kern_lwp.c revision 1.61.2.5 1 1.61.2.5 ad /* $NetBSD: kern_lwp.c,v 1.61.2.5 2007/04/09 22:10:03 ad Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.52 ad * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej * 3. All advertising materials mentioning features or use of this software
19 1.2 thorpej * must display the following acknowledgement:
20 1.2 thorpej * This product includes software developed by the NetBSD
21 1.2 thorpej * Foundation, Inc. and its contributors.
22 1.2 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 thorpej * contributors may be used to endorse or promote products derived
24 1.2 thorpej * from this software without specific prior written permission.
25 1.2 thorpej *
26 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
37 1.2 thorpej */
38 1.9 lukem
39 1.52 ad /*
40 1.52 ad * Overview
41 1.52 ad *
42 1.52 ad * Lightweight processes (LWPs) are the basic unit (or thread) of
43 1.52 ad * execution within the kernel. The core state of an LWP is described
44 1.52 ad * by "struct lwp".
45 1.52 ad *
46 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
47 1.52 ad * Every process contains at least one LWP, but may contain more. The
48 1.52 ad * process describes attributes shared among all of its LWPs such as a
49 1.52 ad * private address space, global execution state (stopped, active,
50 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
51 1.52 ad * machine, multiple LWPs be executing in kernel simultaneously.
52 1.52 ad *
53 1.52 ad * Execution states
54 1.52 ad *
55 1.52 ad * At any given time, an LWP has overall state that is described by
56 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
57 1.52 ad * set is guaranteed to represent the absolute, current state of the
58 1.52 ad * LWP:
59 1.52 ad *
60 1.52 ad * LSONPROC
61 1.52 ad *
62 1.52 ad * On processor: the LWP is executing on a CPU, either in the
63 1.52 ad * kernel or in user space.
64 1.52 ad *
65 1.52 ad * LSRUN
66 1.52 ad *
67 1.52 ad * Runnable: the LWP is parked on a run queue, and may soon be
68 1.52 ad * chosen to run by a idle processor, or by a processor that
69 1.52 ad * has been asked to preempt a currently runnning but lower
70 1.52 ad * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 1.52 ad * then the LWP is not on a run queue, but may be soon.
72 1.52 ad *
73 1.52 ad * LSIDL
74 1.52 ad *
75 1.52 ad * Idle: the LWP has been created but has not yet executed.
76 1.52 ad * Whoever created the new LWP can be expected to set it to
77 1.52 ad * another state shortly.
78 1.52 ad *
79 1.52 ad * LSSUSPENDED:
80 1.52 ad *
81 1.52 ad * Suspended: the LWP has had its execution suspended by
82 1.52 ad * another LWP in the same process using the _lwp_suspend()
83 1.52 ad * system call. User-level LWPs also enter the suspended
84 1.52 ad * state when the system is shutting down.
85 1.52 ad *
86 1.52 ad * The second set represent a "statement of intent" on behalf of the
87 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
88 1.52 ad * sleeping, idle, or on a run queue. It is expected to take the
89 1.52 ad * necessary action to stop executing or become "running" again within
90 1.52 ad * a short timeframe.
91 1.52 ad *
92 1.52 ad * LSZOMB:
93 1.52 ad *
94 1.52 ad * Dead: the LWP has released most of its resources and is
95 1.52 ad * about to switch away into oblivion. When it switches away,
96 1.52 ad * its few remaining resources will be collected.
97 1.52 ad *
98 1.52 ad * LSSLEEP:
99 1.52 ad *
100 1.52 ad * Sleeping: the LWP has entered itself onto a sleep queue, and
101 1.52 ad * will switch away shortly to allow other LWPs to run on the
102 1.52 ad * CPU.
103 1.52 ad *
104 1.52 ad * LSSTOP:
105 1.52 ad *
106 1.52 ad * Stopped: the LWP has been stopped as a result of a job
107 1.52 ad * control signal, or as a result of the ptrace() interface.
108 1.52 ad * Stopped LWPs may run briefly within the kernel to handle
109 1.52 ad * signals that they receive, but will not return to user space
110 1.52 ad * until their process' state is changed away from stopped.
111 1.52 ad * Single LWPs within a process can not be set stopped
112 1.52 ad * selectively: all actions that can stop or continue LWPs
113 1.52 ad * occur at the process level.
114 1.52 ad *
115 1.52 ad * State transitions
116 1.52 ad *
117 1.52 ad * Note that the LSSTOP and LSSUSPENDED states may only be set
118 1.52 ad * when returning to user space in userret(), or when sleeping
119 1.52 ad * interruptably. Before setting those states, we try to ensure
120 1.52 ad * that the LWPs will release all kernel locks that they hold,
121 1.52 ad * and at a minimum try to ensure that the LWP can be set runnable
122 1.52 ad * again by a signal.
123 1.52 ad *
124 1.52 ad * LWPs may transition states in the following ways:
125 1.52 ad *
126 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
127 1.52 ad * > STOPPED > SLEEP
128 1.52 ad * > SUSPENDED > STOPPED
129 1.52 ad * > SUSPENDED
130 1.52 ad * > ZOMB
131 1.52 ad *
132 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
133 1.52 ad * > SLEEP > SLEEP
134 1.52 ad *
135 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
136 1.52 ad * > RUN > SUSPENDED
137 1.52 ad * > STOPPED > STOPPED
138 1.52 ad * > SUSPENDED
139 1.52 ad *
140 1.52 ad * Locking
141 1.52 ad *
142 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
143 1.52 ad * general spin mutex pointed to by lwp::l_mutex. The locks covering
144 1.52 ad * each field are documented in sys/lwp.h.
145 1.52 ad *
146 1.52 ad * State transitions must be made with the LWP's general lock held. In
147 1.52 ad * a multiprocessor kernel, state transitions may cause the LWP's lock
148 1.52 ad * pointer to change. On uniprocessor kernels, most scheduler and
149 1.52 ad * synchronisation objects such as sleep queues and LWPs are protected
150 1.52 ad * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
151 1.52 ad * will never change and will always reference sched_mutex.
152 1.52 ad *
153 1.52 ad * Manipulation of the general lock is not performed directly, but
154 1.52 ad * through calls to lwp_lock(), lwp_relock() and similar.
155 1.52 ad *
156 1.52 ad * States and their associated locks:
157 1.52 ad *
158 1.52 ad * LSIDL, LSZOMB
159 1.52 ad *
160 1.52 ad * Always covered by sched_mutex.
161 1.52 ad *
162 1.52 ad * LSONPROC, LSRUN:
163 1.52 ad *
164 1.52 ad * Always covered by sched_mutex, which protects the run queues
165 1.52 ad * and other miscellaneous items. If the scheduler is changed
166 1.52 ad * to use per-CPU run queues, this may become a per-CPU mutex.
167 1.52 ad *
168 1.52 ad * LSSLEEP:
169 1.52 ad *
170 1.52 ad * Covered by a mutex associated with the sleep queue that the
171 1.52 ad * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
172 1.52 ad *
173 1.52 ad * LSSTOP, LSSUSPENDED:
174 1.52 ad *
175 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
176 1.52 ad * l_mutex references the sleep queue mutex. If the LWP was
177 1.52 ad * runnable or on the CPU when halted, or has been removed from
178 1.52 ad * the sleep queue since halted, then the mutex is sched_mutex.
179 1.52 ad *
180 1.52 ad * The lock order is as follows:
181 1.52 ad *
182 1.52 ad * sleepq_t::sq_mutex |---> sched_mutex
183 1.52 ad * tschain_t::tc_mutex |
184 1.52 ad *
185 1.52 ad * Each process has an scheduler state mutex (proc::p_smutex), and a
186 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
187 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
188 1.52 ad * following states, p_mutex must be held and the process wide counters
189 1.52 ad * adjusted:
190 1.52 ad *
191 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
192 1.52 ad *
193 1.52 ad * Note that an LWP is considered running or likely to run soon if in
194 1.52 ad * one of the following states. This affects the value of p_nrlwps:
195 1.52 ad *
196 1.52 ad * LSRUN, LSONPROC, LSSLEEP
197 1.52 ad *
198 1.52 ad * p_smutex does not need to be held when transitioning among these
199 1.52 ad * three states.
200 1.52 ad */
201 1.52 ad
202 1.9 lukem #include <sys/cdefs.h>
203 1.61.2.5 ad __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.61.2.5 2007/04/09 22:10:03 ad Exp $");
204 1.8 martin
205 1.8 martin #include "opt_multiprocessor.h"
206 1.52 ad #include "opt_lockdebug.h"
207 1.2 thorpej
208 1.47 hannken #define _LWP_API_PRIVATE
209 1.47 hannken
210 1.2 thorpej #include <sys/param.h>
211 1.2 thorpej #include <sys/systm.h>
212 1.2 thorpej #include <sys/pool.h>
213 1.2 thorpej #include <sys/proc.h>
214 1.2 thorpej #include <sys/syscallargs.h>
215 1.57 dsl #include <sys/syscall_stats.h>
216 1.37 ad #include <sys/kauth.h>
217 1.52 ad #include <sys/sleepq.h>
218 1.52 ad #include <sys/lockdebug.h>
219 1.52 ad #include <sys/kmem.h>
220 1.2 thorpej
221 1.2 thorpej #include <uvm/uvm_extern.h>
222 1.2 thorpej
223 1.52 ad struct lwplist alllwp;
224 1.52 ad
225 1.52 ad POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
226 1.61.2.1 ad &pool_allocator_nointr, IPL_NONE);
227 1.41 thorpej POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
228 1.61.2.1 ad &pool_allocator_nointr, IPL_NONE);
229 1.41 thorpej
230 1.41 thorpej static specificdata_domain_t lwp_specificdata_domain;
231 1.41 thorpej
232 1.2 thorpej #define LWP_DEBUG
233 1.2 thorpej
234 1.2 thorpej #ifdef LWP_DEBUG
235 1.2 thorpej int lwp_debug = 0;
236 1.2 thorpej #define DPRINTF(x) if (lwp_debug) printf x
237 1.2 thorpej #else
238 1.2 thorpej #define DPRINTF(x)
239 1.2 thorpej #endif
240 1.41 thorpej
241 1.41 thorpej void
242 1.41 thorpej lwpinit(void)
243 1.41 thorpej {
244 1.41 thorpej
245 1.41 thorpej lwp_specificdata_domain = specificdata_domain_create();
246 1.41 thorpej KASSERT(lwp_specificdata_domain != NULL);
247 1.52 ad lwp_sys_init();
248 1.41 thorpej }
249 1.41 thorpej
250 1.52 ad /*
251 1.52 ad * Set an suspended.
252 1.52 ad *
253 1.52 ad * Must be called with p_smutex held, and the LWP locked. Will unlock the
254 1.52 ad * LWP before return.
255 1.52 ad */
256 1.2 thorpej int
257 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
258 1.2 thorpej {
259 1.52 ad int error;
260 1.2 thorpej
261 1.61.2.3 ad KASSERT(mutex_owned(&t->l_proc->p_smutex));
262 1.61.2.3 ad KASSERT(lwp_locked(t, NULL));
263 1.33 chs
264 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
265 1.2 thorpej
266 1.52 ad /*
267 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
268 1.52 ad * else or deadlock could occur. We won't return to userspace.
269 1.2 thorpej */
270 1.56 pavel if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
271 1.52 ad lwp_unlock(t);
272 1.52 ad return (EDEADLK);
273 1.2 thorpej }
274 1.2 thorpej
275 1.52 ad error = 0;
276 1.2 thorpej
277 1.52 ad switch (t->l_stat) {
278 1.52 ad case LSRUN:
279 1.52 ad case LSONPROC:
280 1.56 pavel t->l_flag |= LW_WSUSPEND;
281 1.52 ad lwp_need_userret(t);
282 1.52 ad lwp_unlock(t);
283 1.52 ad break;
284 1.2 thorpej
285 1.52 ad case LSSLEEP:
286 1.56 pavel t->l_flag |= LW_WSUSPEND;
287 1.2 thorpej
288 1.2 thorpej /*
289 1.52 ad * Kick the LWP and try to get it to the kernel boundary
290 1.52 ad * so that it will release any locks that it holds.
291 1.52 ad * setrunnable() will release the lock.
292 1.2 thorpej */
293 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
294 1.52 ad setrunnable(t);
295 1.52 ad else
296 1.52 ad lwp_unlock(t);
297 1.52 ad break;
298 1.2 thorpej
299 1.52 ad case LSSUSPENDED:
300 1.52 ad lwp_unlock(t);
301 1.52 ad break;
302 1.17 manu
303 1.52 ad case LSSTOP:
304 1.56 pavel t->l_flag |= LW_WSUSPEND;
305 1.52 ad setrunnable(t);
306 1.52 ad break;
307 1.2 thorpej
308 1.52 ad case LSIDL:
309 1.52 ad case LSZOMB:
310 1.52 ad error = EINTR; /* It's what Solaris does..... */
311 1.52 ad lwp_unlock(t);
312 1.52 ad break;
313 1.2 thorpej }
314 1.2 thorpej
315 1.52 ad /*
316 1.52 ad * XXXLWP Wait for:
317 1.52 ad *
318 1.52 ad * o process exiting
319 1.52 ad * o target LWP suspended
320 1.52 ad * o target LWP not suspended and L_WSUSPEND clear
321 1.52 ad * o target LWP exited
322 1.52 ad */
323 1.2 thorpej
324 1.52 ad return (error);
325 1.2 thorpej }
326 1.2 thorpej
327 1.52 ad /*
328 1.52 ad * Restart a suspended LWP.
329 1.52 ad *
330 1.52 ad * Must be called with p_smutex held, and the LWP locked. Will unlock the
331 1.52 ad * LWP before return.
332 1.52 ad */
333 1.2 thorpej void
334 1.2 thorpej lwp_continue(struct lwp *l)
335 1.2 thorpej {
336 1.2 thorpej
337 1.61.2.3 ad KASSERT(mutex_owned(&l->l_proc->p_smutex));
338 1.61.2.3 ad KASSERT(lwp_locked(l, NULL));
339 1.52 ad
340 1.2 thorpej DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
341 1.2 thorpej l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
342 1.2 thorpej l->l_wchan));
343 1.2 thorpej
344 1.52 ad /* If rebooting or not suspended, then just bail out. */
345 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
346 1.52 ad lwp_unlock(l);
347 1.2 thorpej return;
348 1.10 fvdl }
349 1.2 thorpej
350 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
351 1.2 thorpej
352 1.52 ad if (l->l_stat != LSSUSPENDED) {
353 1.52 ad lwp_unlock(l);
354 1.52 ad return;
355 1.2 thorpej }
356 1.2 thorpej
357 1.52 ad /* setrunnable() will release the lock. */
358 1.52 ad setrunnable(l);
359 1.2 thorpej }
360 1.2 thorpej
361 1.52 ad /*
362 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
363 1.52 ad * non-zero, we are waiting for a specific LWP.
364 1.52 ad *
365 1.52 ad * Must be called with p->p_smutex held.
366 1.52 ad */
367 1.2 thorpej int
368 1.2 thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
369 1.2 thorpej {
370 1.2 thorpej struct proc *p = l->l_proc;
371 1.52 ad struct lwp *l2;
372 1.52 ad int nfound, error;
373 1.2 thorpej
374 1.2 thorpej DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
375 1.2 thorpej p->p_pid, l->l_lid, lid));
376 1.2 thorpej
377 1.61.2.3 ad KASSERT(mutex_owned(&p->p_smutex));
378 1.52 ad
379 1.52 ad /*
380 1.52 ad * We try to check for deadlock:
381 1.52 ad *
382 1.52 ad * 1) If all other LWPs are waiting for exits or suspended.
383 1.52 ad * 2) If we are trying to wait on ourself.
384 1.52 ad *
385 1.52 ad * XXX we'd like to check for a cycle of waiting LWPs (specific LID
386 1.52 ad * waits, not any-LWP waits) and detect that sort of deadlock, but
387 1.52 ad * we don't have a good place to store the lwp that is being waited
388 1.52 ad * for. wchan is already filled with &p->p_nlwps, and putting the
389 1.52 ad * lwp address in there for deadlock tracing would require exiting
390 1.52 ad * LWPs to call wakeup on both their own address and &p->p_nlwps, to
391 1.52 ad * get threads sleeping on any LWP exiting.
392 1.52 ad */
393 1.2 thorpej if (lid == l->l_lid)
394 1.52 ad return EDEADLK;
395 1.52 ad
396 1.52 ad p->p_nlwpwait++;
397 1.52 ad
398 1.52 ad for (;;) {
399 1.52 ad /*
400 1.52 ad * Avoid a race between exit1() and sigexit(): if the
401 1.52 ad * process is dumping core, then we need to bail out: call
402 1.52 ad * into lwp_userret() where we will be suspended until the
403 1.52 ad * deed is done.
404 1.52 ad */
405 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
406 1.52 ad mutex_exit(&p->p_smutex);
407 1.52 ad lwp_userret(l);
408 1.52 ad #ifdef DIAGNOSTIC
409 1.52 ad panic("lwp_wait1");
410 1.52 ad #endif
411 1.52 ad /* NOTREACHED */
412 1.52 ad }
413 1.52 ad
414 1.52 ad /*
415 1.52 ad * First off, drain any detached LWP that is waiting to be
416 1.52 ad * reaped.
417 1.52 ad */
418 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
419 1.52 ad p->p_zomblwp = NULL;
420 1.52 ad lwp_free(l2, 0, 0); /* releases proc mutex */
421 1.52 ad mutex_enter(&p->p_smutex);
422 1.52 ad }
423 1.52 ad
424 1.52 ad /*
425 1.52 ad * Now look for an LWP to collect. If the whole process is
426 1.52 ad * exiting, count detached LWPs as eligible to be collected,
427 1.52 ad * but don't drain them here.
428 1.52 ad */
429 1.52 ad nfound = 0;
430 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
431 1.52 ad if (l2 == l || (lid != 0 && l2->l_lid != lid))
432 1.52 ad continue;
433 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
434 1.52 ad nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
435 1.52 ad continue;
436 1.52 ad }
437 1.52 ad nfound++;
438 1.2 thorpej
439 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
440 1.52 ad if (l2->l_stat != LSZOMB)
441 1.52 ad continue;
442 1.2 thorpej
443 1.2 thorpej if (departed)
444 1.2 thorpej *departed = l2->l_lid;
445 1.52 ad lwp_free(l2, 0, 0);
446 1.52 ad mutex_enter(&p->p_smutex);
447 1.52 ad p->p_nlwpwait--;
448 1.52 ad return 0;
449 1.52 ad }
450 1.2 thorpej
451 1.52 ad if (nfound == 0) {
452 1.52 ad error = ESRCH;
453 1.52 ad break;
454 1.52 ad }
455 1.52 ad if ((flags & LWPWAIT_EXITCONTROL) != 0) {
456 1.52 ad KASSERT(p->p_nlwps > 1);
457 1.52 ad cv_wait(&p->p_lwpcv, &p->p_smutex);
458 1.52 ad continue;
459 1.52 ad }
460 1.52 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
461 1.52 ad p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
462 1.52 ad error = EDEADLK;
463 1.52 ad break;
464 1.2 thorpej }
465 1.52 ad if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
466 1.52 ad break;
467 1.2 thorpej }
468 1.2 thorpej
469 1.52 ad p->p_nlwpwait--;
470 1.52 ad return error;
471 1.2 thorpej }
472 1.2 thorpej
473 1.52 ad /*
474 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
475 1.52 ad * The new LWP is created in state LSIDL and must be set running,
476 1.52 ad * suspended, or stopped by the caller.
477 1.52 ad */
478 1.2 thorpej int
479 1.59 thorpej newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
480 1.2 thorpej int flags, void *stack, size_t stacksize,
481 1.2 thorpej void (*func)(void *), void *arg, struct lwp **rnewlwpp)
482 1.2 thorpej {
483 1.52 ad struct lwp *l2, *isfree;
484 1.52 ad turnstile_t *ts;
485 1.2 thorpej
486 1.52 ad /*
487 1.52 ad * First off, reap any detached LWP waiting to be collected.
488 1.52 ad * We can re-use its LWP structure and turnstile.
489 1.52 ad */
490 1.52 ad isfree = NULL;
491 1.52 ad if (p2->p_zomblwp != NULL) {
492 1.52 ad mutex_enter(&p2->p_smutex);
493 1.52 ad if ((isfree = p2->p_zomblwp) != NULL) {
494 1.52 ad p2->p_zomblwp = NULL;
495 1.52 ad lwp_free(isfree, 1, 0); /* releases proc mutex */
496 1.52 ad } else
497 1.52 ad mutex_exit(&p2->p_smutex);
498 1.52 ad }
499 1.52 ad if (isfree == NULL) {
500 1.52 ad l2 = pool_get(&lwp_pool, PR_WAITOK);
501 1.52 ad memset(l2, 0, sizeof(*l2));
502 1.52 ad l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
503 1.60 yamt SLIST_INIT(&l2->l_pi_lenders);
504 1.52 ad } else {
505 1.52 ad l2 = isfree;
506 1.52 ad ts = l2->l_ts;
507 1.60 yamt KASSERT(l2->l_inheritedprio == MAXPRI);
508 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
509 1.52 ad memset(l2, 0, sizeof(*l2));
510 1.52 ad l2->l_ts = ts;
511 1.52 ad }
512 1.2 thorpej
513 1.2 thorpej l2->l_stat = LSIDL;
514 1.2 thorpej l2->l_proc = p2;
515 1.52 ad l2->l_refcnt = 1;
516 1.52 ad l2->l_priority = l1->l_priority;
517 1.52 ad l2->l_usrpri = l1->l_usrpri;
518 1.60 yamt l2->l_inheritedprio = MAXPRI;
519 1.52 ad l2->l_mutex = &sched_mutex;
520 1.52 ad l2->l_cpu = l1->l_cpu;
521 1.56 pavel l2->l_flag = inmem ? LW_INMEM : 0;
522 1.42 christos lwp_initspecific(l2);
523 1.41 thorpej
524 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
525 1.52 ad /*
526 1.52 ad * Mark it as a system process and not a candidate for
527 1.52 ad * swapping.
528 1.52 ad */
529 1.56 pavel l2->l_flag |= LW_SYSTEM;
530 1.52 ad }
531 1.2 thorpej
532 1.37 ad lwp_update_creds(l2);
533 1.2 thorpej callout_init(&l2->l_tsleep_ch);
534 1.61.2.4 ad mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
535 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
536 1.52 ad l2->l_syncobj = &sched_syncobj;
537 1.2 thorpej
538 1.2 thorpej if (rnewlwpp != NULL)
539 1.2 thorpej *rnewlwpp = l2;
540 1.2 thorpej
541 1.36 yamt l2->l_addr = UAREA_TO_USER(uaddr);
542 1.61.2.2 ad KERNEL_LOCK(1, curlwp);
543 1.2 thorpej uvm_lwp_fork(l1, l2, stack, stacksize, func,
544 1.2 thorpej (arg != NULL) ? arg : l2);
545 1.61.2.2 ad KERNEL_UNLOCK_ONE(curlwp);
546 1.2 thorpej
547 1.52 ad mutex_enter(&p2->p_smutex);
548 1.52 ad
549 1.52 ad if ((flags & LWP_DETACHED) != 0) {
550 1.52 ad l2->l_prflag = LPR_DETACHED;
551 1.52 ad p2->p_ndlwps++;
552 1.52 ad } else
553 1.52 ad l2->l_prflag = 0;
554 1.52 ad
555 1.52 ad l2->l_sigmask = l1->l_sigmask;
556 1.52 ad CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
557 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
558 1.52 ad
559 1.53 yamt p2->p_nlwpid++;
560 1.53 yamt if (p2->p_nlwpid == 0)
561 1.53 yamt p2->p_nlwpid++;
562 1.53 yamt l2->l_lid = p2->p_nlwpid;
563 1.2 thorpej LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
564 1.2 thorpej p2->p_nlwps++;
565 1.2 thorpej
566 1.52 ad mutex_exit(&p2->p_smutex);
567 1.52 ad
568 1.61.2.4 ad mutex_enter(&proclist_lock);
569 1.52 ad mutex_enter(&proclist_mutex);
570 1.2 thorpej LIST_INSERT_HEAD(&alllwp, l2, l_list);
571 1.52 ad mutex_exit(&proclist_mutex);
572 1.61.2.4 ad mutex_exit(&proclist_lock);
573 1.2 thorpej
574 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
575 1.57 dsl
576 1.16 manu if (p2->p_emul->e_lwp_fork)
577 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
578 1.16 manu
579 1.2 thorpej return (0);
580 1.2 thorpej }
581 1.2 thorpej
582 1.2 thorpej /*
583 1.52 ad * Quit the process. This will call cpu_exit, which will call cpu_switch,
584 1.52 ad * so this can only be used meaningfully if you're willing to switch away.
585 1.2 thorpej * Calling with l!=curlwp would be weird.
586 1.2 thorpej */
587 1.2 thorpej void
588 1.2 thorpej lwp_exit(struct lwp *l)
589 1.2 thorpej {
590 1.2 thorpej struct proc *p = l->l_proc;
591 1.52 ad struct lwp *l2;
592 1.2 thorpej
593 1.2 thorpej DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
594 1.52 ad DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
595 1.2 thorpej
596 1.52 ad /*
597 1.52 ad * Verify that we hold no locks other than the kernel lock.
598 1.52 ad */
599 1.52 ad #ifdef MULTIPROCESSOR
600 1.52 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
601 1.52 ad #else
602 1.52 ad LOCKDEBUG_BARRIER(NULL, 0);
603 1.52 ad #endif
604 1.16 manu
605 1.2 thorpej /*
606 1.52 ad * If we are the last live LWP in a process, we need to exit the
607 1.52 ad * entire process. We do so with an exit status of zero, because
608 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
609 1.52 ad *
610 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
611 1.52 ad * must increment the count of zombies here.
612 1.45 thorpej *
613 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
614 1.2 thorpej */
615 1.52 ad mutex_enter(&p->p_smutex);
616 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
617 1.2 thorpej DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
618 1.2 thorpej p->p_pid, l->l_lid));
619 1.2 thorpej exit1(l, 0);
620 1.19 jdolecek /* NOTREACHED */
621 1.2 thorpej }
622 1.52 ad p->p_nzlwps++;
623 1.52 ad mutex_exit(&p->p_smutex);
624 1.52 ad
625 1.52 ad if (p->p_emul->e_lwp_exit)
626 1.52 ad (*p->p_emul->e_lwp_exit)(l);
627 1.2 thorpej
628 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
629 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
630 1.45 thorpej
631 1.52 ad /*
632 1.52 ad * Release our cached credentials.
633 1.52 ad */
634 1.37 ad kauth_cred_free(l->l_cred);
635 1.37 ad
636 1.52 ad /*
637 1.61.2.4 ad * While we can still block, mark the LWP as unswappable to
638 1.61.2.4 ad * prevent conflicts with the with the swapper.
639 1.61.2.4 ad */
640 1.61.2.4 ad uvm_lwp_hold(l);
641 1.61.2.4 ad
642 1.61.2.4 ad /*
643 1.52 ad * Remove the LWP from the global list.
644 1.52 ad */
645 1.61.2.4 ad mutex_enter(&proclist_lock);
646 1.52 ad mutex_enter(&proclist_mutex);
647 1.52 ad LIST_REMOVE(l, l_list);
648 1.52 ad mutex_exit(&proclist_mutex);
649 1.61.2.4 ad mutex_exit(&proclist_lock);
650 1.19 jdolecek
651 1.52 ad /*
652 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
653 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
654 1.52 ad * mark it waiting for collection in the proc structure. Note that
655 1.52 ad * before we can do that, we need to free any other dead, deatched
656 1.52 ad * LWP waiting to meet its maker.
657 1.52 ad *
658 1.52 ad * XXXSMP disable preemption.
659 1.52 ad */
660 1.52 ad mutex_enter(&p->p_smutex);
661 1.52 ad lwp_drainrefs(l);
662 1.31 yamt
663 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
664 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
665 1.52 ad p->p_zomblwp = NULL;
666 1.52 ad lwp_free(l2, 0, 0); /* releases proc mutex */
667 1.52 ad mutex_enter(&p->p_smutex);
668 1.52 ad }
669 1.52 ad p->p_zomblwp = l;
670 1.52 ad }
671 1.31 yamt
672 1.52 ad /*
673 1.52 ad * If we find a pending signal for the process and we have been
674 1.52 ad * asked to check for signals, then we loose: arrange to have
675 1.52 ad * all other LWPs in the process check for signals.
676 1.52 ad */
677 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
678 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
679 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
680 1.52 ad lwp_lock(l2);
681 1.56 pavel l2->l_flag |= LW_PENDSIG;
682 1.52 ad lwp_unlock(l2);
683 1.52 ad }
684 1.31 yamt }
685 1.31 yamt
686 1.52 ad lwp_lock(l);
687 1.52 ad l->l_stat = LSZOMB;
688 1.52 ad lwp_unlock(l);
689 1.2 thorpej p->p_nrlwps--;
690 1.52 ad cv_broadcast(&p->p_lwpcv);
691 1.52 ad mutex_exit(&p->p_smutex);
692 1.52 ad
693 1.52 ad /*
694 1.52 ad * We can no longer block. At this point, lwp_free() may already
695 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
696 1.52 ad *
697 1.52 ad * Free MD LWP resources.
698 1.52 ad */
699 1.52 ad #ifndef __NO_CPU_LWP_FREE
700 1.52 ad cpu_lwp_free(l, 0);
701 1.52 ad #endif
702 1.52 ad pmap_deactivate(l);
703 1.2 thorpej
704 1.52 ad /*
705 1.52 ad * Release the kernel lock, signal another LWP to collect us,
706 1.52 ad * and switch away into oblivion.
707 1.52 ad */
708 1.52 ad #ifdef notyet
709 1.52 ad /* XXXSMP hold in lwp_userret() */
710 1.52 ad KERNEL_UNLOCK_LAST(l);
711 1.52 ad #else
712 1.52 ad KERNEL_UNLOCK_ALL(l, NULL);
713 1.52 ad #endif
714 1.2 thorpej
715 1.19 jdolecek cpu_exit(l);
716 1.2 thorpej }
717 1.2 thorpej
718 1.19 jdolecek /*
719 1.52 ad * We are called from cpu_exit() once it is safe to schedule the dead LWP's
720 1.52 ad * resources to be freed (i.e., once we've switched to the idle PCB for the
721 1.52 ad * current CPU).
722 1.19 jdolecek */
723 1.2 thorpej void
724 1.2 thorpej lwp_exit2(struct lwp *l)
725 1.2 thorpej {
726 1.52 ad /* XXXSMP re-enable preemption */
727 1.52 ad }
728 1.52 ad
729 1.52 ad /*
730 1.52 ad * Free a dead LWP's remaining resources.
731 1.52 ad *
732 1.52 ad * XXXLWP limits.
733 1.52 ad */
734 1.52 ad void
735 1.52 ad lwp_free(struct lwp *l, int recycle, int last)
736 1.52 ad {
737 1.52 ad struct proc *p = l->l_proc;
738 1.52 ad ksiginfoq_t kq;
739 1.52 ad
740 1.52 ad /*
741 1.52 ad * If this was not the last LWP in the process, then adjust
742 1.52 ad * counters and unlock.
743 1.52 ad */
744 1.52 ad if (!last) {
745 1.52 ad /*
746 1.52 ad * Add the LWP's run time to the process' base value.
747 1.52 ad * This needs to co-incide with coming off p_lwps.
748 1.52 ad */
749 1.52 ad timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
750 1.52 ad LIST_REMOVE(l, l_sibling);
751 1.52 ad p->p_nlwps--;
752 1.52 ad p->p_nzlwps--;
753 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
754 1.52 ad p->p_ndlwps--;
755 1.52 ad mutex_exit(&p->p_smutex);
756 1.52 ad
757 1.52 ad #ifdef MULTIPROCESSOR
758 1.52 ad /*
759 1.52 ad * In the unlikely event that the LWP is still on the CPU,
760 1.52 ad * then spin until it has switched away. We need to release
761 1.52 ad * all locks to avoid deadlock against interrupt handlers on
762 1.52 ad * the target CPU.
763 1.52 ad */
764 1.52 ad if (l->l_cpu->ci_curlwp == l) {
765 1.52 ad int count;
766 1.52 ad KERNEL_UNLOCK_ALL(curlwp, &count);
767 1.52 ad while (l->l_cpu->ci_curlwp == l)
768 1.52 ad SPINLOCK_BACKOFF_HOOK;
769 1.52 ad KERNEL_LOCK(count, curlwp);
770 1.52 ad }
771 1.52 ad #endif
772 1.52 ad }
773 1.52 ad
774 1.52 ad /*
775 1.52 ad * Destroy the LWP's remaining signal information.
776 1.52 ad */
777 1.52 ad ksiginfo_queue_init(&kq);
778 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
779 1.52 ad ksiginfo_queue_drain(&kq);
780 1.52 ad cv_destroy(&l->l_sigcv);
781 1.61.2.4 ad mutex_destroy(&l->l_swaplock);
782 1.2 thorpej
783 1.19 jdolecek /*
784 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
785 1.52 ad * caller wants to recycle them.
786 1.52 ad *
787 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
788 1.52 ad * so if it comes up just drop it quietly and move on.
789 1.52 ad *
790 1.52 ad * We don't recycle the VM resources at this time.
791 1.19 jdolecek */
792 1.52 ad if (!recycle && l->l_ts != &turnstile0)
793 1.52 ad pool_cache_put(&turnstile_cache, l->l_ts);
794 1.52 ad #ifndef __NO_CPU_LWP_FREE
795 1.52 ad cpu_lwp_free2(l);
796 1.52 ad #endif
797 1.19 jdolecek uvm_lwp_exit(l);
798 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
799 1.60 yamt KASSERT(l->l_inheritedprio == MAXPRI);
800 1.52 ad if (!recycle)
801 1.19 jdolecek pool_put(&lwp_pool, l);
802 1.2 thorpej }
803 1.2 thorpej
804 1.2 thorpej /*
805 1.2 thorpej * Pick a LWP to represent the process for those operations which
806 1.2 thorpej * want information about a "process" that is actually associated
807 1.2 thorpej * with a LWP.
808 1.52 ad *
809 1.52 ad * If 'locking' is false, no locking or lock checks are performed.
810 1.52 ad * This is intended for use by DDB.
811 1.52 ad *
812 1.52 ad * We don't bother locking the LWP here, since code that uses this
813 1.52 ad * interface is broken by design and an exact match is not required.
814 1.2 thorpej */
815 1.2 thorpej struct lwp *
816 1.52 ad proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
817 1.2 thorpej {
818 1.2 thorpej struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
819 1.27 matt struct lwp *signalled;
820 1.52 ad int cnt;
821 1.52 ad
822 1.52 ad if (locking) {
823 1.61.2.3 ad KASSERT(mutex_owned(&p->p_smutex));
824 1.52 ad }
825 1.2 thorpej
826 1.2 thorpej /* Trivial case: only one LWP */
827 1.52 ad if (p->p_nlwps == 1) {
828 1.52 ad l = LIST_FIRST(&p->p_lwps);
829 1.52 ad if (nrlwps)
830 1.52 ad *nrlwps = (l->l_stat == LSONPROC || LSRUN);
831 1.52 ad return l;
832 1.52 ad }
833 1.2 thorpej
834 1.52 ad cnt = 0;
835 1.2 thorpej switch (p->p_stat) {
836 1.2 thorpej case SSTOP:
837 1.2 thorpej case SACTIVE:
838 1.2 thorpej /* Pick the most live LWP */
839 1.2 thorpej onproc = running = sleeping = stopped = suspended = NULL;
840 1.27 matt signalled = NULL;
841 1.2 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
842 1.27 matt if (l->l_lid == p->p_sigctx.ps_lwp)
843 1.27 matt signalled = l;
844 1.2 thorpej switch (l->l_stat) {
845 1.2 thorpej case LSONPROC:
846 1.2 thorpej onproc = l;
847 1.52 ad cnt++;
848 1.2 thorpej break;
849 1.2 thorpej case LSRUN:
850 1.2 thorpej running = l;
851 1.52 ad cnt++;
852 1.2 thorpej break;
853 1.2 thorpej case LSSLEEP:
854 1.2 thorpej sleeping = l;
855 1.2 thorpej break;
856 1.2 thorpej case LSSTOP:
857 1.2 thorpej stopped = l;
858 1.2 thorpej break;
859 1.2 thorpej case LSSUSPENDED:
860 1.2 thorpej suspended = l;
861 1.2 thorpej break;
862 1.2 thorpej }
863 1.2 thorpej }
864 1.52 ad if (nrlwps)
865 1.52 ad *nrlwps = cnt;
866 1.27 matt if (signalled)
867 1.52 ad l = signalled;
868 1.52 ad else if (onproc)
869 1.52 ad l = onproc;
870 1.52 ad else if (running)
871 1.52 ad l = running;
872 1.52 ad else if (sleeping)
873 1.52 ad l = sleeping;
874 1.52 ad else if (stopped)
875 1.52 ad l = stopped;
876 1.52 ad else if (suspended)
877 1.52 ad l = suspended;
878 1.52 ad else
879 1.52 ad break;
880 1.52 ad return l;
881 1.52 ad if (nrlwps)
882 1.52 ad *nrlwps = 0;
883 1.52 ad l = LIST_FIRST(&p->p_lwps);
884 1.52 ad return l;
885 1.2 thorpej #ifdef DIAGNOSTIC
886 1.2 thorpej case SIDL:
887 1.52 ad case SZOMB:
888 1.52 ad case SDYING:
889 1.52 ad case SDEAD:
890 1.52 ad if (locking)
891 1.52 ad mutex_exit(&p->p_smutex);
892 1.2 thorpej /* We have more than one LWP and we're in SIDL?
893 1.2 thorpej * How'd that happen?
894 1.2 thorpej */
895 1.52 ad panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
896 1.52 ad p->p_pid, p->p_comm, p->p_stat);
897 1.52 ad break;
898 1.2 thorpej default:
899 1.52 ad if (locking)
900 1.52 ad mutex_exit(&p->p_smutex);
901 1.2 thorpej panic("Process %d (%s) in unknown state %d",
902 1.2 thorpej p->p_pid, p->p_comm, p->p_stat);
903 1.2 thorpej #endif
904 1.2 thorpej }
905 1.2 thorpej
906 1.52 ad if (locking)
907 1.52 ad mutex_exit(&p->p_smutex);
908 1.2 thorpej panic("proc_representative_lwp: couldn't find a lwp for process"
909 1.2 thorpej " %d (%s)", p->p_pid, p->p_comm);
910 1.2 thorpej /* NOTREACHED */
911 1.2 thorpej return NULL;
912 1.2 thorpej }
913 1.37 ad
914 1.37 ad /*
915 1.52 ad * Look up a live LWP within the speicifed process, and return it locked.
916 1.52 ad *
917 1.52 ad * Must be called with p->p_smutex held.
918 1.52 ad */
919 1.52 ad struct lwp *
920 1.52 ad lwp_find(struct proc *p, int id)
921 1.52 ad {
922 1.52 ad struct lwp *l;
923 1.52 ad
924 1.61.2.3 ad KASSERT(mutex_owned(&p->p_smutex));
925 1.52 ad
926 1.52 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
927 1.52 ad if (l->l_lid == id)
928 1.52 ad break;
929 1.52 ad }
930 1.52 ad
931 1.52 ad /*
932 1.52 ad * No need to lock - all of these conditions will
933 1.52 ad * be visible with the process level mutex held.
934 1.52 ad */
935 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
936 1.52 ad l = NULL;
937 1.52 ad
938 1.52 ad return l;
939 1.52 ad }
940 1.52 ad
941 1.52 ad /*
942 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
943 1.37 ad *
944 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
945 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
946 1.37 ad * it's credentials by calling this routine. This may be called from
947 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
948 1.37 ad */
949 1.37 ad void
950 1.37 ad lwp_update_creds(struct lwp *l)
951 1.37 ad {
952 1.37 ad kauth_cred_t oc;
953 1.37 ad struct proc *p;
954 1.37 ad
955 1.37 ad p = l->l_proc;
956 1.37 ad oc = l->l_cred;
957 1.37 ad
958 1.52 ad mutex_enter(&p->p_mutex);
959 1.37 ad kauth_cred_hold(p->p_cred);
960 1.37 ad l->l_cred = p->p_cred;
961 1.52 ad mutex_exit(&p->p_mutex);
962 1.61.2.2 ad if (oc != NULL)
963 1.37 ad kauth_cred_free(oc);
964 1.52 ad }
965 1.52 ad
966 1.52 ad /*
967 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
968 1.52 ad * one we specify.
969 1.52 ad */
970 1.52 ad int
971 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
972 1.52 ad {
973 1.52 ad kmutex_t *cur = l->l_mutex;
974 1.52 ad
975 1.52 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
976 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
977 1.52 ad #else
978 1.52 ad return mutex_owned(cur);
979 1.52 ad #endif
980 1.52 ad }
981 1.52 ad
982 1.52 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
983 1.52 ad /*
984 1.52 ad * Lock an LWP.
985 1.52 ad */
986 1.52 ad void
987 1.52 ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
988 1.52 ad {
989 1.52 ad
990 1.52 ad /*
991 1.52 ad * XXXgcc ignoring kmutex_t * volatile on i386
992 1.52 ad *
993 1.52 ad * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
994 1.52 ad */
995 1.52 ad #if 1
996 1.52 ad while (l->l_mutex != old) {
997 1.52 ad #else
998 1.52 ad for (;;) {
999 1.52 ad #endif
1000 1.52 ad mutex_spin_exit(old);
1001 1.52 ad old = l->l_mutex;
1002 1.52 ad mutex_spin_enter(old);
1003 1.52 ad
1004 1.52 ad /*
1005 1.52 ad * mutex_enter() will have posted a read barrier. Re-test
1006 1.52 ad * l->l_mutex. If it has changed, we need to try again.
1007 1.52 ad */
1008 1.52 ad #if 1
1009 1.52 ad }
1010 1.52 ad #else
1011 1.52 ad } while (__predict_false(l->l_mutex != old));
1012 1.52 ad #endif
1013 1.52 ad }
1014 1.52 ad #endif
1015 1.52 ad
1016 1.52 ad /*
1017 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1018 1.52 ad */
1019 1.52 ad void
1020 1.52 ad lwp_setlock(struct lwp *l, kmutex_t *new)
1021 1.52 ad {
1022 1.52 ad
1023 1.61.2.3 ad KASSERT(mutex_owned(l->l_mutex));
1024 1.52 ad
1025 1.52 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1026 1.52 ad mb_write();
1027 1.52 ad l->l_mutex = new;
1028 1.52 ad #else
1029 1.52 ad (void)new;
1030 1.52 ad #endif
1031 1.52 ad }
1032 1.52 ad
1033 1.52 ad /*
1034 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1035 1.52 ad * must be held.
1036 1.52 ad */
1037 1.52 ad void
1038 1.52 ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
1039 1.52 ad {
1040 1.52 ad kmutex_t *old;
1041 1.52 ad
1042 1.61.2.3 ad KASSERT(mutex_owned(l->l_mutex));
1043 1.52 ad
1044 1.52 ad old = l->l_mutex;
1045 1.52 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1046 1.52 ad mb_write();
1047 1.52 ad l->l_mutex = new;
1048 1.52 ad #else
1049 1.52 ad (void)new;
1050 1.52 ad #endif
1051 1.52 ad mutex_spin_exit(old);
1052 1.52 ad }
1053 1.52 ad
1054 1.52 ad /*
1055 1.52 ad * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1056 1.52 ad * locked.
1057 1.52 ad */
1058 1.52 ad void
1059 1.52 ad lwp_relock(struct lwp *l, kmutex_t *new)
1060 1.52 ad {
1061 1.52 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1062 1.52 ad kmutex_t *old;
1063 1.52 ad #endif
1064 1.52 ad
1065 1.61.2.3 ad KASSERT(mutex_owned(l->l_mutex));
1066 1.52 ad
1067 1.52 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1068 1.52 ad old = l->l_mutex;
1069 1.52 ad if (old != new) {
1070 1.52 ad mutex_spin_enter(new);
1071 1.52 ad l->l_mutex = new;
1072 1.52 ad mutex_spin_exit(old);
1073 1.52 ad }
1074 1.52 ad #else
1075 1.52 ad (void)new;
1076 1.52 ad #endif
1077 1.52 ad }
1078 1.52 ad
1079 1.60 yamt int
1080 1.60 yamt lwp_trylock(struct lwp *l)
1081 1.60 yamt {
1082 1.60 yamt #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1083 1.60 yamt kmutex_t *old;
1084 1.60 yamt
1085 1.60 yamt for (;;) {
1086 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1087 1.60 yamt return 0;
1088 1.60 yamt if (__predict_true(l->l_mutex == old))
1089 1.60 yamt return 1;
1090 1.60 yamt mutex_spin_exit(old);
1091 1.60 yamt }
1092 1.60 yamt #else
1093 1.60 yamt return mutex_tryenter(l->l_mutex);
1094 1.60 yamt #endif
1095 1.60 yamt }
1096 1.60 yamt
1097 1.52 ad /*
1098 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1099 1.52 ad * set.
1100 1.52 ad */
1101 1.52 ad void
1102 1.52 ad lwp_userret(struct lwp *l)
1103 1.52 ad {
1104 1.52 ad struct proc *p;
1105 1.54 ad void (*hook)(void);
1106 1.52 ad int sig;
1107 1.52 ad
1108 1.52 ad p = l->l_proc;
1109 1.52 ad
1110 1.52 ad /*
1111 1.52 ad * It should be safe to do this read unlocked on a multiprocessor
1112 1.52 ad * system..
1113 1.52 ad */
1114 1.56 pavel while ((l->l_flag & LW_USERRET) != 0) {
1115 1.52 ad /*
1116 1.52 ad * Process pending signals first, unless the process
1117 1.61 ad * is dumping core or exiting, where we will instead
1118 1.61 ad * enter the L_WSUSPEND case below.
1119 1.52 ad */
1120 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1121 1.61 ad LW_PENDSIG) {
1122 1.52 ad KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1123 1.52 ad mutex_enter(&p->p_smutex);
1124 1.52 ad while ((sig = issignal(l)) != 0)
1125 1.52 ad postsig(sig);
1126 1.52 ad mutex_exit(&p->p_smutex);
1127 1.52 ad KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1128 1.52 ad }
1129 1.52 ad
1130 1.52 ad /*
1131 1.52 ad * Core-dump or suspend pending.
1132 1.52 ad *
1133 1.52 ad * In case of core dump, suspend ourselves, so that the
1134 1.52 ad * kernel stack and therefore the userland registers saved
1135 1.52 ad * in the trapframe are around for coredump() to write them
1136 1.52 ad * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1137 1.52 ad * will write the core file out once all other LWPs are
1138 1.52 ad * suspended.
1139 1.52 ad */
1140 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1141 1.52 ad mutex_enter(&p->p_smutex);
1142 1.52 ad p->p_nrlwps--;
1143 1.52 ad cv_broadcast(&p->p_lwpcv);
1144 1.52 ad lwp_lock(l);
1145 1.52 ad l->l_stat = LSSUSPENDED;
1146 1.52 ad mutex_exit(&p->p_smutex);
1147 1.52 ad mi_switch(l, NULL);
1148 1.52 ad }
1149 1.52 ad
1150 1.52 ad /* Process is exiting. */
1151 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1152 1.52 ad KERNEL_LOCK(1, l);
1153 1.52 ad lwp_exit(l);
1154 1.52 ad KASSERT(0);
1155 1.52 ad /* NOTREACHED */
1156 1.52 ad }
1157 1.54 ad
1158 1.54 ad /* Call userret hook; used by Linux emulation. */
1159 1.56 pavel if ((l->l_flag & LW_WUSERRET) != 0) {
1160 1.54 ad lwp_lock(l);
1161 1.56 pavel l->l_flag &= ~LW_WUSERRET;
1162 1.54 ad lwp_unlock(l);
1163 1.54 ad hook = p->p_userret;
1164 1.54 ad p->p_userret = NULL;
1165 1.54 ad (*hook)();
1166 1.54 ad }
1167 1.52 ad }
1168 1.52 ad }
1169 1.52 ad
1170 1.52 ad /*
1171 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1172 1.52 ad */
1173 1.52 ad void
1174 1.52 ad lwp_need_userret(struct lwp *l)
1175 1.52 ad {
1176 1.61.2.3 ad KASSERT(lwp_locked(l, NULL));
1177 1.52 ad
1178 1.52 ad /*
1179 1.52 ad * Since the tests in lwp_userret() are done unlocked, make sure
1180 1.52 ad * that the condition will be seen before forcing the LWP to enter
1181 1.52 ad * kernel mode.
1182 1.52 ad */
1183 1.52 ad mb_write();
1184 1.52 ad cpu_signotify(l);
1185 1.52 ad }
1186 1.52 ad
1187 1.52 ad /*
1188 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1189 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1190 1.52 ad */
1191 1.52 ad void
1192 1.52 ad lwp_addref(struct lwp *l)
1193 1.52 ad {
1194 1.52 ad
1195 1.61.2.3 ad KASSERT(mutex_owned(&l->l_proc->p_smutex));
1196 1.52 ad KASSERT(l->l_stat != LSZOMB);
1197 1.52 ad KASSERT(l->l_refcnt != 0);
1198 1.52 ad
1199 1.52 ad l->l_refcnt++;
1200 1.52 ad }
1201 1.52 ad
1202 1.52 ad /*
1203 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1204 1.52 ad * then we must finalize the LWP's death.
1205 1.52 ad */
1206 1.52 ad void
1207 1.52 ad lwp_delref(struct lwp *l)
1208 1.52 ad {
1209 1.52 ad struct proc *p = l->l_proc;
1210 1.52 ad
1211 1.52 ad mutex_enter(&p->p_smutex);
1212 1.52 ad if (--l->l_refcnt == 0)
1213 1.52 ad cv_broadcast(&p->p_refcv);
1214 1.52 ad mutex_exit(&p->p_smutex);
1215 1.52 ad }
1216 1.52 ad
1217 1.52 ad /*
1218 1.52 ad * Drain all references to the current LWP.
1219 1.52 ad */
1220 1.52 ad void
1221 1.52 ad lwp_drainrefs(struct lwp *l)
1222 1.52 ad {
1223 1.52 ad struct proc *p = l->l_proc;
1224 1.52 ad
1225 1.61.2.3 ad KASSERT(mutex_owned(&p->p_smutex));
1226 1.52 ad KASSERT(l->l_refcnt != 0);
1227 1.52 ad
1228 1.52 ad l->l_refcnt--;
1229 1.52 ad while (l->l_refcnt != 0)
1230 1.52 ad cv_wait(&p->p_refcv, &p->p_smutex);
1231 1.37 ad }
1232 1.41 thorpej
1233 1.41 thorpej /*
1234 1.41 thorpej * lwp_specific_key_create --
1235 1.41 thorpej * Create a key for subsystem lwp-specific data.
1236 1.41 thorpej */
1237 1.41 thorpej int
1238 1.41 thorpej lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1239 1.41 thorpej {
1240 1.41 thorpej
1241 1.45 thorpej return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1242 1.41 thorpej }
1243 1.41 thorpej
1244 1.41 thorpej /*
1245 1.41 thorpej * lwp_specific_key_delete --
1246 1.41 thorpej * Delete a key for subsystem lwp-specific data.
1247 1.41 thorpej */
1248 1.41 thorpej void
1249 1.41 thorpej lwp_specific_key_delete(specificdata_key_t key)
1250 1.41 thorpej {
1251 1.41 thorpej
1252 1.41 thorpej specificdata_key_delete(lwp_specificdata_domain, key);
1253 1.41 thorpej }
1254 1.41 thorpej
1255 1.45 thorpej /*
1256 1.45 thorpej * lwp_initspecific --
1257 1.45 thorpej * Initialize an LWP's specificdata container.
1258 1.45 thorpej */
1259 1.42 christos void
1260 1.42 christos lwp_initspecific(struct lwp *l)
1261 1.42 christos {
1262 1.42 christos int error;
1263 1.45 thorpej
1264 1.42 christos error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1265 1.42 christos KASSERT(error == 0);
1266 1.42 christos }
1267 1.42 christos
1268 1.41 thorpej /*
1269 1.45 thorpej * lwp_finispecific --
1270 1.45 thorpej * Finalize an LWP's specificdata container.
1271 1.45 thorpej */
1272 1.45 thorpej void
1273 1.45 thorpej lwp_finispecific(struct lwp *l)
1274 1.45 thorpej {
1275 1.45 thorpej
1276 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1277 1.45 thorpej }
1278 1.45 thorpej
1279 1.45 thorpej /*
1280 1.41 thorpej * lwp_getspecific --
1281 1.41 thorpej * Return lwp-specific data corresponding to the specified key.
1282 1.41 thorpej *
1283 1.41 thorpej * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1284 1.41 thorpej * only its OWN SPECIFIC DATA. If it is necessary to access another
1285 1.41 thorpej * LWP's specifc data, care must be taken to ensure that doing so
1286 1.41 thorpej * would not cause internal data structure inconsistency (i.e. caller
1287 1.41 thorpej * can guarantee that the target LWP is not inside an lwp_getspecific()
1288 1.41 thorpej * or lwp_setspecific() call).
1289 1.41 thorpej */
1290 1.41 thorpej void *
1291 1.44 thorpej lwp_getspecific(specificdata_key_t key)
1292 1.41 thorpej {
1293 1.41 thorpej
1294 1.41 thorpej return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1295 1.44 thorpej &curlwp->l_specdataref, key));
1296 1.41 thorpej }
1297 1.41 thorpej
1298 1.47 hannken void *
1299 1.47 hannken _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1300 1.47 hannken {
1301 1.47 hannken
1302 1.47 hannken return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1303 1.47 hannken &l->l_specdataref, key));
1304 1.47 hannken }
1305 1.47 hannken
1306 1.41 thorpej /*
1307 1.41 thorpej * lwp_setspecific --
1308 1.41 thorpej * Set lwp-specific data corresponding to the specified key.
1309 1.41 thorpej */
1310 1.41 thorpej void
1311 1.45 thorpej lwp_setspecific(specificdata_key_t key, void *data)
1312 1.41 thorpej {
1313 1.41 thorpej
1314 1.41 thorpej specificdata_setspecific(lwp_specificdata_domain,
1315 1.44 thorpej &curlwp->l_specdataref, key, data);
1316 1.41 thorpej }
1317