kern_lwp.c revision 1.62.2.1 1 1.62.2.1 mjf /* $NetBSD: kern_lwp.c,v 1.62.2.1 2007/07/11 20:09:50 mjf Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.52 ad * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej * 3. All advertising materials mentioning features or use of this software
19 1.2 thorpej * must display the following acknowledgement:
20 1.2 thorpej * This product includes software developed by the NetBSD
21 1.2 thorpej * Foundation, Inc. and its contributors.
22 1.2 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 thorpej * contributors may be used to endorse or promote products derived
24 1.2 thorpej * from this software without specific prior written permission.
25 1.2 thorpej *
26 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
37 1.2 thorpej */
38 1.9 lukem
39 1.52 ad /*
40 1.52 ad * Overview
41 1.52 ad *
42 1.52 ad * Lightweight processes (LWPs) are the basic unit (or thread) of
43 1.52 ad * execution within the kernel. The core state of an LWP is described
44 1.52 ad * by "struct lwp".
45 1.52 ad *
46 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
47 1.52 ad * Every process contains at least one LWP, but may contain more. The
48 1.52 ad * process describes attributes shared among all of its LWPs such as a
49 1.52 ad * private address space, global execution state (stopped, active,
50 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
51 1.52 ad * machine, multiple LWPs be executing in kernel simultaneously.
52 1.52 ad *
53 1.52 ad * Execution states
54 1.52 ad *
55 1.52 ad * At any given time, an LWP has overall state that is described by
56 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
57 1.52 ad * set is guaranteed to represent the absolute, current state of the
58 1.52 ad * LWP:
59 1.52 ad *
60 1.52 ad * LSONPROC
61 1.52 ad *
62 1.52 ad * On processor: the LWP is executing on a CPU, either in the
63 1.52 ad * kernel or in user space.
64 1.52 ad *
65 1.52 ad * LSRUN
66 1.52 ad *
67 1.52 ad * Runnable: the LWP is parked on a run queue, and may soon be
68 1.52 ad * chosen to run by a idle processor, or by a processor that
69 1.52 ad * has been asked to preempt a currently runnning but lower
70 1.52 ad * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 1.52 ad * then the LWP is not on a run queue, but may be soon.
72 1.52 ad *
73 1.52 ad * LSIDL
74 1.52 ad *
75 1.52 ad * Idle: the LWP has been created but has not yet executed.
76 1.52 ad * Whoever created the new LWP can be expected to set it to
77 1.52 ad * another state shortly.
78 1.52 ad *
79 1.52 ad * LSSUSPENDED:
80 1.52 ad *
81 1.52 ad * Suspended: the LWP has had its execution suspended by
82 1.52 ad * another LWP in the same process using the _lwp_suspend()
83 1.52 ad * system call. User-level LWPs also enter the suspended
84 1.52 ad * state when the system is shutting down.
85 1.52 ad *
86 1.52 ad * The second set represent a "statement of intent" on behalf of the
87 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
88 1.52 ad * sleeping, idle, or on a run queue. It is expected to take the
89 1.52 ad * necessary action to stop executing or become "running" again within
90 1.52 ad * a short timeframe.
91 1.52 ad *
92 1.52 ad * LSZOMB:
93 1.52 ad *
94 1.52 ad * Dead: the LWP has released most of its resources and is
95 1.52 ad * about to switch away into oblivion. When it switches away,
96 1.52 ad * its few remaining resources will be collected.
97 1.52 ad *
98 1.52 ad * LSSLEEP:
99 1.52 ad *
100 1.52 ad * Sleeping: the LWP has entered itself onto a sleep queue, and
101 1.52 ad * will switch away shortly to allow other LWPs to run on the
102 1.52 ad * CPU.
103 1.52 ad *
104 1.52 ad * LSSTOP:
105 1.52 ad *
106 1.52 ad * Stopped: the LWP has been stopped as a result of a job
107 1.52 ad * control signal, or as a result of the ptrace() interface.
108 1.52 ad * Stopped LWPs may run briefly within the kernel to handle
109 1.52 ad * signals that they receive, but will not return to user space
110 1.52 ad * until their process' state is changed away from stopped.
111 1.52 ad * Single LWPs within a process can not be set stopped
112 1.52 ad * selectively: all actions that can stop or continue LWPs
113 1.52 ad * occur at the process level.
114 1.52 ad *
115 1.52 ad * State transitions
116 1.52 ad *
117 1.52 ad * Note that the LSSTOP and LSSUSPENDED states may only be set
118 1.52 ad * when returning to user space in userret(), or when sleeping
119 1.52 ad * interruptably. Before setting those states, we try to ensure
120 1.52 ad * that the LWPs will release all kernel locks that they hold,
121 1.52 ad * and at a minimum try to ensure that the LWP can be set runnable
122 1.52 ad * again by a signal.
123 1.52 ad *
124 1.52 ad * LWPs may transition states in the following ways:
125 1.52 ad *
126 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
127 1.52 ad * > STOPPED > SLEEP
128 1.52 ad * > SUSPENDED > STOPPED
129 1.52 ad * > SUSPENDED
130 1.52 ad * > ZOMB
131 1.52 ad *
132 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
133 1.52 ad * > SLEEP > SLEEP
134 1.52 ad *
135 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
136 1.52 ad * > RUN > SUSPENDED
137 1.52 ad * > STOPPED > STOPPED
138 1.52 ad * > SUSPENDED
139 1.52 ad *
140 1.52 ad * Locking
141 1.52 ad *
142 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
143 1.52 ad * general spin mutex pointed to by lwp::l_mutex. The locks covering
144 1.52 ad * each field are documented in sys/lwp.h.
145 1.52 ad *
146 1.52 ad * State transitions must be made with the LWP's general lock held. In
147 1.52 ad * a multiprocessor kernel, state transitions may cause the LWP's lock
148 1.52 ad * pointer to change. On uniprocessor kernels, most scheduler and
149 1.52 ad * synchronisation objects such as sleep queues and LWPs are protected
150 1.62.2.1 mjf * by only one mutex (spc_mutex on single CPU). In this case, LWPs' lock
151 1.62.2.1 mjf * pointers will never change and will always reference spc_mutex.
152 1.62.2.1 mjf * Please note that in a multiprocessor kernel each CPU has own spc_mutex.
153 1.62.2.1 mjf * (spc_mutex here refers to l->l_cpu->ci_schedstate.spc_mutex).
154 1.52 ad *
155 1.52 ad * Manipulation of the general lock is not performed directly, but
156 1.52 ad * through calls to lwp_lock(), lwp_relock() and similar.
157 1.52 ad *
158 1.52 ad * States and their associated locks:
159 1.52 ad *
160 1.62.2.1 mjf * LSIDL, LSZOMB, LSONPROC:
161 1.52 ad *
162 1.62.2.1 mjf * Always covered by spc_lwplock, which protects running LWPs.
163 1.62.2.1 mjf * This is a per-CPU lock.
164 1.52 ad *
165 1.62.2.1 mjf * LSRUN:
166 1.52 ad *
167 1.62.2.1 mjf * Always covered by spc_mutex, which protects the run queues.
168 1.62.2.1 mjf * This may be a per-CPU lock, depending on the scheduler.
169 1.52 ad *
170 1.52 ad * LSSLEEP:
171 1.52 ad *
172 1.52 ad * Covered by a mutex associated with the sleep queue that the
173 1.52 ad * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
174 1.52 ad *
175 1.52 ad * LSSTOP, LSSUSPENDED:
176 1.52 ad *
177 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
178 1.52 ad * l_mutex references the sleep queue mutex. If the LWP was
179 1.52 ad * runnable or on the CPU when halted, or has been removed from
180 1.62.2.1 mjf * the sleep queue since halted, then the mutex is spc_lwplock.
181 1.52 ad *
182 1.52 ad * The lock order is as follows:
183 1.52 ad *
184 1.62.2.1 mjf * spc::spc_lwplock ->
185 1.62.2.1 mjf * sleepq_t::sq_mutex ->
186 1.62.2.1 mjf * tschain_t::tc_mutex ->
187 1.62.2.1 mjf * spc::spc_mutex
188 1.52 ad *
189 1.52 ad * Each process has an scheduler state mutex (proc::p_smutex), and a
190 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
191 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
192 1.52 ad * following states, p_mutex must be held and the process wide counters
193 1.52 ad * adjusted:
194 1.52 ad *
195 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
196 1.52 ad *
197 1.52 ad * Note that an LWP is considered running or likely to run soon if in
198 1.52 ad * one of the following states. This affects the value of p_nrlwps:
199 1.52 ad *
200 1.52 ad * LSRUN, LSONPROC, LSSLEEP
201 1.52 ad *
202 1.52 ad * p_smutex does not need to be held when transitioning among these
203 1.52 ad * three states.
204 1.52 ad */
205 1.52 ad
206 1.9 lukem #include <sys/cdefs.h>
207 1.62.2.1 mjf __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.62.2.1 2007/07/11 20:09:50 mjf Exp $");
208 1.8 martin
209 1.8 martin #include "opt_multiprocessor.h"
210 1.52 ad #include "opt_lockdebug.h"
211 1.2 thorpej
212 1.47 hannken #define _LWP_API_PRIVATE
213 1.47 hannken
214 1.2 thorpej #include <sys/param.h>
215 1.2 thorpej #include <sys/systm.h>
216 1.62.2.1 mjf #include <sys/cpu.h>
217 1.2 thorpej #include <sys/pool.h>
218 1.2 thorpej #include <sys/proc.h>
219 1.2 thorpej #include <sys/syscallargs.h>
220 1.57 dsl #include <sys/syscall_stats.h>
221 1.37 ad #include <sys/kauth.h>
222 1.52 ad #include <sys/sleepq.h>
223 1.52 ad #include <sys/lockdebug.h>
224 1.52 ad #include <sys/kmem.h>
225 1.2 thorpej
226 1.2 thorpej #include <uvm/uvm_extern.h>
227 1.2 thorpej
228 1.52 ad struct lwplist alllwp;
229 1.52 ad
230 1.52 ad POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
231 1.62 ad &pool_allocator_nointr, IPL_NONE);
232 1.41 thorpej POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
233 1.62 ad &pool_allocator_nointr, IPL_NONE);
234 1.41 thorpej
235 1.41 thorpej static specificdata_domain_t lwp_specificdata_domain;
236 1.41 thorpej
237 1.2 thorpej #define LWP_DEBUG
238 1.2 thorpej
239 1.2 thorpej #ifdef LWP_DEBUG
240 1.2 thorpej int lwp_debug = 0;
241 1.2 thorpej #define DPRINTF(x) if (lwp_debug) printf x
242 1.2 thorpej #else
243 1.2 thorpej #define DPRINTF(x)
244 1.2 thorpej #endif
245 1.41 thorpej
246 1.41 thorpej void
247 1.41 thorpej lwpinit(void)
248 1.41 thorpej {
249 1.41 thorpej
250 1.41 thorpej lwp_specificdata_domain = specificdata_domain_create();
251 1.41 thorpej KASSERT(lwp_specificdata_domain != NULL);
252 1.52 ad lwp_sys_init();
253 1.41 thorpej }
254 1.41 thorpej
255 1.52 ad /*
256 1.52 ad * Set an suspended.
257 1.52 ad *
258 1.52 ad * Must be called with p_smutex held, and the LWP locked. Will unlock the
259 1.52 ad * LWP before return.
260 1.52 ad */
261 1.2 thorpej int
262 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
263 1.2 thorpej {
264 1.52 ad int error;
265 1.2 thorpej
266 1.62.2.1 mjf KASSERT(mutex_owned(&t->l_proc->p_smutex));
267 1.62.2.1 mjf KASSERT(lwp_locked(t, NULL));
268 1.33 chs
269 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
270 1.2 thorpej
271 1.52 ad /*
272 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
273 1.52 ad * else or deadlock could occur. We won't return to userspace.
274 1.2 thorpej */
275 1.56 pavel if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
276 1.52 ad lwp_unlock(t);
277 1.52 ad return (EDEADLK);
278 1.2 thorpej }
279 1.2 thorpej
280 1.52 ad error = 0;
281 1.2 thorpej
282 1.52 ad switch (t->l_stat) {
283 1.52 ad case LSRUN:
284 1.52 ad case LSONPROC:
285 1.56 pavel t->l_flag |= LW_WSUSPEND;
286 1.52 ad lwp_need_userret(t);
287 1.52 ad lwp_unlock(t);
288 1.52 ad break;
289 1.2 thorpej
290 1.52 ad case LSSLEEP:
291 1.56 pavel t->l_flag |= LW_WSUSPEND;
292 1.2 thorpej
293 1.2 thorpej /*
294 1.52 ad * Kick the LWP and try to get it to the kernel boundary
295 1.52 ad * so that it will release any locks that it holds.
296 1.52 ad * setrunnable() will release the lock.
297 1.2 thorpej */
298 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
299 1.52 ad setrunnable(t);
300 1.52 ad else
301 1.52 ad lwp_unlock(t);
302 1.52 ad break;
303 1.2 thorpej
304 1.52 ad case LSSUSPENDED:
305 1.52 ad lwp_unlock(t);
306 1.52 ad break;
307 1.17 manu
308 1.52 ad case LSSTOP:
309 1.56 pavel t->l_flag |= LW_WSUSPEND;
310 1.52 ad setrunnable(t);
311 1.52 ad break;
312 1.2 thorpej
313 1.52 ad case LSIDL:
314 1.52 ad case LSZOMB:
315 1.52 ad error = EINTR; /* It's what Solaris does..... */
316 1.52 ad lwp_unlock(t);
317 1.52 ad break;
318 1.2 thorpej }
319 1.2 thorpej
320 1.52 ad /*
321 1.52 ad * XXXLWP Wait for:
322 1.52 ad *
323 1.52 ad * o process exiting
324 1.52 ad * o target LWP suspended
325 1.52 ad * o target LWP not suspended and L_WSUSPEND clear
326 1.52 ad * o target LWP exited
327 1.52 ad */
328 1.2 thorpej
329 1.52 ad return (error);
330 1.2 thorpej }
331 1.2 thorpej
332 1.52 ad /*
333 1.52 ad * Restart a suspended LWP.
334 1.52 ad *
335 1.52 ad * Must be called with p_smutex held, and the LWP locked. Will unlock the
336 1.52 ad * LWP before return.
337 1.52 ad */
338 1.2 thorpej void
339 1.2 thorpej lwp_continue(struct lwp *l)
340 1.2 thorpej {
341 1.2 thorpej
342 1.62.2.1 mjf KASSERT(mutex_owned(&l->l_proc->p_smutex));
343 1.62.2.1 mjf KASSERT(lwp_locked(l, NULL));
344 1.52 ad
345 1.2 thorpej DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
346 1.2 thorpej l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
347 1.2 thorpej l->l_wchan));
348 1.2 thorpej
349 1.52 ad /* If rebooting or not suspended, then just bail out. */
350 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
351 1.52 ad lwp_unlock(l);
352 1.2 thorpej return;
353 1.10 fvdl }
354 1.2 thorpej
355 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
356 1.2 thorpej
357 1.52 ad if (l->l_stat != LSSUSPENDED) {
358 1.52 ad lwp_unlock(l);
359 1.52 ad return;
360 1.2 thorpej }
361 1.2 thorpej
362 1.52 ad /* setrunnable() will release the lock. */
363 1.52 ad setrunnable(l);
364 1.2 thorpej }
365 1.2 thorpej
366 1.52 ad /*
367 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
368 1.52 ad * non-zero, we are waiting for a specific LWP.
369 1.52 ad *
370 1.52 ad * Must be called with p->p_smutex held.
371 1.52 ad */
372 1.2 thorpej int
373 1.2 thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
374 1.2 thorpej {
375 1.2 thorpej struct proc *p = l->l_proc;
376 1.52 ad struct lwp *l2;
377 1.52 ad int nfound, error;
378 1.62.2.1 mjf lwpid_t curlid;
379 1.62.2.1 mjf bool exiting;
380 1.2 thorpej
381 1.2 thorpej DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
382 1.2 thorpej p->p_pid, l->l_lid, lid));
383 1.2 thorpej
384 1.62.2.1 mjf KASSERT(mutex_owned(&p->p_smutex));
385 1.52 ad
386 1.52 ad p->p_nlwpwait++;
387 1.62.2.1 mjf l->l_waitingfor = lid;
388 1.62.2.1 mjf curlid = l->l_lid;
389 1.62.2.1 mjf exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
390 1.52 ad
391 1.52 ad for (;;) {
392 1.52 ad /*
393 1.52 ad * Avoid a race between exit1() and sigexit(): if the
394 1.52 ad * process is dumping core, then we need to bail out: call
395 1.52 ad * into lwp_userret() where we will be suspended until the
396 1.52 ad * deed is done.
397 1.52 ad */
398 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
399 1.52 ad mutex_exit(&p->p_smutex);
400 1.52 ad lwp_userret(l);
401 1.52 ad #ifdef DIAGNOSTIC
402 1.52 ad panic("lwp_wait1");
403 1.52 ad #endif
404 1.52 ad /* NOTREACHED */
405 1.52 ad }
406 1.52 ad
407 1.52 ad /*
408 1.52 ad * First off, drain any detached LWP that is waiting to be
409 1.52 ad * reaped.
410 1.52 ad */
411 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
412 1.52 ad p->p_zomblwp = NULL;
413 1.62.2.1 mjf lwp_free(l2, false, false);/* releases proc mutex */
414 1.52 ad mutex_enter(&p->p_smutex);
415 1.52 ad }
416 1.52 ad
417 1.52 ad /*
418 1.52 ad * Now look for an LWP to collect. If the whole process is
419 1.52 ad * exiting, count detached LWPs as eligible to be collected,
420 1.52 ad * but don't drain them here.
421 1.52 ad */
422 1.52 ad nfound = 0;
423 1.62.2.1 mjf error = 0;
424 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
425 1.62.2.1 mjf /*
426 1.62.2.1 mjf * If a specific wait and the target is waiting on
427 1.62.2.1 mjf * us, then avoid deadlock. This also traps LWPs
428 1.62.2.1 mjf * that try to wait on themselves.
429 1.62.2.1 mjf *
430 1.62.2.1 mjf * Note that this does not handle more complicated
431 1.62.2.1 mjf * cycles, like: t1 -> t2 -> t3 -> t1. The process
432 1.62.2.1 mjf * can still be killed so it is not a major problem.
433 1.62.2.1 mjf */
434 1.62.2.1 mjf if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
435 1.62.2.1 mjf error = EDEADLK;
436 1.62.2.1 mjf break;
437 1.62.2.1 mjf }
438 1.62.2.1 mjf if (l2 == l)
439 1.52 ad continue;
440 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
441 1.62.2.1 mjf nfound += exiting;
442 1.62.2.1 mjf continue;
443 1.62.2.1 mjf }
444 1.62.2.1 mjf if (lid != 0) {
445 1.62.2.1 mjf if (l2->l_lid != lid)
446 1.62.2.1 mjf continue;
447 1.62.2.1 mjf /*
448 1.62.2.1 mjf * Mark this LWP as the first waiter, if there
449 1.62.2.1 mjf * is no other.
450 1.62.2.1 mjf */
451 1.62.2.1 mjf if (l2->l_waiter == 0)
452 1.62.2.1 mjf l2->l_waiter = curlid;
453 1.62.2.1 mjf } else if (l2->l_waiter != 0) {
454 1.62.2.1 mjf /*
455 1.62.2.1 mjf * It already has a waiter - so don't
456 1.62.2.1 mjf * collect it. If the waiter doesn't
457 1.62.2.1 mjf * grab it we'll get another chance
458 1.62.2.1 mjf * later.
459 1.62.2.1 mjf */
460 1.62.2.1 mjf nfound++;
461 1.52 ad continue;
462 1.52 ad }
463 1.52 ad nfound++;
464 1.2 thorpej
465 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
466 1.52 ad if (l2->l_stat != LSZOMB)
467 1.52 ad continue;
468 1.2 thorpej
469 1.62.2.1 mjf /*
470 1.62.2.1 mjf * We're no longer waiting. Reset the "first waiter"
471 1.62.2.1 mjf * pointer on the target, in case it was us.
472 1.62.2.1 mjf */
473 1.62.2.1 mjf l->l_waitingfor = 0;
474 1.62.2.1 mjf l2->l_waiter = 0;
475 1.62.2.1 mjf p->p_nlwpwait--;
476 1.2 thorpej if (departed)
477 1.2 thorpej *departed = l2->l_lid;
478 1.62.2.1 mjf
479 1.62.2.1 mjf /* lwp_free() releases the proc lock. */
480 1.62.2.1 mjf lwp_free(l2, false, false);
481 1.52 ad mutex_enter(&p->p_smutex);
482 1.52 ad return 0;
483 1.52 ad }
484 1.2 thorpej
485 1.62.2.1 mjf if (error != 0)
486 1.62.2.1 mjf break;
487 1.52 ad if (nfound == 0) {
488 1.52 ad error = ESRCH;
489 1.52 ad break;
490 1.52 ad }
491 1.62.2.1 mjf
492 1.62.2.1 mjf /*
493 1.62.2.1 mjf * The kernel is careful to ensure that it can not deadlock
494 1.62.2.1 mjf * when exiting - just keep waiting.
495 1.62.2.1 mjf */
496 1.62.2.1 mjf if (exiting) {
497 1.52 ad KASSERT(p->p_nlwps > 1);
498 1.52 ad cv_wait(&p->p_lwpcv, &p->p_smutex);
499 1.52 ad continue;
500 1.52 ad }
501 1.62.2.1 mjf
502 1.62.2.1 mjf /*
503 1.62.2.1 mjf * If all other LWPs are waiting for exits or suspends
504 1.62.2.1 mjf * and the supply of zombies and potential zombies is
505 1.62.2.1 mjf * exhausted, then we are about to deadlock.
506 1.62.2.1 mjf *
507 1.62.2.1 mjf * If the process is exiting (and this LWP is not the one
508 1.62.2.1 mjf * that is coordinating the exit) then bail out now.
509 1.62.2.1 mjf */
510 1.52 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
511 1.62.2.1 mjf p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
512 1.52 ad error = EDEADLK;
513 1.52 ad break;
514 1.2 thorpej }
515 1.62.2.1 mjf
516 1.62.2.1 mjf /*
517 1.62.2.1 mjf * Sit around and wait for something to happen. We'll be
518 1.62.2.1 mjf * awoken if any of the conditions examined change: if an
519 1.62.2.1 mjf * LWP exits, is collected, or is detached.
520 1.62.2.1 mjf */
521 1.52 ad if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
522 1.52 ad break;
523 1.2 thorpej }
524 1.2 thorpej
525 1.62.2.1 mjf /*
526 1.62.2.1 mjf * We didn't find any LWPs to collect, we may have received a
527 1.62.2.1 mjf * signal, or some other condition has caused us to bail out.
528 1.62.2.1 mjf *
529 1.62.2.1 mjf * If waiting on a specific LWP, clear the waiters marker: some
530 1.62.2.1 mjf * other LWP may want it. Then, kick all the remaining waiters
531 1.62.2.1 mjf * so that they can re-check for zombies and for deadlock.
532 1.62.2.1 mjf */
533 1.62.2.1 mjf if (lid != 0) {
534 1.62.2.1 mjf LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
535 1.62.2.1 mjf if (l2->l_lid == lid) {
536 1.62.2.1 mjf if (l2->l_waiter == curlid)
537 1.62.2.1 mjf l2->l_waiter = 0;
538 1.62.2.1 mjf break;
539 1.62.2.1 mjf }
540 1.62.2.1 mjf }
541 1.62.2.1 mjf }
542 1.52 ad p->p_nlwpwait--;
543 1.62.2.1 mjf l->l_waitingfor = 0;
544 1.62.2.1 mjf cv_broadcast(&p->p_lwpcv);
545 1.62.2.1 mjf
546 1.52 ad return error;
547 1.2 thorpej }
548 1.2 thorpej
549 1.52 ad /*
550 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
551 1.52 ad * The new LWP is created in state LSIDL and must be set running,
552 1.52 ad * suspended, or stopped by the caller.
553 1.52 ad */
554 1.2 thorpej int
555 1.59 thorpej newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
556 1.2 thorpej int flags, void *stack, size_t stacksize,
557 1.2 thorpej void (*func)(void *), void *arg, struct lwp **rnewlwpp)
558 1.2 thorpej {
559 1.52 ad struct lwp *l2, *isfree;
560 1.52 ad turnstile_t *ts;
561 1.2 thorpej
562 1.52 ad /*
563 1.52 ad * First off, reap any detached LWP waiting to be collected.
564 1.52 ad * We can re-use its LWP structure and turnstile.
565 1.52 ad */
566 1.52 ad isfree = NULL;
567 1.52 ad if (p2->p_zomblwp != NULL) {
568 1.52 ad mutex_enter(&p2->p_smutex);
569 1.52 ad if ((isfree = p2->p_zomblwp) != NULL) {
570 1.52 ad p2->p_zomblwp = NULL;
571 1.62.2.1 mjf lwp_free(isfree, true, false);/* releases proc mutex */
572 1.52 ad } else
573 1.52 ad mutex_exit(&p2->p_smutex);
574 1.52 ad }
575 1.52 ad if (isfree == NULL) {
576 1.52 ad l2 = pool_get(&lwp_pool, PR_WAITOK);
577 1.52 ad memset(l2, 0, sizeof(*l2));
578 1.52 ad l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
579 1.60 yamt SLIST_INIT(&l2->l_pi_lenders);
580 1.52 ad } else {
581 1.52 ad l2 = isfree;
582 1.52 ad ts = l2->l_ts;
583 1.60 yamt KASSERT(l2->l_inheritedprio == MAXPRI);
584 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
585 1.52 ad memset(l2, 0, sizeof(*l2));
586 1.52 ad l2->l_ts = ts;
587 1.52 ad }
588 1.2 thorpej
589 1.2 thorpej l2->l_stat = LSIDL;
590 1.2 thorpej l2->l_proc = p2;
591 1.52 ad l2->l_refcnt = 1;
592 1.52 ad l2->l_priority = l1->l_priority;
593 1.52 ad l2->l_usrpri = l1->l_usrpri;
594 1.60 yamt l2->l_inheritedprio = MAXPRI;
595 1.62.2.1 mjf l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
596 1.52 ad l2->l_cpu = l1->l_cpu;
597 1.56 pavel l2->l_flag = inmem ? LW_INMEM : 0;
598 1.42 christos lwp_initspecific(l2);
599 1.62.2.1 mjf sched_lwp_fork(l2);
600 1.41 thorpej
601 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
602 1.52 ad /*
603 1.52 ad * Mark it as a system process and not a candidate for
604 1.52 ad * swapping.
605 1.52 ad */
606 1.56 pavel l2->l_flag |= LW_SYSTEM;
607 1.52 ad }
608 1.2 thorpej
609 1.37 ad lwp_update_creds(l2);
610 1.62.2.1 mjf callout_init(&l2->l_tsleep_ch, CALLOUT_MPSAFE);
611 1.62.2.1 mjf mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
612 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
613 1.52 ad l2->l_syncobj = &sched_syncobj;
614 1.2 thorpej
615 1.2 thorpej if (rnewlwpp != NULL)
616 1.2 thorpej *rnewlwpp = l2;
617 1.2 thorpej
618 1.36 yamt l2->l_addr = UAREA_TO_USER(uaddr);
619 1.2 thorpej uvm_lwp_fork(l1, l2, stack, stacksize, func,
620 1.2 thorpej (arg != NULL) ? arg : l2);
621 1.2 thorpej
622 1.52 ad mutex_enter(&p2->p_smutex);
623 1.52 ad
624 1.52 ad if ((flags & LWP_DETACHED) != 0) {
625 1.52 ad l2->l_prflag = LPR_DETACHED;
626 1.52 ad p2->p_ndlwps++;
627 1.52 ad } else
628 1.52 ad l2->l_prflag = 0;
629 1.52 ad
630 1.52 ad l2->l_sigmask = l1->l_sigmask;
631 1.52 ad CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
632 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
633 1.52 ad
634 1.53 yamt p2->p_nlwpid++;
635 1.53 yamt if (p2->p_nlwpid == 0)
636 1.53 yamt p2->p_nlwpid++;
637 1.53 yamt l2->l_lid = p2->p_nlwpid;
638 1.2 thorpej LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
639 1.2 thorpej p2->p_nlwps++;
640 1.2 thorpej
641 1.52 ad mutex_exit(&p2->p_smutex);
642 1.52 ad
643 1.62.2.1 mjf mutex_enter(&proclist_lock);
644 1.52 ad mutex_enter(&proclist_mutex);
645 1.2 thorpej LIST_INSERT_HEAD(&alllwp, l2, l_list);
646 1.52 ad mutex_exit(&proclist_mutex);
647 1.62.2.1 mjf mutex_exit(&proclist_lock);
648 1.2 thorpej
649 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
650 1.57 dsl
651 1.16 manu if (p2->p_emul->e_lwp_fork)
652 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
653 1.16 manu
654 1.2 thorpej return (0);
655 1.2 thorpej }
656 1.2 thorpej
657 1.2 thorpej /*
658 1.62.2.1 mjf * Called by MD code when a new LWP begins execution. Must be called
659 1.62.2.1 mjf * with the previous LWP locked (so at splsched), or if there is no
660 1.62.2.1 mjf * previous LWP, at splsched.
661 1.62.2.1 mjf */
662 1.62.2.1 mjf void
663 1.62.2.1 mjf lwp_startup(struct lwp *prev, struct lwp *new)
664 1.62.2.1 mjf {
665 1.62.2.1 mjf
666 1.62.2.1 mjf curlwp = new;
667 1.62.2.1 mjf if (prev != NULL) {
668 1.62.2.1 mjf lwp_unlock(prev);
669 1.62.2.1 mjf }
670 1.62.2.1 mjf spl0();
671 1.62.2.1 mjf pmap_activate(new);
672 1.62.2.1 mjf LOCKDEBUG_BARRIER(NULL, 0);
673 1.62.2.1 mjf if ((new->l_pflag & LP_MPSAFE) == 0) {
674 1.62.2.1 mjf KERNEL_LOCK(1, new);
675 1.62.2.1 mjf }
676 1.62.2.1 mjf }
677 1.62.2.1 mjf
678 1.62.2.1 mjf /*
679 1.62.2.1 mjf * Exit an LWP.
680 1.2 thorpej */
681 1.2 thorpej void
682 1.2 thorpej lwp_exit(struct lwp *l)
683 1.2 thorpej {
684 1.2 thorpej struct proc *p = l->l_proc;
685 1.52 ad struct lwp *l2;
686 1.62.2.1 mjf bool current;
687 1.62.2.1 mjf
688 1.62.2.1 mjf current = (l == curlwp);
689 1.2 thorpej
690 1.2 thorpej DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
691 1.52 ad DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
692 1.62.2.1 mjf KASSERT(current || l->l_stat == LSIDL);
693 1.2 thorpej
694 1.52 ad /*
695 1.52 ad * Verify that we hold no locks other than the kernel lock.
696 1.52 ad */
697 1.52 ad #ifdef MULTIPROCESSOR
698 1.52 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
699 1.52 ad #else
700 1.52 ad LOCKDEBUG_BARRIER(NULL, 0);
701 1.52 ad #endif
702 1.16 manu
703 1.2 thorpej /*
704 1.52 ad * If we are the last live LWP in a process, we need to exit the
705 1.52 ad * entire process. We do so with an exit status of zero, because
706 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
707 1.52 ad *
708 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
709 1.52 ad * must increment the count of zombies here.
710 1.45 thorpej *
711 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
712 1.2 thorpej */
713 1.52 ad mutex_enter(&p->p_smutex);
714 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
715 1.62.2.1 mjf KASSERT(current == true);
716 1.2 thorpej DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
717 1.2 thorpej p->p_pid, l->l_lid));
718 1.2 thorpej exit1(l, 0);
719 1.19 jdolecek /* NOTREACHED */
720 1.2 thorpej }
721 1.52 ad p->p_nzlwps++;
722 1.52 ad mutex_exit(&p->p_smutex);
723 1.52 ad
724 1.52 ad if (p->p_emul->e_lwp_exit)
725 1.52 ad (*p->p_emul->e_lwp_exit)(l);
726 1.2 thorpej
727 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
728 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
729 1.45 thorpej
730 1.52 ad /*
731 1.52 ad * Release our cached credentials.
732 1.52 ad */
733 1.37 ad kauth_cred_free(l->l_cred);
734 1.62.2.1 mjf callout_destroy(&l->l_tsleep_ch);
735 1.62.2.1 mjf
736 1.62.2.1 mjf /*
737 1.62.2.1 mjf * While we can still block, mark the LWP as unswappable to
738 1.62.2.1 mjf * prevent conflicts with the with the swapper.
739 1.62.2.1 mjf */
740 1.62.2.1 mjf if (current)
741 1.62.2.1 mjf uvm_lwp_hold(l);
742 1.37 ad
743 1.52 ad /*
744 1.52 ad * Remove the LWP from the global list.
745 1.52 ad */
746 1.62.2.1 mjf mutex_enter(&proclist_lock);
747 1.52 ad mutex_enter(&proclist_mutex);
748 1.52 ad LIST_REMOVE(l, l_list);
749 1.52 ad mutex_exit(&proclist_mutex);
750 1.62.2.1 mjf mutex_exit(&proclist_lock);
751 1.19 jdolecek
752 1.52 ad /*
753 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
754 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
755 1.52 ad * mark it waiting for collection in the proc structure. Note that
756 1.52 ad * before we can do that, we need to free any other dead, deatched
757 1.52 ad * LWP waiting to meet its maker.
758 1.52 ad *
759 1.52 ad * XXXSMP disable preemption.
760 1.52 ad */
761 1.52 ad mutex_enter(&p->p_smutex);
762 1.52 ad lwp_drainrefs(l);
763 1.31 yamt
764 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
765 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
766 1.52 ad p->p_zomblwp = NULL;
767 1.62.2.1 mjf lwp_free(l2, false, false);/* releases proc mutex */
768 1.52 ad mutex_enter(&p->p_smutex);
769 1.52 ad }
770 1.52 ad p->p_zomblwp = l;
771 1.52 ad }
772 1.31 yamt
773 1.52 ad /*
774 1.52 ad * If we find a pending signal for the process and we have been
775 1.52 ad * asked to check for signals, then we loose: arrange to have
776 1.52 ad * all other LWPs in the process check for signals.
777 1.52 ad */
778 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
779 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
780 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
781 1.52 ad lwp_lock(l2);
782 1.56 pavel l2->l_flag |= LW_PENDSIG;
783 1.52 ad lwp_unlock(l2);
784 1.52 ad }
785 1.31 yamt }
786 1.31 yamt
787 1.52 ad lwp_lock(l);
788 1.52 ad l->l_stat = LSZOMB;
789 1.52 ad lwp_unlock(l);
790 1.2 thorpej p->p_nrlwps--;
791 1.52 ad cv_broadcast(&p->p_lwpcv);
792 1.52 ad mutex_exit(&p->p_smutex);
793 1.52 ad
794 1.52 ad /*
795 1.52 ad * We can no longer block. At this point, lwp_free() may already
796 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
797 1.52 ad *
798 1.52 ad * Free MD LWP resources.
799 1.52 ad */
800 1.52 ad #ifndef __NO_CPU_LWP_FREE
801 1.52 ad cpu_lwp_free(l, 0);
802 1.52 ad #endif
803 1.2 thorpej
804 1.62.2.1 mjf if (current) {
805 1.62.2.1 mjf pmap_deactivate(l);
806 1.62.2.1 mjf
807 1.62.2.1 mjf /*
808 1.62.2.1 mjf * Release the kernel lock, and switch away into
809 1.62.2.1 mjf * oblivion.
810 1.62.2.1 mjf */
811 1.52 ad #ifdef notyet
812 1.62.2.1 mjf /* XXXSMP hold in lwp_userret() */
813 1.62.2.1 mjf KERNEL_UNLOCK_LAST(l);
814 1.52 ad #else
815 1.62.2.1 mjf KERNEL_UNLOCK_ALL(l, NULL);
816 1.52 ad #endif
817 1.62.2.1 mjf lwp_exit_switchaway(l);
818 1.62.2.1 mjf }
819 1.2 thorpej }
820 1.2 thorpej
821 1.2 thorpej void
822 1.62.2.1 mjf lwp_exit_switchaway(struct lwp *l)
823 1.2 thorpej {
824 1.62.2.1 mjf struct cpu_info *ci;
825 1.62.2.1 mjf struct lwp *idlelwp;
826 1.62.2.1 mjf
827 1.62.2.1 mjf /* Unlocked, but is for statistics only. */
828 1.62.2.1 mjf uvmexp.swtch++;
829 1.62.2.1 mjf
830 1.62.2.1 mjf (void)splsched();
831 1.62.2.1 mjf l->l_flag &= ~LW_RUNNING;
832 1.62.2.1 mjf ci = curcpu();
833 1.62.2.1 mjf idlelwp = ci->ci_data.cpu_idlelwp;
834 1.62.2.1 mjf idlelwp->l_stat = LSONPROC;
835 1.62.2.1 mjf cpu_switchto(NULL, idlelwp);
836 1.52 ad }
837 1.52 ad
838 1.52 ad /*
839 1.52 ad * Free a dead LWP's remaining resources.
840 1.52 ad *
841 1.52 ad * XXXLWP limits.
842 1.52 ad */
843 1.52 ad void
844 1.62.2.1 mjf lwp_free(struct lwp *l, bool recycle, bool last)
845 1.52 ad {
846 1.52 ad struct proc *p = l->l_proc;
847 1.52 ad ksiginfoq_t kq;
848 1.52 ad
849 1.52 ad /*
850 1.52 ad * If this was not the last LWP in the process, then adjust
851 1.52 ad * counters and unlock.
852 1.52 ad */
853 1.52 ad if (!last) {
854 1.52 ad /*
855 1.52 ad * Add the LWP's run time to the process' base value.
856 1.52 ad * This needs to co-incide with coming off p_lwps.
857 1.52 ad */
858 1.52 ad timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
859 1.62.2.1 mjf p->p_pctcpu += l->l_pctcpu;
860 1.52 ad LIST_REMOVE(l, l_sibling);
861 1.52 ad p->p_nlwps--;
862 1.52 ad p->p_nzlwps--;
863 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
864 1.52 ad p->p_ndlwps--;
865 1.52 ad
866 1.52 ad /*
867 1.62.2.1 mjf * Have any LWPs sleeping in lwp_wait() recheck for
868 1.62.2.1 mjf * deadlock.
869 1.52 ad */
870 1.62.2.1 mjf cv_broadcast(&p->p_lwpcv);
871 1.62.2.1 mjf mutex_exit(&p->p_smutex);
872 1.52 ad }
873 1.52 ad
874 1.62.2.1 mjf #ifdef MULTIPROCESSOR
875 1.62.2.1 mjf /*
876 1.62.2.1 mjf * In the unlikely event that the LWP is still on the CPU,
877 1.62.2.1 mjf * then spin until it has switched away. We need to release
878 1.62.2.1 mjf * all locks to avoid deadlock against interrupt handlers on
879 1.62.2.1 mjf * the target CPU.
880 1.62.2.1 mjf */
881 1.62.2.1 mjf if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
882 1.62.2.1 mjf int count;
883 1.62.2.1 mjf (void)count; /* XXXgcc */
884 1.62.2.1 mjf KERNEL_UNLOCK_ALL(curlwp, &count);
885 1.62.2.1 mjf while ((l->l_flag & LW_RUNNING) != 0 ||
886 1.62.2.1 mjf l->l_cpu->ci_curlwp == l)
887 1.62.2.1 mjf SPINLOCK_BACKOFF_HOOK;
888 1.62.2.1 mjf KERNEL_LOCK(count, curlwp);
889 1.62.2.1 mjf }
890 1.62.2.1 mjf #endif
891 1.62.2.1 mjf
892 1.52 ad /*
893 1.52 ad * Destroy the LWP's remaining signal information.
894 1.52 ad */
895 1.52 ad ksiginfo_queue_init(&kq);
896 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
897 1.52 ad ksiginfo_queue_drain(&kq);
898 1.52 ad cv_destroy(&l->l_sigcv);
899 1.62.2.1 mjf mutex_destroy(&l->l_swaplock);
900 1.2 thorpej
901 1.19 jdolecek /*
902 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
903 1.62.2.1 mjf * caller wants to recycle them. Also, free the scheduler specific data.
904 1.52 ad *
905 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
906 1.52 ad * so if it comes up just drop it quietly and move on.
907 1.52 ad *
908 1.52 ad * We don't recycle the VM resources at this time.
909 1.19 jdolecek */
910 1.55 ad KERNEL_LOCK(1, curlwp); /* XXXSMP */
911 1.62.2.1 mjf
912 1.62.2.1 mjf sched_lwp_exit(l);
913 1.62.2.1 mjf
914 1.52 ad if (!recycle && l->l_ts != &turnstile0)
915 1.52 ad pool_cache_put(&turnstile_cache, l->l_ts);
916 1.52 ad #ifndef __NO_CPU_LWP_FREE
917 1.52 ad cpu_lwp_free2(l);
918 1.52 ad #endif
919 1.19 jdolecek uvm_lwp_exit(l);
920 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
921 1.60 yamt KASSERT(l->l_inheritedprio == MAXPRI);
922 1.52 ad if (!recycle)
923 1.19 jdolecek pool_put(&lwp_pool, l);
924 1.55 ad KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
925 1.2 thorpej }
926 1.2 thorpej
927 1.2 thorpej /*
928 1.2 thorpej * Pick a LWP to represent the process for those operations which
929 1.2 thorpej * want information about a "process" that is actually associated
930 1.2 thorpej * with a LWP.
931 1.52 ad *
932 1.52 ad * If 'locking' is false, no locking or lock checks are performed.
933 1.52 ad * This is intended for use by DDB.
934 1.52 ad *
935 1.52 ad * We don't bother locking the LWP here, since code that uses this
936 1.52 ad * interface is broken by design and an exact match is not required.
937 1.2 thorpej */
938 1.2 thorpej struct lwp *
939 1.52 ad proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
940 1.2 thorpej {
941 1.2 thorpej struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
942 1.27 matt struct lwp *signalled;
943 1.52 ad int cnt;
944 1.52 ad
945 1.52 ad if (locking) {
946 1.62.2.1 mjf KASSERT(mutex_owned(&p->p_smutex));
947 1.52 ad }
948 1.2 thorpej
949 1.2 thorpej /* Trivial case: only one LWP */
950 1.52 ad if (p->p_nlwps == 1) {
951 1.52 ad l = LIST_FIRST(&p->p_lwps);
952 1.52 ad if (nrlwps)
953 1.52 ad *nrlwps = (l->l_stat == LSONPROC || LSRUN);
954 1.52 ad return l;
955 1.52 ad }
956 1.2 thorpej
957 1.52 ad cnt = 0;
958 1.2 thorpej switch (p->p_stat) {
959 1.2 thorpej case SSTOP:
960 1.2 thorpej case SACTIVE:
961 1.2 thorpej /* Pick the most live LWP */
962 1.2 thorpej onproc = running = sleeping = stopped = suspended = NULL;
963 1.27 matt signalled = NULL;
964 1.2 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
965 1.62.2.1 mjf if ((l->l_flag & LW_IDLE) != 0) {
966 1.62.2.1 mjf continue;
967 1.62.2.1 mjf }
968 1.27 matt if (l->l_lid == p->p_sigctx.ps_lwp)
969 1.27 matt signalled = l;
970 1.2 thorpej switch (l->l_stat) {
971 1.2 thorpej case LSONPROC:
972 1.2 thorpej onproc = l;
973 1.52 ad cnt++;
974 1.2 thorpej break;
975 1.2 thorpej case LSRUN:
976 1.2 thorpej running = l;
977 1.52 ad cnt++;
978 1.2 thorpej break;
979 1.2 thorpej case LSSLEEP:
980 1.2 thorpej sleeping = l;
981 1.2 thorpej break;
982 1.2 thorpej case LSSTOP:
983 1.2 thorpej stopped = l;
984 1.2 thorpej break;
985 1.2 thorpej case LSSUSPENDED:
986 1.2 thorpej suspended = l;
987 1.2 thorpej break;
988 1.2 thorpej }
989 1.2 thorpej }
990 1.52 ad if (nrlwps)
991 1.52 ad *nrlwps = cnt;
992 1.27 matt if (signalled)
993 1.52 ad l = signalled;
994 1.52 ad else if (onproc)
995 1.52 ad l = onproc;
996 1.52 ad else if (running)
997 1.52 ad l = running;
998 1.52 ad else if (sleeping)
999 1.52 ad l = sleeping;
1000 1.52 ad else if (stopped)
1001 1.52 ad l = stopped;
1002 1.52 ad else if (suspended)
1003 1.52 ad l = suspended;
1004 1.52 ad else
1005 1.52 ad break;
1006 1.52 ad return l;
1007 1.52 ad if (nrlwps)
1008 1.52 ad *nrlwps = 0;
1009 1.52 ad l = LIST_FIRST(&p->p_lwps);
1010 1.52 ad return l;
1011 1.2 thorpej #ifdef DIAGNOSTIC
1012 1.2 thorpej case SIDL:
1013 1.52 ad case SZOMB:
1014 1.52 ad case SDYING:
1015 1.52 ad case SDEAD:
1016 1.52 ad if (locking)
1017 1.52 ad mutex_exit(&p->p_smutex);
1018 1.2 thorpej /* We have more than one LWP and we're in SIDL?
1019 1.2 thorpej * How'd that happen?
1020 1.2 thorpej */
1021 1.52 ad panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1022 1.52 ad p->p_pid, p->p_comm, p->p_stat);
1023 1.52 ad break;
1024 1.2 thorpej default:
1025 1.52 ad if (locking)
1026 1.52 ad mutex_exit(&p->p_smutex);
1027 1.2 thorpej panic("Process %d (%s) in unknown state %d",
1028 1.2 thorpej p->p_pid, p->p_comm, p->p_stat);
1029 1.2 thorpej #endif
1030 1.2 thorpej }
1031 1.2 thorpej
1032 1.52 ad if (locking)
1033 1.52 ad mutex_exit(&p->p_smutex);
1034 1.2 thorpej panic("proc_representative_lwp: couldn't find a lwp for process"
1035 1.2 thorpej " %d (%s)", p->p_pid, p->p_comm);
1036 1.2 thorpej /* NOTREACHED */
1037 1.2 thorpej return NULL;
1038 1.2 thorpej }
1039 1.37 ad
1040 1.37 ad /*
1041 1.52 ad * Look up a live LWP within the speicifed process, and return it locked.
1042 1.52 ad *
1043 1.52 ad * Must be called with p->p_smutex held.
1044 1.52 ad */
1045 1.52 ad struct lwp *
1046 1.52 ad lwp_find(struct proc *p, int id)
1047 1.52 ad {
1048 1.52 ad struct lwp *l;
1049 1.52 ad
1050 1.62.2.1 mjf KASSERT(mutex_owned(&p->p_smutex));
1051 1.52 ad
1052 1.52 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1053 1.52 ad if (l->l_lid == id)
1054 1.52 ad break;
1055 1.52 ad }
1056 1.52 ad
1057 1.52 ad /*
1058 1.52 ad * No need to lock - all of these conditions will
1059 1.52 ad * be visible with the process level mutex held.
1060 1.52 ad */
1061 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1062 1.52 ad l = NULL;
1063 1.52 ad
1064 1.52 ad return l;
1065 1.52 ad }
1066 1.52 ad
1067 1.52 ad /*
1068 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1069 1.37 ad *
1070 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1071 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1072 1.37 ad * it's credentials by calling this routine. This may be called from
1073 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1074 1.37 ad */
1075 1.37 ad void
1076 1.37 ad lwp_update_creds(struct lwp *l)
1077 1.37 ad {
1078 1.37 ad kauth_cred_t oc;
1079 1.37 ad struct proc *p;
1080 1.37 ad
1081 1.37 ad p = l->l_proc;
1082 1.37 ad oc = l->l_cred;
1083 1.37 ad
1084 1.52 ad mutex_enter(&p->p_mutex);
1085 1.37 ad kauth_cred_hold(p->p_cred);
1086 1.37 ad l->l_cred = p->p_cred;
1087 1.52 ad mutex_exit(&p->p_mutex);
1088 1.52 ad if (oc != NULL) {
1089 1.52 ad KERNEL_LOCK(1, l); /* XXXSMP */
1090 1.37 ad kauth_cred_free(oc);
1091 1.52 ad KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1092 1.52 ad }
1093 1.52 ad }
1094 1.52 ad
1095 1.52 ad /*
1096 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1097 1.52 ad * one we specify.
1098 1.52 ad */
1099 1.52 ad int
1100 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1101 1.52 ad {
1102 1.52 ad kmutex_t *cur = l->l_mutex;
1103 1.52 ad
1104 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1105 1.52 ad }
1106 1.52 ad
1107 1.52 ad /*
1108 1.52 ad * Lock an LWP.
1109 1.52 ad */
1110 1.52 ad void
1111 1.52 ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
1112 1.52 ad {
1113 1.52 ad
1114 1.52 ad /*
1115 1.52 ad * XXXgcc ignoring kmutex_t * volatile on i386
1116 1.52 ad *
1117 1.52 ad * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1118 1.52 ad */
1119 1.52 ad #if 1
1120 1.52 ad while (l->l_mutex != old) {
1121 1.52 ad #else
1122 1.52 ad for (;;) {
1123 1.52 ad #endif
1124 1.52 ad mutex_spin_exit(old);
1125 1.52 ad old = l->l_mutex;
1126 1.52 ad mutex_spin_enter(old);
1127 1.52 ad
1128 1.52 ad /*
1129 1.52 ad * mutex_enter() will have posted a read barrier. Re-test
1130 1.52 ad * l->l_mutex. If it has changed, we need to try again.
1131 1.52 ad */
1132 1.52 ad #if 1
1133 1.52 ad }
1134 1.52 ad #else
1135 1.52 ad } while (__predict_false(l->l_mutex != old));
1136 1.52 ad #endif
1137 1.52 ad }
1138 1.52 ad
1139 1.52 ad /*
1140 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1141 1.52 ad */
1142 1.52 ad void
1143 1.52 ad lwp_setlock(struct lwp *l, kmutex_t *new)
1144 1.52 ad {
1145 1.52 ad
1146 1.62.2.1 mjf KASSERT(mutex_owned(l->l_mutex));
1147 1.52 ad
1148 1.52 ad mb_write();
1149 1.52 ad l->l_mutex = new;
1150 1.52 ad }
1151 1.52 ad
1152 1.52 ad /*
1153 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1154 1.52 ad * must be held.
1155 1.52 ad */
1156 1.52 ad void
1157 1.52 ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
1158 1.52 ad {
1159 1.52 ad kmutex_t *old;
1160 1.52 ad
1161 1.62.2.1 mjf KASSERT(mutex_owned(l->l_mutex));
1162 1.52 ad
1163 1.52 ad old = l->l_mutex;
1164 1.52 ad mb_write();
1165 1.52 ad l->l_mutex = new;
1166 1.52 ad mutex_spin_exit(old);
1167 1.52 ad }
1168 1.52 ad
1169 1.52 ad /*
1170 1.52 ad * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1171 1.52 ad * locked.
1172 1.52 ad */
1173 1.52 ad void
1174 1.52 ad lwp_relock(struct lwp *l, kmutex_t *new)
1175 1.52 ad {
1176 1.52 ad kmutex_t *old;
1177 1.52 ad
1178 1.62.2.1 mjf KASSERT(mutex_owned(l->l_mutex));
1179 1.52 ad
1180 1.52 ad old = l->l_mutex;
1181 1.52 ad if (old != new) {
1182 1.52 ad mutex_spin_enter(new);
1183 1.52 ad l->l_mutex = new;
1184 1.52 ad mutex_spin_exit(old);
1185 1.52 ad }
1186 1.52 ad }
1187 1.52 ad
1188 1.60 yamt int
1189 1.60 yamt lwp_trylock(struct lwp *l)
1190 1.60 yamt {
1191 1.60 yamt kmutex_t *old;
1192 1.60 yamt
1193 1.60 yamt for (;;) {
1194 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1195 1.60 yamt return 0;
1196 1.60 yamt if (__predict_true(l->l_mutex == old))
1197 1.60 yamt return 1;
1198 1.60 yamt mutex_spin_exit(old);
1199 1.60 yamt }
1200 1.60 yamt }
1201 1.60 yamt
1202 1.52 ad /*
1203 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1204 1.52 ad * set.
1205 1.52 ad */
1206 1.52 ad void
1207 1.52 ad lwp_userret(struct lwp *l)
1208 1.52 ad {
1209 1.52 ad struct proc *p;
1210 1.54 ad void (*hook)(void);
1211 1.52 ad int sig;
1212 1.52 ad
1213 1.52 ad p = l->l_proc;
1214 1.52 ad
1215 1.52 ad /*
1216 1.52 ad * It should be safe to do this read unlocked on a multiprocessor
1217 1.52 ad * system..
1218 1.52 ad */
1219 1.56 pavel while ((l->l_flag & LW_USERRET) != 0) {
1220 1.52 ad /*
1221 1.52 ad * Process pending signals first, unless the process
1222 1.61 ad * is dumping core or exiting, where we will instead
1223 1.61 ad * enter the L_WSUSPEND case below.
1224 1.52 ad */
1225 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1226 1.61 ad LW_PENDSIG) {
1227 1.52 ad KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1228 1.52 ad mutex_enter(&p->p_smutex);
1229 1.52 ad while ((sig = issignal(l)) != 0)
1230 1.52 ad postsig(sig);
1231 1.52 ad mutex_exit(&p->p_smutex);
1232 1.52 ad KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1233 1.52 ad }
1234 1.52 ad
1235 1.52 ad /*
1236 1.52 ad * Core-dump or suspend pending.
1237 1.52 ad *
1238 1.52 ad * In case of core dump, suspend ourselves, so that the
1239 1.52 ad * kernel stack and therefore the userland registers saved
1240 1.52 ad * in the trapframe are around for coredump() to write them
1241 1.52 ad * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1242 1.52 ad * will write the core file out once all other LWPs are
1243 1.52 ad * suspended.
1244 1.52 ad */
1245 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1246 1.52 ad mutex_enter(&p->p_smutex);
1247 1.52 ad p->p_nrlwps--;
1248 1.52 ad cv_broadcast(&p->p_lwpcv);
1249 1.52 ad lwp_lock(l);
1250 1.52 ad l->l_stat = LSSUSPENDED;
1251 1.52 ad mutex_exit(&p->p_smutex);
1252 1.62.2.1 mjf mi_switch(l);
1253 1.52 ad }
1254 1.52 ad
1255 1.52 ad /* Process is exiting. */
1256 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1257 1.52 ad KERNEL_LOCK(1, l);
1258 1.52 ad lwp_exit(l);
1259 1.52 ad KASSERT(0);
1260 1.52 ad /* NOTREACHED */
1261 1.52 ad }
1262 1.54 ad
1263 1.54 ad /* Call userret hook; used by Linux emulation. */
1264 1.56 pavel if ((l->l_flag & LW_WUSERRET) != 0) {
1265 1.54 ad lwp_lock(l);
1266 1.56 pavel l->l_flag &= ~LW_WUSERRET;
1267 1.54 ad lwp_unlock(l);
1268 1.54 ad hook = p->p_userret;
1269 1.54 ad p->p_userret = NULL;
1270 1.54 ad (*hook)();
1271 1.54 ad }
1272 1.52 ad }
1273 1.52 ad }
1274 1.52 ad
1275 1.52 ad /*
1276 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1277 1.52 ad */
1278 1.52 ad void
1279 1.52 ad lwp_need_userret(struct lwp *l)
1280 1.52 ad {
1281 1.62.2.1 mjf KASSERT(lwp_locked(l, NULL));
1282 1.52 ad
1283 1.52 ad /*
1284 1.52 ad * Since the tests in lwp_userret() are done unlocked, make sure
1285 1.52 ad * that the condition will be seen before forcing the LWP to enter
1286 1.52 ad * kernel mode.
1287 1.52 ad */
1288 1.52 ad mb_write();
1289 1.52 ad cpu_signotify(l);
1290 1.52 ad }
1291 1.52 ad
1292 1.52 ad /*
1293 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1294 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1295 1.52 ad */
1296 1.52 ad void
1297 1.52 ad lwp_addref(struct lwp *l)
1298 1.52 ad {
1299 1.52 ad
1300 1.62.2.1 mjf KASSERT(mutex_owned(&l->l_proc->p_smutex));
1301 1.52 ad KASSERT(l->l_stat != LSZOMB);
1302 1.52 ad KASSERT(l->l_refcnt != 0);
1303 1.52 ad
1304 1.52 ad l->l_refcnt++;
1305 1.52 ad }
1306 1.52 ad
1307 1.52 ad /*
1308 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1309 1.52 ad * then we must finalize the LWP's death.
1310 1.52 ad */
1311 1.52 ad void
1312 1.52 ad lwp_delref(struct lwp *l)
1313 1.52 ad {
1314 1.52 ad struct proc *p = l->l_proc;
1315 1.52 ad
1316 1.52 ad mutex_enter(&p->p_smutex);
1317 1.52 ad if (--l->l_refcnt == 0)
1318 1.52 ad cv_broadcast(&p->p_refcv);
1319 1.52 ad mutex_exit(&p->p_smutex);
1320 1.52 ad }
1321 1.52 ad
1322 1.52 ad /*
1323 1.52 ad * Drain all references to the current LWP.
1324 1.52 ad */
1325 1.52 ad void
1326 1.52 ad lwp_drainrefs(struct lwp *l)
1327 1.52 ad {
1328 1.52 ad struct proc *p = l->l_proc;
1329 1.52 ad
1330 1.62.2.1 mjf KASSERT(mutex_owned(&p->p_smutex));
1331 1.52 ad KASSERT(l->l_refcnt != 0);
1332 1.52 ad
1333 1.52 ad l->l_refcnt--;
1334 1.52 ad while (l->l_refcnt != 0)
1335 1.52 ad cv_wait(&p->p_refcv, &p->p_smutex);
1336 1.37 ad }
1337 1.41 thorpej
1338 1.41 thorpej /*
1339 1.41 thorpej * lwp_specific_key_create --
1340 1.41 thorpej * Create a key for subsystem lwp-specific data.
1341 1.41 thorpej */
1342 1.41 thorpej int
1343 1.41 thorpej lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1344 1.41 thorpej {
1345 1.41 thorpej
1346 1.45 thorpej return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1347 1.41 thorpej }
1348 1.41 thorpej
1349 1.41 thorpej /*
1350 1.41 thorpej * lwp_specific_key_delete --
1351 1.41 thorpej * Delete a key for subsystem lwp-specific data.
1352 1.41 thorpej */
1353 1.41 thorpej void
1354 1.41 thorpej lwp_specific_key_delete(specificdata_key_t key)
1355 1.41 thorpej {
1356 1.41 thorpej
1357 1.41 thorpej specificdata_key_delete(lwp_specificdata_domain, key);
1358 1.41 thorpej }
1359 1.41 thorpej
1360 1.45 thorpej /*
1361 1.45 thorpej * lwp_initspecific --
1362 1.45 thorpej * Initialize an LWP's specificdata container.
1363 1.45 thorpej */
1364 1.42 christos void
1365 1.42 christos lwp_initspecific(struct lwp *l)
1366 1.42 christos {
1367 1.42 christos int error;
1368 1.45 thorpej
1369 1.42 christos error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1370 1.42 christos KASSERT(error == 0);
1371 1.42 christos }
1372 1.42 christos
1373 1.41 thorpej /*
1374 1.45 thorpej * lwp_finispecific --
1375 1.45 thorpej * Finalize an LWP's specificdata container.
1376 1.45 thorpej */
1377 1.45 thorpej void
1378 1.45 thorpej lwp_finispecific(struct lwp *l)
1379 1.45 thorpej {
1380 1.45 thorpej
1381 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1382 1.45 thorpej }
1383 1.45 thorpej
1384 1.45 thorpej /*
1385 1.41 thorpej * lwp_getspecific --
1386 1.41 thorpej * Return lwp-specific data corresponding to the specified key.
1387 1.41 thorpej *
1388 1.41 thorpej * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1389 1.41 thorpej * only its OWN SPECIFIC DATA. If it is necessary to access another
1390 1.41 thorpej * LWP's specifc data, care must be taken to ensure that doing so
1391 1.41 thorpej * would not cause internal data structure inconsistency (i.e. caller
1392 1.41 thorpej * can guarantee that the target LWP is not inside an lwp_getspecific()
1393 1.41 thorpej * or lwp_setspecific() call).
1394 1.41 thorpej */
1395 1.41 thorpej void *
1396 1.44 thorpej lwp_getspecific(specificdata_key_t key)
1397 1.41 thorpej {
1398 1.41 thorpej
1399 1.41 thorpej return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1400 1.44 thorpej &curlwp->l_specdataref, key));
1401 1.41 thorpej }
1402 1.41 thorpej
1403 1.47 hannken void *
1404 1.47 hannken _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1405 1.47 hannken {
1406 1.47 hannken
1407 1.47 hannken return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1408 1.47 hannken &l->l_specdataref, key));
1409 1.47 hannken }
1410 1.47 hannken
1411 1.41 thorpej /*
1412 1.41 thorpej * lwp_setspecific --
1413 1.41 thorpej * Set lwp-specific data corresponding to the specified key.
1414 1.41 thorpej */
1415 1.41 thorpej void
1416 1.45 thorpej lwp_setspecific(specificdata_key_t key, void *data)
1417 1.41 thorpej {
1418 1.41 thorpej
1419 1.41 thorpej specificdata_setspecific(lwp_specificdata_domain,
1420 1.44 thorpej &curlwp->l_specdataref, key, data);
1421 1.41 thorpej }
1422