kern_lwp.c revision 1.40.2.9 1 1.40.2.9 ad /* $NetBSD: kern_lwp.c,v 1.40.2.9 2007/01/16 01:26:20 ad Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.40.2.9 ad * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.40.2.2 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej * 3. All advertising materials mentioning features or use of this software
19 1.2 thorpej * must display the following acknowledgement:
20 1.2 thorpej * This product includes software developed by the NetBSD
21 1.2 thorpej * Foundation, Inc. and its contributors.
22 1.2 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 thorpej * contributors may be used to endorse or promote products derived
24 1.2 thorpej * from this software without specific prior written permission.
25 1.2 thorpej *
26 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
37 1.2 thorpej */
38 1.9 lukem
39 1.40.2.4 ad /*
40 1.40.2.4 ad * Overview
41 1.40.2.4 ad *
42 1.40.2.4 ad * Lightweight processes (LWPs) are the basic unit (or thread) of
43 1.40.2.4 ad * execution within the kernel. The core state of an LWP is described
44 1.40.2.4 ad * by "struct lwp".
45 1.40.2.4 ad *
46 1.40.2.4 ad * Each LWP is contained within a process (described by "struct proc"),
47 1.40.2.4 ad * Every process contains at least one LWP, but may contain more. The
48 1.40.2.4 ad * process describes attributes shared among all of its LWPs such as a
49 1.40.2.4 ad * private address space, global execution state (stopped, active,
50 1.40.2.4 ad * zombie, ...), signal disposition and so on. On a multiprocessor
51 1.40.2.4 ad * machine, multiple LWPs be executing in kernel simultaneously.
52 1.40.2.4 ad *
53 1.40.2.4 ad * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 1.40.2.4 ad * threads are distinct processes (system processes) with no user space
55 1.40.2.4 ad * component, which themselves may contain one or more LWPs.
56 1.40.2.4 ad *
57 1.40.2.4 ad * Execution states
58 1.40.2.4 ad *
59 1.40.2.4 ad * At any given time, an LWP has overall state that is described by
60 1.40.2.4 ad * lwp::l_stat. The states are broken into two sets below. The first
61 1.40.2.4 ad * set is guaranteed to represent the absolute, current state of the
62 1.40.2.4 ad * LWP:
63 1.40.2.4 ad *
64 1.40.2.4 ad * LSONPROC
65 1.40.2.4 ad *
66 1.40.2.4 ad * On processor: the LWP is executing on a CPU, either in the
67 1.40.2.4 ad * kernel or in user space.
68 1.40.2.4 ad *
69 1.40.2.4 ad * LSRUN
70 1.40.2.4 ad *
71 1.40.2.4 ad * Runnable: the LWP is parked on a run queue, and may soon be
72 1.40.2.4 ad * chosen to run by a idle processor, or by a processor that
73 1.40.2.4 ad * has been asked to preempt a currently runnning but lower
74 1.40.2.4 ad * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 1.40.2.4 ad * then the LWP is not on a run queue, but may be soon.
76 1.40.2.4 ad *
77 1.40.2.4 ad * LSIDL
78 1.40.2.4 ad *
79 1.40.2.4 ad * Idle: the LWP has been created but has not yet executed.
80 1.40.2.4 ad * Whoever created the new LWP can be expected to set it to
81 1.40.2.4 ad * another state shortly.
82 1.40.2.4 ad *
83 1.40.2.4 ad * LSSUSPENDED:
84 1.40.2.4 ad *
85 1.40.2.4 ad * Suspended: the LWP has had its execution suspended by
86 1.40.2.4 ad * another LWP in the same process using the _lwp_suspend()
87 1.40.2.4 ad * system call. User-level LWPs also enter the suspended
88 1.40.2.4 ad * state when the system is shutting down.
89 1.40.2.4 ad *
90 1.40.2.4 ad * The second set represent a "statement of intent" on behalf of the
91 1.40.2.4 ad * LWP. The LWP may in fact be executing on a processor, may be
92 1.40.2.4 ad * sleeping, idle, or on a run queue. It is expected to take the
93 1.40.2.4 ad * necessary action to stop executing or become "running" again within
94 1.40.2.4 ad * a short timeframe.
95 1.40.2.4 ad *
96 1.40.2.6 ad * LSZOMB:
97 1.40.2.4 ad *
98 1.40.2.4 ad * Dead: the LWP has released most of its resources and is
99 1.40.2.4 ad * about to switch away into oblivion. When it switches away,
100 1.40.2.6 ad * its few remaining resources will be collected.
101 1.40.2.4 ad *
102 1.40.2.4 ad * LSSLEEP:
103 1.40.2.4 ad *
104 1.40.2.4 ad * Sleeping: the LWP has entered itself onto a sleep queue, and
105 1.40.2.4 ad * will switch away shortly to allow other LWPs to run on the
106 1.40.2.4 ad * CPU.
107 1.40.2.4 ad *
108 1.40.2.4 ad * LSSTOP:
109 1.40.2.4 ad *
110 1.40.2.4 ad * Stopped: the LWP has been stopped as a result of a job
111 1.40.2.4 ad * control signal, or as a result of the ptrace() interface.
112 1.40.2.4 ad * Stopped LWPs may run briefly within the kernel to handle
113 1.40.2.4 ad * signals that they receive, but will not return to user space
114 1.40.2.4 ad * until their process' state is changed away from stopped.
115 1.40.2.4 ad * Single LWPs within a process can not be set stopped
116 1.40.2.4 ad * selectively: all actions that can stop or continue LWPs
117 1.40.2.4 ad * occur at the process level.
118 1.40.2.4 ad *
119 1.40.2.4 ad * State transitions
120 1.40.2.4 ad *
121 1.40.2.4 ad * Note that the LSSTOP and LSSUSPENDED states may only be set
122 1.40.2.4 ad * when returning to user space in userret(), or when sleeping
123 1.40.2.4 ad * interruptably. Before setting those states, we try to ensure
124 1.40.2.4 ad * that the LWPs will release all kernel locks that they hold,
125 1.40.2.4 ad * and at a minimum try to ensure that the LWP can be set runnable
126 1.40.2.4 ad * again by a signal.
127 1.40.2.4 ad *
128 1.40.2.4 ad * LWPs may transition states in the following ways:
129 1.40.2.4 ad *
130 1.40.2.4 ad * RUN -------> ONPROC ONPROC -----> RUN
131 1.40.2.4 ad * > STOPPED > SLEEP
132 1.40.2.4 ad * > SUSPENDED > STOPPED
133 1.40.2.4 ad * > SUSPENDED
134 1.40.2.6 ad * > ZOMB
135 1.40.2.4 ad *
136 1.40.2.4 ad * STOPPED ---> RUN SUSPENDED --> RUN
137 1.40.2.4 ad * > SLEEP > SLEEP
138 1.40.2.4 ad *
139 1.40.2.7 ad * SLEEP -----> ONPROC IDL --------> RUN
140 1.40.2.7 ad * > RUN > SUSPENDED
141 1.40.2.7 ad * > STOPPED > STOPPED
142 1.40.2.4 ad * > SUSPENDED
143 1.40.2.4 ad *
144 1.40.2.4 ad * Locking
145 1.40.2.4 ad *
146 1.40.2.4 ad * The majority of fields in 'struct lwp' are covered by a single,
147 1.40.2.4 ad * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 1.40.2.4 ad * each field are documented in sys/lwp.h.
149 1.40.2.4 ad *
150 1.40.2.4 ad * State transitions must be made with the LWP's general lock held. In
151 1.40.2.4 ad * a multiprocessor kernel, state transitions may cause the LWP's lock
152 1.40.2.4 ad * pointer to change. On uniprocessor kernels, most scheduler and
153 1.40.2.4 ad * synchronisation objects such as sleep queues and LWPs are protected
154 1.40.2.4 ad * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 1.40.2.4 ad * will never change and will always reference sched_mutex.
156 1.40.2.4 ad *
157 1.40.2.4 ad * Manipulation of the general lock is not performed directly, but
158 1.40.2.4 ad * through calls to lwp_lock(), lwp_relock() and similar.
159 1.40.2.4 ad *
160 1.40.2.4 ad * States and their associated locks:
161 1.40.2.4 ad *
162 1.40.2.6 ad * LSIDL, LSZOMB
163 1.40.2.4 ad *
164 1.40.2.6 ad * Always covered by sched_mutex.
165 1.40.2.4 ad *
166 1.40.2.4 ad * LSONPROC, LSRUN:
167 1.40.2.4 ad *
168 1.40.2.4 ad * Always covered by sched_mutex, which protects the run queues
169 1.40.2.4 ad * and other miscellaneous items. If the scheduler is changed
170 1.40.2.4 ad * to use per-CPU run queues, this may become a per-CPU mutex.
171 1.40.2.4 ad *
172 1.40.2.4 ad * LSSLEEP:
173 1.40.2.4 ad *
174 1.40.2.4 ad * Covered by a mutex associated with the sleep queue that the
175 1.40.2.4 ad * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 1.40.2.4 ad *
177 1.40.2.4 ad * LSSTOP, LSSUSPENDED:
178 1.40.2.4 ad *
179 1.40.2.4 ad * If the LWP was previously sleeping (l_wchan != NULL), then
180 1.40.2.4 ad * l_mutex references the sleep queue mutex. If the LWP was
181 1.40.2.4 ad * runnable or on the CPU when halted, or has been removed from
182 1.40.2.6 ad * the sleep queue since halted, then the mutex is sched_mutex.
183 1.40.2.4 ad *
184 1.40.2.6 ad * The lock order is as follows:
185 1.40.2.4 ad *
186 1.40.2.6 ad * sleepq_t::sq_mutex -> sched_mutex
187 1.40.2.4 ad *
188 1.40.2.4 ad * Each process has an scheduler state mutex (proc::p_smutex), and a
189 1.40.2.4 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
190 1.40.2.4 ad * so on. When an LWP is to be entered into or removed from one of the
191 1.40.2.4 ad * following states, p_mutex must be held and the process wide counters
192 1.40.2.4 ad * adjusted:
193 1.40.2.4 ad *
194 1.40.2.6 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
195 1.40.2.4 ad *
196 1.40.2.4 ad * Note that an LWP is considered running or likely to run soon if in
197 1.40.2.4 ad * one of the following states. This affects the value of p_nrlwps:
198 1.40.2.4 ad *
199 1.40.2.4 ad * LSRUN, LSONPROC, LSSLEEP
200 1.40.2.4 ad *
201 1.40.2.4 ad * p_smutex does not need to be held when transitioning among these
202 1.40.2.4 ad * three states.
203 1.40.2.4 ad */
204 1.40.2.4 ad
205 1.9 lukem #include <sys/cdefs.h>
206 1.40.2.9 ad __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.40.2.9 2007/01/16 01:26:20 ad Exp $");
207 1.8 martin
208 1.8 martin #include "opt_multiprocessor.h"
209 1.40.2.4 ad #include "opt_lockdebug.h"
210 1.2 thorpej
211 1.40.2.5 ad #define _LWP_API_PRIVATE
212 1.40.2.5 ad
213 1.2 thorpej #include <sys/param.h>
214 1.2 thorpej #include <sys/systm.h>
215 1.2 thorpej #include <sys/pool.h>
216 1.2 thorpej #include <sys/proc.h>
217 1.40.2.4 ad #include <sys/sa.h>
218 1.2 thorpej #include <sys/syscallargs.h>
219 1.37 ad #include <sys/kauth.h>
220 1.40.2.2 ad #include <sys/sleepq.h>
221 1.40.2.2 ad #include <sys/lockdebug.h>
222 1.40.2.6 ad #include <sys/kmem.h>
223 1.2 thorpej
224 1.2 thorpej #include <uvm/uvm_extern.h>
225 1.2 thorpej
226 1.40.2.1 ad struct lwplist alllwp;
227 1.2 thorpej
228 1.40.2.5 ad POOL_INIT(lwp_pool, sizeof(struct lwp), 16, 0, 0, "lwppl",
229 1.40.2.5 ad &pool_allocator_nointr);
230 1.40.2.5 ad POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
231 1.40.2.5 ad &pool_allocator_nointr);
232 1.40.2.5 ad
233 1.40.2.5 ad static specificdata_domain_t lwp_specificdata_domain;
234 1.40.2.5 ad
235 1.2 thorpej #define LWP_DEBUG
236 1.2 thorpej
237 1.2 thorpej #ifdef LWP_DEBUG
238 1.2 thorpej int lwp_debug = 0;
239 1.2 thorpej #define DPRINTF(x) if (lwp_debug) printf x
240 1.2 thorpej #else
241 1.2 thorpej #define DPRINTF(x)
242 1.2 thorpej #endif
243 1.2 thorpej
244 1.40.2.5 ad void
245 1.40.2.5 ad lwpinit(void)
246 1.40.2.5 ad {
247 1.40.2.5 ad
248 1.40.2.5 ad lwp_specificdata_domain = specificdata_domain_create();
249 1.40.2.5 ad KASSERT(lwp_specificdata_domain != NULL);
250 1.40.2.6 ad lwp_sys_init();
251 1.40.2.5 ad }
252 1.40.2.5 ad
253 1.40.2.2 ad /*
254 1.40.2.6 ad * Set an suspended.
255 1.40.2.2 ad *
256 1.40.2.2 ad * Must be called with p_smutex held, and the LWP locked. Will unlock the
257 1.40.2.2 ad * LWP before return.
258 1.40.2.2 ad */
259 1.2 thorpej int
260 1.40.2.6 ad lwp_suspend(struct lwp *curl, struct lwp *t)
261 1.2 thorpej {
262 1.40.2.6 ad int error;
263 1.2 thorpej
264 1.40.2.6 ad LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
265 1.40.2.2 ad LOCK_ASSERT(lwp_locked(t, NULL));
266 1.2 thorpej
267 1.40.2.2 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
268 1.17 manu
269 1.40.2.2 ad /*
270 1.40.2.2 ad * If the current LWP has been told to exit, we must not suspend anyone
271 1.40.2.2 ad * else or deadlock could occur. We won't return to userspace.
272 1.40.2.2 ad */
273 1.40.2.6 ad if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
274 1.40.2.6 ad lwp_unlock(t);
275 1.40.2.2 ad return (EDEADLK);
276 1.40.2.6 ad }
277 1.2 thorpej
278 1.40.2.2 ad error = 0;
279 1.17 manu
280 1.40.2.2 ad switch (t->l_stat) {
281 1.40.2.2 ad case LSRUN:
282 1.40.2.2 ad case LSONPROC:
283 1.40.2.6 ad t->l_flag |= L_WSUSPEND;
284 1.40.2.6 ad lwp_need_userret(t);
285 1.40.2.6 ad lwp_unlock(t);
286 1.40.2.2 ad break;
287 1.40.2.4 ad
288 1.40.2.2 ad case LSSLEEP:
289 1.40.2.6 ad t->l_flag |= L_WSUSPEND;
290 1.40.2.4 ad
291 1.40.2.4 ad /*
292 1.40.2.4 ad * Kick the LWP and try to get it to the kernel boundary
293 1.40.2.4 ad * so that it will release any locks that it holds.
294 1.40.2.4 ad * setrunnable() will release the lock.
295 1.40.2.4 ad */
296 1.40.2.6 ad if ((t->l_flag & L_SINTR) != 0)
297 1.40.2.6 ad setrunnable(t);
298 1.40.2.6 ad else
299 1.40.2.6 ad lwp_unlock(t);
300 1.40.2.6 ad break;
301 1.40.2.4 ad
302 1.40.2.2 ad case LSSUSPENDED:
303 1.40.2.6 ad lwp_unlock(t);
304 1.40.2.6 ad break;
305 1.40.2.6 ad
306 1.40.2.2 ad case LSSTOP:
307 1.40.2.6 ad t->l_flag |= L_WSUSPEND;
308 1.40.2.6 ad setrunnable(t);
309 1.40.2.2 ad break;
310 1.40.2.4 ad
311 1.40.2.2 ad case LSIDL:
312 1.40.2.2 ad case LSZOMB:
313 1.40.2.2 ad error = EINTR; /* It's what Solaris does..... */
314 1.40.2.6 ad lwp_unlock(t);
315 1.40.2.2 ad break;
316 1.2 thorpej }
317 1.2 thorpej
318 1.40.2.6 ad /*
319 1.40.2.6 ad * XXXLWP Wait for:
320 1.40.2.6 ad *
321 1.40.2.6 ad * o process exiting
322 1.40.2.6 ad * o target LWP suspended
323 1.40.2.6 ad * o target LWP not suspended and L_WSUSPEND clear
324 1.40.2.6 ad * o target LWP exited
325 1.40.2.6 ad */
326 1.2 thorpej
327 1.40.2.6 ad return (error);
328 1.2 thorpej }
329 1.2 thorpej
330 1.40.2.2 ad /*
331 1.40.2.2 ad * Restart a suspended LWP.
332 1.40.2.2 ad *
333 1.40.2.2 ad * Must be called with p_smutex held, and the LWP locked. Will unlock the
334 1.40.2.2 ad * LWP before return.
335 1.40.2.2 ad */
336 1.2 thorpej void
337 1.2 thorpej lwp_continue(struct lwp *l)
338 1.2 thorpej {
339 1.2 thorpej
340 1.40.2.2 ad LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
341 1.40.2.4 ad LOCK_ASSERT(lwp_locked(l, NULL));
342 1.40.2.2 ad
343 1.2 thorpej DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
344 1.2 thorpej l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
345 1.2 thorpej l->l_wchan));
346 1.2 thorpej
347 1.40.2.4 ad /* If rebooting or not suspended, then just bail out. */
348 1.40.2.4 ad if ((l->l_flag & L_WREBOOT) != 0) {
349 1.40.2.2 ad lwp_unlock(l);
350 1.2 thorpej return;
351 1.40.2.2 ad }
352 1.2 thorpej
353 1.40.2.4 ad l->l_flag &= ~L_WSUSPEND;
354 1.40.2.4 ad
355 1.40.2.4 ad if (l->l_stat != LSSUSPENDED) {
356 1.40.2.2 ad lwp_unlock(l);
357 1.40.2.4 ad return;
358 1.2 thorpej }
359 1.40.2.4 ad
360 1.40.2.4 ad /* setrunnable() will release the lock. */
361 1.40.2.4 ad setrunnable(l);
362 1.2 thorpej }
363 1.2 thorpej
364 1.40.2.2 ad /*
365 1.40.2.2 ad * Wait for an LWP within the current process to exit. If 'lid' is
366 1.40.2.2 ad * non-zero, we are waiting for a specific LWP.
367 1.40.2.2 ad *
368 1.40.2.2 ad * Must be called with p->p_smutex held.
369 1.40.2.2 ad */
370 1.2 thorpej int
371 1.2 thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
372 1.2 thorpej {
373 1.2 thorpej struct proc *p = l->l_proc;
374 1.40.2.2 ad struct lwp *l2;
375 1.40.2.6 ad int nfound, error;
376 1.2 thorpej
377 1.2 thorpej DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
378 1.2 thorpej p->p_pid, l->l_lid, lid));
379 1.2 thorpej
380 1.40.2.2 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
381 1.2 thorpej
382 1.40.2.2 ad /*
383 1.40.2.6 ad * We try to check for deadlock:
384 1.40.2.2 ad *
385 1.40.2.2 ad * 1) If all other LWPs are waiting for exits or suspended.
386 1.40.2.2 ad * 2) If we are trying to wait on ourself.
387 1.40.2.2 ad *
388 1.40.2.2 ad * XXX we'd like to check for a cycle of waiting LWPs (specific LID
389 1.40.2.2 ad * waits, not any-LWP waits) and detect that sort of deadlock, but
390 1.40.2.2 ad * we don't have a good place to store the lwp that is being waited
391 1.40.2.2 ad * for. wchan is already filled with &p->p_nlwps, and putting the
392 1.40.2.2 ad * lwp address in there for deadlock tracing would require exiting
393 1.40.2.2 ad * LWPs to call wakeup on both their own address and &p->p_nlwps, to
394 1.40.2.2 ad * get threads sleeping on any LWP exiting.
395 1.40.2.2 ad */
396 1.40.2.6 ad if (lid == l->l_lid)
397 1.40.2.6 ad return EDEADLK;
398 1.40.2.2 ad
399 1.40.2.2 ad p->p_nlwpwait++;
400 1.2 thorpej
401 1.40.2.6 ad for (;;) {
402 1.40.2.6 ad /*
403 1.40.2.6 ad * Avoid a race between exit1() and sigexit(): if the
404 1.40.2.6 ad * process is dumping core, then we need to bail out: call
405 1.40.2.6 ad * into lwp_userret() where we will be suspended until the
406 1.40.2.6 ad * deed is done.
407 1.40.2.6 ad */
408 1.40.2.6 ad if ((p->p_sflag & PS_WCORE) != 0) {
409 1.40.2.6 ad mutex_exit(&p->p_smutex);
410 1.40.2.6 ad lwp_userret(l);
411 1.40.2.6 ad #ifdef DIAGNOSTIC
412 1.40.2.6 ad panic("lwp_wait1");
413 1.40.2.6 ad #endif
414 1.40.2.6 ad /* NOTREACHED */
415 1.40.2.6 ad }
416 1.40.2.2 ad
417 1.40.2.6 ad /*
418 1.40.2.6 ad * First off, drain any detached LWP that is waiting to be
419 1.40.2.6 ad * reaped.
420 1.40.2.6 ad */
421 1.40.2.6 ad while ((l2 = p->p_zomblwp) != NULL) {
422 1.40.2.6 ad p->p_zomblwp = NULL;
423 1.40.2.6 ad lwp_free(l2, 0, 0); /* releases proc mutex */
424 1.40.2.6 ad mutex_enter(&p->p_smutex);
425 1.40.2.6 ad }
426 1.2 thorpej
427 1.40.2.6 ad /*
428 1.40.2.6 ad * Now look for an LWP to collect. If the whole process is
429 1.40.2.6 ad * exiting, count detached LWPs as eligible to be collected,
430 1.40.2.6 ad * but don't drain them here.
431 1.40.2.6 ad */
432 1.40.2.6 ad nfound = 0;
433 1.40.2.6 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
434 1.40.2.6 ad if (l2 == l || (lid != 0 && l2->l_lid != lid))
435 1.40.2.6 ad continue;
436 1.40.2.6 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
437 1.40.2.6 ad nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
438 1.40.2.6 ad continue;
439 1.40.2.6 ad }
440 1.40.2.6 ad nfound++;
441 1.2 thorpej
442 1.40.2.6 ad /* No need to lock the LWP in order to see LSZOMB. */
443 1.40.2.6 ad if (l2->l_stat != LSZOMB)
444 1.40.2.6 ad continue;
445 1.40.2.6 ad
446 1.40.2.6 ad if (departed)
447 1.40.2.6 ad *departed = l2->l_lid;
448 1.40.2.6 ad lwp_free(l2, 0, 0);
449 1.40.2.6 ad mutex_enter(&p->p_smutex);
450 1.40.2.6 ad p->p_nlwpwait--;
451 1.40.2.6 ad return 0;
452 1.40.2.6 ad }
453 1.40.2.6 ad
454 1.40.2.6 ad if (nfound == 0) {
455 1.40.2.6 ad error = ESRCH;
456 1.40.2.6 ad break;
457 1.40.2.6 ad }
458 1.40.2.6 ad if ((flags & LWPWAIT_EXITCONTROL) != 0) {
459 1.40.2.6 ad KASSERT(p->p_nlwps > 1);
460 1.40.2.6 ad cv_wait(&p->p_lwpcv, &p->p_smutex);
461 1.40.2.6 ad continue;
462 1.40.2.6 ad }
463 1.40.2.6 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
464 1.40.2.6 ad p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
465 1.40.2.6 ad error = EDEADLK;
466 1.40.2.6 ad break;
467 1.40.2.6 ad }
468 1.40.2.6 ad if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
469 1.40.2.6 ad break;
470 1.40.2.6 ad }
471 1.2 thorpej
472 1.40.2.6 ad p->p_nlwpwait--;
473 1.40.2.6 ad return error;
474 1.2 thorpej }
475 1.2 thorpej
476 1.40.2.2 ad /*
477 1.40.2.2 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
478 1.40.2.2 ad * The new LWP is created in state LSIDL and must be set running,
479 1.40.2.2 ad * suspended, or stopped by the caller.
480 1.40.2.2 ad */
481 1.2 thorpej int
482 1.2 thorpej newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
483 1.2 thorpej int flags, void *stack, size_t stacksize,
484 1.2 thorpej void (*func)(void *), void *arg, struct lwp **rnewlwpp)
485 1.2 thorpej {
486 1.40.2.6 ad struct lwp *l2, *isfree;
487 1.40.2.6 ad turnstile_t *ts;
488 1.2 thorpej
489 1.40.2.6 ad /*
490 1.40.2.6 ad * First off, reap any detached LWP waiting to be collected.
491 1.40.2.6 ad * We can re-use its LWP structure and turnstile.
492 1.40.2.6 ad */
493 1.40.2.6 ad isfree = NULL;
494 1.40.2.6 ad if (p2->p_zomblwp != NULL) {
495 1.40.2.6 ad mutex_enter(&p2->p_smutex);
496 1.40.2.6 ad if ((isfree = p2->p_zomblwp) != NULL) {
497 1.40.2.6 ad p2->p_zomblwp = NULL;
498 1.40.2.6 ad lwp_free(isfree, 1, 0); /* releases proc mutex */
499 1.40.2.6 ad } else
500 1.40.2.6 ad mutex_exit(&p2->p_smutex);
501 1.40.2.6 ad }
502 1.40.2.6 ad if (isfree == NULL) {
503 1.40.2.6 ad l2 = pool_get(&lwp_pool, PR_WAITOK);
504 1.40.2.6 ad memset(l2, 0, sizeof(*l2));
505 1.40.2.6 ad l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
506 1.40.2.6 ad } else {
507 1.40.2.6 ad l2 = isfree;
508 1.40.2.6 ad ts = l2->l_ts;
509 1.40.2.6 ad memset(l2, 0, sizeof(*l2));
510 1.40.2.6 ad l2->l_ts = ts;
511 1.40.2.6 ad }
512 1.2 thorpej
513 1.2 thorpej l2->l_stat = LSIDL;
514 1.2 thorpej l2->l_proc = p2;
515 1.40.2.4 ad l2->l_refcnt = 1;
516 1.40.2.6 ad l2->l_priority = l1->l_priority;
517 1.40.2.6 ad l2->l_usrpri = l1->l_usrpri;
518 1.40.2.4 ad l2->l_mutex = &sched_mutex;
519 1.40.2.6 ad l2->l_cpu = l1->l_cpu;
520 1.2 thorpej l2->l_flag = inmem ? L_INMEM : 0;
521 1.40.2.6 ad lwp_initspecific(l2);
522 1.2 thorpej
523 1.40.2.2 ad if (p2->p_flag & P_SYSTEM) {
524 1.40.2.2 ad /*
525 1.40.2.2 ad * Mark it as a system process and not a candidate for
526 1.40.2.2 ad * swapping.
527 1.40.2.2 ad */
528 1.40.2.2 ad l2->l_flag |= L_SYSTEM | L_INMEM;
529 1.40.2.2 ad }
530 1.40.2.2 ad
531 1.37 ad lwp_update_creds(l2);
532 1.2 thorpej callout_init(&l2->l_tsleep_ch);
533 1.40.2.4 ad l2->l_syncobj = &sched_syncobj;
534 1.2 thorpej
535 1.2 thorpej if (rnewlwpp != NULL)
536 1.2 thorpej *rnewlwpp = l2;
537 1.2 thorpej
538 1.36 yamt l2->l_addr = UAREA_TO_USER(uaddr);
539 1.2 thorpej uvm_lwp_fork(l1, l2, stack, stacksize, func,
540 1.2 thorpej (arg != NULL) ? arg : l2);
541 1.2 thorpej
542 1.40.2.2 ad mutex_enter(&p2->p_smutex);
543 1.40.2.3 ad
544 1.40.2.6 ad if ((flags & LWP_DETACHED) != 0) {
545 1.40.2.6 ad l2->l_prflag = LPR_DETACHED;
546 1.40.2.6 ad p2->p_ndlwps++;
547 1.40.2.6 ad } else
548 1.40.2.6 ad l2->l_prflag = 0;
549 1.40.2.6 ad
550 1.40.2.6 ad if ((p2->p_sflag & PS_SA) == 0) {
551 1.40.2.3 ad l2->l_sigmask = &l2->l_sigstore.ss_mask;
552 1.40.2.3 ad l2->l_sigstk = &l2->l_sigstore.ss_stk;
553 1.40.2.6 ad *l2->l_sigmask = *l1->l_sigmask;
554 1.40.2.3 ad } else {
555 1.40.2.3 ad l2->l_sigmask = &p2->p_sigstore.ss_mask;
556 1.40.2.3 ad l2->l_sigstk = &p2->p_sigstore.ss_stk;
557 1.40.2.3 ad }
558 1.40.2.3 ad
559 1.40.2.6 ad CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
560 1.40.2.6 ad sigemptyset(&l2->l_sigpend.sp_set);
561 1.40.2.6 ad
562 1.2 thorpej l2->l_lid = ++p2->p_nlwpid;
563 1.2 thorpej LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
564 1.2 thorpej p2->p_nlwps++;
565 1.40.2.3 ad
566 1.40.2.2 ad mutex_exit(&p2->p_smutex);
567 1.2 thorpej
568 1.40.2.6 ad mutex_enter(&proclist_mutex);
569 1.2 thorpej LIST_INSERT_HEAD(&alllwp, l2, l_list);
570 1.40.2.6 ad mutex_exit(&proclist_mutex);
571 1.2 thorpej
572 1.16 manu if (p2->p_emul->e_lwp_fork)
573 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
574 1.16 manu
575 1.2 thorpej return (0);
576 1.2 thorpej }
577 1.2 thorpej
578 1.2 thorpej /*
579 1.40.2.2 ad * Quit the process. This will call cpu_exit, which will call cpu_switch,
580 1.40.2.2 ad * so this can only be used meaningfully if you're willing to switch away.
581 1.2 thorpej * Calling with l!=curlwp would be weird.
582 1.2 thorpej */
583 1.40.2.6 ad void
584 1.40.2.6 ad lwp_exit(struct lwp *l)
585 1.2 thorpej {
586 1.2 thorpej struct proc *p = l->l_proc;
587 1.40.2.6 ad struct lwp *l2;
588 1.2 thorpej
589 1.2 thorpej DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
590 1.40.2.2 ad DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
591 1.2 thorpej
592 1.40.2.4 ad /*
593 1.40.2.6 ad * Verify that we hold no locks other than the kernel lock.
594 1.40.2.4 ad */
595 1.40.2.6 ad #ifdef MULTIPROCESSOR
596 1.40.2.6 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
597 1.40.2.6 ad #else
598 1.40.2.6 ad LOCKDEBUG_BARRIER(NULL, 0);
599 1.40.2.6 ad #endif
600 1.16 manu
601 1.2 thorpej /*
602 1.40.2.2 ad * If we are the last live LWP in a process, we need to exit the
603 1.40.2.2 ad * entire process. We do so with an exit status of zero, because
604 1.40.2.2 ad * it's a "controlled" exit, and because that's what Solaris does.
605 1.40.2.2 ad *
606 1.40.2.2 ad * We are not quite a zombie yet, but for accounting purposes we
607 1.40.2.2 ad * must increment the count of zombies here.
608 1.40.2.5 ad *
609 1.40.2.5 ad * Note: the last LWP's specificdata will be deleted here.
610 1.2 thorpej */
611 1.40.2.6 ad mutex_enter(&p->p_smutex);
612 1.40.2.6 ad if (p->p_nlwps - p->p_nzlwps == 1) {
613 1.2 thorpej DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
614 1.2 thorpej p->p_pid, l->l_lid));
615 1.2 thorpej exit1(l, 0);
616 1.19 jdolecek /* NOTREACHED */
617 1.2 thorpej }
618 1.40.2.6 ad p->p_nzlwps++;
619 1.40.2.6 ad mutex_exit(&p->p_smutex);
620 1.40.2.6 ad
621 1.40.2.6 ad if (p->p_emul->e_lwp_exit)
622 1.40.2.6 ad (*p->p_emul->e_lwp_exit)(l);
623 1.2 thorpej
624 1.40.2.5 ad /* Delete the specificdata while it's still safe to sleep. */
625 1.40.2.5 ad specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
626 1.40.2.5 ad
627 1.40.2.5 ad /*
628 1.40.2.6 ad * Release our cached credentials.
629 1.40.2.5 ad */
630 1.40.2.5 ad kauth_cred_free(l->l_cred);
631 1.40.2.5 ad
632 1.40.2.6 ad /*
633 1.40.2.6 ad * Remove the LWP from the global list.
634 1.40.2.6 ad */
635 1.40.2.6 ad mutex_enter(&proclist_mutex);
636 1.40.2.6 ad LIST_REMOVE(l, l_list);
637 1.40.2.6 ad mutex_exit(&proclist_mutex);
638 1.40.2.6 ad
639 1.40.2.6 ad /*
640 1.40.2.6 ad * Get rid of all references to the LWP that others (e.g. procfs)
641 1.40.2.6 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
642 1.40.2.6 ad * mark it waiting for collection in the proc structure. Note that
643 1.40.2.6 ad * before we can do that, we need to free any other dead, deatched
644 1.40.2.6 ad * LWP waiting to meet its maker.
645 1.40.2.6 ad *
646 1.40.2.6 ad * XXXSMP disable preemption.
647 1.40.2.6 ad */
648 1.40.2.6 ad mutex_enter(&p->p_smutex);
649 1.40.2.6 ad lwp_drainrefs(l);
650 1.40.2.4 ad
651 1.40.2.6 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
652 1.40.2.6 ad while ((l2 = p->p_zomblwp) != NULL) {
653 1.40.2.6 ad p->p_zomblwp = NULL;
654 1.40.2.6 ad lwp_free(l2, 0, 0); /* releases proc mutex */
655 1.40.2.6 ad mutex_enter(&p->p_smutex);
656 1.40.2.6 ad }
657 1.40.2.6 ad p->p_zomblwp = l;
658 1.40.2.6 ad }
659 1.40.2.9 ad
660 1.40.2.9 ad /*
661 1.40.2.9 ad * Clear any private, pending signals. XXXLWP Small chance that
662 1.40.2.9 ad * we may defer process-wide signals by taking L_PENDSIG with us
663 1.40.2.9 ad * to the grave.
664 1.40.2.9 ad */
665 1.40.2.9 ad sigclear(&l->l_sigpend, NULL);
666 1.40.2.9 ad
667 1.40.2.6 ad lwp_lock(l);
668 1.40.2.6 ad l->l_stat = LSZOMB;
669 1.40.2.6 ad lwp_unlock(l);
670 1.40.2.6 ad p->p_nrlwps--;
671 1.40.2.6 ad mutex_exit(&p->p_smutex);
672 1.37 ad
673 1.40.2.2 ad /*
674 1.40.2.6 ad * We can no longer block. At this point, lwp_free() may already
675 1.40.2.6 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
676 1.40.2.6 ad *
677 1.40.2.6 ad * Free MD LWP resources.
678 1.40.2.2 ad */
679 1.19 jdolecek #ifndef __NO_CPU_LWP_FREE
680 1.19 jdolecek cpu_lwp_free(l, 0);
681 1.19 jdolecek #endif
682 1.31 yamt pmap_deactivate(l);
683 1.31 yamt
684 1.40.2.2 ad /*
685 1.40.2.6 ad * Release the kernel lock, signal another LWP to collect us,
686 1.40.2.6 ad * and switch away into oblivion.
687 1.40.2.2 ad */
688 1.40.2.7 ad #ifdef notyet
689 1.40.2.7 ad /* XXXSMP hold in lwp_userret() */
690 1.40.2.7 ad KERNEL_UNLOCK_LAST(l);
691 1.40.2.7 ad #else
692 1.40.2.7 ad KERNEL_UNLOCK_ALL(l, NULL);
693 1.40.2.7 ad #endif
694 1.40.2.7 ad
695 1.40.2.6 ad cv_broadcast(&p->p_lwpcv);
696 1.19 jdolecek cpu_exit(l);
697 1.2 thorpej }
698 1.2 thorpej
699 1.19 jdolecek /*
700 1.40.2.4 ad * We are called from cpu_exit() once it is safe to schedule the dead LWP's
701 1.40.2.4 ad * resources to be freed (i.e., once we've switched to the idle PCB for the
702 1.40.2.4 ad * current CPU).
703 1.19 jdolecek */
704 1.2 thorpej void
705 1.2 thorpej lwp_exit2(struct lwp *l)
706 1.2 thorpej {
707 1.40.2.6 ad /* XXXSMP re-enable preemption */
708 1.40.2.6 ad }
709 1.40.2.4 ad
710 1.40.2.6 ad /*
711 1.40.2.6 ad * Free a dead LWP's remaining resources.
712 1.40.2.6 ad *
713 1.40.2.6 ad * XXXLWP limits.
714 1.40.2.6 ad */
715 1.40.2.6 ad void
716 1.40.2.6 ad lwp_free(struct lwp *l, int recycle, int last)
717 1.40.2.6 ad {
718 1.40.2.6 ad struct proc *p = l->l_proc;
719 1.40.2.2 ad
720 1.19 jdolecek /*
721 1.40.2.6 ad * If this was not the last LWP in the process, then adjust
722 1.40.2.6 ad * counters and unlock.
723 1.19 jdolecek */
724 1.40.2.6 ad if (!last) {
725 1.40.2.7 ad /*
726 1.40.2.7 ad * Add the LWP's run time to the process' base value.
727 1.40.2.7 ad * This needs to co-incide with coming off p_lwps.
728 1.40.2.7 ad */
729 1.40.2.7 ad timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
730 1.40.2.7 ad
731 1.40.2.6 ad LIST_REMOVE(l, l_sibling);
732 1.40.2.6 ad p->p_nlwps--;
733 1.40.2.6 ad p->p_nzlwps--;
734 1.40.2.6 ad if ((l->l_prflag & LPR_DETACHED) != 0)
735 1.40.2.6 ad p->p_ndlwps--;
736 1.40.2.6 ad mutex_exit(&p->p_smutex);
737 1.40.2.4 ad
738 1.40.2.6 ad #ifdef MULTIPROCESSOR
739 1.40.2.4 ad /*
740 1.40.2.6 ad * In the unlikely event that the LWP is still on the CPU,
741 1.40.2.6 ad * then spin until it has switched away. We need to release
742 1.40.2.6 ad * all locks to avoid deadlock against interrupt handlers on
743 1.40.2.6 ad * the target CPU.
744 1.40.2.4 ad */
745 1.40.2.6 ad if (l->l_cpu->ci_curlwp == l) {
746 1.40.2.6 ad int count;
747 1.40.2.9 ad KERNEL_UNLOCK_ALL(curlwp, &count);
748 1.40.2.6 ad while (l->l_cpu->ci_curlwp == l)
749 1.40.2.6 ad SPINLOCK_BACKOFF_HOOK;
750 1.40.2.9 ad KERNEL_LOCK(count, curlwp);
751 1.40.2.4 ad }
752 1.40.2.6 ad #endif
753 1.19 jdolecek }
754 1.40.2.6 ad
755 1.40.2.6 ad /*
756 1.40.2.6 ad * Free the LWP's turnstile and the LWP structure itself unless the
757 1.40.2.6 ad * caller wants to recycle them.
758 1.40.2.6 ad *
759 1.40.2.6 ad * We can't return turnstile0 to the pool (it didn't come from it),
760 1.40.2.6 ad * so if it comes up just drop it quietly and move on.
761 1.40.2.6 ad *
762 1.40.2.6 ad * We don't recycle the VM resources at this time.
763 1.40.2.6 ad */
764 1.40.2.6 ad if (!recycle && l->l_ts != &turnstile0)
765 1.40.2.6 ad pool_cache_put(&turnstile_cache, l->l_ts);
766 1.40.2.6 ad #ifndef __NO_CPU_LWP_FREE
767 1.40.2.6 ad cpu_lwp_free2(l);
768 1.40.2.6 ad #endif
769 1.40.2.6 ad uvm_lwp_exit(l);
770 1.40.2.6 ad if (!recycle)
771 1.40.2.6 ad pool_put(&lwp_pool, l);
772 1.2 thorpej }
773 1.2 thorpej
774 1.2 thorpej /*
775 1.2 thorpej * Pick a LWP to represent the process for those operations which
776 1.2 thorpej * want information about a "process" that is actually associated
777 1.2 thorpej * with a LWP.
778 1.40.2.2 ad *
779 1.40.2.6 ad * If 'locking' is false, no locking or lock checks are performed.
780 1.40.2.6 ad * This is intended for use by DDB.
781 1.40.2.6 ad *
782 1.40.2.6 ad * We don't bother locking the LWP here, since code that uses this
783 1.40.2.6 ad * interface is broken by design and an exact match is not required.
784 1.2 thorpej */
785 1.2 thorpej struct lwp *
786 1.40.2.2 ad proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
787 1.2 thorpej {
788 1.2 thorpej struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
789 1.27 matt struct lwp *signalled;
790 1.40.2.2 ad int cnt;
791 1.40.2.2 ad
792 1.40.2.5 ad if (locking) {
793 1.40.2.2 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
794 1.40.2.5 ad }
795 1.2 thorpej
796 1.2 thorpej /* Trivial case: only one LWP */
797 1.40.2.2 ad if (p->p_nlwps == 1) {
798 1.40.2.2 ad l = LIST_FIRST(&p->p_lwps);
799 1.40.2.2 ad if (nrlwps)
800 1.40.2.2 ad *nrlwps = (l->l_stat == LSONPROC || LSRUN);
801 1.40.2.2 ad return l;
802 1.40.2.2 ad }
803 1.2 thorpej
804 1.40.2.2 ad cnt = 0;
805 1.2 thorpej switch (p->p_stat) {
806 1.2 thorpej case SSTOP:
807 1.2 thorpej case SACTIVE:
808 1.2 thorpej /* Pick the most live LWP */
809 1.2 thorpej onproc = running = sleeping = stopped = suspended = NULL;
810 1.27 matt signalled = NULL;
811 1.2 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
812 1.27 matt if (l->l_lid == p->p_sigctx.ps_lwp)
813 1.27 matt signalled = l;
814 1.2 thorpej switch (l->l_stat) {
815 1.2 thorpej case LSONPROC:
816 1.2 thorpej onproc = l;
817 1.40.2.2 ad cnt++;
818 1.2 thorpej break;
819 1.2 thorpej case LSRUN:
820 1.2 thorpej running = l;
821 1.40.2.2 ad cnt++;
822 1.2 thorpej break;
823 1.2 thorpej case LSSLEEP:
824 1.2 thorpej sleeping = l;
825 1.2 thorpej break;
826 1.2 thorpej case LSSTOP:
827 1.2 thorpej stopped = l;
828 1.2 thorpej break;
829 1.2 thorpej case LSSUSPENDED:
830 1.2 thorpej suspended = l;
831 1.2 thorpej break;
832 1.2 thorpej }
833 1.2 thorpej }
834 1.40.2.2 ad if (nrlwps)
835 1.40.2.2 ad *nrlwps = cnt;
836 1.27 matt if (signalled)
837 1.40.2.2 ad l = signalled;
838 1.40.2.2 ad else if (onproc)
839 1.40.2.2 ad l = onproc;
840 1.40.2.2 ad else if (running)
841 1.40.2.2 ad l = running;
842 1.40.2.2 ad else if (sleeping)
843 1.40.2.2 ad l = sleeping;
844 1.40.2.2 ad else if (stopped)
845 1.40.2.2 ad l = stopped;
846 1.40.2.2 ad else if (suspended)
847 1.40.2.2 ad l = suspended;
848 1.40.2.2 ad else
849 1.40.2.2 ad break;
850 1.40.2.2 ad return l;
851 1.40.2.2 ad if (nrlwps)
852 1.40.2.2 ad *nrlwps = 0;
853 1.40.2.2 ad l = LIST_FIRST(&p->p_lwps);
854 1.40.2.2 ad return l;
855 1.2 thorpej #ifdef DIAGNOSTIC
856 1.2 thorpej case SIDL:
857 1.40.2.6 ad case SZOMB:
858 1.40.2.6 ad case SDYING:
859 1.40.2.6 ad case SDEAD:
860 1.40.2.2 ad if (locking)
861 1.40.2.2 ad mutex_exit(&p->p_smutex);
862 1.2 thorpej /* We have more than one LWP and we're in SIDL?
863 1.2 thorpej * How'd that happen?
864 1.2 thorpej */
865 1.40.2.6 ad panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
866 1.40.2.6 ad p->p_pid, p->p_comm, p->p_stat);
867 1.40.2.6 ad break;
868 1.2 thorpej default:
869 1.40.2.2 ad if (locking)
870 1.40.2.2 ad mutex_exit(&p->p_smutex);
871 1.2 thorpej panic("Process %d (%s) in unknown state %d",
872 1.2 thorpej p->p_pid, p->p_comm, p->p_stat);
873 1.2 thorpej #endif
874 1.2 thorpej }
875 1.2 thorpej
876 1.40.2.2 ad if (locking)
877 1.40.2.2 ad mutex_exit(&p->p_smutex);
878 1.2 thorpej panic("proc_representative_lwp: couldn't find a lwp for process"
879 1.2 thorpej " %d (%s)", p->p_pid, p->p_comm);
880 1.2 thorpej /* NOTREACHED */
881 1.2 thorpej return NULL;
882 1.2 thorpej }
883 1.37 ad
884 1.37 ad /*
885 1.40.2.2 ad * Look up a live LWP within the speicifed process, and return it locked.
886 1.40.2.2 ad *
887 1.40.2.2 ad * Must be called with p->p_smutex held.
888 1.40.2.2 ad */
889 1.40.2.2 ad struct lwp *
890 1.40.2.6 ad lwp_find(struct proc *p, int id)
891 1.40.2.2 ad {
892 1.40.2.2 ad struct lwp *l;
893 1.40.2.2 ad
894 1.40.2.2 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
895 1.40.2.2 ad
896 1.40.2.2 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
897 1.40.2.2 ad if (l->l_lid == id)
898 1.40.2.2 ad break;
899 1.40.2.2 ad }
900 1.40.2.2 ad
901 1.40.2.6 ad /*
902 1.40.2.6 ad * No need to lock - all of these conditions will
903 1.40.2.6 ad * be visible with the process level mutex held.
904 1.40.2.6 ad */
905 1.40.2.6 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
906 1.40.2.6 ad l = NULL;
907 1.40.2.2 ad
908 1.40.2.2 ad return l;
909 1.40.2.2 ad }
910 1.40.2.2 ad
911 1.40.2.2 ad /*
912 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
913 1.37 ad *
914 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
915 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
916 1.37 ad * it's credentials by calling this routine. This may be called from
917 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
918 1.37 ad */
919 1.37 ad void
920 1.37 ad lwp_update_creds(struct lwp *l)
921 1.37 ad {
922 1.37 ad kauth_cred_t oc;
923 1.37 ad struct proc *p;
924 1.37 ad
925 1.37 ad p = l->l_proc;
926 1.37 ad oc = l->l_cred;
927 1.37 ad
928 1.40.2.4 ad mutex_enter(&p->p_mutex);
929 1.37 ad kauth_cred_hold(p->p_cred);
930 1.37 ad l->l_cred = p->p_cred;
931 1.40.2.4 ad mutex_exit(&p->p_mutex);
932 1.40.2.6 ad if (oc != NULL) {
933 1.40.2.7 ad KERNEL_LOCK(1, l); /* XXXSMP */
934 1.37 ad kauth_cred_free(oc);
935 1.40.2.7 ad KERNEL_UNLOCK_ONE(l); /* XXXSMP */
936 1.40.2.6 ad }
937 1.37 ad }
938 1.40.2.2 ad
939 1.40.2.2 ad /*
940 1.40.2.2 ad * Verify that an LWP is locked, and optionally verify that the lock matches
941 1.40.2.2 ad * one we specify.
942 1.40.2.2 ad */
943 1.40.2.2 ad int
944 1.40.2.2 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
945 1.40.2.2 ad {
946 1.40.2.3 ad kmutex_t *cur = l->l_mutex;
947 1.40.2.2 ad
948 1.40.2.4 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
949 1.40.2.3 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
950 1.40.2.3 ad #else
951 1.40.2.4 ad return mutex_owned(cur);
952 1.40.2.3 ad #endif
953 1.40.2.2 ad }
954 1.40.2.2 ad
955 1.40.2.4 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
956 1.40.2.2 ad /*
957 1.40.2.3 ad * Lock an LWP.
958 1.40.2.2 ad */
959 1.40.2.2 ad void
960 1.40.2.4 ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
961 1.40.2.2 ad {
962 1.40.2.3 ad
963 1.40.2.6 ad /*
964 1.40.2.6 ad * XXXgcc ignoring kmutex_t * volatile on i386
965 1.40.2.6 ad *
966 1.40.2.6 ad * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
967 1.40.2.6 ad */
968 1.40.2.6 ad #if 1
969 1.40.2.6 ad while (l->l_mutex != old) {
970 1.40.2.6 ad #else
971 1.40.2.3 ad for (;;) {
972 1.40.2.6 ad #endif
973 1.40.2.6 ad smutex_exit(old);
974 1.40.2.4 ad old = l->l_mutex;
975 1.40.2.6 ad smutex_enter(old);
976 1.40.2.3 ad
977 1.40.2.3 ad /*
978 1.40.2.3 ad * mutex_enter() will have posted a read barrier. Re-test
979 1.40.2.3 ad * l->l_mutex. If it has changed, we need to try again.
980 1.40.2.3 ad */
981 1.40.2.6 ad #if 1
982 1.40.2.6 ad }
983 1.40.2.6 ad #else
984 1.40.2.4 ad } while (__predict_false(l->l_mutex != old));
985 1.40.2.6 ad #endif
986 1.40.2.2 ad }
987 1.40.2.3 ad #endif
988 1.40.2.3 ad
989 1.40.2.3 ad /*
990 1.40.2.4 ad * Lend a new mutex to an LWP. The old mutex must be held.
991 1.40.2.3 ad */
992 1.40.2.3 ad void
993 1.40.2.3 ad lwp_setlock(struct lwp *l, kmutex_t *new)
994 1.40.2.3 ad {
995 1.40.2.4 ad
996 1.40.2.2 ad LOCK_ASSERT(mutex_owned(l->l_mutex));
997 1.40.2.2 ad
998 1.40.2.4 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
999 1.40.2.3 ad mb_write();
1000 1.40.2.3 ad l->l_mutex = new;
1001 1.40.2.4 ad #else
1002 1.40.2.4 ad (void)new;
1003 1.40.2.3 ad #endif
1004 1.40.2.2 ad }
1005 1.40.2.2 ad
1006 1.40.2.2 ad /*
1007 1.40.2.3 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1008 1.40.2.3 ad * must be held.
1009 1.40.2.3 ad */
1010 1.40.2.3 ad void
1011 1.40.2.4 ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
1012 1.40.2.3 ad {
1013 1.40.2.3 ad kmutex_t *old;
1014 1.40.2.3 ad
1015 1.40.2.3 ad LOCK_ASSERT(mutex_owned(l->l_mutex));
1016 1.40.2.3 ad
1017 1.40.2.3 ad old = l->l_mutex;
1018 1.40.2.4 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1019 1.40.2.3 ad mb_write();
1020 1.40.2.3 ad l->l_mutex = new;
1021 1.40.2.4 ad #else
1022 1.40.2.4 ad (void)new;
1023 1.40.2.3 ad #endif
1024 1.40.2.6 ad smutex_exit(old);
1025 1.40.2.3 ad }
1026 1.40.2.3 ad
1027 1.40.2.3 ad /*
1028 1.40.2.6 ad * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1029 1.40.2.3 ad * locked.
1030 1.40.2.2 ad */
1031 1.40.2.2 ad void
1032 1.40.2.3 ad lwp_relock(struct lwp *l, kmutex_t *new)
1033 1.40.2.2 ad {
1034 1.40.2.4 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1035 1.40.2.4 ad kmutex_t *old;
1036 1.40.2.4 ad #endif
1037 1.40.2.2 ad
1038 1.40.2.2 ad LOCK_ASSERT(mutex_owned(l->l_mutex));
1039 1.40.2.2 ad
1040 1.40.2.4 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1041 1.40.2.4 ad old = l->l_mutex;
1042 1.40.2.4 ad if (old != new) {
1043 1.40.2.6 ad smutex_enter(new);
1044 1.40.2.4 ad l->l_mutex = new;
1045 1.40.2.6 ad smutex_exit(old);
1046 1.40.2.4 ad }
1047 1.40.2.4 ad #else
1048 1.40.2.4 ad (void)new;
1049 1.40.2.3 ad #endif
1050 1.40.2.2 ad }
1051 1.40.2.2 ad
1052 1.40.2.2 ad /*
1053 1.40.2.6 ad * Handle exceptions for mi_userret(). Called if a member of L_USERRET is
1054 1.40.2.6 ad * set.
1055 1.40.2.2 ad */
1056 1.40.2.2 ad void
1057 1.40.2.2 ad lwp_userret(struct lwp *l)
1058 1.40.2.2 ad {
1059 1.40.2.2 ad struct proc *p;
1060 1.40.2.4 ad int sig;
1061 1.40.2.2 ad
1062 1.40.2.2 ad p = l->l_proc;
1063 1.40.2.2 ad
1064 1.40.2.6 ad /*
1065 1.40.2.6 ad * It should be safe to do this read unlocked on a multiprocessor
1066 1.40.2.6 ad * system..
1067 1.40.2.6 ad */
1068 1.40.2.6 ad while ((l->l_flag & L_USERRET) != 0) {
1069 1.40.2.6 ad /*
1070 1.40.2.6 ad * Process pending signals first, unless the process
1071 1.40.2.6 ad * is dumping core, where we will instead enter the
1072 1.40.2.6 ad * L_WSUSPEND case below.
1073 1.40.2.6 ad */
1074 1.40.2.6 ad if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
1075 1.40.2.4 ad KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1076 1.40.2.4 ad mutex_enter(&p->p_smutex);
1077 1.40.2.4 ad while ((sig = issignal(l)) != 0)
1078 1.40.2.4 ad postsig(sig);
1079 1.40.2.4 ad mutex_exit(&p->p_smutex);
1080 1.40.2.7 ad KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1081 1.40.2.4 ad }
1082 1.40.2.2 ad
1083 1.40.2.6 ad /*
1084 1.40.2.6 ad * Core-dump or suspend pending.
1085 1.40.2.6 ad *
1086 1.40.2.6 ad * In case of core dump, suspend ourselves, so that the
1087 1.40.2.6 ad * kernel stack and therefore the userland registers saved
1088 1.40.2.6 ad * in the trapframe are around for coredump() to write them
1089 1.40.2.6 ad * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1090 1.40.2.6 ad * will write the core file out once all other LWPs are
1091 1.40.2.6 ad * suspended.
1092 1.40.2.6 ad */
1093 1.40.2.4 ad if ((l->l_flag & L_WSUSPEND) != 0) {
1094 1.40.2.4 ad mutex_enter(&p->p_smutex);
1095 1.40.2.4 ad p->p_nrlwps--;
1096 1.40.2.6 ad cv_broadcast(&p->p_lwpcv);
1097 1.40.2.6 ad lwp_lock(l);
1098 1.40.2.4 ad l->l_stat = LSSUSPENDED;
1099 1.40.2.4 ad mutex_exit(&p->p_smutex);
1100 1.40.2.4 ad mi_switch(l, NULL);
1101 1.40.2.4 ad }
1102 1.40.2.2 ad
1103 1.40.2.4 ad /* Process is exiting. */
1104 1.40.2.4 ad if ((l->l_flag & L_WEXIT) != 0) {
1105 1.40.2.4 ad KERNEL_LOCK(1, l);
1106 1.40.2.6 ad lwp_exit(l);
1107 1.40.2.4 ad KASSERT(0);
1108 1.40.2.4 ad /* NOTREACHED */
1109 1.40.2.4 ad }
1110 1.40.2.6 ad }
1111 1.40.2.6 ad
1112 1.40.2.6 ad /*
1113 1.40.2.6 ad * Timer events are handled specially. We only try once to deliver
1114 1.40.2.6 ad * pending timer upcalls; if if fails, we can try again on the next
1115 1.40.2.6 ad * loop around. If we need to re-enter lwp_userret(), MD code will
1116 1.40.2.6 ad * bounce us back here through the trap path after we return.
1117 1.40.2.6 ad */
1118 1.40.2.6 ad if (p->p_timerpend)
1119 1.40.2.6 ad timerupcall(l);
1120 1.40.2.2 ad }
1121 1.40.2.2 ad
1122 1.40.2.2 ad /*
1123 1.40.2.6 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1124 1.40.2.2 ad */
1125 1.40.2.6 ad void
1126 1.40.2.6 ad lwp_need_userret(struct lwp *l)
1127 1.40.2.2 ad {
1128 1.40.2.6 ad LOCK_ASSERT(lwp_locked(l, NULL));
1129 1.40.2.2 ad
1130 1.40.2.6 ad /*
1131 1.40.2.6 ad * Since the tests in lwp_userret() are done unlocked, make sure
1132 1.40.2.6 ad * that the condition will be seen before forcing the LWP to enter
1133 1.40.2.6 ad * kernel mode.
1134 1.40.2.6 ad */
1135 1.40.2.6 ad mb_write();
1136 1.40.2.2 ad
1137 1.40.2.6 ad lwp_changepri(l, PUSER);
1138 1.40.2.6 ad cpu_signotify(l);
1139 1.40.2.2 ad }
1140 1.40.2.4 ad
1141 1.40.2.4 ad /*
1142 1.40.2.4 ad * Add one reference to an LWP. This will prevent the LWP from
1143 1.40.2.6 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1144 1.40.2.4 ad */
1145 1.40.2.4 ad void
1146 1.40.2.4 ad lwp_addref(struct lwp *l)
1147 1.40.2.4 ad {
1148 1.40.2.4 ad
1149 1.40.2.6 ad LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1150 1.40.2.4 ad KASSERT(l->l_stat != LSZOMB);
1151 1.40.2.4 ad KASSERT(l->l_refcnt != 0);
1152 1.40.2.4 ad
1153 1.40.2.4 ad l->l_refcnt++;
1154 1.40.2.4 ad }
1155 1.40.2.4 ad
1156 1.40.2.4 ad /*
1157 1.40.2.4 ad * Remove one reference to an LWP. If this is the last reference,
1158 1.40.2.4 ad * then we must finalize the LWP's death.
1159 1.40.2.4 ad */
1160 1.40.2.4 ad void
1161 1.40.2.4 ad lwp_delref(struct lwp *l)
1162 1.40.2.4 ad {
1163 1.40.2.6 ad struct proc *p = l->l_proc;
1164 1.40.2.6 ad u_int refcnt;
1165 1.40.2.6 ad
1166 1.40.2.6 ad mutex_enter(&p->p_smutex);
1167 1.40.2.6 ad refcnt = --l->l_refcnt;
1168 1.40.2.6 ad mutex_exit(&p->p_smutex);
1169 1.40.2.6 ad
1170 1.40.2.6 ad if (refcnt == 0)
1171 1.40.2.6 ad cv_broadcast(&p->p_refcv);
1172 1.40.2.6 ad }
1173 1.40.2.6 ad
1174 1.40.2.6 ad /*
1175 1.40.2.6 ad * Drain all references to the current LWP.
1176 1.40.2.6 ad */
1177 1.40.2.6 ad void
1178 1.40.2.6 ad lwp_drainrefs(struct lwp *l)
1179 1.40.2.6 ad {
1180 1.40.2.6 ad struct proc *p = l->l_proc;
1181 1.40.2.6 ad
1182 1.40.2.6 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
1183 1.40.2.6 ad KASSERT(l->l_refcnt != 0);
1184 1.40.2.4 ad
1185 1.40.2.6 ad l->l_refcnt--;
1186 1.40.2.6 ad while (l->l_refcnt != 0)
1187 1.40.2.6 ad cv_wait(&p->p_refcv, &p->p_smutex);
1188 1.40.2.4 ad }
1189 1.40.2.5 ad
1190 1.40.2.5 ad /*
1191 1.40.2.5 ad * lwp_specific_key_create --
1192 1.40.2.5 ad * Create a key for subsystem lwp-specific data.
1193 1.40.2.5 ad */
1194 1.40.2.5 ad int
1195 1.40.2.5 ad lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1196 1.40.2.5 ad {
1197 1.40.2.5 ad
1198 1.40.2.5 ad return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1199 1.40.2.5 ad }
1200 1.40.2.5 ad
1201 1.40.2.5 ad /*
1202 1.40.2.5 ad * lwp_specific_key_delete --
1203 1.40.2.5 ad * Delete a key for subsystem lwp-specific data.
1204 1.40.2.5 ad */
1205 1.40.2.5 ad void
1206 1.40.2.5 ad lwp_specific_key_delete(specificdata_key_t key)
1207 1.40.2.5 ad {
1208 1.40.2.5 ad
1209 1.40.2.5 ad specificdata_key_delete(lwp_specificdata_domain, key);
1210 1.40.2.5 ad }
1211 1.40.2.5 ad
1212 1.40.2.5 ad /*
1213 1.40.2.5 ad * lwp_initspecific --
1214 1.40.2.5 ad * Initialize an LWP's specificdata container.
1215 1.40.2.5 ad */
1216 1.40.2.5 ad void
1217 1.40.2.5 ad lwp_initspecific(struct lwp *l)
1218 1.40.2.5 ad {
1219 1.40.2.5 ad int error;
1220 1.40.2.5 ad
1221 1.40.2.5 ad error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1222 1.40.2.5 ad KASSERT(error == 0);
1223 1.40.2.5 ad }
1224 1.40.2.5 ad
1225 1.40.2.5 ad /*
1226 1.40.2.5 ad * lwp_finispecific --
1227 1.40.2.5 ad * Finalize an LWP's specificdata container.
1228 1.40.2.5 ad */
1229 1.40.2.5 ad void
1230 1.40.2.5 ad lwp_finispecific(struct lwp *l)
1231 1.40.2.5 ad {
1232 1.40.2.5 ad
1233 1.40.2.5 ad specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1234 1.40.2.5 ad }
1235 1.40.2.5 ad
1236 1.40.2.5 ad /*
1237 1.40.2.5 ad * lwp_getspecific --
1238 1.40.2.5 ad * Return lwp-specific data corresponding to the specified key.
1239 1.40.2.5 ad *
1240 1.40.2.5 ad * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1241 1.40.2.5 ad * only its OWN SPECIFIC DATA. If it is necessary to access another
1242 1.40.2.5 ad * LWP's specifc data, care must be taken to ensure that doing so
1243 1.40.2.5 ad * would not cause internal data structure inconsistency (i.e. caller
1244 1.40.2.5 ad * can guarantee that the target LWP is not inside an lwp_getspecific()
1245 1.40.2.5 ad * or lwp_setspecific() call).
1246 1.40.2.5 ad */
1247 1.40.2.5 ad void *
1248 1.40.2.5 ad lwp_getspecific(specificdata_key_t key)
1249 1.40.2.5 ad {
1250 1.40.2.5 ad
1251 1.40.2.5 ad return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1252 1.40.2.5 ad &curlwp->l_specdataref, key));
1253 1.40.2.5 ad }
1254 1.40.2.5 ad
1255 1.40.2.5 ad void *
1256 1.40.2.5 ad _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1257 1.40.2.5 ad {
1258 1.40.2.5 ad
1259 1.40.2.5 ad return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1260 1.40.2.5 ad &l->l_specdataref, key));
1261 1.40.2.5 ad }
1262 1.40.2.5 ad
1263 1.40.2.5 ad /*
1264 1.40.2.5 ad * lwp_setspecific --
1265 1.40.2.5 ad * Set lwp-specific data corresponding to the specified key.
1266 1.40.2.5 ad */
1267 1.40.2.5 ad void
1268 1.40.2.5 ad lwp_setspecific(specificdata_key_t key, void *data)
1269 1.40.2.5 ad {
1270 1.40.2.5 ad
1271 1.40.2.5 ad specificdata_setspecific(lwp_specificdata_domain,
1272 1.40.2.5 ad &curlwp->l_specdataref, key, data);
1273 1.40.2.5 ad }
1274