel or in user space.
     58      1.101     rmind  *
     59      1.101     rmind  *	LSRUN
     60      1.101     rmind  *
     61      1.101     rmind  *		Runnable: the LWP is parked on a run queue, and may soon be
     62      1.101     rmind  *		chosen to run by an idle processor, or by a processor that
     63      1.268    andvar  *		has been asked to preempt a currently running but lower
     64      1.134     rmind  *		priority LWP.
     65      1.101     rmind  *
     66      1.101     rmind  *	LSIDL
     67      1.101     rmind  *
     68      1.238        ad  *		Idle: the LWP has been created but has not yet executed, or
     69      1.238        ad  *		it has ceased executing a unit of work and is waiting to be
     70      1.238        ad  *		started again.  This state exists so that the LWP can occupy
     71      1.238        ad  *		a slot in the process & PID table, but without having to
     72      1.238        ad  *		worry about being touched; lookups of the LWP by ID will
     73      1.238        ad  *		fail while in this state.  The LWP will become visible for
     74      1.238        ad  *		lookup once its state transitions further.  Some special
     75      1.238        ad  *		kernel threads also (ab)use this state to indicate that they
     76      1.238        ad  *		are idle (soft interrupts and idle LWPs).
     77      1.101     rmind  *
     78      1.101     rmind  *	LSSUSPENDED:
     79      1.101     rmind  *
     80      1.101     rmind  *		Suspended: the LWP has had its execution suspended by
     81       1.52        ad  *		another LWP in the same process using the _lwp_suspend()
     82       1.52        ad  *		system call.  User-level LWPs also enter the suspended
     83       1.52        ad  *		state when the system is shutting down.
     84       1.52        ad  *
     85       1.52        ad  *	The second set represent a "statement of intent" on behalf of the
     86       1.52        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     87       1.66        ad  *	sleeping or idle. It is expected to take the necessary action to
     88      1.101     rmind  *	stop executing or become "running" again within a short timeframe.
     89      1.227        ad  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     90      1.101     rmind  *	Importantly, it indicates that its state is tied to a CPU.
     91      1.101     rmind  *
     92      1.101     rmind  *	LSZOMB:
     93      1.101     rmind  *
     94      1.101     rmind  *		Dead or dying: the LWP has released most of its resources
     95      1.129        ad  *		and is about to switch away into oblivion, or has already
     96       1.66        ad  *		switched away.  When it switches away, its few remaining
     97       1.66        ad  *		resources can be collected.
     98      1.101     rmind  *
     99      1.101     rmind  *	LSSLEEP:
    100      1.101     rmind  *
    101      1.101     rmind  *		Sleeping: the LWP has entered itself onto a sleep queue, and
    102      1.101     rmind  *		has switched away or will switch away shortly to allow other
    103       1.66        ad  *		LWPs to run on the CPU.
    104      1.101     rmind  *
    105      1.101     rmind  *	LSSTOP:
    106      1.101     rmind  *
    107      1.101     rmind  *		Stopped: the LWP has been stopped as a result of a job
    108      1.101     rmind  *		control signal, or as a result of the ptrace() interface.
    109      1.101     rmind  *
    110      1.101     rmind  *		Stopped LWPs may run briefly within the kernel to handle
    111      1.101     rmind  *		signals that they receive, but will not return to user space
    112      1.101     rmind  *		until their process' state is changed away from stopped.
    113      1.101     rmind  *
    114      1.101     rmind  *		Single LWPs within a process can not be set stopped
    115      1.101     rmind  *		selectively: all actions that can stop or continue LWPs
    116      1.101     rmind  *		occur at the process level.
    117      1.101     rmind  *
    118       1.52        ad  * State transitions
    119       1.52        ad  *
    120       1.66        ad  *	Note that the LSSTOP state may only be set when returning to
    121       1.66        ad  *	user space in userret(), or when sleeping interruptably.  The
    122       1.66        ad  *	LSSUSPENDED state may only be set in userret().  Before setting
    123       1.66        ad  *	those states, we try to ensure that the LWPs will release all
    124       1.66        ad  *	locks that they hold, and at a minimum try to ensure that the
    125       1.66        ad  *	LWP can be set runnable again by a signal.
    126       1.52        ad  *
    127       1.52        ad  *	LWPs may transition states in the following ways:
    128       1.52        ad  *
    129       1.52        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    130      1.129        ad  *		    				    > SLEEP
    131      1.129        ad  *		    				    > STOPPED
    132       1.52        ad  *						    > SUSPENDED
    133       1.52        ad  *						    > ZOMB
    134      1.129        ad  *						    > IDL (special cases)
    135       1.52        ad  *
    136       1.52        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137      1.129        ad  *	            > SLEEP
    138       1.52        ad  *
    139       1.52        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140      1.101     rmind  *		    > RUN			    > SUSPENDED
    141      1.101     rmind  *		    > STOPPED			    > STOPPED
    142      1.129        ad  *						    > ONPROC (special cases)
    143       1.52        ad  *
    144      1.129        ad  *	Some state transitions are only possible with kernel threads (eg
    145      1.129        ad  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    146      1.129        ad  *	free of unwanted side effects.
    147       1.66        ad  *
    148      1.114     rmind  * Migration
    149      1.114     rmind  *
    150      1.114     rmind  *	Migration of threads from one CPU to another could be performed
    151      1.114     rmind  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    152      1.114     rmind  *	functions.  The universal lwp_migrate() function should be used for
    153      1.114     rmind  *	any other cases.  Subsystems in the kernel must be aware that CPU
    154      1.114     rmind  *	of LWP may change, while it is not locked.
    155      1.114     rmind  *
    156       1.52        ad  * Locking
    157       1.52        ad  *
    158       1.52        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    159       1.66        ad  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    160       1.52        ad  *	each field are documented in sys/lwp.h.
    161       1.52        ad  *
    162       1.66        ad  *	State transitions must be made with the LWP's general lock held,
    163      1.152     rmind  *	and may cause the LWP's lock pointer to change.  Manipulation of
    164       1.66        ad  *	the general lock is not performed directly, but through calls to
    165      1.152     rmind  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    166      1.152     rmind  *	adaptive locks are not allowed to be released while the LWP's lock
    167      1.152     rmind  *	is being held (unlike for other spin-locks).
    168       1.52        ad  *
    169       1.52        ad  *	States and their associated locks:
    170       1.52        ad  *
    171  1.269.2.1  perseant  *	LSIDL, LSONPROC, LSZOMB, LSSUSPENDED:
    172       1.52        ad  *
    173      1.212        ad  *		Always covered by spc_lwplock, which protects LWPs not
    174      1.212        ad  *		associated with any other sync object.  This is a per-CPU
    175      1.212        ad  *		lock and matches lwp::l_cpu.
    176       1.52        ad  *
    177      1.212        ad  *	LSRUN:
    178       1.52        ad  *
    179       1.64      yamt  *		Always covered by spc_mutex, which protects the run queues.
    180      1.129        ad  *		This is a per-CPU lock and matches lwp::l_cpu.
    181       1.52        ad  *
    182       1.52        ad  *	LSSLEEP:
    183       1.52        ad  *
    184      1.212        ad  *		Covered by a lock associated with the sleep queue (sometimes
    185      1.221        ad  *		a turnstile sleep queue) that the LWP resides on.  This can
    186      1.221        ad  *		be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
    187       1.52        ad  *
    188      1.212        ad  *	LSSTOP:
    189      1.101     rmind  *
    190       1.52        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    191       1.66        ad  *		l_mutex references the sleep queue lock.  If the LWP was
    192       1.52        ad  *		runnable or on the CPU when halted, or has been removed from
    193       1.66        ad  *		the sleep queue since halted, then the lock is spc_lwplock.
    194       1.52        ad  *
    195       1.52        ad  *	The lock order is as follows:
    196       1.52        ad  *
    197      1.212        ad  *		sleepq -> turnstile -> spc_lwplock -> spc_mutex
    198       1.52        ad  *
    199      1.243     skrll  *	Each process has a scheduler state lock (proc::p_lock), and a
    200       1.52        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    201       1.52        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    202      1.103        ad  *	following states, p_lock must be held and the process wide counters
    203       1.52        ad  *	adjusted:
    204       1.52        ad  *
    205       1.52        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    206       1.52        ad  *
    207      1.129        ad  *	(But not always for kernel threads.  There are some special cases
    208      1.212        ad  *	as mentioned above: soft interrupts, and the idle loops.)
    209      1.129        ad  *
    210       1.52        ad  *	Note that an LWP is considered running or likely to run soon if in
    211       1.52        ad  *	one of the following states.  This affects the value of p_nrlwps:
    212       1.52        ad  *
    213       1.52        ad  *		LSRUN, LSONPROC, LSSLEEP
    214       1.52        ad  *
    215      1.103        ad  *	p_lock does not need to be held when transitioning among these
    216      1.129        ad  *	three states, hence p_lock is rarely taken for state transitions.
    217       1.52        ad  */
    218       1.52        ad 
    219        1.9     lukem #include <sys/cdefs.h>
    220  1.269.2.1  perseant __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.269.2.1 2025/08/02 05:57:41 perseant Exp $");
    221        1.8    martin 
    222       1.84      yamt #include "opt_ddb.h"
    223       1.52        ad #include "opt_lockdebug.h"
    224      1.139    darran #include "opt_dtrace.h"
    225        1.2   thorpej 
    226       1.47   hannken #define _LWP_API_PRIVATE
    227       1.47   hannken 
    228        1.2   thorpej #include <sys/param.h>
    229      1.267  riastrad 
    230      1.267  riastrad #include <sys/atomic.h>
    231      1.267  riastrad #include <sys/cprng.h>
    232       1.64      yamt #include <sys/cpu.h>
    233      1.267  riastrad #include <sys/dtrace_bsd.h>
    234      1.267  riastrad #include <sys/filedesc.h>
    235      1.267  riastrad #include <sys/fstrans.h>
    236      1.267  riastrad #include <sys/futex.h>
    237      1.267  riastrad #include <sys/intr.h>
    238      1.267  riastrad #include <sys/kauth.h>
    239      1.267  riastrad #include <sys/kcov.h>
    240      1.267  riastrad #include <sys/kmem.h>
    241      1.267  riastrad #include <sys/lockdebug.h>
    242      1.267  riastrad #include <sys/lwpctl.h>
    243      1.267  riastrad #include <sys/msan.h>
    244        1.2   thorpej #include <sys/pool.h>
    245        1.2   thorpej #include <sys/proc.h>
    246       1.91     rmind #include <sys/pset.h>
    247      1.267  riastrad #include <sys/psref.h>
    248      1.267  riastrad #include <sys/ptrace.h>
    249      1.141    darran #include <sys/sdt.h>
    250      1.267  riastrad #include <sys/sleepq.h>
    251      1.267  riastrad #include <sys/syncobj.h>
    252      1.267  riastrad #include <sys/syscall_stats.h>
    253      1.267  riastrad #include <sys/syscallargs.h>
    254      1.267  riastrad #include <sys/sysctl.h>
    255      1.267  riastrad #include <sys/systm.h>
    256      1.267  riastrad #include <sys/uidinfo.h>
    257      1.157     rmind #include <sys/xcall.h>
    258      1.138    darran 
    259        1.2   thorpej #include <uvm/uvm_extern.h>
    260       1.80     skrll #include <uvm/uvm_object.h>
    261        1.2   thorpej 
    262      1.152     rmind static pool_cache_t	lwp_cache	__read_mostly;
    263      1.152     rmind struct lwplist		alllwp		__cacheline_aligned;
    264       1.41   thorpej 
    265      1.238        ad static int		lwp_ctor(void *, void *, int);
    266      1.157     rmind static void		lwp_dtor(void *, void *);
    267      1.157     rmind 
    268      1.141    darran /* DTrace proc provider probes */
    269      1.180  christos SDT_PROVIDER_DEFINE(proc);
    270      1.180  christos 
    271      1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
    272      1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
    273      1.180  christos SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
    274      1.141    darran 
    275      1.213        ad struct turnstile turnstile0 __cacheline_aligned;
    276      1.147     pooka struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    277      1.147     pooka #ifdef LWP0_CPU_INFO
    278      1.147     pooka 	.l_cpu = LWP0_CPU_INFO,
    279      1.147     pooka #endif
    280      1.154      matt #ifdef LWP0_MD_INITIALIZER
    281      1.154      matt 	.l_md = LWP0_MD_INITIALIZER,
    282      1.154      matt #endif
    283      1.147     pooka 	.l_proc = &proc0,
    284      1.235   thorpej 	.l_lid = 0,		/* we own proc0's slot in the pid table */
    285      1.147     pooka 	.l_flag = LW_SYSTEM,
    286      1.147     pooka 	.l_stat = LSONPROC,
    287      1.147     pooka 	.l_ts = &turnstile0,
    288      1.147     pooka 	.l_syncobj = &sched_syncobj,
    289      1.231        ad 	.l_refcnt = 0,
    290      1.147     pooka 	.l_priority = PRI_USER + NPRI_USER - 1,
    291      1.147     pooka 	.l_inheritedprio = -1,
    292      1.147     pooka 	.l_class = SCHED_OTHER,
    293      1.147     pooka 	.l_psid = PS_NONE,
    294      1.147     pooka 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    295      1.147     pooka 	.l_name = __UNCONST("swapper"),
    296      1.147     pooka 	.l_fd = &filedesc0,
    297      1.147     pooka };
    298      1.147     pooka 
    299      1.249       mrg static int
    300      1.249       mrg lwp_maxlwp(void)
    301      1.249       mrg {
    302      1.249       mrg 	/* Assume 1 LWP per 1MiB. */
    303      1.249       mrg 	uint64_t lwps_per = ctob(physmem) / (1024 * 1024);
    304      1.249       mrg 
    305      1.249       mrg 	return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP);
    306      1.249       mrg }
    307      1.249       mrg 
    308      1.169  christos static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
    309      1.169  christos 
    310      1.169  christos /*
    311      1.169  christos  * sysctl helper routine for kern.maxlwp. Ensures that the new
    312      1.169  christos  * values are not too low or too high.
    313      1.169  christos  */
    314      1.169  christos static int
    315      1.169  christos sysctl_kern_maxlwp(SYSCTLFN_ARGS)
    316      1.169  christos {
    317      1.169  christos 	int error, nmaxlwp;
    318      1.169  christos 	struct sysctlnode node;
    319      1.169  christos 
    320      1.169  christos 	nmaxlwp = maxlwp;
    321      1.169  christos 	node = *rnode;
    322      1.169  christos 	node.sysctl_data = &nmaxlwp;
    323      1.169  christos 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    324      1.169  christos 	if (error || newp == NULL)
    325      1.169  christos 		return error;
    326      1.169  christos 
    327      1.249       mrg 	if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP)
    328      1.169  christos 		return EINVAL;
    329      1.249       mrg 	if (nmaxlwp > lwp_maxlwp())
    330      1.169  christos 		return EINVAL;
    331      1.169  christos 	maxlwp = nmaxlwp;
    332      1.169  christos 
    333      1.169  christos 	return 0;
    334      1.169  christos }
    335      1.169  christos 
    336      1.169  christos static void
    337      1.169  christos sysctl_kern_lwp_setup(void)
    338      1.169  christos {
    339      1.242      maxv 	sysctl_createv(NULL, 0, NULL, NULL,
    340      1.169  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    341      1.169  christos 		       CTLTYPE_INT, "maxlwp",
    342      1.169  christos 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
    343      1.169  christos 		       sysctl_kern_maxlwp, 0, NULL, 0,
    344      1.169  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    345      1.169  christos }
    346      1.169  christos 
    347       1.41   thorpej void
    348       1.41   thorpej lwpinit(void)
    349       1.41   thorpej {
    350       1.41   thorpej 
    351      1.152     rmind 	LIST_INIT(&alllwp);
    352      1.144     pooka 	lwpinit_specificdata();
    353      1.246   thorpej 	/*
    354      1.246   thorpej 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    355      1.246   thorpej 	 * calls will exit before memory of LWPs is returned to the pool, where
    356      1.246   thorpej 	 * KVA of LWP structure might be freed and re-used for other purposes.
    357      1.246   thorpej 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    358      1.246   thorpej 	 * callers, therefore a regular passive serialization barrier will
    359      1.246   thorpej 	 * do the job.
    360      1.246   thorpej 	 */
    361      1.246   thorpej 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0,
    362      1.246   thorpej 	    PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL);
    363      1.169  christos 
    364      1.249       mrg 	maxlwp = lwp_maxlwp();
    365      1.169  christos 	sysctl_kern_lwp_setup();
    366       1.41   thorpej }
    367       1.41   thorpej 
    368      1.147     pooka void
    369      1.147     pooka lwp0_init(void)
    370      1.147     pooka {
    371      1.147     pooka 	struct lwp *l = &lwp0;
    372      1.147     pooka 
    373      1.147     pooka 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    374      1.147     pooka 
    375      1.147     pooka 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    376      1.147     pooka 
    377      1.147     pooka 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    378      1.147     pooka 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    379      1.147     pooka 	cv_init(&l->l_sigcv, "sigwait");
    380      1.171     rmind 	cv_init(&l->l_waitcv, "vfork");
    381      1.147     pooka 
    382      1.263        ad 	l->l_cred = kauth_cred_hold(proc0.p_cred);
    383      1.147     pooka 
    384      1.164      yamt 	kdtrace_thread_ctor(NULL, l);
    385      1.147     pooka 	lwp_initspecific(l);
    386      1.147     pooka 
    387      1.147     pooka 	SYSCALL_TIME_LWP_INIT(l);
    388      1.147     pooka }
    389      1.147     pooka 
    390      1.238        ad /*
    391      1.238        ad  * Initialize the non-zeroed portion of an lwp_t.
    392      1.238        ad  */
    393      1.238        ad static int
    394      1.238        ad lwp_ctor(void *arg, void *obj, int flags)
    395      1.238        ad {
    396      1.238        ad 	lwp_t *l = obj;
    397      1.238        ad 
    398      1.238        ad 	l->l_stat = LSIDL;
    399      1.238        ad 	l->l_cpu = curcpu();
    400      1.238        ad 	l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock;
    401      1.255        ad 	l->l_ts = kmem_alloc(sizeof(*l->l_ts), flags == PR_WAITOK ?
    402      1.255        ad 	    KM_SLEEP : KM_NOSLEEP);
    403      1.238        ad 
    404      1.238        ad 	if (l->l_ts == NULL) {
    405      1.238        ad 		return ENOMEM;
    406      1.238        ad 	} else {
    407      1.238        ad 		turnstile_ctor(l->l_ts);
    408      1.238        ad 		return 0;
    409      1.238        ad 	}
    410      1.238        ad }
    411      1.238        ad 
    412      1.157     rmind static void
    413      1.245   thorpej lwp_dtor(void *arg, void *obj)
    414      1.245   thorpej {
    415      1.245   thorpej 	lwp_t *l = obj;
    416      1.245   thorpej 
    417      1.245   thorpej 	/*
    418      1.245   thorpej 	 * The value of l->l_cpu must still be valid at this point.
    419      1.245   thorpej 	 */
    420      1.157     rmind 	KASSERT(l->l_cpu != NULL);
    421      1.238        ad 
    422      1.238        ad 	/*
    423      1.238        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
    424      1.238        ad 	 * so if it comes up just drop it quietly and move on.
    425      1.238        ad 	 */
    426      1.238        ad 	if (l->l_ts != &turnstile0)
    427      1.255        ad 		kmem_free(l->l_ts, sizeof(*l->l_ts));
    428      1.157     rmind }
    429      1.157     rmind 
    430       1.52        ad /*
    431      1.238        ad  * Set an LWP suspended.
    432       1.52        ad  *
    433      1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    434       1.52        ad  * LWP before return.
    435       1.52        ad  */
    436        1.2   thorpej int
    437       1.52        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    438        1.2   thorpej {
    439       1.52        ad 	int error;
    440        1.2   thorpej 
    441      1.103        ad 	KASSERT(mutex_owned(t->l_proc->p_lock));
    442       1.63        ad 	KASSERT(lwp_locked(t, NULL));
    443       1.33       chs 
    444       1.52        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    445        1.2   thorpej 
    446       1.52        ad 	/*
    447       1.52        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    448       1.52        ad 	 * else or deadlock could occur.  We won't return to userspace.
    449        1.2   thorpej 	 */
    450      1.109     rmind 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    451       1.52        ad 		lwp_unlock(t);
    452       1.52        ad 		return (EDEADLK);
    453        1.2   thorpej 	}
    454        1.2   thorpej 
    455      1.204     kamil 	if ((t->l_flag & LW_DBGSUSPEND) != 0) {
    456      1.204     kamil 		lwp_unlock(t);
    457      1.204     kamil 		return 0;
    458      1.204     kamil 	}
    459      1.204     kamil 
    460       1.52        ad 	error = 0;
    461        1.2   thorpej 
    462       1.52        ad 	switch (t->l_stat) {
    463       1.52        ad 	case LSRUN:
    464       1.52        ad 	case LSONPROC:
    465       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    466       1.52        ad 		lwp_need_userret(t);
    467       1.52        ad 		lwp_unlock(t);
    468       1.52        ad 		break;
    469        1.2   thorpej 
    470       1.52        ad 	case LSSLEEP:
    471       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    472      1.259        ad 		lwp_need_userret(t);
    473        1.2   thorpej 
    474        1.2   thorpej 		/*
    475       1.52        ad 		 * Kick the LWP and try to get it to the kernel boundary
    476       1.52        ad 		 * so that it will release any locks that it holds.
    477       1.52        ad 		 * setrunnable() will release the lock.
    478        1.2   thorpej 		 */
    479       1.56     pavel 		if ((t->l_flag & LW_SINTR) != 0)
    480       1.52        ad 			setrunnable(t);
    481       1.52        ad 		else
    482       1.52        ad 			lwp_unlock(t);
    483       1.52        ad 		break;
    484        1.2   thorpej 
    485       1.52        ad 	case LSSUSPENDED:
    486       1.52        ad 		lwp_unlock(t);
    487       1.52        ad 		break;
    488       1.17      manu 
    489       1.52        ad 	case LSSTOP:
    490       1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    491      1.259        ad 		lwp_need_userret(t);
    492       1.52        ad 		setrunnable(t);
    493       1.52        ad 		break;
    494        1.2   thorpej 
    495       1.52        ad 	case LSIDL:
    496       1.52        ad 	case LSZOMB:
    497       1.52        ad 		error = EINTR; /* It's what Solaris does..... */
    498       1.52        ad 		lwp_unlock(t);
    499       1.52        ad 		break;
    500        1.2   thorpej 	}
    501        1.2   thorpej 
    502       1.69     rmind 	return (error);
    503        1.2   thorpej }
    504        1.2   thorpej 
    505       1.52        ad /*
    506       1.52        ad  * Restart a suspended LWP.
    507       1.52        ad  *
    508      1.103        ad  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    509       1.52        ad  * LWP before return.
    510       1.52        ad  */
    511        1.2   thorpej void
    512        1.2   thorpej lwp_continue(struct lwp *l)
    513        1.2   thorpej {
    514        1.2   thorpej 
    515      1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
    516       1.63        ad 	KASSERT(lwp_locked(l, NULL));
    517       1.52        ad 
    518       1.52        ad 	/* If rebooting or not suspended, then just bail out. */
    519       1.56     pavel 	if ((l->l_flag & LW_WREBOOT) != 0) {
    520       1.52        ad 		lwp_unlock(l);
    521        1.2   thorpej 		return;
    522       1.10      fvdl 	}
    523        1.2   thorpej 
    524       1.56     pavel 	l->l_flag &= ~LW_WSUSPEND;
    525        1.2   thorpej 
    526      1.204     kamil 	if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
    527       1.52        ad 		lwp_unlock(l);
    528       1.52        ad 		return;
    529        1.2   thorpej 	}
    530        1.2   thorpej 
    531       1.52        ad 	/* setrunnable() will release the lock. */
    532       1.52        ad 	setrunnable(l);
    533        1.2   thorpej }
    534        1.2   thorpej 
    535       1.52        ad /*
    536      1.142  christos  * Restart a stopped LWP.
    537      1.142  christos  *
    538      1.142  christos  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    539      1.142  christos  * LWP before return.
    540      1.142  christos  */
    541      1.142  christos void
    542      1.142  christos lwp_unstop(struct lwp *l)
    543      1.142  christos {
    544      1.142  christos 	struct proc *p = l->l_proc;
    545      1.167     rmind 
    546      1.239        ad 	KASSERT(mutex_owned(&proc_lock));
    547      1.142  christos 	KASSERT(mutex_owned(p->p_lock));
    548      1.142  christos 
    549      1.142  christos 	lwp_lock(l);
    550      1.142  christos 
    551      1.204     kamil 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    552      1.204     kamil 
    553      1.142  christos 	/* If not stopped, then just bail out. */
    554      1.142  christos 	if (l->l_stat != LSSTOP) {
    555      1.142  christos 		lwp_unlock(l);
    556      1.142  christos 		return;
    557      1.142  christos 	}
    558      1.142  christos 
    559      1.142  christos 	p->p_stat = SACTIVE;
    560      1.142  christos 	p->p_sflag &= ~PS_STOPPING;
    561      1.142  christos 
    562      1.142  christos 	if (!p->p_waited)
    563      1.142  christos 		p->p_pptr->p_nstopchild--;
    564      1.142  christos 
    565      1.142  christos 	if (l->l_wchan == NULL) {
    566      1.142  christos 		/* setrunnable() will release the lock. */
    567      1.142  christos 		setrunnable(l);
    568      1.183  christos 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
    569      1.163  christos 		/* setrunnable() so we can receive the signal */
    570      1.163  christos 		setrunnable(l);
    571      1.142  christos 	} else {
    572      1.142  christos 		l->l_stat = LSSLEEP;
    573      1.142  christos 		p->p_nrlwps++;
    574      1.142  christos 		lwp_unlock(l);
    575      1.142  christos 	}
    576      1.142  christos }
    577      1.142  christos 
    578      1.142  christos /*
    579       1.52        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    580       1.52        ad  * non-zero, we are waiting for a specific LWP.
    581       1.52        ad  *
    582      1.103        ad  * Must be called with p->p_lock held.
    583       1.52        ad  */
    584        1.2   thorpej int
    585      1.173     rmind lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
    586        1.2   thorpej {
    587      1.173     rmind 	const lwpid_t curlid = l->l_lid;
    588      1.173     rmind 	proc_t *p = l->l_proc;
    589      1.223        ad 	lwp_t *l2, *next;
    590      1.173     rmind 	int error;
    591        1.2   thorpej 
    592      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
    593       1.52        ad 
    594       1.52        ad 	p->p_nlwpwait++;
    595       1.63        ad 	l->l_waitingfor = lid;
    596       1.52        ad 
    597       1.52        ad 	for (;;) {
    598      1.173     rmind 		int nfound;
    599      1.173     rmind 
    600       1.52        ad 		/*
    601       1.52        ad 		 * Avoid a race between exit1() and sigexit(): if the
    602       1.52        ad 		 * process is dumping core, then we need to bail out: call
    603       1.52        ad 		 * into lwp_userret() where we will be suspended until the
    604       1.52        ad 		 * deed is done.
    605       1.52        ad 		 */
    606       1.52        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    607      1.103        ad 			mutex_exit(p->p_lock);
    608       1.52        ad 			lwp_userret(l);
    609      1.173     rmind 			KASSERT(false);
    610       1.52        ad 		}
    611       1.52        ad 
    612       1.52        ad 		/*
    613       1.52        ad 		 * First off, drain any detached LWP that is waiting to be
    614       1.52        ad 		 * reaped.
    615       1.52        ad 		 */
    616      1.261        ad 		if ((l2 = p->p_zomblwp) != NULL) {
    617       1.52        ad 			p->p_zomblwp = NULL;
    618       1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    619      1.103        ad 			mutex_enter(p->p_lock);
    620      1.261        ad 			continue;
    621       1.52        ad 		}
    622       1.52        ad 
    623       1.52        ad 		/*
    624       1.52        ad 		 * Now look for an LWP to collect.  If the whole process is
    625       1.52        ad 		 * exiting, count detached LWPs as eligible to be collected,
    626       1.52        ad 		 * but don't drain them here.
    627       1.52        ad 		 */
    628       1.52        ad 		nfound = 0;
    629       1.63        ad 		error = 0;
    630      1.223        ad 
    631      1.223        ad 		/*
    632      1.238        ad 		 * If given a specific LID, go via pid_table and make sure
    633      1.223        ad 		 * it's not detached.
    634      1.223        ad 		 */
    635      1.223        ad 		if (lid != 0) {
    636      1.235   thorpej 			l2 = proc_find_lwp(p, lid);
    637      1.223        ad 			if (l2 == NULL) {
    638      1.223        ad 				error = ESRCH;
    639      1.223        ad 				break;
    640      1.223        ad 			}
    641      1.223        ad 			KASSERT(l2->l_lid == lid);
    642      1.223        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    643      1.223        ad 				error = EINVAL;
    644      1.223        ad 				break;
    645      1.223        ad 			}
    646      1.223        ad 		} else {
    647      1.223        ad 			l2 = LIST_FIRST(&p->p_lwps);
    648      1.223        ad 		}
    649      1.223        ad 		for (; l2 != NULL; l2 = next) {
    650      1.223        ad 			next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
    651      1.223        ad 
    652       1.63        ad 			/*
    653       1.63        ad 			 * If a specific wait and the target is waiting on
    654       1.63        ad 			 * us, then avoid deadlock.  This also traps LWPs
    655       1.63        ad 			 * that try to wait on themselves.
    656       1.63        ad 			 *
    657       1.63        ad 			 * Note that this does not handle more complicated
    658       1.63        ad 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    659       1.63        ad 			 * can still be killed so it is not a major problem.
    660       1.63        ad 			 */
    661       1.63        ad 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    662       1.63        ad 				error = EDEADLK;
    663       1.63        ad 				break;
    664       1.63        ad 			}
    665       1.63        ad 			if (l2 == l)
    666       1.52        ad 				continue;
    667       1.52        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    668       1.63        ad 				nfound += exiting;
    669       1.63        ad 				continue;
    670       1.63        ad 			}
    671       1.63        ad 			if (lid != 0) {
    672       1.63        ad 				/*
    673       1.63        ad 				 * Mark this LWP as the first waiter, if there
    674       1.63        ad 				 * is no other.
    675       1.63        ad 				 */
    676       1.63        ad 				if (l2->l_waiter == 0)
    677       1.63        ad 					l2->l_waiter = curlid;
    678       1.63        ad 			} else if (l2->l_waiter != 0) {
    679       1.63        ad 				/*
    680       1.63        ad 				 * It already has a waiter - so don't
    681       1.63        ad 				 * collect it.  If the waiter doesn't
    682       1.63        ad 				 * grab it we'll get another chance
    683       1.63        ad 				 * later.
    684       1.63        ad 				 */
    685       1.63        ad 				nfound++;
    686       1.52        ad 				continue;
    687       1.52        ad 			}
    688       1.52        ad 			nfound++;
    689        1.2   thorpej 
    690       1.52        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    691       1.52        ad 			if (l2->l_stat != LSZOMB)
    692       1.52        ad 				continue;
    693        1.2   thorpej 
    694       1.63        ad 			/*
    695       1.63        ad 			 * We're no longer waiting.  Reset the "first waiter"
    696       1.63        ad 			 * pointer on the target, in case it was us.
    697       1.63        ad 			 */
    698       1.63        ad 			l->l_waitingfor = 0;
    699       1.63        ad 			l2->l_waiter = 0;
    700       1.63        ad 			p->p_nlwpwait--;
    701        1.2   thorpej 			if (departed)
    702        1.2   thorpej 				*departed = l2->l_lid;
    703       1.75        ad 			sched_lwp_collect(l2);
    704       1.63        ad 
    705       1.63        ad 			/* lwp_free() releases the proc lock. */
    706       1.63        ad 			lwp_free(l2, false, false);
    707      1.103        ad 			mutex_enter(p->p_lock);
    708       1.52        ad 			return 0;
    709       1.52        ad 		}
    710        1.2   thorpej 
    711       1.63        ad 		if (error != 0)
    712       1.63        ad 			break;
    713       1.52        ad 		if (nfound == 0) {
    714       1.52        ad 			error = ESRCH;
    715       1.52        ad 			break;
    716       1.52        ad 		}
    717       1.63        ad 
    718       1.63        ad 		/*
    719      1.173     rmind 		 * Note: since the lock will be dropped, need to restart on
    720      1.173     rmind 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
    721       1.63        ad 		 */
    722       1.63        ad 		if (exiting) {
    723       1.52        ad 			KASSERT(p->p_nlwps > 1);
    724      1.222        ad 			error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
    725      1.173     rmind 			break;
    726       1.52        ad 		}
    727       1.63        ad 
    728       1.63        ad 		/*
    729      1.234        ad 		 * Break out if all LWPs are in _lwp_wait().  There are
    730      1.234        ad 		 * other ways to hang the process with _lwp_wait(), but the
    731      1.234        ad 		 * sleep is interruptable so little point checking for them.
    732       1.63        ad 		 */
    733      1.234        ad 		if (p->p_nlwpwait == p->p_nlwps) {
    734       1.52        ad 			error = EDEADLK;
    735       1.52        ad 			break;
    736        1.2   thorpej 		}
    737       1.63        ad 
    738       1.63        ad 		/*
    739       1.63        ad 		 * Sit around and wait for something to happen.  We'll be
    740       1.63        ad 		 * awoken if any of the conditions examined change: if an
    741       1.63        ad 		 * LWP exits, is collected, or is detached.
    742       1.63        ad 		 */
    743      1.103        ad 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    744       1.52        ad 			break;
    745        1.2   thorpej 	}
    746        1.2   thorpej 
    747       1.63        ad 	/*
    748       1.63        ad 	 * We didn't find any LWPs to collect, we may have received a
    749       1.63        ad 	 * signal, or some other condition has caused us to bail out.
    750       1.63        ad 	 *
    751       1.63        ad 	 * If waiting on a specific LWP, clear the waiters marker: some
    752       1.63        ad 	 * other LWP may want it.  Then, kick all the remaining waiters
    753       1.63        ad 	 * so that they can re-check for zombies and for deadlock.
    754       1.63        ad 	 */
    755       1.63        ad 	if (lid != 0) {
    756      1.235   thorpej 		l2 = proc_find_lwp(p, lid);
    757      1.223        ad 		KASSERT(l2 == NULL || l2->l_lid == lid);
    758      1.223        ad 
    759      1.223        ad 		if (l2 != NULL && l2->l_waiter == curlid)
    760      1.223        ad 			l2->l_waiter = 0;
    761       1.63        ad 	}
    762       1.52        ad 	p->p_nlwpwait--;
    763       1.63        ad 	l->l_waitingfor = 0;
    764       1.63        ad 	cv_broadcast(&p->p_lwpcv);
    765       1.63        ad 
    766       1.52        ad 	return error;
    767        1.2   thorpej }
    768        1.2   thorpej 
    769      1.223        ad /*
    770       1.52        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    771       1.52        ad  * The new LWP is created in state LSIDL and must be set running,
    772       1.52        ad  * suspended, or stopped by the caller.
    773       1.52        ad  */
    774        1.2   thorpej int
    775      1.134     rmind lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    776      1.188  christos     void *stack, size_t stacksize, void (*func)(void *), void *arg,
    777      1.188  christos     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
    778      1.188  christos     const stack_t *sigstk)
    779        1.2   thorpej {
    780      1.215        ad 	struct lwp *l2;
    781        1.2   thorpej 
    782      1.107        ad 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    783      1.107        ad 
    784       1.52        ad 	/*
    785      1.215        ad 	 * Enforce limits, excluding the first lwp and kthreads.  We must
    786      1.215        ad 	 * use the process credentials here when adjusting the limit, as
    787      1.215        ad 	 * they are what's tied to the accounting entity.  However for
    788      1.215        ad 	 * authorizing the action, we'll use the LWP's credentials.
    789      1.169  christos 	 */
    790      1.215        ad 	mutex_enter(p2->p_lock);
    791      1.169  christos 	if (p2->p_nlwps != 0 && p2 != &proc0) {
    792      1.215        ad 		uid_t uid = kauth_cred_getuid(p2->p_cred);
    793      1.169  christos 		int count = chglwpcnt(uid, 1);
    794      1.169  christos 		if (__predict_false(count >
    795      1.169  christos 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
    796      1.169  christos 			if (kauth_authorize_process(l1->l_cred,
    797      1.169  christos 			    KAUTH_PROCESS_RLIMIT, p2,
    798      1.169  christos 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    799      1.169  christos 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
    800      1.169  christos 			    != 0) {
    801      1.170  christos 				(void)chglwpcnt(uid, -1);
    802      1.215        ad 				mutex_exit(p2->p_lock);
    803      1.170  christos 				return EAGAIN;
    804      1.169  christos 			}
    805      1.169  christos 		}
    806      1.169  christos 	}
    807      1.169  christos 
    808      1.169  christos 	/*
    809       1.52        ad 	 * First off, reap any detached LWP waiting to be collected.
    810       1.52        ad 	 * We can re-use its LWP structure and turnstile.
    811       1.52        ad 	 */
    812      1.215        ad 	if ((l2 = p2->p_zomblwp) != NULL) {
    813      1.215        ad 		p2->p_zomblwp = NULL;
    814      1.215        ad 		lwp_free(l2, true, false);
    815      1.215        ad 		/* p2 now unlocked by lwp_free() */
    816      1.238        ad 		KASSERT(l2->l_ts != NULL);
    817       1.75        ad 		KASSERT(l2->l_inheritedprio == -1);
    818       1.60      yamt 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    819      1.238        ad 		memset(&l2->l_startzero, 0, sizeof(*l2) -
    820      1.238        ad 		    offsetof(lwp_t, l_startzero));
    821      1.215        ad 	} else {
    822      1.215        ad 		mutex_exit(p2->p_lock);
    823      1.215        ad 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    824      1.238        ad 		memset(&l2->l_startzero, 0, sizeof(*l2) -
    825      1.238        ad 		    offsetof(lwp_t, l_startzero));
    826      1.215        ad 		SLIST_INIT(&l2->l_pi_lenders);
    827       1.52        ad 	}
    828        1.2   thorpej 
    829      1.238        ad 	/*
    830      1.238        ad 	 * Because of lockless lookup via pid_table, the LWP can be locked
    831      1.238        ad 	 * and inspected briefly even after it's freed, so a few fields are
    832      1.238        ad 	 * kept stable.
    833      1.238        ad 	 */
    834      1.238        ad 	KASSERT(l2->l_stat == LSIDL);
    835      1.238        ad 	KASSERT(l2->l_cpu != NULL);
    836      1.238        ad 	KASSERT(l2->l_ts != NULL);
    837      1.238        ad 	KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock);
    838      1.238        ad 
    839        1.2   thorpej 	l2->l_proc = p2;
    840      1.231        ad 	l2->l_refcnt = 0;
    841       1.75        ad 	l2->l_class = sclass;
    842      1.116        ad 
    843      1.116        ad 	/*
    844      1.235   thorpej 	 * Allocate a process ID for this LWP.  We need to do this now
    845      1.250    andvar 	 * while we can still unwind if it fails.  Because we're marked
    846      1.238        ad 	 * as LSIDL, no lookups by the ID will succeed.
    847      1.235   thorpej 	 *
    848      1.235   thorpej 	 * N.B. this will always succeed for the first LWP in a process,
    849      1.235   thorpej 	 * because proc_alloc_lwpid() will usurp the slot.  Also note
    850      1.235   thorpej 	 * that l2->l_proc MUST be valid so that lookups of the proc
    851      1.235   thorpej 	 * will succeed, even if the LWP itself is not visible.
    852      1.235   thorpej 	 */
    853      1.235   thorpej 	if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
    854      1.235   thorpej 		pool_cache_put(lwp_cache, l2);
    855      1.235   thorpej 		return EAGAIN;
    856      1.235   thorpej 	}
    857      1.235   thorpej 
    858      1.257        ad 	/*
    859      1.257        ad 	 * If vfork(), we want the LWP to run fast and on the same CPU
    860      1.257        ad 	 * as its parent, so that it can reuse the VM context and cache
    861      1.257        ad 	 * footprint on the local CPU.
    862      1.257        ad 	 */
    863      1.257        ad 	l2->l_boostpri = ((flags & LWP_VFORK) ? PRI_KERNEL : PRI_USER);
    864      1.257        ad  	l2->l_priority = l1->l_priority;
    865       1.75        ad 	l2->l_inheritedprio = -1;
    866      1.185  christos 	l2->l_protectprio = -1;
    867      1.185  christos 	l2->l_auxprio = -1;
    868      1.222        ad 	l2->l_flag = 0;
    869       1.88        ad 	l2->l_pflag = LP_MPSAFE;
    870      1.131        ad 	TAILQ_INIT(&l2->l_ld_locks);
    871      1.197     ozaki 	l2->l_psrefs = 0;
    872      1.208      maxv 	kmsan_lwp_alloc(l2);
    873      1.131        ad 
    874      1.131        ad 	/*
    875      1.156     pooka 	 * For vfork, borrow parent's lwpctl context if it exists.
    876      1.156     pooka 	 * This also causes us to return via lwp_userret.
    877      1.156     pooka 	 */
    878      1.156     pooka 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    879      1.156     pooka 		l2->l_lwpctl = l1->l_lwpctl;
    880      1.156     pooka 		l2->l_flag |= LW_LWPCTL;
    881      1.156     pooka 	}
    882      1.156     pooka 
    883      1.156     pooka 	/*
    884      1.131        ad 	 * If not the first LWP in the process, grab a reference to the
    885      1.131        ad 	 * descriptor table.
    886      1.131        ad 	 */
    887       1.97        ad 	l2->l_fd = p2->p_fd;
    888      1.131        ad 	if (p2->p_nlwps != 0) {
    889      1.131        ad 		KASSERT(l1->l_proc == p2);
    890      1.136     rmind 		fd_hold(l2);
    891      1.131        ad 	} else {
    892      1.131        ad 		KASSERT(l1->l_proc != p2);
    893      1.131        ad 	}
    894       1.41   thorpej 
    895       1.56     pavel 	if (p2->p_flag & PK_SYSTEM) {
    896      1.134     rmind 		/* Mark it as a system LWP. */
    897       1.56     pavel 		l2->l_flag |= LW_SYSTEM;
    898       1.52        ad 	}
    899        1.2   thorpej 
    900      1.138    darran 	kdtrace_thread_ctor(NULL, l2);
    901       1.73     rmind 	lwp_initspecific(l2);
    902       1.75        ad 	sched_lwp_fork(l1, l2);
    903       1.70        ad 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    904       1.70        ad 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    905       1.52        ad 	cv_init(&l2->l_sigcv, "sigwait");
    906      1.171     rmind 	cv_init(&l2->l_waitcv, "vfork");
    907       1.52        ad 	l2->l_syncobj = &sched_syncobj;
    908      1.201     ozaki 	PSREF_DEBUG_INIT_LWP(l2);
    909        1.2   thorpej 
    910        1.2   thorpej 	if (rnewlwpp != NULL)
    911        1.2   thorpej 		*rnewlwpp = l2;
    912        1.2   thorpej 
    913      1.158      matt 	/*
    914      1.158      matt 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    915      1.158      matt 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    916      1.158      matt 	 */
    917      1.158      matt 	pcu_save_all(l1);
    918      1.225    dogcow #if PCU_UNIT_COUNT > 0
    919      1.224  riastrad 	l2->l_pcu_valid = l1->l_pcu_valid;
    920      1.225    dogcow #endif
    921      1.158      matt 
    922      1.137     rmind 	uvm_lwp_setuarea(l2, uaddr);
    923      1.190     skrll 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
    924        1.2   thorpej 
    925      1.235   thorpej 	mutex_enter(p2->p_lock);
    926      1.263        ad 	l2->l_cred = kauth_cred_hold(p2->p_cred);
    927       1.52        ad 	if ((flags & LWP_DETACHED) != 0) {
    928       1.52        ad 		l2->l_prflag = LPR_DETACHED;
    929       1.52        ad 		p2->p_ndlwps++;
    930       1.52        ad 	} else
    931       1.52        ad 		l2->l_prflag = 0;
    932       1.52        ad 
    933      1.223        ad 	if (l1->l_proc == p2) {
    934      1.223        ad 		/*
    935      1.223        ad 		 * These flags are set while p_lock is held.  Copy with
    936      1.223        ad 		 * p_lock held too, so the LWP doesn't sneak into the
    937      1.223        ad 		 * process without them being set.
    938      1.223        ad 		 */
    939      1.222        ad 		l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
    940      1.223        ad 	} else {
    941      1.223        ad 		/* fork(): pending core/exit doesn't apply to child. */
    942      1.222        ad 		l2->l_flag |= (l1->l_flag & LW_WREBOOT);
    943      1.223        ad 	}
    944      1.222        ad 
    945      1.188  christos 	l2->l_sigstk = *sigstk;
    946      1.188  christos 	l2->l_sigmask = *sigmask;
    947      1.176  christos 	TAILQ_INIT(&l2->l_sigpend.sp_info);
    948       1.52        ad 	sigemptyset(&l2->l_sigpend.sp_set);
    949      1.174       dsl 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    950        1.2   thorpej 	p2->p_nlwps++;
    951      1.149      yamt 	p2->p_nrlwps++;
    952        1.2   thorpej 
    953      1.162     rmind 	KASSERT(l2->l_affinity == NULL);
    954      1.162     rmind 
    955      1.210        ad 	/* Inherit the affinity mask. */
    956      1.210        ad 	if (l1->l_affinity) {
    957      1.210        ad 		/*
    958      1.210        ad 		 * Note that we hold the state lock while inheriting
    959      1.210        ad 		 * the affinity to avoid race with sched_setaffinity().
    960      1.210        ad 		 */
    961      1.210        ad 		lwp_lock(l1);
    962      1.162     rmind 		if (l1->l_affinity) {
    963      1.210        ad 			kcpuset_use(l1->l_affinity);
    964      1.210        ad 			l2->l_affinity = l1->l_affinity;
    965      1.117  christos 		}
    966      1.210        ad 		lwp_unlock(l1);
    967       1.91     rmind 	}
    968      1.223        ad 
    969      1.259        ad 	/* Ensure a trip through lwp_userret() if needed. */
    970      1.259        ad 	if ((l2->l_flag & LW_USERRET) != 0) {
    971      1.259        ad 		lwp_need_userret(l2);
    972      1.259        ad 	}
    973      1.259        ad 
    974      1.223        ad 	/* This marks the end of the "must be atomic" section. */
    975      1.128     rmind 	mutex_exit(p2->p_lock);
    976      1.128     rmind 
    977      1.180  christos 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
    978      1.141    darran 
    979      1.239        ad 	mutex_enter(&proc_lock);
    980      1.128     rmind 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    981      1.210        ad 	/* Inherit a processor-set */
    982      1.210        ad 	l2->l_psid = l1->l_psid;
    983      1.239        ad 	mutex_exit(&proc_lock);
    984       1.91     rmind 
    985       1.57       dsl 	SYSCALL_TIME_LWP_INIT(l2);
    986       1.57       dsl 
    987       1.16      manu 	if (p2->p_emul->e_lwp_fork)
    988       1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    989       1.16      manu 
    990        1.2   thorpej 	return (0);
    991        1.2   thorpej }
    992        1.2   thorpej 
    993        1.2   thorpej /*
    994      1.212        ad  * Set a new LWP running.  If the process is stopping, then the LWP is
    995      1.212        ad  * created stopped.
    996      1.212        ad  */
    997      1.212        ad void
    998      1.212        ad lwp_start(lwp_t *l, int flags)
    999      1.212        ad {
   1000      1.212        ad 	proc_t *p = l->l_proc;
   1001      1.212        ad 
   1002      1.212        ad 	mutex_enter(p->p_lock);
   1003      1.212        ad 	lwp_lock(l);
   1004      1.212        ad 	KASSERT(l->l_stat == LSIDL);
   1005      1.212        ad 	if ((flags & LWP_SUSPENDED) != 0) {
   1006      1.212        ad 		/* It'll suspend itself in lwp_userret(). */
   1007      1.212        ad 		l->l_flag |= LW_WSUSPEND;
   1008      1.260        ad 		lwp_need_userret(l);
   1009      1.212        ad 	}
   1010      1.212        ad 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1011      1.212        ad 		KASSERT(l->l_wchan == NULL);
   1012      1.212        ad 	    	l->l_stat = LSSTOP;
   1013      1.212        ad 		p->p_nrlwps--;
   1014      1.212        ad 		lwp_unlock(l);
   1015      1.212        ad 	} else {
   1016      1.212        ad 		setrunnable(l);
   1017      1.212        ad 		/* LWP now unlocked */
   1018      1.212        ad 	}
   1019      1.212        ad 	mutex_exit(p->p_lock);
   1020      1.212        ad }
   1021      1.212        ad 
   1022      1.212        ad /*
   1023       1.64      yamt  * Called by MD code when a new LWP begins execution.  Must be called
   1024       1.64      yamt  * with the previous LWP locked (so at splsched), or if there is no
   1025       1.64      yamt  * previous LWP, at splsched.
   1026       1.64      yamt  */
   1027       1.64      yamt void
   1028      1.178      matt lwp_startup(struct lwp *prev, struct lwp *new_lwp)
   1029       1.64      yamt {
   1030      1.227        ad 	kmutex_t *lock;
   1031      1.218        ad 
   1032      1.178      matt 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
   1033      1.218        ad 	KASSERT(kpreempt_disabled());
   1034      1.218        ad 	KASSERT(prev != NULL);
   1035      1.227        ad 	KASSERT((prev->l_pflag & LP_RUNNING) != 0);
   1036      1.218        ad 	KASSERT(curcpu()->ci_mtx_count == -2);
   1037      1.218        ad 
   1038      1.227        ad 	/*
   1039      1.247  riastrad 	 * Immediately mark the previous LWP as no longer running and
   1040      1.247  riastrad 	 * unlock (to keep lock wait times short as possible).  If a
   1041      1.247  riastrad 	 * zombie, don't touch after clearing LP_RUNNING as it could be
   1042      1.247  riastrad 	 * reaped by another CPU.  Use atomic_store_release to ensure
   1043      1.247  riastrad 	 * this -- matches atomic_load_acquire in lwp_free.
   1044      1.227        ad 	 */
   1045      1.227        ad 	lock = prev->l_mutex;
   1046      1.227        ad 	if (__predict_false(prev->l_stat == LSZOMB)) {
   1047      1.247  riastrad 		atomic_store_release(&prev->l_pflag,
   1048      1.247  riastrad 		    prev->l_pflag & ~LP_RUNNING);
   1049      1.247  riastrad 	} else {
   1050      1.247  riastrad 		prev->l_pflag &= ~LP_RUNNING;
   1051      1.227        ad 	}
   1052      1.227        ad 	mutex_spin_exit(lock);
   1053       1.64      yamt 
   1054      1.218        ad 	/* Correct spin mutex count after mi_switch(). */
   1055      1.218        ad 	curcpu()->ci_mtx_count = 0;
   1056      1.141    darran 
   1057      1.218        ad 	/* Install new VM context. */
   1058      1.218        ad 	if (__predict_true(new_lwp->l_proc->p_vmspace)) {
   1059      1.218        ad 		pmap_activate(new_lwp);
   1060       1.64      yamt 	}
   1061      1.218        ad 
   1062      1.218        ad 	/* We remain at IPL_SCHED from mi_switch() - reset it. */
   1063      1.181     skrll 	spl0();
   1064      1.161  christos 
   1065       1.64      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
   1066      1.218        ad 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
   1067      1.218        ad 
   1068      1.218        ad 	/* For kthreads, acquire kernel lock if not MPSAFE. */
   1069      1.218        ad 	if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
   1070      1.178      matt 		KERNEL_LOCK(1, new_lwp);
   1071       1.65        ad 	}
   1072       1.64      yamt }
   1073       1.64      yamt 
   1074       1.64      yamt /*
   1075       1.65        ad  * Exit an LWP.
   1076      1.241        ad  *
   1077      1.241        ad  * *** WARNING *** This can be called with (l != curlwp) in error paths.
   1078        1.2   thorpej  */
   1079        1.2   thorpej void
   1080        1.2   thorpej lwp_exit(struct lwp *l)
   1081        1.2   thorpej {
   1082        1.2   thorpej 	struct proc *p = l->l_proc;
   1083       1.52        ad 	struct lwp *l2;
   1084       1.65        ad 	bool current;
   1085       1.65        ad 
   1086       1.65        ad 	current = (l == curlwp);
   1087        1.2   thorpej 
   1088      1.252  riastrad 	KASSERT(current || l->l_stat == LSIDL);
   1089      1.252  riastrad 	KASSERT(current || l->l_target_cpu == NULL);
   1090      1.131        ad 	KASSERT(p == curproc);
   1091        1.2   thorpej 
   1092      1.180  christos 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
   1093      1.141    darran 
   1094      1.220        ad 	/* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
   1095      1.218        ad 	LOCKDEBUG_BARRIER(NULL, 0);
   1096      1.220        ad 	KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
   1097       1.16      manu 
   1098        1.2   thorpej 	/*
   1099       1.52        ad 	 * If we are the last live LWP in a process, we need to exit the
   1100       1.52        ad 	 * entire process.  We do so with an exit status of zero, because
   1101       1.52        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
   1102       1.52        ad 	 *
   1103       1.52        ad 	 * We are not quite a zombie yet, but for accounting purposes we
   1104       1.52        ad 	 * must increment the count of zombies here.
   1105       1.45   thorpej 	 *
   1106       1.45   thorpej 	 * Note: the last LWP's specificdata will be deleted here.
   1107        1.2   thorpej 	 */
   1108      1.103        ad 	mutex_enter(p->p_lock);
   1109       1.52        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
   1110       1.65        ad 		KASSERT(current == true);
   1111      1.172      matt 		KASSERT(p != &proc0);
   1112      1.184  christos 		exit1(l, 0, 0);
   1113       1.19  jdolecek 		/* NOTREACHED */
   1114        1.2   thorpej 	}
   1115       1.52        ad 	p->p_nzlwps++;
   1116      1.233   thorpej 
   1117      1.233   thorpej 	/*
   1118      1.233   thorpej 	 * Perform any required thread cleanup.  Do this early so
   1119      1.235   thorpej 	 * anyone wanting to look us up with lwp_getref_lwpid() will
   1120      1.235   thorpej 	 * fail to find us before we become a zombie.
   1121      1.233   thorpej 	 *
   1122      1.233   thorpej 	 * N.B. this will unlock p->p_lock on our behalf.
   1123      1.233   thorpej 	 */
   1124      1.233   thorpej 	lwp_thread_cleanup(l);
   1125       1.52        ad 
   1126       1.52        ad 	if (p->p_emul->e_lwp_exit)
   1127       1.52        ad 		(*p->p_emul->e_lwp_exit)(l);
   1128        1.2   thorpej 
   1129      1.131        ad 	/* Drop filedesc reference. */
   1130      1.131        ad 	fd_free();
   1131      1.131        ad 
   1132      1.196   hannken 	/* Release fstrans private data. */
   1133      1.196   hannken 	fstrans_lwp_dtor(l);
   1134      1.196   hannken 
   1135       1.45   thorpej 	/* Delete the specificdata while it's still safe to sleep. */
   1136      1.145     pooka 	lwp_finispecific(l);
   1137       1.45   thorpej 
   1138       1.52        ad 	/*
   1139       1.52        ad 	 * Release our cached credentials.
   1140       1.52        ad 	 */
   1141       1.37        ad 	kauth_cred_free(l->l_cred);
   1142       1.70        ad 	callout_destroy(&l->l_timeout_ch);
   1143       1.65        ad 
   1144       1.65        ad 	/*
   1145      1.198     kamil 	 * If traced, report LWP exit event to the debugger.
   1146      1.198     kamil 	 *
   1147       1.52        ad 	 * Remove the LWP from the global list.
   1148      1.151       chs 	 * Free its LID from the PID namespace if needed.
   1149       1.52        ad 	 */
   1150      1.239        ad 	mutex_enter(&proc_lock);
   1151      1.198     kamil 
   1152      1.199     kamil 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
   1153      1.198     kamil 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
   1154      1.198     kamil 		mutex_enter(p->p_lock);
   1155      1.202     kamil 		if (ISSET(p->p_sflag, PS_WEXIT)) {
   1156      1.202     kamil 			mutex_exit(p->p_lock);
   1157      1.202     kamil 			/*
   1158      1.202     kamil 			 * We are exiting, bail out without informing parent
   1159      1.202     kamil 			 * about a terminating LWP as it would deadlock.
   1160      1.202     kamil 			 */
   1161      1.202     kamil 		} else {
   1162      1.203     kamil 			eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
   1163      1.239        ad 			mutex_enter(&proc_lock);
   1164      1.202     kamil 		}
   1165      1.198     kamil 	}
   1166      1.198     kamil 
   1167       1.52        ad 	LIST_REMOVE(l, l_list);
   1168      1.239        ad 	mutex_exit(&proc_lock);
   1169       1.19  jdolecek 
   1170       1.52        ad 	/*
   1171       1.52        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
   1172       1.52        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
   1173       1.52        ad 	 * mark it waiting for collection in the proc structure.  Note that
   1174      1.269    andvar 	 * before we can do that, we need to free any other dead, detached
   1175       1.52        ad 	 * LWP waiting to meet its maker.
   1176      1.231        ad 	 *
   1177      1.231        ad 	 * All conditions need to be observed upon under the same hold of
   1178      1.231        ad 	 * p_lock, because if the lock is dropped any of them can change.
   1179       1.52        ad 	 */
   1180      1.103        ad 	mutex_enter(p->p_lock);
   1181      1.231        ad 	for (;;) {
   1182      1.233   thorpej 		if (lwp_drainrefs(l))
   1183      1.231        ad 			continue;
   1184      1.231        ad 		if ((l->l_prflag & LPR_DETACHED) != 0) {
   1185      1.231        ad 			if ((l2 = p->p_zomblwp) != NULL) {
   1186      1.231        ad 				p->p_zomblwp = NULL;
   1187      1.231        ad 				lwp_free(l2, false, false);
   1188      1.231        ad 				/* proc now unlocked */
   1189      1.231        ad 				mutex_enter(p->p_lock);
   1190      1.231        ad 				continue;
   1191      1.231        ad 			}
   1192      1.231        ad 			p->p_zomblwp = l;
   1193       1.52        ad 		}
   1194      1.231        ad 		break;
   1195       1.52        ad 	}
   1196       1.31      yamt 
   1197       1.52        ad 	/*
   1198       1.52        ad 	 * If we find a pending signal for the process and we have been
   1199      1.151       chs 	 * asked to check for signals, then we lose: arrange to have
   1200       1.52        ad 	 * all other LWPs in the process check for signals.
   1201       1.52        ad 	 */
   1202       1.56     pavel 	if ((l->l_flag & LW_PENDSIG) != 0 &&
   1203       1.52        ad 	    firstsig(&p->p_sigpend.sp_set) != 0) {
   1204       1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1205       1.52        ad 			lwp_lock(l2);
   1206      1.209        ad 			signotify(l2);
   1207       1.52        ad 			lwp_unlock(l2);
   1208       1.52        ad 		}
   1209       1.31      yamt 	}
   1210       1.31      yamt 
   1211      1.158      matt 	/*
   1212      1.158      matt 	 * Release any PCU resources before becoming a zombie.
   1213      1.158      matt 	 */
   1214      1.158      matt 	pcu_discard_all(l);
   1215      1.158      matt 
   1216       1.52        ad 	lwp_lock(l);
   1217       1.52        ad 	l->l_stat = LSZOMB;
   1218      1.162     rmind 	if (l->l_name != NULL) {
   1219       1.90        ad 		strcpy(l->l_name, "(zombie)");
   1220      1.128     rmind 	}
   1221       1.52        ad 	lwp_unlock(l);
   1222        1.2   thorpej 	p->p_nrlwps--;
   1223       1.78        ad 	if (l->l_lwpctl != NULL)
   1224       1.78        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1225      1.103        ad 	mutex_exit(p->p_lock);
   1226      1.262        ad 	cv_broadcast(&p->p_lwpcv);
   1227       1.52        ad 
   1228       1.52        ad 	/*
   1229       1.52        ad 	 * We can no longer block.  At this point, lwp_free() may already
   1230       1.52        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1231       1.52        ad 	 *
   1232       1.52        ad 	 * Free MD LWP resources.
   1233       1.52        ad 	 */
   1234       1.52        ad 	cpu_lwp_free(l, 0);
   1235        1.2   thorpej 
   1236       1.65        ad 	if (current) {
   1237      1.218        ad 		/* Switch away into oblivion. */
   1238      1.218        ad 		lwp_lock(l);
   1239      1.218        ad 		spc_lock(l->l_cpu);
   1240      1.218        ad 		mi_switch(l);
   1241      1.218        ad 		panic("lwp_exit");
   1242       1.65        ad 	}
   1243        1.2   thorpej }
   1244        1.2   thorpej 
   1245       1.52        ad /*
   1246       1.52        ad  * Free a dead LWP's remaining resources.
   1247       1.52        ad  *
   1248       1.52        ad  * XXXLWP limits.
   1249       1.52        ad  */
   1250       1.52        ad void
   1251       1.63        ad lwp_free(struct lwp *l, bool recycle, bool last)
   1252       1.52        ad {
   1253       1.52        ad 	struct proc *p = l->l_proc;
   1254      1.100        ad 	struct rusage *ru;
   1255       1.52        ad 	ksiginfoq_t kq;
   1256       1.52        ad 
   1257       1.92      yamt 	KASSERT(l != curlwp);
   1258      1.160      yamt 	KASSERT(last || mutex_owned(p->p_lock));
   1259       1.92      yamt 
   1260      1.177  christos 	/*
   1261      1.177  christos 	 * We use the process credentials instead of the lwp credentials here
   1262      1.177  christos 	 * because the lwp credentials maybe cached (just after a setuid call)
   1263      1.177  christos 	 * and we don't want pay for syncing, since the lwp is going away
   1264      1.177  christos 	 * anyway
   1265      1.177  christos 	 */
   1266      1.169  christos 	if (p != &proc0 && p->p_nlwps != 1)
   1267      1.177  christos 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
   1268      1.218        ad 
   1269       1.52        ad 	/*
   1270      1.238        ad 	 * In the unlikely event that the LWP is still on the CPU,
   1271      1.238        ad 	 * then spin until it has switched away.
   1272      1.247  riastrad 	 *
   1273      1.247  riastrad 	 * atomic_load_acquire matches atomic_store_release in
   1274      1.247  riastrad 	 * lwp_startup and mi_switch.
   1275      1.238        ad 	 */
   1276      1.247  riastrad 	while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING)
   1277      1.247  riastrad 		!= 0)) {
   1278      1.238        ad 		SPINLOCK_BACKOFF_HOOK;
   1279      1.238        ad 	}
   1280      1.238        ad 
   1281      1.238        ad 	/*
   1282      1.238        ad 	 * Now that the LWP's known off the CPU, reset its state back to
   1283      1.238        ad 	 * LSIDL, which defeats anything that might have gotten a hold on
   1284      1.238        ad 	 * the LWP via pid_table before the ID was freed.  It's important
   1285      1.238        ad 	 * to do this with both the LWP locked and p_lock held.
   1286      1.238        ad 	 *
   1287      1.238        ad 	 * Also reset the CPU and lock pointer back to curcpu(), since the
   1288      1.238        ad 	 * LWP will in all likelyhood be cached with the current CPU in
   1289      1.238        ad 	 * lwp_cache when we free it and later allocated from there again
   1290      1.238        ad 	 * (avoid incidental lock contention).
   1291      1.238        ad 	 */
   1292      1.238        ad 	lwp_lock(l);
   1293      1.238        ad 	l->l_stat = LSIDL;
   1294      1.238        ad 	l->l_cpu = curcpu();
   1295      1.238        ad 	lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock);
   1296      1.238        ad 
   1297      1.238        ad 	/*
   1298      1.223        ad 	 * If this was not the last LWP in the process, then adjust counters
   1299      1.223        ad 	 * and unlock.  This is done differently for the last LWP in exit1().
   1300       1.52        ad 	 */
   1301       1.52        ad 	if (!last) {
   1302       1.52        ad 		/*
   1303       1.52        ad 		 * Add the LWP's run time to the process' base value.
   1304       1.52        ad 		 * This needs to co-incide with coming off p_lwps.
   1305       1.52        ad 		 */
   1306       1.86      yamt 		bintime_add(&p->p_rtime, &l->l_rtime);
   1307       1.64      yamt 		p->p_pctcpu += l->l_pctcpu;
   1308      1.100        ad 		ru = &p->p_stats->p_ru;
   1309      1.100        ad 		ruadd(ru, &l->l_ru);
   1310       1.52        ad 		LIST_REMOVE(l, l_sibling);
   1311       1.52        ad 		p->p_nlwps--;
   1312       1.52        ad 		p->p_nzlwps--;
   1313       1.52        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1314       1.52        ad 			p->p_ndlwps--;
   1315      1.262        ad 		mutex_exit(p->p_lock);
   1316       1.63        ad 
   1317       1.63        ad 		/*
   1318       1.63        ad 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1319       1.63        ad 		 * deadlock.
   1320       1.63        ad 		 */
   1321       1.63        ad 		cv_broadcast(&p->p_lwpcv);
   1322       1.52        ad 
   1323      1.238        ad 		/* Free the LWP ID. */
   1324      1.239        ad 		mutex_enter(&proc_lock);
   1325      1.238        ad 		proc_free_lwpid(p, l->l_lid);
   1326      1.239        ad 		mutex_exit(&proc_lock);
   1327       1.63        ad 	}
   1328       1.52        ad 
   1329       1.52        ad 	/*
   1330       1.52        ad 	 * Destroy the LWP's remaining signal information.
   1331       1.52        ad 	 */
   1332       1.52        ad 	ksiginfo_queue_init(&kq);
   1333       1.52        ad 	sigclear(&l->l_sigpend, NULL, &kq);
   1334       1.52        ad 	ksiginfo_queue_drain(&kq);
   1335       1.52        ad 	cv_destroy(&l->l_sigcv);
   1336      1.171     rmind 	cv_destroy(&l->l_waitcv);
   1337        1.2   thorpej 
   1338       1.19  jdolecek 	/*
   1339      1.162     rmind 	 * Free lwpctl structure and affinity.
   1340      1.162     rmind 	 */
   1341      1.162     rmind 	if (l->l_lwpctl) {
   1342      1.162     rmind 		lwp_ctl_free(l);
   1343      1.162     rmind 	}
   1344      1.162     rmind 	if (l->l_affinity) {
   1345      1.162     rmind 		kcpuset_unuse(l->l_affinity, NULL);
   1346      1.162     rmind 		l->l_affinity = NULL;
   1347      1.162     rmind 	}
   1348      1.162     rmind 
   1349      1.162     rmind 	/*
   1350      1.238        ad 	 * Free remaining data structures and the LWP itself unless the
   1351      1.238        ad 	 * caller wants to recycle.
   1352       1.19  jdolecek 	 */
   1353       1.90        ad 	if (l->l_name != NULL)
   1354       1.90        ad 		kmem_free(l->l_name, MAXCOMLEN);
   1355      1.135     rmind 
   1356      1.208      maxv 	kmsan_lwp_free(l);
   1357      1.232      maxv 	kcov_lwp_free(l);
   1358       1.52        ad 	cpu_lwp_free2(l);
   1359       1.19  jdolecek 	uvm_lwp_exit(l);
   1360      1.134     rmind 
   1361       1.60      yamt 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1362       1.75        ad 	KASSERT(l->l_inheritedprio == -1);
   1363      1.155      matt 	KASSERT(l->l_blcnt == 0);
   1364      1.138    darran 	kdtrace_thread_dtor(NULL, l);
   1365       1.52        ad 	if (!recycle)
   1366       1.87        ad 		pool_cache_put(lwp_cache, l);
   1367        1.2   thorpej }
   1368        1.2   thorpej 
   1369        1.2   thorpej /*
   1370       1.91     rmind  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1371       1.91     rmind  */
   1372       1.91     rmind void
   1373      1.114     rmind lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1374       1.91     rmind {
   1375      1.114     rmind 	struct schedstate_percpu *tspc;
   1376      1.121     rmind 	int lstat = l->l_stat;
   1377      1.121     rmind 
   1378       1.91     rmind 	KASSERT(lwp_locked(l, NULL));
   1379      1.114     rmind 	KASSERT(tci != NULL);
   1380      1.114     rmind 
   1381      1.121     rmind 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1382      1.227        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1383      1.121     rmind 		lstat = LSONPROC;
   1384      1.121     rmind 	}
   1385      1.121     rmind 
   1386      1.114     rmind 	/*
   1387      1.114     rmind 	 * The destination CPU could be changed while previous migration
   1388      1.114     rmind 	 * was not finished.
   1389      1.114     rmind 	 */
   1390      1.121     rmind 	if (l->l_target_cpu != NULL) {
   1391      1.114     rmind 		l->l_target_cpu = tci;
   1392      1.114     rmind 		lwp_unlock(l);
   1393      1.114     rmind 		return;
   1394      1.114     rmind 	}
   1395       1.91     rmind 
   1396      1.114     rmind 	/* Nothing to do if trying to migrate to the same CPU */
   1397      1.114     rmind 	if (l->l_cpu == tci) {
   1398       1.91     rmind 		lwp_unlock(l);
   1399       1.91     rmind 		return;
   1400       1.91     rmind 	}
   1401       1.91     rmind 
   1402      1.114     rmind 	KASSERT(l->l_target_cpu == NULL);
   1403      1.114     rmind 	tspc = &tci->ci_schedstate;
   1404      1.121     rmind 	switch (lstat) {
   1405       1.91     rmind 	case LSRUN:
   1406      1.134     rmind 		l->l_target_cpu = tci;
   1407      1.134     rmind 		break;
   1408       1.91     rmind 	case LSSLEEP:
   1409      1.114     rmind 		l->l_cpu = tci;
   1410       1.91     rmind 		break;
   1411      1.212        ad 	case LSIDL:
   1412       1.91     rmind 	case LSSTOP:
   1413       1.91     rmind 	case LSSUSPENDED:
   1414      1.114     rmind 		l->l_cpu = tci;
   1415      1.114     rmind 		if (l->l_wchan == NULL) {
   1416      1.114     rmind 			lwp_unlock_to(l, tspc->spc_lwplock);
   1417      1.114     rmind 			return;
   1418       1.91     rmind 		}
   1419      1.114     rmind 		break;
   1420       1.91     rmind 	case LSONPROC:
   1421      1.114     rmind 		l->l_target_cpu = tci;
   1422      1.114     rmind 		spc_lock(l->l_cpu);
   1423      1.212        ad 		sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
   1424      1.212        ad 		/* spc now unlocked */
   1425       1.91     rmind 		break;
   1426       1.91     rmind 	}
   1427       1.91     rmind 	lwp_unlock(l);
   1428       1.91     rmind }
   1429       1.91     rmind 
   1430      1.237   thorpej #define	lwp_find_exclude(l)					\
   1431      1.237   thorpej 	((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB)
   1432      1.237   thorpej 
   1433       1.91     rmind /*
   1434       1.94     rmind  * Find the LWP in the process.  Arguments may be zero, in such case,
   1435       1.94     rmind  * the calling process and first LWP in the list will be used.
   1436      1.103        ad  * On success - returns proc locked.
   1437      1.237   thorpej  *
   1438      1.237   thorpej  * => pid == 0 -> look in curproc.
   1439      1.237   thorpej  * => pid == -1 -> match any proc.
   1440      1.237   thorpej  * => otherwise look up the proc.
   1441      1.237   thorpej  *
   1442      1.237   thorpej  * => lid == 0 -> first LWP in the proc
   1443      1.237   thorpej  * => otherwise specific LWP
   1444       1.91     rmind  */
   1445       1.91     rmind struct lwp *
   1446       1.91     rmind lwp_find2(pid_t pid, lwpid_t lid)
   1447       1.91     rmind {
   1448       1.91     rmind 	proc_t *p;
   1449       1.91     rmind 	lwp_t *l;
   1450       1.91     rmind 
   1451      1.237   thorpej 	/* First LWP of specified proc. */
   1452      1.237   thorpej 	if (lid == 0) {
   1453      1.237   thorpej 		switch (pid) {
   1454      1.237   thorpej 		case -1:
   1455      1.237   thorpej 			/* No lookup keys. */
   1456      1.237   thorpej 			return NULL;
   1457      1.237   thorpej 		case 0:
   1458      1.237   thorpej 			p = curproc;
   1459      1.237   thorpej 			mutex_enter(p->p_lock);
   1460      1.237   thorpej 			break;
   1461      1.237   thorpej 		default:
   1462      1.239        ad 			mutex_enter(&proc_lock);
   1463      1.237   thorpej 			p = proc_find(pid);
   1464      1.237   thorpej 			if (__predict_false(p == NULL)) {
   1465      1.239        ad 				mutex_exit(&proc_lock);
   1466      1.237   thorpej 				return NULL;
   1467      1.237   thorpej 			}
   1468      1.237   thorpej 			mutex_enter(p->p_lock);
   1469      1.239        ad 			mutex_exit(&proc_lock);
   1470      1.237   thorpej 			break;
   1471      1.237   thorpej 		}
   1472      1.237   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1473      1.237   thorpej 			if (__predict_true(!lwp_find_exclude(l)))
   1474      1.237   thorpej 				break;
   1475      1.150     rmind 		}
   1476      1.237   thorpej 		goto out;
   1477      1.237   thorpej 	}
   1478      1.237   thorpej 
   1479      1.237   thorpej 	l = proc_find_lwp_acquire_proc(lid, &p);
   1480      1.237   thorpej 	if (l == NULL)
   1481      1.237   thorpej 		return NULL;
   1482      1.237   thorpej 	KASSERT(p != NULL);
   1483      1.237   thorpej 	KASSERT(mutex_owned(p->p_lock));
   1484      1.237   thorpej 
   1485      1.237   thorpej 	if (__predict_false(lwp_find_exclude(l))) {
   1486      1.237   thorpej 		l = NULL;
   1487      1.237   thorpej 		goto out;
   1488      1.150     rmind 	}
   1489      1.237   thorpej 
   1490      1.237   thorpej 	/* Apply proc filter, if applicable. */
   1491      1.237   thorpej 	switch (pid) {
   1492      1.237   thorpej 	case -1:
   1493      1.237   thorpej 		/* Match anything. */
   1494      1.237   thorpej 		break;
   1495      1.237   thorpej 	case 0:
   1496      1.237   thorpej 		if (p != curproc)
   1497      1.237   thorpej 			l = NULL;
   1498      1.237   thorpej 		break;
   1499      1.237   thorpej 	default:
   1500      1.237   thorpej 		if (p->p_pid != pid)
   1501      1.237   thorpej 			l = NULL;
   1502      1.237   thorpej 		break;
   1503       1.94     rmind 	}
   1504      1.237   thorpej 
   1505      1.237   thorpej  out:
   1506      1.237   thorpej 	if (__predict_false(l == NULL)) {
   1507      1.103        ad 		mutex_exit(p->p_lock);
   1508      1.103        ad 	}
   1509       1.91     rmind 	return l;
   1510       1.91     rmind }
   1511       1.91     rmind 
   1512       1.91     rmind /*
   1513      1.168      yamt  * Look up a live LWP within the specified process.
   1514       1.52        ad  *
   1515      1.223        ad  * Must be called with p->p_lock held (as it looks at the radix tree,
   1516      1.223        ad  * and also wants to exclude idle and zombie LWPs).
   1517       1.52        ad  */
   1518       1.52        ad struct lwp *
   1519      1.151       chs lwp_find(struct proc *p, lwpid_t id)
   1520       1.52        ad {
   1521       1.52        ad 	struct lwp *l;
   1522       1.52        ad 
   1523      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1524       1.52        ad 
   1525      1.235   thorpej 	l = proc_find_lwp(p, id);
   1526      1.223        ad 	KASSERT(l == NULL || l->l_lid == id);
   1527       1.52        ad 
   1528       1.52        ad 	/*
   1529       1.52        ad 	 * No need to lock - all of these conditions will
   1530       1.52        ad 	 * be visible with the process level mutex held.
   1531       1.52        ad 	 */
   1532      1.237   thorpej 	if (__predict_false(l != NULL && lwp_find_exclude(l)))
   1533       1.52        ad 		l = NULL;
   1534       1.52        ad 
   1535       1.52        ad 	return l;
   1536       1.52        ad }
   1537       1.52        ad 
   1538       1.52        ad /*
   1539       1.52        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
   1540       1.52        ad  * one we specify.
   1541       1.52        ad  */
   1542       1.52        ad int
   1543       1.52        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
   1544       1.52        ad {
   1545       1.52        ad 	kmutex_t *cur = l->l_mutex;
   1546       1.52        ad 
   1547       1.52        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1548       1.52        ad }
   1549       1.52        ad 
   1550       1.52        ad /*
   1551       1.52        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
   1552       1.52        ad  */
   1553      1.211        ad kmutex_t *
   1554      1.178      matt lwp_setlock(struct lwp *l, kmutex_t *mtx)
   1555       1.52        ad {
   1556      1.211        ad 	kmutex_t *oldmtx = l->l_mutex;
   1557       1.52        ad 
   1558      1.211        ad 	KASSERT(mutex_owned(oldmtx));
   1559       1.52        ad 
   1560      1.248  riastrad 	atomic_store_release(&l->l_mutex, mtx);
   1561      1.211        ad 	return oldmtx;
   1562       1.52        ad }
   1563       1.52        ad 
   1564       1.52        ad /*
   1565       1.52        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1566       1.52        ad  * must be held.
   1567       1.52        ad  */
   1568       1.52        ad void
   1569      1.178      matt lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
   1570       1.52        ad {
   1571       1.52        ad 	kmutex_t *old;
   1572       1.52        ad 
   1573      1.152     rmind 	KASSERT(lwp_locked(l, NULL));
   1574       1.52        ad 
   1575       1.52        ad 	old = l->l_mutex;
   1576      1.248  riastrad 	atomic_store_release(&l->l_mutex, mtx);
   1577       1.52        ad 	mutex_spin_exit(old);
   1578       1.52        ad }
   1579       1.52        ad 
   1580       1.60      yamt int
   1581       1.60      yamt lwp_trylock(struct lwp *l)
   1582       1.60      yamt {
   1583       1.60      yamt 	kmutex_t *old;
   1584       1.60      yamt 
   1585       1.60      yamt 	for (;;) {
   1586      1.248  riastrad 		if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex)))
   1587       1.60      yamt 			return 0;
   1588      1.248  riastrad 		if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old))
   1589       1.60      yamt 			return 1;
   1590       1.60      yamt 		mutex_spin_exit(old);
   1591       1.60      yamt 	}
   1592       1.60      yamt }
   1593       1.60      yamt 
   1594      1.134     rmind void
   1595      1.211        ad lwp_unsleep(lwp_t *l, bool unlock)
   1596       1.96        ad {
   1597       1.96        ad 
   1598       1.96        ad 	KASSERT(mutex_owned(l->l_mutex));
   1599      1.211        ad 	(*l->l_syncobj->sobj_unsleep)(l, unlock);
   1600       1.96        ad }
   1601       1.96        ad 
   1602       1.52        ad /*
   1603      1.256        ad  * Lock an LWP.
   1604      1.256        ad  */
   1605      1.256        ad void
   1606      1.256        ad lwp_lock(lwp_t *l)
   1607      1.256        ad {
   1608      1.256        ad 	kmutex_t *old = atomic_load_consume(&l->l_mutex);
   1609      1.256        ad 
   1610      1.256        ad 	/*
   1611      1.256        ad 	 * Note: mutex_spin_enter() will have posted a read barrier.
   1612      1.256        ad 	 * Re-test l->l_mutex.  If it has changed, we need to try again.
   1613      1.256        ad 	 */
   1614      1.256        ad 	mutex_spin_enter(old);
   1615      1.256        ad 	while (__predict_false(atomic_load_relaxed(&l->l_mutex) != old)) {
   1616      1.256        ad 		mutex_spin_exit(old);
   1617      1.256        ad 		old = atomic_load_consume(&l->l_mutex);
   1618      1.256        ad 		mutex_spin_enter(old);
   1619      1.256        ad 	}
   1620      1.256        ad }
   1621      1.256        ad 
   1622      1.256        ad /*
   1623      1.256        ad  * Unlock an LWP.
   1624      1.256        ad  */
   1625      1.256        ad void
   1626      1.256        ad lwp_unlock(lwp_t *l)
   1627      1.256        ad {
   1628      1.256        ad 
   1629      1.256        ad 	mutex_spin_exit(l->l_mutex);
   1630      1.256        ad }
   1631      1.256        ad 
   1632      1.256        ad void
   1633      1.256        ad lwp_changepri(lwp_t *l, pri_t pri)
   1634      1.256        ad {
   1635      1.256        ad 
   1636      1.256        ad 	KASSERT(mutex_owned(l->l_mutex));
   1637      1.256        ad 
   1638      1.256        ad 	if (l->l_priority == pri)
   1639      1.256        ad 		return;
   1640      1.256        ad 
   1641      1.256        ad 	(*l->l_syncobj->sobj_changepri)(l, pri);
   1642      1.256        ad 	KASSERT(l->l_priority == pri);
   1643      1.256        ad }
   1644      1.256        ad 
   1645      1.256        ad void
   1646      1.256        ad lwp_lendpri(lwp_t *l, pri_t pri)
   1647      1.256        ad {
   1648      1.256        ad 	KASSERT(mutex_owned(l->l_mutex));
   1649      1.256        ad 
   1650      1.256        ad 	(*l->l_syncobj->sobj_lendpri)(l, pri);
   1651      1.256        ad 	KASSERT(l->l_inheritedprio == pri);
   1652      1.256        ad }
   1653      1.256        ad 
   1654      1.256        ad pri_t
   1655      1.256        ad lwp_eprio(lwp_t *l)
   1656      1.256        ad {
   1657      1.256        ad 	pri_t pri = l->l_priority;
   1658      1.256        ad 
   1659      1.256        ad 	KASSERT(mutex_owned(l->l_mutex));
   1660      1.256        ad 
   1661      1.256        ad 	/*
   1662      1.256        ad 	 * Timeshared/user LWPs get a temporary priority boost for blocking
   1663      1.256        ad 	 * in kernel.  This is key to good interactive response on a loaded
   1664      1.256        ad 	 * system: without it, things will seem very sluggish to the user.
   1665      1.256        ad 	 *
   1666      1.256        ad 	 * The function of the boost is to get the LWP onto a CPU and
   1667      1.256        ad 	 * running quickly.  Once that happens the LWP loses the priority
   1668      1.256        ad 	 * boost and could be preempted very quickly by another LWP but that
   1669      1.269    andvar 	 * won't happen often enough to be an annoyance.
   1670      1.256        ad 	 */
   1671      1.257        ad 	if (pri <= MAXPRI_USER && l->l_boostpri > MAXPRI_USER)
   1672      1.257        ad 		pri = (pri >> 1) + l->l_boostpri;
   1673      1.256        ad 
   1674      1.256        ad 	return MAX(l->l_auxprio, pri);
   1675      1.256        ad }
   1676      1.256        ad 
   1677      1.256        ad /*
   1678       1.56     pavel  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1679      1.256        ad  * set or a preemption is required.
   1680       1.52        ad  */
   1681       1.52        ad void
   1682       1.52        ad lwp_userret(struct lwp *l)
   1683       1.52        ad {
   1684       1.52        ad 	struct proc *p;
   1685      1.256        ad 	int sig, f;
   1686       1.52        ad 
   1687      1.114     rmind 	KASSERT(l == curlwp);
   1688      1.114     rmind 	KASSERT(l->l_stat == LSONPROC);
   1689       1.52        ad 	p = l->l_proc;
   1690       1.52        ad 
   1691      1.256        ad 	for (;;) {
   1692      1.256        ad 		/*
   1693      1.256        ad 		 * This is the main location that user preemptions are
   1694      1.256        ad 		 * processed.
   1695      1.256        ad 		 */
   1696      1.256        ad 		preempt_point();
   1697      1.256        ad 
   1698      1.256        ad 		/*
   1699      1.256        ad 		 * It is safe to do this unlocked and without raised SPL,
   1700      1.256        ad 		 * since whenever a flag of interest is added to l_flag the
   1701      1.256        ad 		 * LWP will take an AST and come down this path again.  If a
   1702      1.256        ad 		 * remote CPU posts the AST, it will be done with an IPI
   1703      1.256        ad 		 * (strongly synchronising).
   1704      1.256        ad 		 */
   1705      1.256        ad 		if ((f = atomic_load_relaxed(&l->l_flag) & LW_USERRET) == 0) {
   1706      1.256        ad 			return;
   1707      1.256        ad 		}
   1708      1.256        ad 
   1709       1.52        ad 		/*
   1710      1.265        ad 		 * Start out with the correct credentials.
   1711      1.265        ad 		 */
   1712      1.265        ad 		if ((f & LW_CACHECRED) != 0) {
   1713      1.265        ad 			kauth_cred_t oc = l->l_cred;
   1714      1.265        ad 			mutex_enter(p->p_lock);
   1715      1.265        ad 			l->l_cred = kauth_cred_hold(p->p_cred);
   1716      1.265        ad 			lwp_lock(l);
   1717      1.265        ad 			l->l_flag &= ~LW_CACHECRED;
   1718      1.265        ad 			lwp_unlock(l);
   1719      1.265        ad 			mutex_exit(p->p_lock);
   1720      1.265        ad 			kauth_cred_free(oc);
   1721      1.265        ad 		}
   1722      1.265        ad 
   1723      1.265        ad 		/*
   1724       1.52        ad 		 * Process pending signals first, unless the process
   1725       1.61        ad 		 * is dumping core or exiting, where we will instead
   1726      1.101     rmind 		 * enter the LW_WSUSPEND case below.
   1727       1.52        ad 		 */
   1728      1.256        ad 		if ((f & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == LW_PENDSIG) {
   1729      1.103        ad 			mutex_enter(p->p_lock);
   1730       1.52        ad 			while ((sig = issignal(l)) != 0)
   1731       1.52        ad 				postsig(sig);
   1732      1.103        ad 			mutex_exit(p->p_lock);
   1733      1.256        ad 			continue;
   1734       1.52        ad 		}
   1735       1.52        ad 
   1736       1.52        ad 		/*
   1737       1.52        ad 		 * Core-dump or suspend pending.
   1738       1.52        ad 		 *
   1739      1.159      matt 		 * In case of core dump, suspend ourselves, so that the kernel
   1740      1.159      matt 		 * stack and therefore the userland registers saved in the
   1741      1.159      matt 		 * trapframe are around for coredump() to write them out.
   1742      1.159      matt 		 * We also need to save any PCU resources that we have so that
   1743      1.159      matt 		 * they accessible for coredump().  We issue a wakeup on
   1744      1.159      matt 		 * p->p_lwpcv so that sigexit() will write the core file out
   1745      1.159      matt 		 * once all other LWPs are suspended.
   1746       1.52        ad 		 */
   1747      1.256        ad 		if ((f & LW_WSUSPEND) != 0) {
   1748      1.159      matt 			pcu_save_all(l);
   1749      1.103        ad 			mutex_enter(p->p_lock);
   1750       1.52        ad 			p->p_nrlwps--;
   1751       1.52        ad 			lwp_lock(l);
   1752       1.52        ad 			l->l_stat = LSSUSPENDED;
   1753      1.104        ad 			lwp_unlock(l);
   1754      1.103        ad 			mutex_exit(p->p_lock);
   1755      1.262        ad 			cv_broadcast(&p->p_lwpcv);
   1756      1.104        ad 			lwp_lock(l);
   1757      1.217        ad 			spc_lock(l->l_cpu);
   1758       1.64      yamt 			mi_switch(l);
   1759      1.256        ad 			continue;
   1760       1.52        ad 		}
   1761       1.52        ad 
   1762      1.256        ad 		/*
   1763      1.256        ad 		 * Process is exiting.  The core dump and signal cases must
   1764      1.256        ad 		 * be handled first.
   1765      1.256        ad 		 */
   1766      1.256        ad 		if ((f & LW_WEXIT) != 0) {
   1767       1.52        ad 			lwp_exit(l);
   1768       1.52        ad 			KASSERT(0);
   1769       1.52        ad 			/* NOTREACHED */
   1770       1.52        ad 		}
   1771      1.156     pooka 
   1772      1.256        ad 		/*
   1773      1.256        ad 		 * Update lwpctl processor (for vfork child_return).
   1774      1.256        ad 		 */
   1775      1.256        ad 		if ((f & LW_LWPCTL) != 0) {
   1776      1.156     pooka 			lwp_lock(l);
   1777      1.156     pooka 			KASSERT(kpreempt_disabled());
   1778      1.156     pooka 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1779      1.156     pooka 			l->l_lwpctl->lc_pctr++;
   1780      1.156     pooka 			l->l_flag &= ~LW_LWPCTL;
   1781      1.156     pooka 			lwp_unlock(l);
   1782      1.256        ad 			continue;
   1783      1.156     pooka 		}
   1784       1.52        ad 	}
   1785       1.52        ad }
   1786       1.52        ad 
   1787       1.52        ad /*
   1788       1.52        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1789       1.52        ad  */
   1790       1.52        ad void
   1791       1.52        ad lwp_need_userret(struct lwp *l)
   1792       1.52        ad {
   1793      1.209        ad 
   1794      1.209        ad 	KASSERT(!cpu_intr_p());
   1795      1.259        ad 	KASSERT(lwp_locked(l, NULL) || l->l_stat == LSIDL);
   1796       1.52        ad 
   1797       1.52        ad 	/*
   1798      1.209        ad 	 * If the LWP is in any state other than LSONPROC, we know that it
   1799      1.209        ad 	 * is executing in-kernel and will hit userret() on the way out.
   1800      1.209        ad 	 *
   1801      1.209        ad 	 * If the LWP is curlwp, then we know we'll be back out to userspace
   1802      1.209        ad 	 * soon (can't be called from a hardware interrupt here).
   1803      1.209        ad 	 *
   1804      1.209        ad 	 * Otherwise, we can't be sure what the LWP is doing, so first make
   1805      1.209        ad 	 * sure the update to l_flag will be globally visible, and then
   1806      1.209        ad 	 * force the LWP to take a trip through trap() where it will do
   1807      1.209        ad 	 * userret().
   1808      1.209        ad 	 */
   1809      1.209        ad 	if (l->l_stat == LSONPROC && l != curlwp) {
   1810      1.209        ad 		membar_producer();
   1811      1.209        ad 		cpu_signotify(l);
   1812      1.209        ad 	}
   1813       1.52        ad }
   1814       1.52        ad 
   1815       1.52        ad /*
   1816       1.52        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1817       1.52        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1818       1.52        ad  */
   1819       1.52        ad void
   1820       1.52        ad lwp_addref(struct lwp *l)
   1821       1.52        ad {
   1822      1.103        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1823      1.237   thorpej 	KASSERT(l->l_stat != LSZOMB);
   1824      1.237   thorpej 	l->l_refcnt++;
   1825       1.52        ad }
   1826       1.52        ad 
   1827       1.52        ad /*
   1828       1.52        ad  * Remove one reference to an LWP.  If this is the last reference,
   1829       1.52        ad  * then we must finalize the LWP's death.
   1830       1.52        ad  */
   1831       1.52        ad void
   1832       1.52        ad lwp_delref(struct lwp *l)
   1833       1.52        ad {
   1834       1.52        ad 	struct proc *p = l->l_proc;
   1835       1.52        ad 
   1836      1.103        ad 	mutex_enter(p->p_lock);
   1837      1.142  christos 	lwp_delref2(l);
   1838      1.142  christos 	mutex_exit(p->p_lock);
   1839      1.142  christos }
   1840      1.142  christos 
   1841      1.142  christos /*
   1842      1.142  christos  * Remove one reference to an LWP.  If this is the last reference,
   1843      1.142  christos  * then we must finalize the LWP's death.  The proc mutex is held
   1844      1.142  christos  * on entry.
   1845      1.142  christos  */
   1846      1.142  christos void
   1847      1.142  christos lwp_delref2(struct lwp *l)
   1848      1.142  christos {
   1849      1.142  christos 	struct proc *p = l->l_proc;
   1850      1.142  christos 
   1851      1.142  christos 	KASSERT(mutex_owned(p->p_lock));
   1852       1.72        ad 	KASSERT(l->l_stat != LSZOMB);
   1853      1.237   thorpej 	KASSERT(l->l_refcnt > 0);
   1854      1.231        ad 
   1855      1.237   thorpej 	if (--l->l_refcnt == 0)
   1856       1.76        ad 		cv_broadcast(&p->p_lwpcv);
   1857       1.52        ad }
   1858       1.52        ad 
   1859       1.52        ad /*
   1860      1.233   thorpej  * Drain all references to the current LWP.  Returns true if
   1861      1.233   thorpej  * we blocked.
   1862       1.52        ad  */
   1863      1.233   thorpej bool
   1864       1.52        ad lwp_drainrefs(struct lwp *l)
   1865       1.52        ad {
   1866       1.52        ad 	struct proc *p = l->l_proc;
   1867      1.233   thorpej 	bool rv = false;
   1868       1.52        ad 
   1869      1.103        ad 	KASSERT(mutex_owned(p->p_lock));
   1870       1.52        ad 
   1871      1.233   thorpej 	l->l_prflag |= LPR_DRAINING;
   1872      1.233   thorpej 
   1873      1.237   thorpej 	while (l->l_refcnt > 0) {
   1874      1.233   thorpej 		rv = true;
   1875      1.103        ad 		cv_wait(&p->p_lwpcv, p->p_lock);
   1876      1.233   thorpej 	}
   1877      1.233   thorpej 	return rv;
   1878       1.37        ad }
   1879       1.41   thorpej 
   1880       1.41   thorpej /*
   1881      1.127        ad  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1882      1.127        ad  * be held.
   1883      1.127        ad  */
   1884      1.127        ad bool
   1885      1.127        ad lwp_alive(lwp_t *l)
   1886      1.127        ad {
   1887      1.127        ad 
   1888      1.127        ad 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1889      1.127        ad 
   1890      1.127        ad 	switch (l->l_stat) {
   1891      1.127        ad 	case LSSLEEP:
   1892      1.127        ad 	case LSRUN:
   1893      1.127        ad 	case LSONPROC:
   1894      1.127        ad 	case LSSTOP:
   1895      1.127        ad 	case LSSUSPENDED:
   1896      1.127        ad 		return true;
   1897      1.127        ad 	default:
   1898      1.127        ad 		return false;
   1899      1.127        ad 	}
   1900      1.127        ad }
   1901      1.127        ad 
   1902      1.127        ad /*
   1903      1.127        ad  * Return first live LWP in the process.
   1904      1.127        ad  */
   1905      1.127        ad lwp_t *
   1906      1.127        ad lwp_find_first(proc_t *p)
   1907      1.127        ad {
   1908      1.127        ad 	lwp_t *l;
   1909      1.127        ad 
   1910      1.127        ad 	KASSERT(mutex_owned(p->p_lock));
   1911      1.127        ad 
   1912      1.127        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1913      1.127        ad 		if (lwp_alive(l)) {
   1914      1.127        ad 			return l;
   1915      1.127        ad 		}
   1916      1.127        ad 	}
   1917      1.127        ad 
   1918      1.127        ad 	return NULL;
   1919      1.127        ad }
   1920      1.127        ad 
   1921      1.127        ad /*
   1922       1.78        ad  * Allocate a new lwpctl structure for a user LWP.
   1923       1.78        ad  */
   1924       1.78        ad int
   1925       1.78        ad lwp_ctl_alloc(vaddr_t *uaddr)
   1926       1.78        ad {
   1927       1.78        ad 	lcproc_t *lp;
   1928       1.78        ad 	u_int bit, i, offset;
   1929       1.78        ad 	struct uvm_object *uao;
   1930       1.78        ad 	int error;
   1931       1.78        ad 	lcpage_t *lcp;
   1932       1.78        ad 	proc_t *p;
   1933       1.78        ad 	lwp_t *l;
   1934       1.78        ad 
   1935       1.78        ad 	l = curlwp;
   1936       1.78        ad 	p = l->l_proc;
   1937       1.78        ad 
   1938      1.156     pooka 	/* don't allow a vforked process to create lwp ctls */
   1939      1.156     pooka 	if (p->p_lflag & PL_PPWAIT)
   1940      1.156     pooka 		return EBUSY;
   1941      1.156     pooka 
   1942       1.81        ad 	if (l->l_lcpage != NULL) {
   1943       1.81        ad 		lcp = l->l_lcpage;
   1944       1.81        ad 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1945      1.143     njoly 		return 0;
   1946       1.81        ad 	}
   1947       1.78        ad 
   1948       1.78        ad 	/* First time around, allocate header structure for the process. */
   1949       1.78        ad 	if ((lp = p->p_lwpctl) == NULL) {
   1950       1.78        ad 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1951       1.78        ad 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1952       1.78        ad 		lp->lp_uao = NULL;
   1953       1.78        ad 		TAILQ_INIT(&lp->lp_pages);
   1954      1.103        ad 		mutex_enter(p->p_lock);
   1955       1.78        ad 		if (p->p_lwpctl == NULL) {
   1956       1.78        ad 			p->p_lwpctl = lp;
   1957      1.103        ad 			mutex_exit(p->p_lock);
   1958       1.78        ad 		} else {
   1959      1.103        ad 			mutex_exit(p->p_lock);
   1960       1.78        ad 			mutex_destroy(&lp->lp_lock);
   1961       1.78        ad 			kmem_free(lp, sizeof(*lp));
   1962       1.78        ad 			lp = p->p_lwpctl;
   1963       1.78        ad 		}
   1964       1.78        ad 	}
   1965       1.78        ad 
   1966       1.78        ad  	/*
   1967       1.78        ad  	 * Set up an anonymous memory region to hold the shared pages.
   1968       1.78        ad  	 * Map them into the process' address space.  The user vmspace
   1969       1.78        ad  	 * gets the first reference on the UAO.
   1970       1.78        ad  	 */
   1971       1.78        ad 	mutex_enter(&lp->lp_lock);
   1972       1.78        ad 	if (lp->lp_uao == NULL) {
   1973       1.78        ad 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1974       1.78        ad 		lp->lp_cur = 0;
   1975       1.78        ad 		lp->lp_max = LWPCTL_UAREA_SZ;
   1976       1.78        ad 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1977      1.182    martin 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
   1978      1.182    martin 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1979       1.78        ad 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1980       1.78        ad 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1981       1.78        ad 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1982       1.78        ad 		if (error != 0) {
   1983       1.78        ad 			uao_detach(lp->lp_uao);
   1984       1.78        ad 			lp->lp_uao = NULL;
   1985       1.78        ad 			mutex_exit(&lp->lp_lock);
   1986       1.78        ad 			return error;
   1987       1.78        ad 		}
   1988       1.78        ad 	}
   1989       1.78        ad 
   1990       1.78        ad 	/* Get a free block and allocate for this LWP. */
   1991       1.78        ad 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1992       1.78        ad 		if (lcp->lcp_nfree != 0)
   1993       1.78        ad 			break;
   1994       1.78        ad 	}
   1995       1.78        ad 	if (lcp == NULL) {
   1996       1.78        ad 		/* Nothing available - try to set up a free page. */
   1997       1.78        ad 		if (lp->lp_cur == lp->lp_max) {
   1998       1.78        ad 			mutex_exit(&lp->lp_lock);
   1999       1.78        ad 			return ENOMEM;
   2000       1.78        ad 		}
   2001       1.78        ad 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   2002      1.189       chs 
   2003       1.78        ad 		/*
   2004       1.78        ad 		 * Wire the next page down in kernel space.  Since this
   2005       1.78        ad 		 * is a new mapping, we must add a reference.
   2006       1.78        ad 		 */
   2007       1.78        ad 		uao = lp->lp_uao;
   2008       1.78        ad 		(*uao->pgops->pgo_reference)(uao);
   2009       1.99        ad 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   2010       1.78        ad 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   2011       1.78        ad 		    uao, lp->lp_cur, PAGE_SIZE,
   2012       1.78        ad 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   2013       1.78        ad 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   2014       1.78        ad 		if (error != 0) {
   2015       1.78        ad 			mutex_exit(&lp->lp_lock);
   2016       1.78        ad 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   2017       1.78        ad 			(*uao->pgops->pgo_detach)(uao);
   2018       1.78        ad 			return error;
   2019       1.78        ad 		}
   2020       1.89      yamt 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   2021       1.89      yamt 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   2022       1.89      yamt 		if (error != 0) {
   2023       1.89      yamt 			mutex_exit(&lp->lp_lock);
   2024       1.89      yamt 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   2025       1.89      yamt 			    lcp->lcp_kaddr + PAGE_SIZE);
   2026       1.89      yamt 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   2027       1.89      yamt 			return error;
   2028       1.89      yamt 		}
   2029       1.78        ad 		/* Prepare the page descriptor and link into the list. */
   2030       1.78        ad 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   2031       1.78        ad 		lp->lp_cur += PAGE_SIZE;
   2032       1.78        ad 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   2033       1.78        ad 		lcp->lcp_rotor = 0;
   2034       1.78        ad 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   2035       1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   2036       1.78        ad 	}
   2037       1.78        ad 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   2038       1.78        ad 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   2039       1.78        ad 			i = 0;
   2040       1.78        ad 	}
   2041       1.78        ad 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   2042      1.193     kamil 	lcp->lcp_bitmap[i] ^= (1U << bit);
   2043       1.78        ad 	lcp->lcp_rotor = i;
   2044       1.78        ad 	lcp->lcp_nfree--;
   2045       1.78        ad 	l->l_lcpage = lcp;
   2046       1.78        ad 	offset = (i << 5) + bit;
   2047       1.78        ad 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   2048       1.78        ad 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   2049       1.78        ad 	mutex_exit(&lp->lp_lock);
   2050       1.78        ad 
   2051      1.107        ad 	KPREEMPT_DISABLE(l);
   2052      1.195     skrll 	l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
   2053      1.107        ad 	KPREEMPT_ENABLE(l);
   2054       1.78        ad 
   2055       1.78        ad 	return 0;
   2056       1.78        ad }
   2057       1.78        ad 
   2058       1.78        ad /*
   2059       1.78        ad  * Free an lwpctl structure back to the per-process list.
   2060       1.78        ad  */
   2061       1.78        ad void
   2062       1.78        ad lwp_ctl_free(lwp_t *l)
   2063       1.78        ad {
   2064      1.156     pooka 	struct proc *p = l->l_proc;
   2065       1.78        ad 	lcproc_t *lp;
   2066       1.78        ad 	lcpage_t *lcp;
   2067       1.78        ad 	u_int map, offset;
   2068       1.78        ad 
   2069      1.156     pooka 	/* don't free a lwp context we borrowed for vfork */
   2070      1.156     pooka 	if (p->p_lflag & PL_PPWAIT) {
   2071      1.156     pooka 		l->l_lwpctl = NULL;
   2072      1.156     pooka 		return;
   2073      1.156     pooka 	}
   2074      1.156     pooka 
   2075      1.156     pooka 	lp = p->p_lwpctl;
   2076       1.78        ad 	KASSERT(lp != NULL);
   2077       1.78        ad 
   2078       1.78        ad 	lcp = l->l_lcpage;
   2079       1.78        ad 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   2080       1.78        ad 	KASSERT(offset < LWPCTL_PER_PAGE);
   2081       1.78        ad 
   2082       1.78        ad 	mutex_enter(&lp->lp_lock);
   2083       1.78        ad 	lcp->lcp_nfree++;
   2084       1.78        ad 	map = offset >> 5;
   2085      1.194     kamil 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
   2086       1.78        ad 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   2087       1.78        ad 		lcp->lcp_rotor = map;
   2088       1.78        ad 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   2089       1.78        ad 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   2090       1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   2091       1.78        ad 	}
   2092       1.78        ad 	mutex_exit(&lp->lp_lock);
   2093       1.78        ad }
   2094       1.78        ad 
   2095       1.78        ad /*
   2096       1.78        ad  * Process is exiting; tear down lwpctl state.  This can only be safely
   2097       1.78        ad  * called by the last LWP in the process.
   2098       1.78        ad  */
   2099       1.78        ad void
   2100       1.78        ad lwp_ctl_exit(void)
   2101       1.78        ad {
   2102       1.78        ad 	lcpage_t *lcp, *next;
   2103       1.78        ad 	lcproc_t *lp;
   2104       1.78        ad 	proc_t *p;
   2105       1.78        ad 	lwp_t *l;
   2106       1.78        ad 
   2107       1.78        ad 	l = curlwp;
   2108       1.78        ad 	l->l_lwpctl = NULL;
   2109       1.95        ad 	l->l_lcpage = NULL;
   2110       1.78        ad 	p = l->l_proc;
   2111       1.78        ad 	lp = p->p_lwpctl;
   2112       1.78        ad 
   2113       1.78        ad 	KASSERT(lp != NULL);
   2114       1.78        ad 	KASSERT(p->p_nlwps == 1);
   2115       1.78        ad 
   2116       1.78        ad 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   2117       1.78        ad 		next = TAILQ_NEXT(lcp, lcp_chain);
   2118       1.78        ad 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   2119       1.78        ad 		    lcp->lcp_kaddr + PAGE_SIZE);
   2120       1.78        ad 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   2121       1.78        ad 	}
   2122       1.78        ad 
   2123       1.78        ad 	if (lp->lp_uao != NULL) {
   2124       1.78        ad 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   2125       1.78        ad 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   2126       1.78        ad 	}
   2127       1.78        ad 
   2128       1.78        ad 	mutex_destroy(&lp->lp_lock);
   2129       1.78        ad 	kmem_free(lp, sizeof(*lp));
   2130       1.78        ad 	p->p_lwpctl = NULL;
   2131       1.78        ad }
   2132       1.84      yamt 
   2133      1.130        ad /*
   2134      1.130        ad  * Return the current LWP's "preemption counter".  Used to detect
   2135      1.130        ad  * preemption across operations that can tolerate preemption without
   2136      1.130        ad  * crashing, but which may generate incorrect results if preempted.
   2137      1.264  riastrad  *
   2138      1.264  riastrad  * We do arithmetic in unsigned long to avoid undefined behaviour in
   2139      1.264  riastrad  * the event of arithmetic overflow on LP32, and issue __insn_barrier()
   2140      1.264  riastrad  * on both sides so this can safely be used to detect changes to the
   2141      1.264  riastrad  * preemption counter in loops around other memory accesses even in the
   2142      1.264  riastrad  * event of whole-program optimization (e.g., gcc -flto).
   2143      1.130        ad  */
   2144      1.258        ad long
   2145      1.130        ad lwp_pctr(void)
   2146      1.130        ad {
   2147      1.264  riastrad 	unsigned long pctr;
   2148      1.130        ad 
   2149      1.264  riastrad 	__insn_barrier();
   2150      1.264  riastrad 	pctr = curlwp->l_ru.ru_nvcsw;
   2151      1.264  riastrad 	pctr += curlwp->l_ru.ru_nivcsw;
   2152      1.264  riastrad 	__insn_barrier();
   2153      1.264  riastrad 	return pctr;
   2154      1.130        ad }
   2155      1.130        ad 
   2156      1.151       chs /*
   2157      1.151       chs  * Set an LWP's private data pointer.
   2158      1.151       chs  */
   2159      1.151       chs int
   2160      1.151       chs lwp_setprivate(struct lwp *l, void *ptr)
   2161      1.151       chs {
   2162      1.151       chs 	int error = 0;
   2163      1.151       chs 
   2164      1.151       chs 	l->l_private = ptr;
   2165      1.151       chs #ifdef __HAVE_CPU_LWP_SETPRIVATE
   2166      1.151       chs 	error = cpu_lwp_setprivate(l, ptr);
   2167      1.151       chs #endif
   2168      1.151       chs 	return error;
   2169      1.151       chs }
   2170      1.151       chs 
   2171      1.233   thorpej /*
   2172      1.233   thorpej  * Perform any thread-related cleanup on LWP exit.
   2173      1.233   thorpej  * N.B. l->l_proc->p_lock must be HELD on entry but will
   2174      1.233   thorpej  * be released before returning!
   2175      1.233   thorpej  */
   2176      1.233   thorpej void
   2177      1.233   thorpej lwp_thread_cleanup(struct lwp *l)
   2178      1.233   thorpej {
   2179      1.233   thorpej 
   2180      1.233   thorpej 	KASSERT(mutex_owned(l->l_proc->p_lock));
   2181      1.235   thorpej 	mutex_exit(l->l_proc->p_lock);
   2182      1.236   thorpej 
   2183      1.236   thorpej 	/*
   2184      1.236   thorpej 	 * If the LWP has robust futexes, release them all
   2185      1.236   thorpej 	 * now.
   2186      1.236   thorpej 	 */
   2187      1.236   thorpej 	if (__predict_false(l->l_robust_head != 0)) {
   2188      1.244   thorpej 		futex_release_all_lwp(l);
   2189      1.236   thorpej 	}
   2190      1.233   thorpej }
   2191      1.233   thorpej 
   2192       1.84      yamt #if defined(DDB)
   2193      1.153     rmind #include <machine/pcb.h>
   2194      1.153     rmind 
   2195       1.84      yamt void
   2196       1.84      yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2197       1.84      yamt {
   2198       1.84      yamt 	lwp_t *l;
   2199       1.84      yamt 
   2200       1.84      yamt 	LIST_FOREACH(l, &alllwp, l_list) {
   2201       1.84      yamt 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   2202       1.84      yamt 
   2203       1.84      yamt 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   2204       1.84      yamt 			continue;
   2205       1.84      yamt 		}
   2206       1.84      yamt 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   2207       1.84      yamt 		    (void *)addr, (void *)stack,
   2208       1.84      yamt 		    (size_t)(addr - stack), l);
   2209       1.84      yamt 	}
   2210       1.84      yamt }
   2211       1.84      yamt #endif /* defined(DDB) */
   2212