Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.40.2.9
      1  1.40.2.9        ad /*	$NetBSD: kern_lwp.c,v 1.40.2.9 2007/01/16 01:26:20 ad Exp $	*/
      2       1.2   thorpej 
      3       1.2   thorpej /*-
      4  1.40.2.9        ad  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5       1.2   thorpej  * All rights reserved.
      6       1.2   thorpej  *
      7       1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.40.2.2        ad  * by Nathan J. Williams, and Andrew Doran.
      9       1.2   thorpej  *
     10       1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     11       1.2   thorpej  * modification, are permitted provided that the following conditions
     12       1.2   thorpej  * are met:
     13       1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     14       1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     15       1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17       1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     18       1.2   thorpej  * 3. All advertising materials mentioning features or use of this software
     19       1.2   thorpej  *    must display the following acknowledgement:
     20       1.2   thorpej  *        This product includes software developed by the NetBSD
     21       1.2   thorpej  *        Foundation, Inc. and its contributors.
     22       1.2   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.2   thorpej  *    contributors may be used to endorse or promote products derived
     24       1.2   thorpej  *    from this software without specific prior written permission.
     25       1.2   thorpej  *
     26       1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     37       1.2   thorpej  */
     38       1.9     lukem 
     39  1.40.2.4        ad /*
     40  1.40.2.4        ad  * Overview
     41  1.40.2.4        ad  *
     42  1.40.2.4        ad  *	Lightweight processes (LWPs) are the basic unit (or thread) of
     43  1.40.2.4        ad  *	execution within the kernel.  The core state of an LWP is described
     44  1.40.2.4        ad  *	by "struct lwp".
     45  1.40.2.4        ad  *
     46  1.40.2.4        ad  *	Each LWP is contained within a process (described by "struct proc"),
     47  1.40.2.4        ad  *	Every process contains at least one LWP, but may contain more.  The
     48  1.40.2.4        ad  *	process describes attributes shared among all of its LWPs such as a
     49  1.40.2.4        ad  *	private address space, global execution state (stopped, active,
     50  1.40.2.4        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  1.40.2.4        ad  *	machine, multiple LWPs be executing in kernel simultaneously.
     52  1.40.2.4        ad  *
     53  1.40.2.4        ad  *	Note that LWPs differ from kernel threads (kthreads) in that kernel
     54  1.40.2.4        ad  *	threads are distinct processes (system processes) with no user space
     55  1.40.2.4        ad  *	component, which themselves may contain one or more LWPs.
     56  1.40.2.4        ad  *
     57  1.40.2.4        ad  * Execution states
     58  1.40.2.4        ad  *
     59  1.40.2.4        ad  *	At any given time, an LWP has overall state that is described by
     60  1.40.2.4        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     61  1.40.2.4        ad  *	set is guaranteed to represent the absolute, current state of the
     62  1.40.2.4        ad  *	LWP:
     63  1.40.2.4        ad  *
     64  1.40.2.4        ad  * 	LSONPROC
     65  1.40.2.4        ad  *
     66  1.40.2.4        ad  * 		On processor: the LWP is executing on a CPU, either in the
     67  1.40.2.4        ad  * 		kernel or in user space.
     68  1.40.2.4        ad  *
     69  1.40.2.4        ad  * 	LSRUN
     70  1.40.2.4        ad  *
     71  1.40.2.4        ad  * 		Runnable: the LWP is parked on a run queue, and may soon be
     72  1.40.2.4        ad  * 		chosen to run by a idle processor, or by a processor that
     73  1.40.2.4        ad  * 		has been asked to preempt a currently runnning but lower
     74  1.40.2.4        ad  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     75  1.40.2.4        ad  *		then the LWP is not on a run queue, but may be soon.
     76  1.40.2.4        ad  *
     77  1.40.2.4        ad  * 	LSIDL
     78  1.40.2.4        ad  *
     79  1.40.2.4        ad  * 		Idle: the LWP has been created but has not yet executed.
     80  1.40.2.4        ad  * 		Whoever created the new LWP can be expected to set it to
     81  1.40.2.4        ad  * 		another state shortly.
     82  1.40.2.4        ad  *
     83  1.40.2.4        ad  * 	LSSUSPENDED:
     84  1.40.2.4        ad  *
     85  1.40.2.4        ad  * 		Suspended: the LWP has had its execution suspended by
     86  1.40.2.4        ad  *		another LWP in the same process using the _lwp_suspend()
     87  1.40.2.4        ad  *		system call.  User-level LWPs also enter the suspended
     88  1.40.2.4        ad  *		state when the system is shutting down.
     89  1.40.2.4        ad  *
     90  1.40.2.4        ad  *	The second set represent a "statement of intent" on behalf of the
     91  1.40.2.4        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     92  1.40.2.4        ad  *	sleeping, idle, or on a run queue. It is expected to take the
     93  1.40.2.4        ad  *	necessary action to stop executing or become "running" again within
     94  1.40.2.4        ad  *	a short timeframe.
     95  1.40.2.4        ad  *
     96  1.40.2.6        ad  * 	LSZOMB:
     97  1.40.2.4        ad  *
     98  1.40.2.4        ad  * 		Dead: the LWP has released most of its resources and is
     99  1.40.2.4        ad  * 		about to switch away into oblivion.  When it switches away,
    100  1.40.2.6        ad  * 		its few remaining resources will be collected.
    101  1.40.2.4        ad  *
    102  1.40.2.4        ad  * 	LSSLEEP:
    103  1.40.2.4        ad  *
    104  1.40.2.4        ad  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    105  1.40.2.4        ad  * 		will switch away shortly to allow other LWPs to run on the
    106  1.40.2.4        ad  * 		CPU.
    107  1.40.2.4        ad  *
    108  1.40.2.4        ad  * 	LSSTOP:
    109  1.40.2.4        ad  *
    110  1.40.2.4        ad  * 		Stopped: the LWP has been stopped as a result of a job
    111  1.40.2.4        ad  * 		control signal, or as a result of the ptrace() interface.
    112  1.40.2.4        ad  * 		Stopped LWPs may run briefly within the kernel to handle
    113  1.40.2.4        ad  * 		signals that they receive, but will not return to user space
    114  1.40.2.4        ad  * 		until their process' state is changed away from stopped.
    115  1.40.2.4        ad  * 		Single LWPs within a process can not be set stopped
    116  1.40.2.4        ad  * 		selectively: all actions that can stop or continue LWPs
    117  1.40.2.4        ad  * 		occur at the process level.
    118  1.40.2.4        ad  *
    119  1.40.2.4        ad  * State transitions
    120  1.40.2.4        ad  *
    121  1.40.2.4        ad  *	Note that the LSSTOP and LSSUSPENDED states may only be set
    122  1.40.2.4        ad  *	when returning to user space in userret(), or when sleeping
    123  1.40.2.4        ad  *	interruptably.  Before setting those states, we try to ensure
    124  1.40.2.4        ad  *	that the LWPs will release all kernel locks that they hold,
    125  1.40.2.4        ad  *	and at a minimum try to ensure that the LWP can be set runnable
    126  1.40.2.4        ad  *	again by a signal.
    127  1.40.2.4        ad  *
    128  1.40.2.4        ad  *	LWPs may transition states in the following ways:
    129  1.40.2.4        ad  *
    130  1.40.2.4        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  1.40.2.4        ad  *	            > STOPPED			    > SLEEP
    132  1.40.2.4        ad  *	            > SUSPENDED			    > STOPPED
    133  1.40.2.4        ad  *						    > SUSPENDED
    134  1.40.2.6        ad  *						    > ZOMB
    135  1.40.2.4        ad  *
    136  1.40.2.4        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  1.40.2.4        ad  *	            > SLEEP			    > SLEEP
    138  1.40.2.4        ad  *
    139  1.40.2.7        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  1.40.2.7        ad  *		    > RUN		            > SUSPENDED
    141  1.40.2.7        ad  *		    > STOPPED                       > STOPPED
    142  1.40.2.4        ad  *		    > SUSPENDED
    143  1.40.2.4        ad  *
    144  1.40.2.4        ad  * Locking
    145  1.40.2.4        ad  *
    146  1.40.2.4        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    147  1.40.2.4        ad  *	general spin mutex pointed to by lwp::l_mutex.  The locks covering
    148  1.40.2.4        ad  *	each field are documented in sys/lwp.h.
    149  1.40.2.4        ad  *
    150  1.40.2.4        ad  *	State transitions must be made with the LWP's general lock held.  In
    151  1.40.2.4        ad  *	a multiprocessor kernel, state transitions may cause the LWP's lock
    152  1.40.2.4        ad  *	pointer to change.  On uniprocessor kernels, most scheduler and
    153  1.40.2.4        ad  *	synchronisation objects such as sleep queues and LWPs are protected
    154  1.40.2.4        ad  *	by only one mutex (sched_mutex).  In this case, LWPs' lock pointers
    155  1.40.2.4        ad  *	will never change and will always reference sched_mutex.
    156  1.40.2.4        ad  *
    157  1.40.2.4        ad  *	Manipulation of the general lock is not performed directly, but
    158  1.40.2.4        ad  *	through calls to lwp_lock(), lwp_relock() and similar.
    159  1.40.2.4        ad  *
    160  1.40.2.4        ad  *	States and their associated locks:
    161  1.40.2.4        ad  *
    162  1.40.2.6        ad  *	LSIDL, LSZOMB
    163  1.40.2.4        ad  *
    164  1.40.2.6        ad  *		Always covered by sched_mutex.
    165  1.40.2.4        ad  *
    166  1.40.2.4        ad  *	LSONPROC, LSRUN:
    167  1.40.2.4        ad  *
    168  1.40.2.4        ad  *		Always covered by sched_mutex, which protects the run queues
    169  1.40.2.4        ad  *		and other miscellaneous items.  If the scheduler is changed
    170  1.40.2.4        ad  *		to use per-CPU run queues, this may become a per-CPU mutex.
    171  1.40.2.4        ad  *
    172  1.40.2.4        ad  *	LSSLEEP:
    173  1.40.2.4        ad  *
    174  1.40.2.4        ad  *		Covered by a mutex associated with the sleep queue that the
    175  1.40.2.4        ad  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    176  1.40.2.4        ad  *
    177  1.40.2.4        ad  *	LSSTOP, LSSUSPENDED:
    178  1.40.2.4        ad  *
    179  1.40.2.4        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  1.40.2.4        ad  *		l_mutex references the sleep queue mutex.  If the LWP was
    181  1.40.2.4        ad  *		runnable or on the CPU when halted, or has been removed from
    182  1.40.2.6        ad  *		the sleep queue since halted, then the mutex is sched_mutex.
    183  1.40.2.4        ad  *
    184  1.40.2.6        ad  *	The lock order is as follows:
    185  1.40.2.4        ad  *
    186  1.40.2.6        ad  *		sleepq_t::sq_mutex -> sched_mutex
    187  1.40.2.4        ad  *
    188  1.40.2.4        ad  *	Each process has an scheduler state mutex (proc::p_smutex), and a
    189  1.40.2.4        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    190  1.40.2.4        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    191  1.40.2.4        ad  *	following states, p_mutex must be held and the process wide counters
    192  1.40.2.4        ad  *	adjusted:
    193  1.40.2.4        ad  *
    194  1.40.2.6        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    195  1.40.2.4        ad  *
    196  1.40.2.4        ad  *	Note that an LWP is considered running or likely to run soon if in
    197  1.40.2.4        ad  *	one of the following states.  This affects the value of p_nrlwps:
    198  1.40.2.4        ad  *
    199  1.40.2.4        ad  *		LSRUN, LSONPROC, LSSLEEP
    200  1.40.2.4        ad  *
    201  1.40.2.4        ad  *	p_smutex does not need to be held when transitioning among these
    202  1.40.2.4        ad  *	three states.
    203  1.40.2.4        ad  */
    204  1.40.2.4        ad 
    205       1.9     lukem #include <sys/cdefs.h>
    206  1.40.2.9        ad __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.40.2.9 2007/01/16 01:26:20 ad Exp $");
    207       1.8    martin 
    208       1.8    martin #include "opt_multiprocessor.h"
    209  1.40.2.4        ad #include "opt_lockdebug.h"
    210       1.2   thorpej 
    211  1.40.2.5        ad #define _LWP_API_PRIVATE
    212  1.40.2.5        ad 
    213       1.2   thorpej #include <sys/param.h>
    214       1.2   thorpej #include <sys/systm.h>
    215       1.2   thorpej #include <sys/pool.h>
    216       1.2   thorpej #include <sys/proc.h>
    217  1.40.2.4        ad #include <sys/sa.h>
    218       1.2   thorpej #include <sys/syscallargs.h>
    219      1.37        ad #include <sys/kauth.h>
    220  1.40.2.2        ad #include <sys/sleepq.h>
    221  1.40.2.2        ad #include <sys/lockdebug.h>
    222  1.40.2.6        ad #include <sys/kmem.h>
    223       1.2   thorpej 
    224       1.2   thorpej #include <uvm/uvm_extern.h>
    225       1.2   thorpej 
    226  1.40.2.1        ad struct lwplist	alllwp;
    227       1.2   thorpej 
    228  1.40.2.5        ad POOL_INIT(lwp_pool, sizeof(struct lwp), 16, 0, 0, "lwppl",
    229  1.40.2.5        ad     &pool_allocator_nointr);
    230  1.40.2.5        ad POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    231  1.40.2.5        ad     &pool_allocator_nointr);
    232  1.40.2.5        ad 
    233  1.40.2.5        ad static specificdata_domain_t lwp_specificdata_domain;
    234  1.40.2.5        ad 
    235       1.2   thorpej #define LWP_DEBUG
    236       1.2   thorpej 
    237       1.2   thorpej #ifdef LWP_DEBUG
    238       1.2   thorpej int lwp_debug = 0;
    239       1.2   thorpej #define DPRINTF(x) if (lwp_debug) printf x
    240       1.2   thorpej #else
    241       1.2   thorpej #define DPRINTF(x)
    242       1.2   thorpej #endif
    243       1.2   thorpej 
    244  1.40.2.5        ad void
    245  1.40.2.5        ad lwpinit(void)
    246  1.40.2.5        ad {
    247  1.40.2.5        ad 
    248  1.40.2.5        ad 	lwp_specificdata_domain = specificdata_domain_create();
    249  1.40.2.5        ad 	KASSERT(lwp_specificdata_domain != NULL);
    250  1.40.2.6        ad 	lwp_sys_init();
    251  1.40.2.5        ad }
    252  1.40.2.5        ad 
    253  1.40.2.2        ad /*
    254  1.40.2.6        ad  * Set an suspended.
    255  1.40.2.2        ad  *
    256  1.40.2.2        ad  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    257  1.40.2.2        ad  * LWP before return.
    258  1.40.2.2        ad  */
    259       1.2   thorpej int
    260  1.40.2.6        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    261       1.2   thorpej {
    262  1.40.2.6        ad 	int error;
    263       1.2   thorpej 
    264  1.40.2.6        ad 	LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
    265  1.40.2.2        ad 	LOCK_ASSERT(lwp_locked(t, NULL));
    266       1.2   thorpej 
    267  1.40.2.2        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    268      1.17      manu 
    269  1.40.2.2        ad 	/*
    270  1.40.2.2        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    271  1.40.2.2        ad 	 * else or deadlock could occur.  We won't return to userspace.
    272  1.40.2.2        ad 	 */
    273  1.40.2.6        ad 	if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
    274  1.40.2.6        ad 		lwp_unlock(t);
    275  1.40.2.2        ad 		return (EDEADLK);
    276  1.40.2.6        ad 	}
    277       1.2   thorpej 
    278  1.40.2.2        ad 	error = 0;
    279      1.17      manu 
    280  1.40.2.2        ad 	switch (t->l_stat) {
    281  1.40.2.2        ad 	case LSRUN:
    282  1.40.2.2        ad 	case LSONPROC:
    283  1.40.2.6        ad 		t->l_flag |= L_WSUSPEND;
    284  1.40.2.6        ad 		lwp_need_userret(t);
    285  1.40.2.6        ad 		lwp_unlock(t);
    286  1.40.2.2        ad 		break;
    287  1.40.2.4        ad 
    288  1.40.2.2        ad 	case LSSLEEP:
    289  1.40.2.6        ad 		t->l_flag |= L_WSUSPEND;
    290  1.40.2.4        ad 
    291  1.40.2.4        ad 		/*
    292  1.40.2.4        ad 		 * Kick the LWP and try to get it to the kernel boundary
    293  1.40.2.4        ad 		 * so that it will release any locks that it holds.
    294  1.40.2.4        ad 		 * setrunnable() will release the lock.
    295  1.40.2.4        ad 		 */
    296  1.40.2.6        ad 		if ((t->l_flag & L_SINTR) != 0)
    297  1.40.2.6        ad 			setrunnable(t);
    298  1.40.2.6        ad 		else
    299  1.40.2.6        ad 			lwp_unlock(t);
    300  1.40.2.6        ad 		break;
    301  1.40.2.4        ad 
    302  1.40.2.2        ad 	case LSSUSPENDED:
    303  1.40.2.6        ad 		lwp_unlock(t);
    304  1.40.2.6        ad 		break;
    305  1.40.2.6        ad 
    306  1.40.2.2        ad 	case LSSTOP:
    307  1.40.2.6        ad 		t->l_flag |= L_WSUSPEND;
    308  1.40.2.6        ad 		setrunnable(t);
    309  1.40.2.2        ad 		break;
    310  1.40.2.4        ad 
    311  1.40.2.2        ad 	case LSIDL:
    312  1.40.2.2        ad 	case LSZOMB:
    313  1.40.2.2        ad 		error = EINTR; /* It's what Solaris does..... */
    314  1.40.2.6        ad 		lwp_unlock(t);
    315  1.40.2.2        ad 		break;
    316       1.2   thorpej 	}
    317       1.2   thorpej 
    318  1.40.2.6        ad 	/*
    319  1.40.2.6        ad 	 * XXXLWP Wait for:
    320  1.40.2.6        ad 	 *
    321  1.40.2.6        ad 	 * o process exiting
    322  1.40.2.6        ad 	 * o target LWP suspended
    323  1.40.2.6        ad 	 * o target LWP not suspended and L_WSUSPEND clear
    324  1.40.2.6        ad 	 * o target LWP exited
    325  1.40.2.6        ad 	 */
    326       1.2   thorpej 
    327  1.40.2.6        ad 	 return (error);
    328       1.2   thorpej }
    329       1.2   thorpej 
    330  1.40.2.2        ad /*
    331  1.40.2.2        ad  * Restart a suspended LWP.
    332  1.40.2.2        ad  *
    333  1.40.2.2        ad  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    334  1.40.2.2        ad  * LWP before return.
    335  1.40.2.2        ad  */
    336       1.2   thorpej void
    337       1.2   thorpej lwp_continue(struct lwp *l)
    338       1.2   thorpej {
    339       1.2   thorpej 
    340  1.40.2.2        ad 	LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
    341  1.40.2.4        ad 	LOCK_ASSERT(lwp_locked(l, NULL));
    342  1.40.2.2        ad 
    343       1.2   thorpej 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    344       1.2   thorpej 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    345       1.2   thorpej 	    l->l_wchan));
    346       1.2   thorpej 
    347  1.40.2.4        ad 	/* If rebooting or not suspended, then just bail out. */
    348  1.40.2.4        ad 	if ((l->l_flag & L_WREBOOT) != 0) {
    349  1.40.2.2        ad 		lwp_unlock(l);
    350       1.2   thorpej 		return;
    351  1.40.2.2        ad 	}
    352       1.2   thorpej 
    353  1.40.2.4        ad 	l->l_flag &= ~L_WSUSPEND;
    354  1.40.2.4        ad 
    355  1.40.2.4        ad 	if (l->l_stat != LSSUSPENDED) {
    356  1.40.2.2        ad 		lwp_unlock(l);
    357  1.40.2.4        ad 		return;
    358       1.2   thorpej 	}
    359  1.40.2.4        ad 
    360  1.40.2.4        ad 	/* setrunnable() will release the lock. */
    361  1.40.2.4        ad 	setrunnable(l);
    362       1.2   thorpej }
    363       1.2   thorpej 
    364  1.40.2.2        ad /*
    365  1.40.2.2        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    366  1.40.2.2        ad  * non-zero, we are waiting for a specific LWP.
    367  1.40.2.2        ad  *
    368  1.40.2.2        ad  * Must be called with p->p_smutex held.
    369  1.40.2.2        ad  */
    370       1.2   thorpej int
    371       1.2   thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    372       1.2   thorpej {
    373       1.2   thorpej 	struct proc *p = l->l_proc;
    374  1.40.2.2        ad 	struct lwp *l2;
    375  1.40.2.6        ad 	int nfound, error;
    376       1.2   thorpej 
    377       1.2   thorpej 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    378       1.2   thorpej 	    p->p_pid, l->l_lid, lid));
    379       1.2   thorpej 
    380  1.40.2.2        ad 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    381       1.2   thorpej 
    382  1.40.2.2        ad 	/*
    383  1.40.2.6        ad 	 * We try to check for deadlock:
    384  1.40.2.2        ad 	 *
    385  1.40.2.2        ad 	 * 1) If all other LWPs are waiting for exits or suspended.
    386  1.40.2.2        ad 	 * 2) If we are trying to wait on ourself.
    387  1.40.2.2        ad 	 *
    388  1.40.2.2        ad 	 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
    389  1.40.2.2        ad 	 * waits, not any-LWP waits) and detect that sort of deadlock, but
    390  1.40.2.2        ad 	 * we don't have a good place to store the lwp that is being waited
    391  1.40.2.2        ad 	 * for. wchan is already filled with &p->p_nlwps, and putting the
    392  1.40.2.2        ad 	 * lwp address in there for deadlock tracing would require exiting
    393  1.40.2.2        ad 	 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
    394  1.40.2.2        ad 	 * get threads sleeping on any LWP exiting.
    395  1.40.2.2        ad 	 */
    396  1.40.2.6        ad 	if (lid == l->l_lid)
    397  1.40.2.6        ad 		return EDEADLK;
    398  1.40.2.2        ad 
    399  1.40.2.2        ad 	p->p_nlwpwait++;
    400       1.2   thorpej 
    401  1.40.2.6        ad 	for (;;) {
    402  1.40.2.6        ad 		/*
    403  1.40.2.6        ad 		 * Avoid a race between exit1() and sigexit(): if the
    404  1.40.2.6        ad 		 * process is dumping core, then we need to bail out: call
    405  1.40.2.6        ad 		 * into lwp_userret() where we will be suspended until the
    406  1.40.2.6        ad 		 * deed is done.
    407  1.40.2.6        ad 		 */
    408  1.40.2.6        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    409  1.40.2.6        ad 			mutex_exit(&p->p_smutex);
    410  1.40.2.6        ad 			lwp_userret(l);
    411  1.40.2.6        ad #ifdef DIAGNOSTIC
    412  1.40.2.6        ad 			panic("lwp_wait1");
    413  1.40.2.6        ad #endif
    414  1.40.2.6        ad 			/* NOTREACHED */
    415  1.40.2.6        ad 		}
    416  1.40.2.2        ad 
    417  1.40.2.6        ad 		/*
    418  1.40.2.6        ad 		 * First off, drain any detached LWP that is waiting to be
    419  1.40.2.6        ad 		 * reaped.
    420  1.40.2.6        ad 		 */
    421  1.40.2.6        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    422  1.40.2.6        ad 			p->p_zomblwp = NULL;
    423  1.40.2.6        ad 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    424  1.40.2.6        ad 			mutex_enter(&p->p_smutex);
    425  1.40.2.6        ad 		}
    426       1.2   thorpej 
    427  1.40.2.6        ad 		/*
    428  1.40.2.6        ad 		 * Now look for an LWP to collect.  If the whole process is
    429  1.40.2.6        ad 		 * exiting, count detached LWPs as eligible to be collected,
    430  1.40.2.6        ad 		 * but don't drain them here.
    431  1.40.2.6        ad 		 */
    432  1.40.2.6        ad 		nfound = 0;
    433  1.40.2.6        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    434  1.40.2.6        ad 			if (l2 == l || (lid != 0 && l2->l_lid != lid))
    435  1.40.2.6        ad 				continue;
    436  1.40.2.6        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    437  1.40.2.6        ad 				nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
    438  1.40.2.6        ad 				continue;
    439  1.40.2.6        ad 			}
    440  1.40.2.6        ad 			nfound++;
    441       1.2   thorpej 
    442  1.40.2.6        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    443  1.40.2.6        ad 			if (l2->l_stat != LSZOMB)
    444  1.40.2.6        ad 				continue;
    445  1.40.2.6        ad 
    446  1.40.2.6        ad 			if (departed)
    447  1.40.2.6        ad 				*departed = l2->l_lid;
    448  1.40.2.6        ad 			lwp_free(l2, 0, 0);
    449  1.40.2.6        ad 			mutex_enter(&p->p_smutex);
    450  1.40.2.6        ad 			p->p_nlwpwait--;
    451  1.40.2.6        ad 			return 0;
    452  1.40.2.6        ad 		}
    453  1.40.2.6        ad 
    454  1.40.2.6        ad 		if (nfound == 0) {
    455  1.40.2.6        ad 			error = ESRCH;
    456  1.40.2.6        ad 			break;
    457  1.40.2.6        ad 		}
    458  1.40.2.6        ad 		if ((flags & LWPWAIT_EXITCONTROL) != 0) {
    459  1.40.2.6        ad 			KASSERT(p->p_nlwps > 1);
    460  1.40.2.6        ad 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    461  1.40.2.6        ad 			continue;
    462  1.40.2.6        ad 		}
    463  1.40.2.6        ad 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    464  1.40.2.6        ad 		    p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
    465  1.40.2.6        ad 			error = EDEADLK;
    466  1.40.2.6        ad 			break;
    467  1.40.2.6        ad 		}
    468  1.40.2.6        ad 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    469  1.40.2.6        ad 			break;
    470  1.40.2.6        ad 	}
    471       1.2   thorpej 
    472  1.40.2.6        ad 	p->p_nlwpwait--;
    473  1.40.2.6        ad 	return error;
    474       1.2   thorpej }
    475       1.2   thorpej 
    476  1.40.2.2        ad /*
    477  1.40.2.2        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    478  1.40.2.2        ad  * The new LWP is created in state LSIDL and must be set running,
    479  1.40.2.2        ad  * suspended, or stopped by the caller.
    480  1.40.2.2        ad  */
    481       1.2   thorpej int
    482       1.2   thorpej newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
    483       1.2   thorpej     int flags, void *stack, size_t stacksize,
    484       1.2   thorpej     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    485       1.2   thorpej {
    486  1.40.2.6        ad 	struct lwp *l2, *isfree;
    487  1.40.2.6        ad 	turnstile_t *ts;
    488       1.2   thorpej 
    489  1.40.2.6        ad 	/*
    490  1.40.2.6        ad 	 * First off, reap any detached LWP waiting to be collected.
    491  1.40.2.6        ad 	 * We can re-use its LWP structure and turnstile.
    492  1.40.2.6        ad 	 */
    493  1.40.2.6        ad 	isfree = NULL;
    494  1.40.2.6        ad 	if (p2->p_zomblwp != NULL) {
    495  1.40.2.6        ad 		mutex_enter(&p2->p_smutex);
    496  1.40.2.6        ad 		if ((isfree = p2->p_zomblwp) != NULL) {
    497  1.40.2.6        ad 			p2->p_zomblwp = NULL;
    498  1.40.2.6        ad 			lwp_free(isfree, 1, 0);	/* releases proc mutex */
    499  1.40.2.6        ad 		} else
    500  1.40.2.6        ad 			mutex_exit(&p2->p_smutex);
    501  1.40.2.6        ad 	}
    502  1.40.2.6        ad 	if (isfree == NULL) {
    503  1.40.2.6        ad 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    504  1.40.2.6        ad 		memset(l2, 0, sizeof(*l2));
    505  1.40.2.6        ad 		l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    506  1.40.2.6        ad 	} else {
    507  1.40.2.6        ad 		l2 = isfree;
    508  1.40.2.6        ad 		ts = l2->l_ts;
    509  1.40.2.6        ad 		memset(l2, 0, sizeof(*l2));
    510  1.40.2.6        ad 		l2->l_ts = ts;
    511  1.40.2.6        ad 	}
    512       1.2   thorpej 
    513       1.2   thorpej 	l2->l_stat = LSIDL;
    514       1.2   thorpej 	l2->l_proc = p2;
    515  1.40.2.4        ad 	l2->l_refcnt = 1;
    516  1.40.2.6        ad 	l2->l_priority = l1->l_priority;
    517  1.40.2.6        ad 	l2->l_usrpri = l1->l_usrpri;
    518  1.40.2.4        ad 	l2->l_mutex = &sched_mutex;
    519  1.40.2.6        ad 	l2->l_cpu = l1->l_cpu;
    520       1.2   thorpej 	l2->l_flag = inmem ? L_INMEM : 0;
    521  1.40.2.6        ad 	lwp_initspecific(l2);
    522       1.2   thorpej 
    523  1.40.2.2        ad 	if (p2->p_flag & P_SYSTEM) {
    524  1.40.2.2        ad 		/*
    525  1.40.2.2        ad 		 * Mark it as a system process and not a candidate for
    526  1.40.2.2        ad 		 * swapping.
    527  1.40.2.2        ad 		 */
    528  1.40.2.2        ad 		l2->l_flag |= L_SYSTEM | L_INMEM;
    529  1.40.2.2        ad 	}
    530  1.40.2.2        ad 
    531      1.37        ad 	lwp_update_creds(l2);
    532       1.2   thorpej 	callout_init(&l2->l_tsleep_ch);
    533  1.40.2.4        ad 	l2->l_syncobj = &sched_syncobj;
    534       1.2   thorpej 
    535       1.2   thorpej 	if (rnewlwpp != NULL)
    536       1.2   thorpej 		*rnewlwpp = l2;
    537       1.2   thorpej 
    538      1.36      yamt 	l2->l_addr = UAREA_TO_USER(uaddr);
    539       1.2   thorpej 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    540       1.2   thorpej 	    (arg != NULL) ? arg : l2);
    541       1.2   thorpej 
    542  1.40.2.2        ad 	mutex_enter(&p2->p_smutex);
    543  1.40.2.3        ad 
    544  1.40.2.6        ad 	if ((flags & LWP_DETACHED) != 0) {
    545  1.40.2.6        ad 		l2->l_prflag = LPR_DETACHED;
    546  1.40.2.6        ad 		p2->p_ndlwps++;
    547  1.40.2.6        ad 	} else
    548  1.40.2.6        ad 		l2->l_prflag = 0;
    549  1.40.2.6        ad 
    550  1.40.2.6        ad 	if ((p2->p_sflag & PS_SA) == 0) {
    551  1.40.2.3        ad 		l2->l_sigmask = &l2->l_sigstore.ss_mask;
    552  1.40.2.3        ad 		l2->l_sigstk = &l2->l_sigstore.ss_stk;
    553  1.40.2.6        ad 		*l2->l_sigmask = *l1->l_sigmask;
    554  1.40.2.3        ad 	} else {
    555  1.40.2.3        ad 		l2->l_sigmask = &p2->p_sigstore.ss_mask;
    556  1.40.2.3        ad 		l2->l_sigstk = &p2->p_sigstore.ss_stk;
    557  1.40.2.3        ad 	}
    558  1.40.2.3        ad 
    559  1.40.2.6        ad 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    560  1.40.2.6        ad 	sigemptyset(&l2->l_sigpend.sp_set);
    561  1.40.2.6        ad 
    562       1.2   thorpej 	l2->l_lid = ++p2->p_nlwpid;
    563       1.2   thorpej 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    564       1.2   thorpej 	p2->p_nlwps++;
    565  1.40.2.3        ad 
    566  1.40.2.2        ad 	mutex_exit(&p2->p_smutex);
    567       1.2   thorpej 
    568  1.40.2.6        ad 	mutex_enter(&proclist_mutex);
    569       1.2   thorpej 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    570  1.40.2.6        ad 	mutex_exit(&proclist_mutex);
    571       1.2   thorpej 
    572      1.16      manu 	if (p2->p_emul->e_lwp_fork)
    573      1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    574      1.16      manu 
    575       1.2   thorpej 	return (0);
    576       1.2   thorpej }
    577       1.2   thorpej 
    578       1.2   thorpej /*
    579  1.40.2.2        ad  * Quit the process.  This will call cpu_exit, which will call cpu_switch,
    580  1.40.2.2        ad  * so this can only be used meaningfully if you're willing to switch away.
    581       1.2   thorpej  * Calling with l!=curlwp would be weird.
    582       1.2   thorpej  */
    583  1.40.2.6        ad void
    584  1.40.2.6        ad lwp_exit(struct lwp *l)
    585       1.2   thorpej {
    586       1.2   thorpej 	struct proc *p = l->l_proc;
    587  1.40.2.6        ad 	struct lwp *l2;
    588       1.2   thorpej 
    589       1.2   thorpej 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    590  1.40.2.2        ad 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    591       1.2   thorpej 
    592  1.40.2.4        ad 	/*
    593  1.40.2.6        ad 	 * Verify that we hold no locks other than the kernel lock.
    594  1.40.2.4        ad 	 */
    595  1.40.2.6        ad #ifdef MULTIPROCESSOR
    596  1.40.2.6        ad 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    597  1.40.2.6        ad #else
    598  1.40.2.6        ad 	LOCKDEBUG_BARRIER(NULL, 0);
    599  1.40.2.6        ad #endif
    600      1.16      manu 
    601       1.2   thorpej 	/*
    602  1.40.2.2        ad 	 * If we are the last live LWP in a process, we need to exit the
    603  1.40.2.2        ad 	 * entire process.  We do so with an exit status of zero, because
    604  1.40.2.2        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
    605  1.40.2.2        ad 	 *
    606  1.40.2.2        ad 	 * We are not quite a zombie yet, but for accounting purposes we
    607  1.40.2.2        ad 	 * must increment the count of zombies here.
    608  1.40.2.5        ad 	 *
    609  1.40.2.5        ad 	 * Note: the last LWP's specificdata will be deleted here.
    610       1.2   thorpej 	 */
    611  1.40.2.6        ad 	mutex_enter(&p->p_smutex);
    612  1.40.2.6        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
    613       1.2   thorpej 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    614       1.2   thorpej 		    p->p_pid, l->l_lid));
    615       1.2   thorpej 		exit1(l, 0);
    616      1.19  jdolecek 		/* NOTREACHED */
    617       1.2   thorpej 	}
    618  1.40.2.6        ad 	p->p_nzlwps++;
    619  1.40.2.6        ad 	mutex_exit(&p->p_smutex);
    620  1.40.2.6        ad 
    621  1.40.2.6        ad 	if (p->p_emul->e_lwp_exit)
    622  1.40.2.6        ad 		(*p->p_emul->e_lwp_exit)(l);
    623       1.2   thorpej 
    624  1.40.2.5        ad 	/* Delete the specificdata while it's still safe to sleep. */
    625  1.40.2.5        ad 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    626  1.40.2.5        ad 
    627  1.40.2.5        ad 	/*
    628  1.40.2.6        ad 	 * Release our cached credentials.
    629  1.40.2.5        ad 	 */
    630  1.40.2.5        ad 	kauth_cred_free(l->l_cred);
    631  1.40.2.5        ad 
    632  1.40.2.6        ad 	/*
    633  1.40.2.6        ad 	 * Remove the LWP from the global list.
    634  1.40.2.6        ad 	 */
    635  1.40.2.6        ad 	mutex_enter(&proclist_mutex);
    636  1.40.2.6        ad 	LIST_REMOVE(l, l_list);
    637  1.40.2.6        ad 	mutex_exit(&proclist_mutex);
    638  1.40.2.6        ad 
    639  1.40.2.6        ad 	/*
    640  1.40.2.6        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
    641  1.40.2.6        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    642  1.40.2.6        ad 	 * mark it waiting for collection in the proc structure.  Note that
    643  1.40.2.6        ad 	 * before we can do that, we need to free any other dead, deatched
    644  1.40.2.6        ad 	 * LWP waiting to meet its maker.
    645  1.40.2.6        ad 	 *
    646  1.40.2.6        ad 	 * XXXSMP disable preemption.
    647  1.40.2.6        ad 	 */
    648  1.40.2.6        ad 	mutex_enter(&p->p_smutex);
    649  1.40.2.6        ad 	lwp_drainrefs(l);
    650  1.40.2.4        ad 
    651  1.40.2.6        ad 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    652  1.40.2.6        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    653  1.40.2.6        ad 			p->p_zomblwp = NULL;
    654  1.40.2.6        ad 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    655  1.40.2.6        ad 			mutex_enter(&p->p_smutex);
    656  1.40.2.6        ad 		}
    657  1.40.2.6        ad 		p->p_zomblwp = l;
    658  1.40.2.6        ad 	}
    659  1.40.2.9        ad 
    660  1.40.2.9        ad 	/*
    661  1.40.2.9        ad 	 * Clear any private, pending signals.  XXXLWP Small chance that
    662  1.40.2.9        ad 	 * we may defer process-wide signals by taking L_PENDSIG with us
    663  1.40.2.9        ad 	 * to the grave.
    664  1.40.2.9        ad 	 */
    665  1.40.2.9        ad 	sigclear(&l->l_sigpend, NULL);
    666  1.40.2.9        ad 
    667  1.40.2.6        ad 	lwp_lock(l);
    668  1.40.2.6        ad 	l->l_stat = LSZOMB;
    669  1.40.2.6        ad 	lwp_unlock(l);
    670  1.40.2.6        ad 	p->p_nrlwps--;
    671  1.40.2.6        ad 	mutex_exit(&p->p_smutex);
    672      1.37        ad 
    673  1.40.2.2        ad 	/*
    674  1.40.2.6        ad 	 * We can no longer block.  At this point, lwp_free() may already
    675  1.40.2.6        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    676  1.40.2.6        ad 	 *
    677  1.40.2.6        ad 	 * Free MD LWP resources.
    678  1.40.2.2        ad 	 */
    679      1.19  jdolecek #ifndef __NO_CPU_LWP_FREE
    680      1.19  jdolecek 	cpu_lwp_free(l, 0);
    681      1.19  jdolecek #endif
    682      1.31      yamt 	pmap_deactivate(l);
    683      1.31      yamt 
    684  1.40.2.2        ad 	/*
    685  1.40.2.6        ad 	 * Release the kernel lock, signal another LWP to collect us,
    686  1.40.2.6        ad 	 * and switch away into oblivion.
    687  1.40.2.2        ad 	 */
    688  1.40.2.7        ad #ifdef notyet
    689  1.40.2.7        ad 	/* XXXSMP hold in lwp_userret() */
    690  1.40.2.7        ad 	KERNEL_UNLOCK_LAST(l);
    691  1.40.2.7        ad #else
    692  1.40.2.7        ad 	KERNEL_UNLOCK_ALL(l, NULL);
    693  1.40.2.7        ad #endif
    694  1.40.2.7        ad 
    695  1.40.2.6        ad 	cv_broadcast(&p->p_lwpcv);
    696      1.19  jdolecek 	cpu_exit(l);
    697       1.2   thorpej }
    698       1.2   thorpej 
    699      1.19  jdolecek /*
    700  1.40.2.4        ad  * We are called from cpu_exit() once it is safe to schedule the dead LWP's
    701  1.40.2.4        ad  * resources to be freed (i.e., once we've switched to the idle PCB for the
    702  1.40.2.4        ad  * current CPU).
    703      1.19  jdolecek  */
    704       1.2   thorpej void
    705       1.2   thorpej lwp_exit2(struct lwp *l)
    706       1.2   thorpej {
    707  1.40.2.6        ad 	/* XXXSMP re-enable preemption */
    708  1.40.2.6        ad }
    709  1.40.2.4        ad 
    710  1.40.2.6        ad /*
    711  1.40.2.6        ad  * Free a dead LWP's remaining resources.
    712  1.40.2.6        ad  *
    713  1.40.2.6        ad  * XXXLWP limits.
    714  1.40.2.6        ad  */
    715  1.40.2.6        ad void
    716  1.40.2.6        ad lwp_free(struct lwp *l, int recycle, int last)
    717  1.40.2.6        ad {
    718  1.40.2.6        ad 	struct proc *p = l->l_proc;
    719  1.40.2.2        ad 
    720      1.19  jdolecek 	/*
    721  1.40.2.6        ad 	 * If this was not the last LWP in the process, then adjust
    722  1.40.2.6        ad 	 * counters and unlock.
    723      1.19  jdolecek 	 */
    724  1.40.2.6        ad 	if (!last) {
    725  1.40.2.7        ad 		/*
    726  1.40.2.7        ad 		 * Add the LWP's run time to the process' base value.
    727  1.40.2.7        ad 		 * This needs to co-incide with coming off p_lwps.
    728  1.40.2.7        ad 		 */
    729  1.40.2.7        ad 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    730  1.40.2.7        ad 
    731  1.40.2.6        ad 		LIST_REMOVE(l, l_sibling);
    732  1.40.2.6        ad 		p->p_nlwps--;
    733  1.40.2.6        ad 		p->p_nzlwps--;
    734  1.40.2.6        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
    735  1.40.2.6        ad 			p->p_ndlwps--;
    736  1.40.2.6        ad 		mutex_exit(&p->p_smutex);
    737  1.40.2.4        ad 
    738  1.40.2.6        ad #ifdef MULTIPROCESSOR
    739  1.40.2.4        ad 		/*
    740  1.40.2.6        ad 		 * In the unlikely event that the LWP is still on the CPU,
    741  1.40.2.6        ad 		 * then spin until it has switched away.  We need to release
    742  1.40.2.6        ad 		 * all locks to avoid deadlock against interrupt handlers on
    743  1.40.2.6        ad 		 * the target CPU.
    744  1.40.2.4        ad 		 */
    745  1.40.2.6        ad 		if (l->l_cpu->ci_curlwp == l) {
    746  1.40.2.6        ad 			int count;
    747  1.40.2.9        ad 			KERNEL_UNLOCK_ALL(curlwp, &count);
    748  1.40.2.6        ad 			while (l->l_cpu->ci_curlwp == l)
    749  1.40.2.6        ad 				SPINLOCK_BACKOFF_HOOK;
    750  1.40.2.9        ad 			KERNEL_LOCK(count, curlwp);
    751  1.40.2.4        ad 		}
    752  1.40.2.6        ad #endif
    753      1.19  jdolecek 	}
    754  1.40.2.6        ad 
    755  1.40.2.6        ad 	/*
    756  1.40.2.6        ad 	 * Free the LWP's turnstile and the LWP structure itself unless the
    757  1.40.2.6        ad 	 * caller wants to recycle them.
    758  1.40.2.6        ad 	 *
    759  1.40.2.6        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
    760  1.40.2.6        ad 	 * so if it comes up just drop it quietly and move on.
    761  1.40.2.6        ad 	 *
    762  1.40.2.6        ad 	 * We don't recycle the VM resources at this time.
    763  1.40.2.6        ad 	 */
    764  1.40.2.6        ad 	if (!recycle && l->l_ts != &turnstile0)
    765  1.40.2.6        ad 		pool_cache_put(&turnstile_cache, l->l_ts);
    766  1.40.2.6        ad #ifndef __NO_CPU_LWP_FREE
    767  1.40.2.6        ad 	cpu_lwp_free2(l);
    768  1.40.2.6        ad #endif
    769  1.40.2.6        ad 	uvm_lwp_exit(l);
    770  1.40.2.6        ad 	if (!recycle)
    771  1.40.2.6        ad 		pool_put(&lwp_pool, l);
    772       1.2   thorpej }
    773       1.2   thorpej 
    774       1.2   thorpej /*
    775       1.2   thorpej  * Pick a LWP to represent the process for those operations which
    776       1.2   thorpej  * want information about a "process" that is actually associated
    777       1.2   thorpej  * with a LWP.
    778  1.40.2.2        ad  *
    779  1.40.2.6        ad  * If 'locking' is false, no locking or lock checks are performed.
    780  1.40.2.6        ad  * This is intended for use by DDB.
    781  1.40.2.6        ad  *
    782  1.40.2.6        ad  * We don't bother locking the LWP here, since code that uses this
    783  1.40.2.6        ad  * interface is broken by design and an exact match is not required.
    784       1.2   thorpej  */
    785       1.2   thorpej struct lwp *
    786  1.40.2.2        ad proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    787       1.2   thorpej {
    788       1.2   thorpej 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    789      1.27      matt 	struct lwp *signalled;
    790  1.40.2.2        ad 	int cnt;
    791  1.40.2.2        ad 
    792  1.40.2.5        ad 	if (locking) {
    793  1.40.2.2        ad 		LOCK_ASSERT(mutex_owned(&p->p_smutex));
    794  1.40.2.5        ad 	}
    795       1.2   thorpej 
    796       1.2   thorpej 	/* Trivial case: only one LWP */
    797  1.40.2.2        ad 	if (p->p_nlwps == 1) {
    798  1.40.2.2        ad 		l = LIST_FIRST(&p->p_lwps);
    799  1.40.2.2        ad 		if (nrlwps)
    800  1.40.2.2        ad 			*nrlwps = (l->l_stat == LSONPROC || LSRUN);
    801  1.40.2.2        ad 		return l;
    802  1.40.2.2        ad 	}
    803       1.2   thorpej 
    804  1.40.2.2        ad 	cnt = 0;
    805       1.2   thorpej 	switch (p->p_stat) {
    806       1.2   thorpej 	case SSTOP:
    807       1.2   thorpej 	case SACTIVE:
    808       1.2   thorpej 		/* Pick the most live LWP */
    809       1.2   thorpej 		onproc = running = sleeping = stopped = suspended = NULL;
    810      1.27      matt 		signalled = NULL;
    811       1.2   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    812      1.27      matt 			if (l->l_lid == p->p_sigctx.ps_lwp)
    813      1.27      matt 				signalled = l;
    814       1.2   thorpej 			switch (l->l_stat) {
    815       1.2   thorpej 			case LSONPROC:
    816       1.2   thorpej 				onproc = l;
    817  1.40.2.2        ad 				cnt++;
    818       1.2   thorpej 				break;
    819       1.2   thorpej 			case LSRUN:
    820       1.2   thorpej 				running = l;
    821  1.40.2.2        ad 				cnt++;
    822       1.2   thorpej 				break;
    823       1.2   thorpej 			case LSSLEEP:
    824       1.2   thorpej 				sleeping = l;
    825       1.2   thorpej 				break;
    826       1.2   thorpej 			case LSSTOP:
    827       1.2   thorpej 				stopped = l;
    828       1.2   thorpej 				break;
    829       1.2   thorpej 			case LSSUSPENDED:
    830       1.2   thorpej 				suspended = l;
    831       1.2   thorpej 				break;
    832       1.2   thorpej 			}
    833       1.2   thorpej 		}
    834  1.40.2.2        ad 		if (nrlwps)
    835  1.40.2.2        ad 			*nrlwps = cnt;
    836      1.27      matt 		if (signalled)
    837  1.40.2.2        ad 			l = signalled;
    838  1.40.2.2        ad 		else if (onproc)
    839  1.40.2.2        ad 			l = onproc;
    840  1.40.2.2        ad 		else if (running)
    841  1.40.2.2        ad 			l = running;
    842  1.40.2.2        ad 		else if (sleeping)
    843  1.40.2.2        ad 			l = sleeping;
    844  1.40.2.2        ad 		else if (stopped)
    845  1.40.2.2        ad 			l = stopped;
    846  1.40.2.2        ad 		else if (suspended)
    847  1.40.2.2        ad 			l = suspended;
    848  1.40.2.2        ad 		else
    849  1.40.2.2        ad 			break;
    850  1.40.2.2        ad 		return l;
    851  1.40.2.2        ad 		if (nrlwps)
    852  1.40.2.2        ad 			*nrlwps = 0;
    853  1.40.2.2        ad 		l = LIST_FIRST(&p->p_lwps);
    854  1.40.2.2        ad 		return l;
    855       1.2   thorpej #ifdef DIAGNOSTIC
    856       1.2   thorpej 	case SIDL:
    857  1.40.2.6        ad 	case SZOMB:
    858  1.40.2.6        ad 	case SDYING:
    859  1.40.2.6        ad 	case SDEAD:
    860  1.40.2.2        ad 		if (locking)
    861  1.40.2.2        ad 			mutex_exit(&p->p_smutex);
    862       1.2   thorpej 		/* We have more than one LWP and we're in SIDL?
    863       1.2   thorpej 		 * How'd that happen?
    864       1.2   thorpej 		 */
    865  1.40.2.6        ad 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
    866  1.40.2.6        ad 		    p->p_pid, p->p_comm, p->p_stat);
    867  1.40.2.6        ad 		break;
    868       1.2   thorpej 	default:
    869  1.40.2.2        ad 		if (locking)
    870  1.40.2.2        ad 			mutex_exit(&p->p_smutex);
    871       1.2   thorpej 		panic("Process %d (%s) in unknown state %d",
    872       1.2   thorpej 		    p->p_pid, p->p_comm, p->p_stat);
    873       1.2   thorpej #endif
    874       1.2   thorpej 	}
    875       1.2   thorpej 
    876  1.40.2.2        ad 	if (locking)
    877  1.40.2.2        ad 		mutex_exit(&p->p_smutex);
    878       1.2   thorpej 	panic("proc_representative_lwp: couldn't find a lwp for process"
    879       1.2   thorpej 		" %d (%s)", p->p_pid, p->p_comm);
    880       1.2   thorpej 	/* NOTREACHED */
    881       1.2   thorpej 	return NULL;
    882       1.2   thorpej }
    883      1.37        ad 
    884      1.37        ad /*
    885  1.40.2.2        ad  * Look up a live LWP within the speicifed process, and return it locked.
    886  1.40.2.2        ad  *
    887  1.40.2.2        ad  * Must be called with p->p_smutex held.
    888  1.40.2.2        ad  */
    889  1.40.2.2        ad struct lwp *
    890  1.40.2.6        ad lwp_find(struct proc *p, int id)
    891  1.40.2.2        ad {
    892  1.40.2.2        ad 	struct lwp *l;
    893  1.40.2.2        ad 
    894  1.40.2.2        ad 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    895  1.40.2.2        ad 
    896  1.40.2.2        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    897  1.40.2.2        ad 		if (l->l_lid == id)
    898  1.40.2.2        ad 			break;
    899  1.40.2.2        ad 	}
    900  1.40.2.2        ad 
    901  1.40.2.6        ad 	/*
    902  1.40.2.6        ad 	 * No need to lock - all of these conditions will
    903  1.40.2.6        ad 	 * be visible with the process level mutex held.
    904  1.40.2.6        ad 	 */
    905  1.40.2.6        ad 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
    906  1.40.2.6        ad 		l = NULL;
    907  1.40.2.2        ad 
    908  1.40.2.2        ad 	return l;
    909  1.40.2.2        ad }
    910  1.40.2.2        ad 
    911  1.40.2.2        ad /*
    912      1.37        ad  * Update an LWP's cached credentials to mirror the process' master copy.
    913      1.37        ad  *
    914      1.37        ad  * This happens early in the syscall path, on user trap, and on LWP
    915      1.37        ad  * creation.  A long-running LWP can also voluntarily choose to update
    916      1.37        ad  * it's credentials by calling this routine.  This may be called from
    917      1.37        ad  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
    918      1.37        ad  */
    919      1.37        ad void
    920      1.37        ad lwp_update_creds(struct lwp *l)
    921      1.37        ad {
    922      1.37        ad 	kauth_cred_t oc;
    923      1.37        ad 	struct proc *p;
    924      1.37        ad 
    925      1.37        ad 	p = l->l_proc;
    926      1.37        ad 	oc = l->l_cred;
    927      1.37        ad 
    928  1.40.2.4        ad 	mutex_enter(&p->p_mutex);
    929      1.37        ad 	kauth_cred_hold(p->p_cred);
    930      1.37        ad 	l->l_cred = p->p_cred;
    931  1.40.2.4        ad 	mutex_exit(&p->p_mutex);
    932  1.40.2.6        ad 	if (oc != NULL) {
    933  1.40.2.7        ad 		KERNEL_LOCK(1, l);	/* XXXSMP */
    934      1.37        ad 		kauth_cred_free(oc);
    935  1.40.2.7        ad 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
    936  1.40.2.6        ad 	}
    937      1.37        ad }
    938  1.40.2.2        ad 
    939  1.40.2.2        ad /*
    940  1.40.2.2        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
    941  1.40.2.2        ad  * one we specify.
    942  1.40.2.2        ad  */
    943  1.40.2.2        ad int
    944  1.40.2.2        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
    945  1.40.2.2        ad {
    946  1.40.2.3        ad 	kmutex_t *cur = l->l_mutex;
    947  1.40.2.2        ad 
    948  1.40.2.4        ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    949  1.40.2.3        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
    950  1.40.2.3        ad #else
    951  1.40.2.4        ad 	return mutex_owned(cur);
    952  1.40.2.3        ad #endif
    953  1.40.2.2        ad }
    954  1.40.2.2        ad 
    955  1.40.2.4        ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    956  1.40.2.2        ad /*
    957  1.40.2.3        ad  * Lock an LWP.
    958  1.40.2.2        ad  */
    959  1.40.2.2        ad void
    960  1.40.2.4        ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
    961  1.40.2.2        ad {
    962  1.40.2.3        ad 
    963  1.40.2.6        ad 	/*
    964  1.40.2.6        ad 	 * XXXgcc ignoring kmutex_t * volatile on i386
    965  1.40.2.6        ad 	 *
    966  1.40.2.6        ad 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
    967  1.40.2.6        ad 	 */
    968  1.40.2.6        ad #if 1
    969  1.40.2.6        ad 	while (l->l_mutex != old) {
    970  1.40.2.6        ad #else
    971  1.40.2.3        ad 	for (;;) {
    972  1.40.2.6        ad #endif
    973  1.40.2.6        ad 		smutex_exit(old);
    974  1.40.2.4        ad 		old = l->l_mutex;
    975  1.40.2.6        ad 		smutex_enter(old);
    976  1.40.2.3        ad 
    977  1.40.2.3        ad 		/*
    978  1.40.2.3        ad 		 * mutex_enter() will have posted a read barrier.  Re-test
    979  1.40.2.3        ad 		 * l->l_mutex.  If it has changed, we need to try again.
    980  1.40.2.3        ad 		 */
    981  1.40.2.6        ad #if 1
    982  1.40.2.6        ad 	}
    983  1.40.2.6        ad #else
    984  1.40.2.4        ad 	} while (__predict_false(l->l_mutex != old));
    985  1.40.2.6        ad #endif
    986  1.40.2.2        ad }
    987  1.40.2.3        ad #endif
    988  1.40.2.3        ad 
    989  1.40.2.3        ad /*
    990  1.40.2.4        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
    991  1.40.2.3        ad  */
    992  1.40.2.3        ad void
    993  1.40.2.3        ad lwp_setlock(struct lwp *l, kmutex_t *new)
    994  1.40.2.3        ad {
    995  1.40.2.4        ad 
    996  1.40.2.2        ad 	LOCK_ASSERT(mutex_owned(l->l_mutex));
    997  1.40.2.2        ad 
    998  1.40.2.4        ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    999  1.40.2.3        ad 	mb_write();
   1000  1.40.2.3        ad 	l->l_mutex = new;
   1001  1.40.2.4        ad #else
   1002  1.40.2.4        ad 	(void)new;
   1003  1.40.2.3        ad #endif
   1004  1.40.2.2        ad }
   1005  1.40.2.2        ad 
   1006  1.40.2.2        ad /*
   1007  1.40.2.3        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1008  1.40.2.3        ad  * must be held.
   1009  1.40.2.3        ad  */
   1010  1.40.2.3        ad void
   1011  1.40.2.4        ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1012  1.40.2.3        ad {
   1013  1.40.2.3        ad 	kmutex_t *old;
   1014  1.40.2.3        ad 
   1015  1.40.2.3        ad 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1016  1.40.2.3        ad 
   1017  1.40.2.3        ad 	old = l->l_mutex;
   1018  1.40.2.4        ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1019  1.40.2.3        ad 	mb_write();
   1020  1.40.2.3        ad 	l->l_mutex = new;
   1021  1.40.2.4        ad #else
   1022  1.40.2.4        ad 	(void)new;
   1023  1.40.2.3        ad #endif
   1024  1.40.2.6        ad 	smutex_exit(old);
   1025  1.40.2.3        ad }
   1026  1.40.2.3        ad 
   1027  1.40.2.3        ad /*
   1028  1.40.2.6        ad  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1029  1.40.2.3        ad  * locked.
   1030  1.40.2.2        ad  */
   1031  1.40.2.2        ad void
   1032  1.40.2.3        ad lwp_relock(struct lwp *l, kmutex_t *new)
   1033  1.40.2.2        ad {
   1034  1.40.2.4        ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1035  1.40.2.4        ad 	kmutex_t *old;
   1036  1.40.2.4        ad #endif
   1037  1.40.2.2        ad 
   1038  1.40.2.2        ad 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1039  1.40.2.2        ad 
   1040  1.40.2.4        ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1041  1.40.2.4        ad 	old = l->l_mutex;
   1042  1.40.2.4        ad 	if (old != new) {
   1043  1.40.2.6        ad 		smutex_enter(new);
   1044  1.40.2.4        ad 		l->l_mutex = new;
   1045  1.40.2.6        ad 		smutex_exit(old);
   1046  1.40.2.4        ad 	}
   1047  1.40.2.4        ad #else
   1048  1.40.2.4        ad 	(void)new;
   1049  1.40.2.3        ad #endif
   1050  1.40.2.2        ad }
   1051  1.40.2.2        ad 
   1052  1.40.2.2        ad /*
   1053  1.40.2.6        ad  * Handle exceptions for mi_userret().  Called if a member of L_USERRET is
   1054  1.40.2.6        ad  * set.
   1055  1.40.2.2        ad  */
   1056  1.40.2.2        ad void
   1057  1.40.2.2        ad lwp_userret(struct lwp *l)
   1058  1.40.2.2        ad {
   1059  1.40.2.2        ad 	struct proc *p;
   1060  1.40.2.4        ad 	int sig;
   1061  1.40.2.2        ad 
   1062  1.40.2.2        ad 	p = l->l_proc;
   1063  1.40.2.2        ad 
   1064  1.40.2.6        ad 	/*
   1065  1.40.2.6        ad 	 * It should be safe to do this read unlocked on a multiprocessor
   1066  1.40.2.6        ad 	 * system..
   1067  1.40.2.6        ad 	 */
   1068  1.40.2.6        ad 	while ((l->l_flag & L_USERRET) != 0) {
   1069  1.40.2.6        ad 		/*
   1070  1.40.2.6        ad 		 * Process pending signals first, unless the process
   1071  1.40.2.6        ad 		 * is dumping core, where we will instead enter the
   1072  1.40.2.6        ad 		 * L_WSUSPEND case below.
   1073  1.40.2.6        ad 		 */
   1074  1.40.2.6        ad 		if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
   1075  1.40.2.4        ad 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1076  1.40.2.4        ad 			mutex_enter(&p->p_smutex);
   1077  1.40.2.4        ad 			while ((sig = issignal(l)) != 0)
   1078  1.40.2.4        ad 				postsig(sig);
   1079  1.40.2.4        ad 			mutex_exit(&p->p_smutex);
   1080  1.40.2.7        ad 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1081  1.40.2.4        ad 		}
   1082  1.40.2.2        ad 
   1083  1.40.2.6        ad 		/*
   1084  1.40.2.6        ad 		 * Core-dump or suspend pending.
   1085  1.40.2.6        ad 		 *
   1086  1.40.2.6        ad 		 * In case of core dump, suspend ourselves, so that the
   1087  1.40.2.6        ad 		 * kernel stack and therefore the userland registers saved
   1088  1.40.2.6        ad 		 * in the trapframe are around for coredump() to write them
   1089  1.40.2.6        ad 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1090  1.40.2.6        ad 		 * will write the core file out once all other LWPs are
   1091  1.40.2.6        ad 		 * suspended.
   1092  1.40.2.6        ad 		 */
   1093  1.40.2.4        ad 		if ((l->l_flag & L_WSUSPEND) != 0) {
   1094  1.40.2.4        ad 			mutex_enter(&p->p_smutex);
   1095  1.40.2.4        ad 			p->p_nrlwps--;
   1096  1.40.2.6        ad 			cv_broadcast(&p->p_lwpcv);
   1097  1.40.2.6        ad 			lwp_lock(l);
   1098  1.40.2.4        ad 			l->l_stat = LSSUSPENDED;
   1099  1.40.2.4        ad 			mutex_exit(&p->p_smutex);
   1100  1.40.2.4        ad 			mi_switch(l, NULL);
   1101  1.40.2.4        ad 		}
   1102  1.40.2.2        ad 
   1103  1.40.2.4        ad 		/* Process is exiting. */
   1104  1.40.2.4        ad 		if ((l->l_flag & L_WEXIT) != 0) {
   1105  1.40.2.4        ad 			KERNEL_LOCK(1, l);
   1106  1.40.2.6        ad 			lwp_exit(l);
   1107  1.40.2.4        ad 			KASSERT(0);
   1108  1.40.2.4        ad 			/* NOTREACHED */
   1109  1.40.2.4        ad 		}
   1110  1.40.2.6        ad 	}
   1111  1.40.2.6        ad 
   1112  1.40.2.6        ad 	/*
   1113  1.40.2.6        ad 	 * Timer events are handled specially.  We only try once to deliver
   1114  1.40.2.6        ad 	 * pending timer upcalls; if if fails, we can try again on the next
   1115  1.40.2.6        ad 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1116  1.40.2.6        ad 	 * bounce us back here through the trap path after we return.
   1117  1.40.2.6        ad 	 */
   1118  1.40.2.6        ad 	if (p->p_timerpend)
   1119  1.40.2.6        ad 		timerupcall(l);
   1120  1.40.2.2        ad }
   1121  1.40.2.2        ad 
   1122  1.40.2.2        ad /*
   1123  1.40.2.6        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1124  1.40.2.2        ad  */
   1125  1.40.2.6        ad void
   1126  1.40.2.6        ad lwp_need_userret(struct lwp *l)
   1127  1.40.2.2        ad {
   1128  1.40.2.6        ad 	LOCK_ASSERT(lwp_locked(l, NULL));
   1129  1.40.2.2        ad 
   1130  1.40.2.6        ad 	/*
   1131  1.40.2.6        ad 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1132  1.40.2.6        ad 	 * that the condition will be seen before forcing the LWP to enter
   1133  1.40.2.6        ad 	 * kernel mode.
   1134  1.40.2.6        ad 	 */
   1135  1.40.2.6        ad 	mb_write();
   1136  1.40.2.2        ad 
   1137  1.40.2.6        ad 	lwp_changepri(l, PUSER);
   1138  1.40.2.6        ad 	cpu_signotify(l);
   1139  1.40.2.2        ad }
   1140  1.40.2.4        ad 
   1141  1.40.2.4        ad /*
   1142  1.40.2.4        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1143  1.40.2.6        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1144  1.40.2.4        ad  */
   1145  1.40.2.4        ad void
   1146  1.40.2.4        ad lwp_addref(struct lwp *l)
   1147  1.40.2.4        ad {
   1148  1.40.2.4        ad 
   1149  1.40.2.6        ad 	LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
   1150  1.40.2.4        ad 	KASSERT(l->l_stat != LSZOMB);
   1151  1.40.2.4        ad 	KASSERT(l->l_refcnt != 0);
   1152  1.40.2.4        ad 
   1153  1.40.2.4        ad 	l->l_refcnt++;
   1154  1.40.2.4        ad }
   1155  1.40.2.4        ad 
   1156  1.40.2.4        ad /*
   1157  1.40.2.4        ad  * Remove one reference to an LWP.  If this is the last reference,
   1158  1.40.2.4        ad  * then we must finalize the LWP's death.
   1159  1.40.2.4        ad  */
   1160  1.40.2.4        ad void
   1161  1.40.2.4        ad lwp_delref(struct lwp *l)
   1162  1.40.2.4        ad {
   1163  1.40.2.6        ad 	struct proc *p = l->l_proc;
   1164  1.40.2.6        ad 	u_int refcnt;
   1165  1.40.2.6        ad 
   1166  1.40.2.6        ad 	mutex_enter(&p->p_smutex);
   1167  1.40.2.6        ad 	refcnt = --l->l_refcnt;
   1168  1.40.2.6        ad 	mutex_exit(&p->p_smutex);
   1169  1.40.2.6        ad 
   1170  1.40.2.6        ad 	if (refcnt == 0)
   1171  1.40.2.6        ad 		cv_broadcast(&p->p_refcv);
   1172  1.40.2.6        ad }
   1173  1.40.2.6        ad 
   1174  1.40.2.6        ad /*
   1175  1.40.2.6        ad  * Drain all references to the current LWP.
   1176  1.40.2.6        ad  */
   1177  1.40.2.6        ad void
   1178  1.40.2.6        ad lwp_drainrefs(struct lwp *l)
   1179  1.40.2.6        ad {
   1180  1.40.2.6        ad 	struct proc *p = l->l_proc;
   1181  1.40.2.6        ad 
   1182  1.40.2.6        ad 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
   1183  1.40.2.6        ad 	KASSERT(l->l_refcnt != 0);
   1184  1.40.2.4        ad 
   1185  1.40.2.6        ad 	l->l_refcnt--;
   1186  1.40.2.6        ad 	while (l->l_refcnt != 0)
   1187  1.40.2.6        ad 		cv_wait(&p->p_refcv, &p->p_smutex);
   1188  1.40.2.4        ad }
   1189  1.40.2.5        ad 
   1190  1.40.2.5        ad /*
   1191  1.40.2.5        ad  * lwp_specific_key_create --
   1192  1.40.2.5        ad  *	Create a key for subsystem lwp-specific data.
   1193  1.40.2.5        ad  */
   1194  1.40.2.5        ad int
   1195  1.40.2.5        ad lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1196  1.40.2.5        ad {
   1197  1.40.2.5        ad 
   1198  1.40.2.5        ad 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1199  1.40.2.5        ad }
   1200  1.40.2.5        ad 
   1201  1.40.2.5        ad /*
   1202  1.40.2.5        ad  * lwp_specific_key_delete --
   1203  1.40.2.5        ad  *	Delete a key for subsystem lwp-specific data.
   1204  1.40.2.5        ad  */
   1205  1.40.2.5        ad void
   1206  1.40.2.5        ad lwp_specific_key_delete(specificdata_key_t key)
   1207  1.40.2.5        ad {
   1208  1.40.2.5        ad 
   1209  1.40.2.5        ad 	specificdata_key_delete(lwp_specificdata_domain, key);
   1210  1.40.2.5        ad }
   1211  1.40.2.5        ad 
   1212  1.40.2.5        ad /*
   1213  1.40.2.5        ad  * lwp_initspecific --
   1214  1.40.2.5        ad  *	Initialize an LWP's specificdata container.
   1215  1.40.2.5        ad  */
   1216  1.40.2.5        ad void
   1217  1.40.2.5        ad lwp_initspecific(struct lwp *l)
   1218  1.40.2.5        ad {
   1219  1.40.2.5        ad 	int error;
   1220  1.40.2.5        ad 
   1221  1.40.2.5        ad 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1222  1.40.2.5        ad 	KASSERT(error == 0);
   1223  1.40.2.5        ad }
   1224  1.40.2.5        ad 
   1225  1.40.2.5        ad /*
   1226  1.40.2.5        ad  * lwp_finispecific --
   1227  1.40.2.5        ad  *	Finalize an LWP's specificdata container.
   1228  1.40.2.5        ad  */
   1229  1.40.2.5        ad void
   1230  1.40.2.5        ad lwp_finispecific(struct lwp *l)
   1231  1.40.2.5        ad {
   1232  1.40.2.5        ad 
   1233  1.40.2.5        ad 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1234  1.40.2.5        ad }
   1235  1.40.2.5        ad 
   1236  1.40.2.5        ad /*
   1237  1.40.2.5        ad  * lwp_getspecific --
   1238  1.40.2.5        ad  *	Return lwp-specific data corresponding to the specified key.
   1239  1.40.2.5        ad  *
   1240  1.40.2.5        ad  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1241  1.40.2.5        ad  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1242  1.40.2.5        ad  *	LWP's specifc data, care must be taken to ensure that doing so
   1243  1.40.2.5        ad  *	would not cause internal data structure inconsistency (i.e. caller
   1244  1.40.2.5        ad  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1245  1.40.2.5        ad  *	or lwp_setspecific() call).
   1246  1.40.2.5        ad  */
   1247  1.40.2.5        ad void *
   1248  1.40.2.5        ad lwp_getspecific(specificdata_key_t key)
   1249  1.40.2.5        ad {
   1250  1.40.2.5        ad 
   1251  1.40.2.5        ad 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1252  1.40.2.5        ad 						  &curlwp->l_specdataref, key));
   1253  1.40.2.5        ad }
   1254  1.40.2.5        ad 
   1255  1.40.2.5        ad void *
   1256  1.40.2.5        ad _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1257  1.40.2.5        ad {
   1258  1.40.2.5        ad 
   1259  1.40.2.5        ad 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1260  1.40.2.5        ad 						  &l->l_specdataref, key));
   1261  1.40.2.5        ad }
   1262  1.40.2.5        ad 
   1263  1.40.2.5        ad /*
   1264  1.40.2.5        ad  * lwp_setspecific --
   1265  1.40.2.5        ad  *	Set lwp-specific data corresponding to the specified key.
   1266  1.40.2.5        ad  */
   1267  1.40.2.5        ad void
   1268  1.40.2.5        ad lwp_setspecific(specificdata_key_t key, void *data)
   1269  1.40.2.5        ad {
   1270  1.40.2.5        ad 
   1271  1.40.2.5        ad 	specificdata_setspecific(lwp_specificdata_domain,
   1272  1.40.2.5        ad 				 &curlwp->l_specdataref, key, data);
   1273  1.40.2.5        ad }
   1274