kern_lwp.c revision 1.64 1 1.64 yamt /* $NetBSD: kern_lwp.c,v 1.64 2007/05/17 14:51:39 yamt Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.52 ad * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej * 3. All advertising materials mentioning features or use of this software
19 1.2 thorpej * must display the following acknowledgement:
20 1.2 thorpej * This product includes software developed by the NetBSD
21 1.2 thorpej * Foundation, Inc. and its contributors.
22 1.2 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 thorpej * contributors may be used to endorse or promote products derived
24 1.2 thorpej * from this software without specific prior written permission.
25 1.2 thorpej *
26 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
37 1.2 thorpej */
38 1.9 lukem
39 1.52 ad /*
40 1.52 ad * Overview
41 1.52 ad *
42 1.52 ad * Lightweight processes (LWPs) are the basic unit (or thread) of
43 1.52 ad * execution within the kernel. The core state of an LWP is described
44 1.52 ad * by "struct lwp".
45 1.52 ad *
46 1.52 ad * Each LWP is contained within a process (described by "struct proc"),
47 1.52 ad * Every process contains at least one LWP, but may contain more. The
48 1.52 ad * process describes attributes shared among all of its LWPs such as a
49 1.52 ad * private address space, global execution state (stopped, active,
50 1.52 ad * zombie, ...), signal disposition and so on. On a multiprocessor
51 1.52 ad * machine, multiple LWPs be executing in kernel simultaneously.
52 1.52 ad *
53 1.52 ad * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 1.52 ad * threads are distinct processes (system processes) with no user space
55 1.52 ad * component, which themselves may contain one or more LWPs.
56 1.52 ad *
57 1.52 ad * Execution states
58 1.52 ad *
59 1.52 ad * At any given time, an LWP has overall state that is described by
60 1.52 ad * lwp::l_stat. The states are broken into two sets below. The first
61 1.52 ad * set is guaranteed to represent the absolute, current state of the
62 1.52 ad * LWP:
63 1.52 ad *
64 1.52 ad * LSONPROC
65 1.52 ad *
66 1.52 ad * On processor: the LWP is executing on a CPU, either in the
67 1.52 ad * kernel or in user space.
68 1.52 ad *
69 1.52 ad * LSRUN
70 1.52 ad *
71 1.52 ad * Runnable: the LWP is parked on a run queue, and may soon be
72 1.52 ad * chosen to run by a idle processor, or by a processor that
73 1.52 ad * has been asked to preempt a currently runnning but lower
74 1.52 ad * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 1.52 ad * then the LWP is not on a run queue, but may be soon.
76 1.52 ad *
77 1.52 ad * LSIDL
78 1.52 ad *
79 1.52 ad * Idle: the LWP has been created but has not yet executed.
80 1.52 ad * Whoever created the new LWP can be expected to set it to
81 1.52 ad * another state shortly.
82 1.52 ad *
83 1.52 ad * LSSUSPENDED:
84 1.52 ad *
85 1.52 ad * Suspended: the LWP has had its execution suspended by
86 1.52 ad * another LWP in the same process using the _lwp_suspend()
87 1.52 ad * system call. User-level LWPs also enter the suspended
88 1.52 ad * state when the system is shutting down.
89 1.52 ad *
90 1.52 ad * The second set represent a "statement of intent" on behalf of the
91 1.52 ad * LWP. The LWP may in fact be executing on a processor, may be
92 1.52 ad * sleeping, idle, or on a run queue. It is expected to take the
93 1.52 ad * necessary action to stop executing or become "running" again within
94 1.52 ad * a short timeframe.
95 1.52 ad *
96 1.52 ad * LSZOMB:
97 1.52 ad *
98 1.52 ad * Dead: the LWP has released most of its resources and is
99 1.52 ad * about to switch away into oblivion. When it switches away,
100 1.52 ad * its few remaining resources will be collected.
101 1.52 ad *
102 1.52 ad * LSSLEEP:
103 1.52 ad *
104 1.52 ad * Sleeping: the LWP has entered itself onto a sleep queue, and
105 1.52 ad * will switch away shortly to allow other LWPs to run on the
106 1.52 ad * CPU.
107 1.52 ad *
108 1.52 ad * LSSTOP:
109 1.52 ad *
110 1.52 ad * Stopped: the LWP has been stopped as a result of a job
111 1.52 ad * control signal, or as a result of the ptrace() interface.
112 1.52 ad * Stopped LWPs may run briefly within the kernel to handle
113 1.52 ad * signals that they receive, but will not return to user space
114 1.52 ad * until their process' state is changed away from stopped.
115 1.52 ad * Single LWPs within a process can not be set stopped
116 1.52 ad * selectively: all actions that can stop or continue LWPs
117 1.52 ad * occur at the process level.
118 1.52 ad *
119 1.52 ad * State transitions
120 1.52 ad *
121 1.52 ad * Note that the LSSTOP and LSSUSPENDED states may only be set
122 1.52 ad * when returning to user space in userret(), or when sleeping
123 1.52 ad * interruptably. Before setting those states, we try to ensure
124 1.52 ad * that the LWPs will release all kernel locks that they hold,
125 1.52 ad * and at a minimum try to ensure that the LWP can be set runnable
126 1.52 ad * again by a signal.
127 1.52 ad *
128 1.52 ad * LWPs may transition states in the following ways:
129 1.52 ad *
130 1.52 ad * RUN -------> ONPROC ONPROC -----> RUN
131 1.52 ad * > STOPPED > SLEEP
132 1.52 ad * > SUSPENDED > STOPPED
133 1.52 ad * > SUSPENDED
134 1.52 ad * > ZOMB
135 1.52 ad *
136 1.52 ad * STOPPED ---> RUN SUSPENDED --> RUN
137 1.52 ad * > SLEEP > SLEEP
138 1.52 ad *
139 1.52 ad * SLEEP -----> ONPROC IDL --------> RUN
140 1.52 ad * > RUN > SUSPENDED
141 1.52 ad * > STOPPED > STOPPED
142 1.52 ad * > SUSPENDED
143 1.52 ad *
144 1.52 ad * Locking
145 1.52 ad *
146 1.52 ad * The majority of fields in 'struct lwp' are covered by a single,
147 1.52 ad * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 1.52 ad * each field are documented in sys/lwp.h.
149 1.52 ad *
150 1.52 ad * State transitions must be made with the LWP's general lock held. In
151 1.52 ad * a multiprocessor kernel, state transitions may cause the LWP's lock
152 1.52 ad * pointer to change. On uniprocessor kernels, most scheduler and
153 1.52 ad * synchronisation objects such as sleep queues and LWPs are protected
154 1.64 yamt * by only one mutex (spc_mutex on single CPU). In this case, LWPs' lock
155 1.64 yamt * pointers will never change and will always reference spc_mutex.
156 1.64 yamt * Please note that in a multiprocessor kernel each CPU has own spc_mutex.
157 1.64 yamt * (spc_mutex here refers to l->l_cpu->ci_schedstate.spc_mutex).
158 1.52 ad *
159 1.52 ad * Manipulation of the general lock is not performed directly, but
160 1.52 ad * through calls to lwp_lock(), lwp_relock() and similar.
161 1.52 ad *
162 1.52 ad * States and their associated locks:
163 1.52 ad *
164 1.64 yamt * LSIDL, LSZOMB, LSONPROC:
165 1.52 ad *
166 1.64 yamt * Always covered by spc_lwplock, which protects running LWPs.
167 1.64 yamt * This is a per-CPU lock.
168 1.52 ad *
169 1.64 yamt * LSRUN:
170 1.52 ad *
171 1.64 yamt * Always covered by spc_mutex, which protects the run queues.
172 1.64 yamt * This may be a per-CPU lock, depending on the scheduler.
173 1.52 ad *
174 1.52 ad * LSSLEEP:
175 1.52 ad *
176 1.52 ad * Covered by a mutex associated with the sleep queue that the
177 1.52 ad * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
178 1.52 ad *
179 1.52 ad * LSSTOP, LSSUSPENDED:
180 1.52 ad *
181 1.52 ad * If the LWP was previously sleeping (l_wchan != NULL), then
182 1.52 ad * l_mutex references the sleep queue mutex. If the LWP was
183 1.52 ad * runnable or on the CPU when halted, or has been removed from
184 1.64 yamt * the sleep queue since halted, then the mutex is spc_lwplock.
185 1.52 ad *
186 1.52 ad * The lock order is as follows:
187 1.52 ad *
188 1.64 yamt * spc::spc_lwplock ->
189 1.64 yamt * sleepq_t::sq_mutex ->
190 1.64 yamt * tschain_t::tc_mutex ->
191 1.64 yamt * spc::spc_mutex
192 1.52 ad *
193 1.52 ad * Each process has an scheduler state mutex (proc::p_smutex), and a
194 1.52 ad * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 1.52 ad * so on. When an LWP is to be entered into or removed from one of the
196 1.52 ad * following states, p_mutex must be held and the process wide counters
197 1.52 ad * adjusted:
198 1.52 ad *
199 1.52 ad * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 1.52 ad *
201 1.52 ad * Note that an LWP is considered running or likely to run soon if in
202 1.52 ad * one of the following states. This affects the value of p_nrlwps:
203 1.52 ad *
204 1.52 ad * LSRUN, LSONPROC, LSSLEEP
205 1.52 ad *
206 1.52 ad * p_smutex does not need to be held when transitioning among these
207 1.52 ad * three states.
208 1.52 ad */
209 1.52 ad
210 1.9 lukem #include <sys/cdefs.h>
211 1.64 yamt __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.64 2007/05/17 14:51:39 yamt Exp $");
212 1.8 martin
213 1.8 martin #include "opt_multiprocessor.h"
214 1.52 ad #include "opt_lockdebug.h"
215 1.2 thorpej
216 1.47 hannken #define _LWP_API_PRIVATE
217 1.47 hannken
218 1.2 thorpej #include <sys/param.h>
219 1.2 thorpej #include <sys/systm.h>
220 1.64 yamt #include <sys/cpu.h>
221 1.2 thorpej #include <sys/pool.h>
222 1.2 thorpej #include <sys/proc.h>
223 1.2 thorpej #include <sys/syscallargs.h>
224 1.57 dsl #include <sys/syscall_stats.h>
225 1.37 ad #include <sys/kauth.h>
226 1.52 ad #include <sys/sleepq.h>
227 1.52 ad #include <sys/lockdebug.h>
228 1.52 ad #include <sys/kmem.h>
229 1.2 thorpej
230 1.2 thorpej #include <uvm/uvm_extern.h>
231 1.2 thorpej
232 1.52 ad struct lwplist alllwp;
233 1.52 ad
234 1.52 ad POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
235 1.62 ad &pool_allocator_nointr, IPL_NONE);
236 1.41 thorpej POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
237 1.62 ad &pool_allocator_nointr, IPL_NONE);
238 1.41 thorpej
239 1.41 thorpej static specificdata_domain_t lwp_specificdata_domain;
240 1.41 thorpej
241 1.2 thorpej #define LWP_DEBUG
242 1.2 thorpej
243 1.2 thorpej #ifdef LWP_DEBUG
244 1.2 thorpej int lwp_debug = 0;
245 1.2 thorpej #define DPRINTF(x) if (lwp_debug) printf x
246 1.2 thorpej #else
247 1.2 thorpej #define DPRINTF(x)
248 1.2 thorpej #endif
249 1.41 thorpej
250 1.41 thorpej void
251 1.41 thorpej lwpinit(void)
252 1.41 thorpej {
253 1.41 thorpej
254 1.41 thorpej lwp_specificdata_domain = specificdata_domain_create();
255 1.41 thorpej KASSERT(lwp_specificdata_domain != NULL);
256 1.52 ad lwp_sys_init();
257 1.41 thorpej }
258 1.41 thorpej
259 1.52 ad /*
260 1.52 ad * Set an suspended.
261 1.52 ad *
262 1.52 ad * Must be called with p_smutex held, and the LWP locked. Will unlock the
263 1.52 ad * LWP before return.
264 1.52 ad */
265 1.2 thorpej int
266 1.52 ad lwp_suspend(struct lwp *curl, struct lwp *t)
267 1.2 thorpej {
268 1.52 ad int error;
269 1.2 thorpej
270 1.63 ad KASSERT(mutex_owned(&t->l_proc->p_smutex));
271 1.63 ad KASSERT(lwp_locked(t, NULL));
272 1.33 chs
273 1.52 ad KASSERT(curl != t || curl->l_stat == LSONPROC);
274 1.2 thorpej
275 1.52 ad /*
276 1.52 ad * If the current LWP has been told to exit, we must not suspend anyone
277 1.52 ad * else or deadlock could occur. We won't return to userspace.
278 1.2 thorpej */
279 1.56 pavel if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
280 1.52 ad lwp_unlock(t);
281 1.52 ad return (EDEADLK);
282 1.2 thorpej }
283 1.2 thorpej
284 1.52 ad error = 0;
285 1.2 thorpej
286 1.52 ad switch (t->l_stat) {
287 1.52 ad case LSRUN:
288 1.52 ad case LSONPROC:
289 1.56 pavel t->l_flag |= LW_WSUSPEND;
290 1.52 ad lwp_need_userret(t);
291 1.52 ad lwp_unlock(t);
292 1.52 ad break;
293 1.2 thorpej
294 1.52 ad case LSSLEEP:
295 1.56 pavel t->l_flag |= LW_WSUSPEND;
296 1.2 thorpej
297 1.2 thorpej /*
298 1.52 ad * Kick the LWP and try to get it to the kernel boundary
299 1.52 ad * so that it will release any locks that it holds.
300 1.52 ad * setrunnable() will release the lock.
301 1.2 thorpej */
302 1.56 pavel if ((t->l_flag & LW_SINTR) != 0)
303 1.52 ad setrunnable(t);
304 1.52 ad else
305 1.52 ad lwp_unlock(t);
306 1.52 ad break;
307 1.2 thorpej
308 1.52 ad case LSSUSPENDED:
309 1.52 ad lwp_unlock(t);
310 1.52 ad break;
311 1.17 manu
312 1.52 ad case LSSTOP:
313 1.56 pavel t->l_flag |= LW_WSUSPEND;
314 1.52 ad setrunnable(t);
315 1.52 ad break;
316 1.2 thorpej
317 1.52 ad case LSIDL:
318 1.52 ad case LSZOMB:
319 1.52 ad error = EINTR; /* It's what Solaris does..... */
320 1.52 ad lwp_unlock(t);
321 1.52 ad break;
322 1.2 thorpej }
323 1.2 thorpej
324 1.52 ad /*
325 1.52 ad * XXXLWP Wait for:
326 1.52 ad *
327 1.52 ad * o process exiting
328 1.52 ad * o target LWP suspended
329 1.52 ad * o target LWP not suspended and L_WSUSPEND clear
330 1.52 ad * o target LWP exited
331 1.52 ad */
332 1.2 thorpej
333 1.52 ad return (error);
334 1.2 thorpej }
335 1.2 thorpej
336 1.52 ad /*
337 1.52 ad * Restart a suspended LWP.
338 1.52 ad *
339 1.52 ad * Must be called with p_smutex held, and the LWP locked. Will unlock the
340 1.52 ad * LWP before return.
341 1.52 ad */
342 1.2 thorpej void
343 1.2 thorpej lwp_continue(struct lwp *l)
344 1.2 thorpej {
345 1.2 thorpej
346 1.63 ad KASSERT(mutex_owned(&l->l_proc->p_smutex));
347 1.63 ad KASSERT(lwp_locked(l, NULL));
348 1.52 ad
349 1.2 thorpej DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
350 1.2 thorpej l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
351 1.2 thorpej l->l_wchan));
352 1.2 thorpej
353 1.52 ad /* If rebooting or not suspended, then just bail out. */
354 1.56 pavel if ((l->l_flag & LW_WREBOOT) != 0) {
355 1.52 ad lwp_unlock(l);
356 1.2 thorpej return;
357 1.10 fvdl }
358 1.2 thorpej
359 1.56 pavel l->l_flag &= ~LW_WSUSPEND;
360 1.2 thorpej
361 1.52 ad if (l->l_stat != LSSUSPENDED) {
362 1.52 ad lwp_unlock(l);
363 1.52 ad return;
364 1.2 thorpej }
365 1.2 thorpej
366 1.52 ad /* setrunnable() will release the lock. */
367 1.52 ad setrunnable(l);
368 1.2 thorpej }
369 1.2 thorpej
370 1.52 ad /*
371 1.52 ad * Wait for an LWP within the current process to exit. If 'lid' is
372 1.52 ad * non-zero, we are waiting for a specific LWP.
373 1.52 ad *
374 1.52 ad * Must be called with p->p_smutex held.
375 1.52 ad */
376 1.2 thorpej int
377 1.2 thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
378 1.2 thorpej {
379 1.2 thorpej struct proc *p = l->l_proc;
380 1.52 ad struct lwp *l2;
381 1.52 ad int nfound, error;
382 1.63 ad lwpid_t curlid;
383 1.63 ad bool exiting;
384 1.2 thorpej
385 1.2 thorpej DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
386 1.2 thorpej p->p_pid, l->l_lid, lid));
387 1.2 thorpej
388 1.63 ad KASSERT(mutex_owned(&p->p_smutex));
389 1.52 ad
390 1.52 ad p->p_nlwpwait++;
391 1.63 ad l->l_waitingfor = lid;
392 1.63 ad curlid = l->l_lid;
393 1.63 ad exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
394 1.52 ad
395 1.52 ad for (;;) {
396 1.52 ad /*
397 1.52 ad * Avoid a race between exit1() and sigexit(): if the
398 1.52 ad * process is dumping core, then we need to bail out: call
399 1.52 ad * into lwp_userret() where we will be suspended until the
400 1.52 ad * deed is done.
401 1.52 ad */
402 1.52 ad if ((p->p_sflag & PS_WCORE) != 0) {
403 1.52 ad mutex_exit(&p->p_smutex);
404 1.52 ad lwp_userret(l);
405 1.52 ad #ifdef DIAGNOSTIC
406 1.52 ad panic("lwp_wait1");
407 1.52 ad #endif
408 1.52 ad /* NOTREACHED */
409 1.52 ad }
410 1.52 ad
411 1.52 ad /*
412 1.52 ad * First off, drain any detached LWP that is waiting to be
413 1.52 ad * reaped.
414 1.52 ad */
415 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
416 1.52 ad p->p_zomblwp = NULL;
417 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
418 1.52 ad mutex_enter(&p->p_smutex);
419 1.52 ad }
420 1.52 ad
421 1.52 ad /*
422 1.52 ad * Now look for an LWP to collect. If the whole process is
423 1.52 ad * exiting, count detached LWPs as eligible to be collected,
424 1.52 ad * but don't drain them here.
425 1.52 ad */
426 1.52 ad nfound = 0;
427 1.63 ad error = 0;
428 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
429 1.63 ad /*
430 1.63 ad * If a specific wait and the target is waiting on
431 1.63 ad * us, then avoid deadlock. This also traps LWPs
432 1.63 ad * that try to wait on themselves.
433 1.63 ad *
434 1.63 ad * Note that this does not handle more complicated
435 1.63 ad * cycles, like: t1 -> t2 -> t3 -> t1. The process
436 1.63 ad * can still be killed so it is not a major problem.
437 1.63 ad */
438 1.63 ad if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
439 1.63 ad error = EDEADLK;
440 1.63 ad break;
441 1.63 ad }
442 1.63 ad if (l2 == l)
443 1.52 ad continue;
444 1.52 ad if ((l2->l_prflag & LPR_DETACHED) != 0) {
445 1.63 ad nfound += exiting;
446 1.63 ad continue;
447 1.63 ad }
448 1.63 ad if (lid != 0) {
449 1.63 ad if (l2->l_lid != lid)
450 1.63 ad continue;
451 1.63 ad /*
452 1.63 ad * Mark this LWP as the first waiter, if there
453 1.63 ad * is no other.
454 1.63 ad */
455 1.63 ad if (l2->l_waiter == 0)
456 1.63 ad l2->l_waiter = curlid;
457 1.63 ad } else if (l2->l_waiter != 0) {
458 1.63 ad /*
459 1.63 ad * It already has a waiter - so don't
460 1.63 ad * collect it. If the waiter doesn't
461 1.63 ad * grab it we'll get another chance
462 1.63 ad * later.
463 1.63 ad */
464 1.63 ad nfound++;
465 1.52 ad continue;
466 1.52 ad }
467 1.52 ad nfound++;
468 1.2 thorpej
469 1.52 ad /* No need to lock the LWP in order to see LSZOMB. */
470 1.52 ad if (l2->l_stat != LSZOMB)
471 1.52 ad continue;
472 1.2 thorpej
473 1.63 ad /*
474 1.63 ad * We're no longer waiting. Reset the "first waiter"
475 1.63 ad * pointer on the target, in case it was us.
476 1.63 ad */
477 1.63 ad l->l_waitingfor = 0;
478 1.63 ad l2->l_waiter = 0;
479 1.63 ad p->p_nlwpwait--;
480 1.2 thorpej if (departed)
481 1.2 thorpej *departed = l2->l_lid;
482 1.63 ad
483 1.63 ad /* lwp_free() releases the proc lock. */
484 1.63 ad lwp_free(l2, false, false);
485 1.52 ad mutex_enter(&p->p_smutex);
486 1.52 ad return 0;
487 1.52 ad }
488 1.2 thorpej
489 1.63 ad if (error != 0)
490 1.63 ad break;
491 1.52 ad if (nfound == 0) {
492 1.52 ad error = ESRCH;
493 1.52 ad break;
494 1.52 ad }
495 1.63 ad
496 1.63 ad /*
497 1.63 ad * The kernel is careful to ensure that it can not deadlock
498 1.63 ad * when exiting - just keep waiting.
499 1.63 ad */
500 1.63 ad if (exiting) {
501 1.52 ad KASSERT(p->p_nlwps > 1);
502 1.52 ad cv_wait(&p->p_lwpcv, &p->p_smutex);
503 1.52 ad continue;
504 1.52 ad }
505 1.63 ad
506 1.63 ad /*
507 1.63 ad * If all other LWPs are waiting for exits or suspends
508 1.63 ad * and the supply of zombies and potential zombies is
509 1.63 ad * exhausted, then we are about to deadlock.
510 1.63 ad *
511 1.63 ad * If the process is exiting (and this LWP is not the one
512 1.63 ad * that is coordinating the exit) then bail out now.
513 1.63 ad */
514 1.52 ad if ((p->p_sflag & PS_WEXIT) != 0 ||
515 1.63 ad p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
516 1.52 ad error = EDEADLK;
517 1.52 ad break;
518 1.2 thorpej }
519 1.63 ad
520 1.63 ad /*
521 1.63 ad * Sit around and wait for something to happen. We'll be
522 1.63 ad * awoken if any of the conditions examined change: if an
523 1.63 ad * LWP exits, is collected, or is detached.
524 1.63 ad */
525 1.52 ad if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
526 1.52 ad break;
527 1.2 thorpej }
528 1.2 thorpej
529 1.63 ad /*
530 1.63 ad * We didn't find any LWPs to collect, we may have received a
531 1.63 ad * signal, or some other condition has caused us to bail out.
532 1.63 ad *
533 1.63 ad * If waiting on a specific LWP, clear the waiters marker: some
534 1.63 ad * other LWP may want it. Then, kick all the remaining waiters
535 1.63 ad * so that they can re-check for zombies and for deadlock.
536 1.63 ad */
537 1.63 ad if (lid != 0) {
538 1.63 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
539 1.63 ad if (l2->l_lid == lid) {
540 1.63 ad if (l2->l_waiter == curlid)
541 1.63 ad l2->l_waiter = 0;
542 1.63 ad break;
543 1.63 ad }
544 1.63 ad }
545 1.63 ad }
546 1.52 ad p->p_nlwpwait--;
547 1.63 ad l->l_waitingfor = 0;
548 1.63 ad cv_broadcast(&p->p_lwpcv);
549 1.63 ad
550 1.52 ad return error;
551 1.2 thorpej }
552 1.2 thorpej
553 1.52 ad /*
554 1.52 ad * Create a new LWP within process 'p2', using LWP 'l1' as a template.
555 1.52 ad * The new LWP is created in state LSIDL and must be set running,
556 1.52 ad * suspended, or stopped by the caller.
557 1.52 ad */
558 1.2 thorpej int
559 1.59 thorpej newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
560 1.2 thorpej int flags, void *stack, size_t stacksize,
561 1.2 thorpej void (*func)(void *), void *arg, struct lwp **rnewlwpp)
562 1.2 thorpej {
563 1.52 ad struct lwp *l2, *isfree;
564 1.52 ad turnstile_t *ts;
565 1.2 thorpej
566 1.52 ad /*
567 1.52 ad * First off, reap any detached LWP waiting to be collected.
568 1.52 ad * We can re-use its LWP structure and turnstile.
569 1.52 ad */
570 1.52 ad isfree = NULL;
571 1.52 ad if (p2->p_zomblwp != NULL) {
572 1.52 ad mutex_enter(&p2->p_smutex);
573 1.52 ad if ((isfree = p2->p_zomblwp) != NULL) {
574 1.52 ad p2->p_zomblwp = NULL;
575 1.63 ad lwp_free(isfree, true, false);/* releases proc mutex */
576 1.52 ad } else
577 1.52 ad mutex_exit(&p2->p_smutex);
578 1.52 ad }
579 1.52 ad if (isfree == NULL) {
580 1.52 ad l2 = pool_get(&lwp_pool, PR_WAITOK);
581 1.52 ad memset(l2, 0, sizeof(*l2));
582 1.52 ad l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
583 1.60 yamt SLIST_INIT(&l2->l_pi_lenders);
584 1.52 ad } else {
585 1.52 ad l2 = isfree;
586 1.52 ad ts = l2->l_ts;
587 1.60 yamt KASSERT(l2->l_inheritedprio == MAXPRI);
588 1.60 yamt KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
589 1.52 ad memset(l2, 0, sizeof(*l2));
590 1.52 ad l2->l_ts = ts;
591 1.52 ad }
592 1.2 thorpej
593 1.2 thorpej l2->l_stat = LSIDL;
594 1.2 thorpej l2->l_proc = p2;
595 1.52 ad l2->l_refcnt = 1;
596 1.52 ad l2->l_priority = l1->l_priority;
597 1.52 ad l2->l_usrpri = l1->l_usrpri;
598 1.60 yamt l2->l_inheritedprio = MAXPRI;
599 1.64 yamt l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
600 1.52 ad l2->l_cpu = l1->l_cpu;
601 1.56 pavel l2->l_flag = inmem ? LW_INMEM : 0;
602 1.42 christos lwp_initspecific(l2);
603 1.64 yamt sched_lwp_fork(l2);
604 1.41 thorpej
605 1.56 pavel if (p2->p_flag & PK_SYSTEM) {
606 1.52 ad /*
607 1.52 ad * Mark it as a system process and not a candidate for
608 1.52 ad * swapping.
609 1.52 ad */
610 1.56 pavel l2->l_flag |= LW_SYSTEM;
611 1.52 ad }
612 1.2 thorpej
613 1.37 ad lwp_update_creds(l2);
614 1.2 thorpej callout_init(&l2->l_tsleep_ch);
615 1.52 ad cv_init(&l2->l_sigcv, "sigwait");
616 1.52 ad l2->l_syncobj = &sched_syncobj;
617 1.2 thorpej
618 1.2 thorpej if (rnewlwpp != NULL)
619 1.2 thorpej *rnewlwpp = l2;
620 1.2 thorpej
621 1.36 yamt l2->l_addr = UAREA_TO_USER(uaddr);
622 1.2 thorpej uvm_lwp_fork(l1, l2, stack, stacksize, func,
623 1.2 thorpej (arg != NULL) ? arg : l2);
624 1.2 thorpej
625 1.52 ad mutex_enter(&p2->p_smutex);
626 1.52 ad
627 1.52 ad if ((flags & LWP_DETACHED) != 0) {
628 1.52 ad l2->l_prflag = LPR_DETACHED;
629 1.52 ad p2->p_ndlwps++;
630 1.52 ad } else
631 1.52 ad l2->l_prflag = 0;
632 1.52 ad
633 1.52 ad l2->l_sigmask = l1->l_sigmask;
634 1.52 ad CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
635 1.52 ad sigemptyset(&l2->l_sigpend.sp_set);
636 1.52 ad
637 1.53 yamt p2->p_nlwpid++;
638 1.53 yamt if (p2->p_nlwpid == 0)
639 1.53 yamt p2->p_nlwpid++;
640 1.53 yamt l2->l_lid = p2->p_nlwpid;
641 1.2 thorpej LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
642 1.2 thorpej p2->p_nlwps++;
643 1.2 thorpej
644 1.52 ad mutex_exit(&p2->p_smutex);
645 1.52 ad
646 1.52 ad mutex_enter(&proclist_mutex);
647 1.2 thorpej LIST_INSERT_HEAD(&alllwp, l2, l_list);
648 1.52 ad mutex_exit(&proclist_mutex);
649 1.2 thorpej
650 1.57 dsl SYSCALL_TIME_LWP_INIT(l2);
651 1.57 dsl
652 1.16 manu if (p2->p_emul->e_lwp_fork)
653 1.16 manu (*p2->p_emul->e_lwp_fork)(l1, l2);
654 1.16 manu
655 1.2 thorpej return (0);
656 1.2 thorpej }
657 1.2 thorpej
658 1.2 thorpej /*
659 1.64 yamt * Called by MD code when a new LWP begins execution. Must be called
660 1.64 yamt * with the previous LWP locked (so at splsched), or if there is no
661 1.64 yamt * previous LWP, at splsched.
662 1.64 yamt */
663 1.64 yamt void
664 1.64 yamt lwp_startup(struct lwp *prev, struct lwp *new)
665 1.64 yamt {
666 1.64 yamt
667 1.64 yamt curlwp = new;
668 1.64 yamt if (prev != NULL) {
669 1.64 yamt lwp_unlock(prev);
670 1.64 yamt }
671 1.64 yamt spl0();
672 1.64 yamt pmap_activate(new);
673 1.64 yamt LOCKDEBUG_BARRIER(NULL, 0);
674 1.64 yamt KERNEL_LOCK(1, new);
675 1.64 yamt }
676 1.64 yamt
677 1.64 yamt /*
678 1.64 yamt * Quit the process.
679 1.64 yamt * this can only be used meaningfully if you're willing to switch away.
680 1.64 yamt * Calling with l != curlwp would be weird.
681 1.2 thorpej */
682 1.2 thorpej void
683 1.2 thorpej lwp_exit(struct lwp *l)
684 1.2 thorpej {
685 1.2 thorpej struct proc *p = l->l_proc;
686 1.52 ad struct lwp *l2;
687 1.2 thorpej
688 1.2 thorpej DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
689 1.52 ad DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
690 1.2 thorpej
691 1.52 ad /*
692 1.52 ad * Verify that we hold no locks other than the kernel lock.
693 1.52 ad */
694 1.52 ad #ifdef MULTIPROCESSOR
695 1.52 ad LOCKDEBUG_BARRIER(&kernel_lock, 0);
696 1.52 ad #else
697 1.52 ad LOCKDEBUG_BARRIER(NULL, 0);
698 1.52 ad #endif
699 1.16 manu
700 1.2 thorpej /*
701 1.52 ad * If we are the last live LWP in a process, we need to exit the
702 1.52 ad * entire process. We do so with an exit status of zero, because
703 1.52 ad * it's a "controlled" exit, and because that's what Solaris does.
704 1.52 ad *
705 1.52 ad * We are not quite a zombie yet, but for accounting purposes we
706 1.52 ad * must increment the count of zombies here.
707 1.45 thorpej *
708 1.45 thorpej * Note: the last LWP's specificdata will be deleted here.
709 1.2 thorpej */
710 1.52 ad mutex_enter(&p->p_smutex);
711 1.52 ad if (p->p_nlwps - p->p_nzlwps == 1) {
712 1.2 thorpej DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
713 1.2 thorpej p->p_pid, l->l_lid));
714 1.2 thorpej exit1(l, 0);
715 1.19 jdolecek /* NOTREACHED */
716 1.2 thorpej }
717 1.52 ad p->p_nzlwps++;
718 1.52 ad mutex_exit(&p->p_smutex);
719 1.52 ad
720 1.52 ad if (p->p_emul->e_lwp_exit)
721 1.52 ad (*p->p_emul->e_lwp_exit)(l);
722 1.2 thorpej
723 1.45 thorpej /* Delete the specificdata while it's still safe to sleep. */
724 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
725 1.45 thorpej
726 1.52 ad /*
727 1.52 ad * Release our cached credentials.
728 1.52 ad */
729 1.37 ad kauth_cred_free(l->l_cred);
730 1.37 ad
731 1.52 ad /*
732 1.52 ad * Remove the LWP from the global list.
733 1.52 ad */
734 1.52 ad mutex_enter(&proclist_mutex);
735 1.52 ad LIST_REMOVE(l, l_list);
736 1.52 ad mutex_exit(&proclist_mutex);
737 1.19 jdolecek
738 1.52 ad /*
739 1.52 ad * Get rid of all references to the LWP that others (e.g. procfs)
740 1.52 ad * may have, and mark the LWP as a zombie. If the LWP is detached,
741 1.52 ad * mark it waiting for collection in the proc structure. Note that
742 1.52 ad * before we can do that, we need to free any other dead, deatched
743 1.52 ad * LWP waiting to meet its maker.
744 1.52 ad *
745 1.52 ad * XXXSMP disable preemption.
746 1.52 ad */
747 1.52 ad mutex_enter(&p->p_smutex);
748 1.52 ad lwp_drainrefs(l);
749 1.31 yamt
750 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0) {
751 1.52 ad while ((l2 = p->p_zomblwp) != NULL) {
752 1.52 ad p->p_zomblwp = NULL;
753 1.63 ad lwp_free(l2, false, false);/* releases proc mutex */
754 1.52 ad mutex_enter(&p->p_smutex);
755 1.52 ad }
756 1.52 ad p->p_zomblwp = l;
757 1.52 ad }
758 1.31 yamt
759 1.52 ad /*
760 1.52 ad * If we find a pending signal for the process and we have been
761 1.52 ad * asked to check for signals, then we loose: arrange to have
762 1.52 ad * all other LWPs in the process check for signals.
763 1.52 ad */
764 1.56 pavel if ((l->l_flag & LW_PENDSIG) != 0 &&
765 1.52 ad firstsig(&p->p_sigpend.sp_set) != 0) {
766 1.52 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
767 1.52 ad lwp_lock(l2);
768 1.56 pavel l2->l_flag |= LW_PENDSIG;
769 1.52 ad lwp_unlock(l2);
770 1.52 ad }
771 1.31 yamt }
772 1.31 yamt
773 1.52 ad lwp_lock(l);
774 1.52 ad l->l_stat = LSZOMB;
775 1.52 ad lwp_unlock(l);
776 1.2 thorpej p->p_nrlwps--;
777 1.52 ad cv_broadcast(&p->p_lwpcv);
778 1.52 ad mutex_exit(&p->p_smutex);
779 1.52 ad
780 1.52 ad /*
781 1.52 ad * We can no longer block. At this point, lwp_free() may already
782 1.52 ad * be gunning for us. On a multi-CPU system, we may be off p_lwps.
783 1.52 ad *
784 1.52 ad * Free MD LWP resources.
785 1.52 ad */
786 1.52 ad #ifndef __NO_CPU_LWP_FREE
787 1.52 ad cpu_lwp_free(l, 0);
788 1.52 ad #endif
789 1.52 ad pmap_deactivate(l);
790 1.2 thorpej
791 1.52 ad /*
792 1.52 ad * Release the kernel lock, signal another LWP to collect us,
793 1.52 ad * and switch away into oblivion.
794 1.52 ad */
795 1.52 ad #ifdef notyet
796 1.52 ad /* XXXSMP hold in lwp_userret() */
797 1.52 ad KERNEL_UNLOCK_LAST(l);
798 1.52 ad #else
799 1.52 ad KERNEL_UNLOCK_ALL(l, NULL);
800 1.52 ad #endif
801 1.2 thorpej
802 1.64 yamt lwp_exit_switchaway(l);
803 1.2 thorpej }
804 1.2 thorpej
805 1.2 thorpej void
806 1.64 yamt lwp_exit_switchaway(struct lwp *l)
807 1.2 thorpej {
808 1.64 yamt struct cpu_info *ci;
809 1.64 yamt struct lwp *idlelwp;
810 1.64 yamt
811 1.64 yamt /* Unlocked, but is for statistics only. */
812 1.64 yamt uvmexp.swtch++;
813 1.64 yamt
814 1.64 yamt (void)splsched();
815 1.64 yamt l->l_flag &= ~LW_RUNNING;
816 1.64 yamt ci = curcpu();
817 1.64 yamt idlelwp = ci->ci_data.cpu_idlelwp;
818 1.64 yamt idlelwp->l_stat = LSONPROC;
819 1.64 yamt cpu_switchto(NULL, idlelwp);
820 1.52 ad }
821 1.52 ad
822 1.52 ad /*
823 1.52 ad * Free a dead LWP's remaining resources.
824 1.52 ad *
825 1.52 ad * XXXLWP limits.
826 1.52 ad */
827 1.52 ad void
828 1.63 ad lwp_free(struct lwp *l, bool recycle, bool last)
829 1.52 ad {
830 1.52 ad struct proc *p = l->l_proc;
831 1.52 ad ksiginfoq_t kq;
832 1.52 ad
833 1.52 ad /*
834 1.52 ad * If this was not the last LWP in the process, then adjust
835 1.52 ad * counters and unlock.
836 1.52 ad */
837 1.52 ad if (!last) {
838 1.52 ad /*
839 1.52 ad * Add the LWP's run time to the process' base value.
840 1.52 ad * This needs to co-incide with coming off p_lwps.
841 1.52 ad */
842 1.52 ad timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
843 1.64 yamt p->p_pctcpu += l->l_pctcpu;
844 1.52 ad LIST_REMOVE(l, l_sibling);
845 1.52 ad p->p_nlwps--;
846 1.52 ad p->p_nzlwps--;
847 1.52 ad if ((l->l_prflag & LPR_DETACHED) != 0)
848 1.52 ad p->p_ndlwps--;
849 1.63 ad
850 1.63 ad /*
851 1.63 ad * Have any LWPs sleeping in lwp_wait() recheck for
852 1.63 ad * deadlock.
853 1.63 ad */
854 1.63 ad cv_broadcast(&p->p_lwpcv);
855 1.52 ad mutex_exit(&p->p_smutex);
856 1.63 ad }
857 1.52 ad
858 1.52 ad #ifdef MULTIPROCESSOR
859 1.63 ad /*
860 1.63 ad * In the unlikely event that the LWP is still on the CPU,
861 1.63 ad * then spin until it has switched away. We need to release
862 1.63 ad * all locks to avoid deadlock against interrupt handlers on
863 1.63 ad * the target CPU.
864 1.63 ad */
865 1.64 yamt if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
866 1.63 ad int count;
867 1.64 yamt (void)count; /* XXXgcc */
868 1.63 ad KERNEL_UNLOCK_ALL(curlwp, &count);
869 1.64 yamt while ((l->l_flag & LW_RUNNING) != 0 ||
870 1.64 yamt l->l_cpu->ci_curlwp == l)
871 1.63 ad SPINLOCK_BACKOFF_HOOK;
872 1.63 ad KERNEL_LOCK(count, curlwp);
873 1.63 ad }
874 1.52 ad #endif
875 1.52 ad
876 1.52 ad /*
877 1.52 ad * Destroy the LWP's remaining signal information.
878 1.52 ad */
879 1.52 ad ksiginfo_queue_init(&kq);
880 1.52 ad sigclear(&l->l_sigpend, NULL, &kq);
881 1.52 ad ksiginfo_queue_drain(&kq);
882 1.52 ad cv_destroy(&l->l_sigcv);
883 1.2 thorpej
884 1.19 jdolecek /*
885 1.52 ad * Free the LWP's turnstile and the LWP structure itself unless the
886 1.64 yamt * caller wants to recycle them. Also, free the scheduler specific data.
887 1.52 ad *
888 1.52 ad * We can't return turnstile0 to the pool (it didn't come from it),
889 1.52 ad * so if it comes up just drop it quietly and move on.
890 1.52 ad *
891 1.52 ad * We don't recycle the VM resources at this time.
892 1.19 jdolecek */
893 1.55 ad KERNEL_LOCK(1, curlwp); /* XXXSMP */
894 1.64 yamt
895 1.64 yamt sched_lwp_exit(l);
896 1.64 yamt
897 1.52 ad if (!recycle && l->l_ts != &turnstile0)
898 1.52 ad pool_cache_put(&turnstile_cache, l->l_ts);
899 1.52 ad #ifndef __NO_CPU_LWP_FREE
900 1.52 ad cpu_lwp_free2(l);
901 1.52 ad #endif
902 1.19 jdolecek uvm_lwp_exit(l);
903 1.60 yamt KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
904 1.60 yamt KASSERT(l->l_inheritedprio == MAXPRI);
905 1.52 ad if (!recycle)
906 1.19 jdolecek pool_put(&lwp_pool, l);
907 1.55 ad KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
908 1.2 thorpej }
909 1.2 thorpej
910 1.2 thorpej /*
911 1.2 thorpej * Pick a LWP to represent the process for those operations which
912 1.2 thorpej * want information about a "process" that is actually associated
913 1.2 thorpej * with a LWP.
914 1.52 ad *
915 1.52 ad * If 'locking' is false, no locking or lock checks are performed.
916 1.52 ad * This is intended for use by DDB.
917 1.52 ad *
918 1.52 ad * We don't bother locking the LWP here, since code that uses this
919 1.52 ad * interface is broken by design and an exact match is not required.
920 1.2 thorpej */
921 1.2 thorpej struct lwp *
922 1.52 ad proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
923 1.2 thorpej {
924 1.2 thorpej struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
925 1.27 matt struct lwp *signalled;
926 1.52 ad int cnt;
927 1.52 ad
928 1.52 ad if (locking) {
929 1.63 ad KASSERT(mutex_owned(&p->p_smutex));
930 1.52 ad }
931 1.2 thorpej
932 1.2 thorpej /* Trivial case: only one LWP */
933 1.52 ad if (p->p_nlwps == 1) {
934 1.52 ad l = LIST_FIRST(&p->p_lwps);
935 1.52 ad if (nrlwps)
936 1.52 ad *nrlwps = (l->l_stat == LSONPROC || LSRUN);
937 1.52 ad return l;
938 1.52 ad }
939 1.2 thorpej
940 1.52 ad cnt = 0;
941 1.2 thorpej switch (p->p_stat) {
942 1.2 thorpej case SSTOP:
943 1.2 thorpej case SACTIVE:
944 1.2 thorpej /* Pick the most live LWP */
945 1.2 thorpej onproc = running = sleeping = stopped = suspended = NULL;
946 1.27 matt signalled = NULL;
947 1.2 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
948 1.64 yamt if ((l->l_flag & LW_IDLE) != 0) {
949 1.64 yamt continue;
950 1.64 yamt }
951 1.27 matt if (l->l_lid == p->p_sigctx.ps_lwp)
952 1.27 matt signalled = l;
953 1.2 thorpej switch (l->l_stat) {
954 1.2 thorpej case LSONPROC:
955 1.2 thorpej onproc = l;
956 1.52 ad cnt++;
957 1.2 thorpej break;
958 1.2 thorpej case LSRUN:
959 1.2 thorpej running = l;
960 1.52 ad cnt++;
961 1.2 thorpej break;
962 1.2 thorpej case LSSLEEP:
963 1.2 thorpej sleeping = l;
964 1.2 thorpej break;
965 1.2 thorpej case LSSTOP:
966 1.2 thorpej stopped = l;
967 1.2 thorpej break;
968 1.2 thorpej case LSSUSPENDED:
969 1.2 thorpej suspended = l;
970 1.2 thorpej break;
971 1.2 thorpej }
972 1.2 thorpej }
973 1.52 ad if (nrlwps)
974 1.52 ad *nrlwps = cnt;
975 1.27 matt if (signalled)
976 1.52 ad l = signalled;
977 1.52 ad else if (onproc)
978 1.52 ad l = onproc;
979 1.52 ad else if (running)
980 1.52 ad l = running;
981 1.52 ad else if (sleeping)
982 1.52 ad l = sleeping;
983 1.52 ad else if (stopped)
984 1.52 ad l = stopped;
985 1.52 ad else if (suspended)
986 1.52 ad l = suspended;
987 1.52 ad else
988 1.52 ad break;
989 1.52 ad return l;
990 1.52 ad if (nrlwps)
991 1.52 ad *nrlwps = 0;
992 1.52 ad l = LIST_FIRST(&p->p_lwps);
993 1.52 ad return l;
994 1.2 thorpej #ifdef DIAGNOSTIC
995 1.2 thorpej case SIDL:
996 1.52 ad case SZOMB:
997 1.52 ad case SDYING:
998 1.52 ad case SDEAD:
999 1.52 ad if (locking)
1000 1.52 ad mutex_exit(&p->p_smutex);
1001 1.2 thorpej /* We have more than one LWP and we're in SIDL?
1002 1.2 thorpej * How'd that happen?
1003 1.2 thorpej */
1004 1.52 ad panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1005 1.52 ad p->p_pid, p->p_comm, p->p_stat);
1006 1.52 ad break;
1007 1.2 thorpej default:
1008 1.52 ad if (locking)
1009 1.52 ad mutex_exit(&p->p_smutex);
1010 1.2 thorpej panic("Process %d (%s) in unknown state %d",
1011 1.2 thorpej p->p_pid, p->p_comm, p->p_stat);
1012 1.2 thorpej #endif
1013 1.2 thorpej }
1014 1.2 thorpej
1015 1.52 ad if (locking)
1016 1.52 ad mutex_exit(&p->p_smutex);
1017 1.2 thorpej panic("proc_representative_lwp: couldn't find a lwp for process"
1018 1.2 thorpej " %d (%s)", p->p_pid, p->p_comm);
1019 1.2 thorpej /* NOTREACHED */
1020 1.2 thorpej return NULL;
1021 1.2 thorpej }
1022 1.37 ad
1023 1.37 ad /*
1024 1.52 ad * Look up a live LWP within the speicifed process, and return it locked.
1025 1.52 ad *
1026 1.52 ad * Must be called with p->p_smutex held.
1027 1.52 ad */
1028 1.52 ad struct lwp *
1029 1.52 ad lwp_find(struct proc *p, int id)
1030 1.52 ad {
1031 1.52 ad struct lwp *l;
1032 1.52 ad
1033 1.63 ad KASSERT(mutex_owned(&p->p_smutex));
1034 1.52 ad
1035 1.52 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1036 1.52 ad if (l->l_lid == id)
1037 1.52 ad break;
1038 1.52 ad }
1039 1.52 ad
1040 1.52 ad /*
1041 1.52 ad * No need to lock - all of these conditions will
1042 1.52 ad * be visible with the process level mutex held.
1043 1.52 ad */
1044 1.52 ad if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1045 1.52 ad l = NULL;
1046 1.52 ad
1047 1.52 ad return l;
1048 1.52 ad }
1049 1.52 ad
1050 1.52 ad /*
1051 1.37 ad * Update an LWP's cached credentials to mirror the process' master copy.
1052 1.37 ad *
1053 1.37 ad * This happens early in the syscall path, on user trap, and on LWP
1054 1.37 ad * creation. A long-running LWP can also voluntarily choose to update
1055 1.37 ad * it's credentials by calling this routine. This may be called from
1056 1.37 ad * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1057 1.37 ad */
1058 1.37 ad void
1059 1.37 ad lwp_update_creds(struct lwp *l)
1060 1.37 ad {
1061 1.37 ad kauth_cred_t oc;
1062 1.37 ad struct proc *p;
1063 1.37 ad
1064 1.37 ad p = l->l_proc;
1065 1.37 ad oc = l->l_cred;
1066 1.37 ad
1067 1.52 ad mutex_enter(&p->p_mutex);
1068 1.37 ad kauth_cred_hold(p->p_cred);
1069 1.37 ad l->l_cred = p->p_cred;
1070 1.52 ad mutex_exit(&p->p_mutex);
1071 1.52 ad if (oc != NULL) {
1072 1.52 ad KERNEL_LOCK(1, l); /* XXXSMP */
1073 1.37 ad kauth_cred_free(oc);
1074 1.52 ad KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1075 1.52 ad }
1076 1.52 ad }
1077 1.52 ad
1078 1.52 ad /*
1079 1.52 ad * Verify that an LWP is locked, and optionally verify that the lock matches
1080 1.52 ad * one we specify.
1081 1.52 ad */
1082 1.52 ad int
1083 1.52 ad lwp_locked(struct lwp *l, kmutex_t *mtx)
1084 1.52 ad {
1085 1.52 ad kmutex_t *cur = l->l_mutex;
1086 1.52 ad
1087 1.52 ad return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1088 1.52 ad }
1089 1.52 ad
1090 1.52 ad /*
1091 1.52 ad * Lock an LWP.
1092 1.52 ad */
1093 1.52 ad void
1094 1.52 ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
1095 1.52 ad {
1096 1.52 ad
1097 1.52 ad /*
1098 1.52 ad * XXXgcc ignoring kmutex_t * volatile on i386
1099 1.52 ad *
1100 1.52 ad * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1101 1.52 ad */
1102 1.52 ad #if 1
1103 1.52 ad while (l->l_mutex != old) {
1104 1.52 ad #else
1105 1.52 ad for (;;) {
1106 1.52 ad #endif
1107 1.52 ad mutex_spin_exit(old);
1108 1.52 ad old = l->l_mutex;
1109 1.52 ad mutex_spin_enter(old);
1110 1.52 ad
1111 1.52 ad /*
1112 1.52 ad * mutex_enter() will have posted a read barrier. Re-test
1113 1.52 ad * l->l_mutex. If it has changed, we need to try again.
1114 1.52 ad */
1115 1.52 ad #if 1
1116 1.52 ad }
1117 1.52 ad #else
1118 1.52 ad } while (__predict_false(l->l_mutex != old));
1119 1.52 ad #endif
1120 1.52 ad }
1121 1.52 ad
1122 1.52 ad /*
1123 1.52 ad * Lend a new mutex to an LWP. The old mutex must be held.
1124 1.52 ad */
1125 1.52 ad void
1126 1.52 ad lwp_setlock(struct lwp *l, kmutex_t *new)
1127 1.52 ad {
1128 1.52 ad
1129 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1130 1.52 ad
1131 1.52 ad mb_write();
1132 1.52 ad l->l_mutex = new;
1133 1.52 ad }
1134 1.52 ad
1135 1.52 ad /*
1136 1.52 ad * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1137 1.52 ad * must be held.
1138 1.52 ad */
1139 1.52 ad void
1140 1.52 ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
1141 1.52 ad {
1142 1.52 ad kmutex_t *old;
1143 1.52 ad
1144 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1145 1.52 ad
1146 1.52 ad old = l->l_mutex;
1147 1.52 ad mb_write();
1148 1.52 ad l->l_mutex = new;
1149 1.52 ad mutex_spin_exit(old);
1150 1.52 ad }
1151 1.52 ad
1152 1.52 ad /*
1153 1.52 ad * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1154 1.52 ad * locked.
1155 1.52 ad */
1156 1.52 ad void
1157 1.52 ad lwp_relock(struct lwp *l, kmutex_t *new)
1158 1.52 ad {
1159 1.52 ad kmutex_t *old;
1160 1.52 ad
1161 1.63 ad KASSERT(mutex_owned(l->l_mutex));
1162 1.52 ad
1163 1.52 ad old = l->l_mutex;
1164 1.52 ad if (old != new) {
1165 1.52 ad mutex_spin_enter(new);
1166 1.52 ad l->l_mutex = new;
1167 1.52 ad mutex_spin_exit(old);
1168 1.52 ad }
1169 1.52 ad }
1170 1.52 ad
1171 1.60 yamt int
1172 1.60 yamt lwp_trylock(struct lwp *l)
1173 1.60 yamt {
1174 1.60 yamt kmutex_t *old;
1175 1.60 yamt
1176 1.60 yamt for (;;) {
1177 1.60 yamt if (!mutex_tryenter(old = l->l_mutex))
1178 1.60 yamt return 0;
1179 1.60 yamt if (__predict_true(l->l_mutex == old))
1180 1.60 yamt return 1;
1181 1.60 yamt mutex_spin_exit(old);
1182 1.60 yamt }
1183 1.60 yamt }
1184 1.60 yamt
1185 1.52 ad /*
1186 1.56 pavel * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1187 1.52 ad * set.
1188 1.52 ad */
1189 1.52 ad void
1190 1.52 ad lwp_userret(struct lwp *l)
1191 1.52 ad {
1192 1.52 ad struct proc *p;
1193 1.54 ad void (*hook)(void);
1194 1.52 ad int sig;
1195 1.52 ad
1196 1.52 ad p = l->l_proc;
1197 1.52 ad
1198 1.52 ad /*
1199 1.52 ad * It should be safe to do this read unlocked on a multiprocessor
1200 1.52 ad * system..
1201 1.52 ad */
1202 1.56 pavel while ((l->l_flag & LW_USERRET) != 0) {
1203 1.52 ad /*
1204 1.52 ad * Process pending signals first, unless the process
1205 1.61 ad * is dumping core or exiting, where we will instead
1206 1.61 ad * enter the L_WSUSPEND case below.
1207 1.52 ad */
1208 1.61 ad if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1209 1.61 ad LW_PENDSIG) {
1210 1.52 ad KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1211 1.52 ad mutex_enter(&p->p_smutex);
1212 1.52 ad while ((sig = issignal(l)) != 0)
1213 1.52 ad postsig(sig);
1214 1.52 ad mutex_exit(&p->p_smutex);
1215 1.52 ad KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1216 1.52 ad }
1217 1.52 ad
1218 1.52 ad /*
1219 1.52 ad * Core-dump or suspend pending.
1220 1.52 ad *
1221 1.52 ad * In case of core dump, suspend ourselves, so that the
1222 1.52 ad * kernel stack and therefore the userland registers saved
1223 1.52 ad * in the trapframe are around for coredump() to write them
1224 1.52 ad * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1225 1.52 ad * will write the core file out once all other LWPs are
1226 1.52 ad * suspended.
1227 1.52 ad */
1228 1.56 pavel if ((l->l_flag & LW_WSUSPEND) != 0) {
1229 1.52 ad mutex_enter(&p->p_smutex);
1230 1.52 ad p->p_nrlwps--;
1231 1.52 ad cv_broadcast(&p->p_lwpcv);
1232 1.52 ad lwp_lock(l);
1233 1.52 ad l->l_stat = LSSUSPENDED;
1234 1.52 ad mutex_exit(&p->p_smutex);
1235 1.64 yamt mi_switch(l);
1236 1.52 ad }
1237 1.52 ad
1238 1.52 ad /* Process is exiting. */
1239 1.56 pavel if ((l->l_flag & LW_WEXIT) != 0) {
1240 1.52 ad KERNEL_LOCK(1, l);
1241 1.52 ad lwp_exit(l);
1242 1.52 ad KASSERT(0);
1243 1.52 ad /* NOTREACHED */
1244 1.52 ad }
1245 1.54 ad
1246 1.54 ad /* Call userret hook; used by Linux emulation. */
1247 1.56 pavel if ((l->l_flag & LW_WUSERRET) != 0) {
1248 1.54 ad lwp_lock(l);
1249 1.56 pavel l->l_flag &= ~LW_WUSERRET;
1250 1.54 ad lwp_unlock(l);
1251 1.54 ad hook = p->p_userret;
1252 1.54 ad p->p_userret = NULL;
1253 1.54 ad (*hook)();
1254 1.54 ad }
1255 1.52 ad }
1256 1.52 ad }
1257 1.52 ad
1258 1.52 ad /*
1259 1.52 ad * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1260 1.52 ad */
1261 1.52 ad void
1262 1.52 ad lwp_need_userret(struct lwp *l)
1263 1.52 ad {
1264 1.63 ad KASSERT(lwp_locked(l, NULL));
1265 1.52 ad
1266 1.52 ad /*
1267 1.52 ad * Since the tests in lwp_userret() are done unlocked, make sure
1268 1.52 ad * that the condition will be seen before forcing the LWP to enter
1269 1.52 ad * kernel mode.
1270 1.52 ad */
1271 1.52 ad mb_write();
1272 1.52 ad cpu_signotify(l);
1273 1.52 ad }
1274 1.52 ad
1275 1.52 ad /*
1276 1.52 ad * Add one reference to an LWP. This will prevent the LWP from
1277 1.52 ad * exiting, thus keep the lwp structure and PCB around to inspect.
1278 1.52 ad */
1279 1.52 ad void
1280 1.52 ad lwp_addref(struct lwp *l)
1281 1.52 ad {
1282 1.52 ad
1283 1.63 ad KASSERT(mutex_owned(&l->l_proc->p_smutex));
1284 1.52 ad KASSERT(l->l_stat != LSZOMB);
1285 1.52 ad KASSERT(l->l_refcnt != 0);
1286 1.52 ad
1287 1.52 ad l->l_refcnt++;
1288 1.52 ad }
1289 1.52 ad
1290 1.52 ad /*
1291 1.52 ad * Remove one reference to an LWP. If this is the last reference,
1292 1.52 ad * then we must finalize the LWP's death.
1293 1.52 ad */
1294 1.52 ad void
1295 1.52 ad lwp_delref(struct lwp *l)
1296 1.52 ad {
1297 1.52 ad struct proc *p = l->l_proc;
1298 1.52 ad
1299 1.52 ad mutex_enter(&p->p_smutex);
1300 1.52 ad if (--l->l_refcnt == 0)
1301 1.52 ad cv_broadcast(&p->p_refcv);
1302 1.52 ad mutex_exit(&p->p_smutex);
1303 1.52 ad }
1304 1.52 ad
1305 1.52 ad /*
1306 1.52 ad * Drain all references to the current LWP.
1307 1.52 ad */
1308 1.52 ad void
1309 1.52 ad lwp_drainrefs(struct lwp *l)
1310 1.52 ad {
1311 1.52 ad struct proc *p = l->l_proc;
1312 1.52 ad
1313 1.63 ad KASSERT(mutex_owned(&p->p_smutex));
1314 1.52 ad KASSERT(l->l_refcnt != 0);
1315 1.52 ad
1316 1.52 ad l->l_refcnt--;
1317 1.52 ad while (l->l_refcnt != 0)
1318 1.52 ad cv_wait(&p->p_refcv, &p->p_smutex);
1319 1.37 ad }
1320 1.41 thorpej
1321 1.41 thorpej /*
1322 1.41 thorpej * lwp_specific_key_create --
1323 1.41 thorpej * Create a key for subsystem lwp-specific data.
1324 1.41 thorpej */
1325 1.41 thorpej int
1326 1.41 thorpej lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1327 1.41 thorpej {
1328 1.41 thorpej
1329 1.45 thorpej return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1330 1.41 thorpej }
1331 1.41 thorpej
1332 1.41 thorpej /*
1333 1.41 thorpej * lwp_specific_key_delete --
1334 1.41 thorpej * Delete a key for subsystem lwp-specific data.
1335 1.41 thorpej */
1336 1.41 thorpej void
1337 1.41 thorpej lwp_specific_key_delete(specificdata_key_t key)
1338 1.41 thorpej {
1339 1.41 thorpej
1340 1.41 thorpej specificdata_key_delete(lwp_specificdata_domain, key);
1341 1.41 thorpej }
1342 1.41 thorpej
1343 1.45 thorpej /*
1344 1.45 thorpej * lwp_initspecific --
1345 1.45 thorpej * Initialize an LWP's specificdata container.
1346 1.45 thorpej */
1347 1.42 christos void
1348 1.42 christos lwp_initspecific(struct lwp *l)
1349 1.42 christos {
1350 1.42 christos int error;
1351 1.45 thorpej
1352 1.42 christos error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1353 1.42 christos KASSERT(error == 0);
1354 1.42 christos }
1355 1.42 christos
1356 1.41 thorpej /*
1357 1.45 thorpej * lwp_finispecific --
1358 1.45 thorpej * Finalize an LWP's specificdata container.
1359 1.45 thorpej */
1360 1.45 thorpej void
1361 1.45 thorpej lwp_finispecific(struct lwp *l)
1362 1.45 thorpej {
1363 1.45 thorpej
1364 1.45 thorpej specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1365 1.45 thorpej }
1366 1.45 thorpej
1367 1.45 thorpej /*
1368 1.41 thorpej * lwp_getspecific --
1369 1.41 thorpej * Return lwp-specific data corresponding to the specified key.
1370 1.41 thorpej *
1371 1.41 thorpej * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1372 1.41 thorpej * only its OWN SPECIFIC DATA. If it is necessary to access another
1373 1.41 thorpej * LWP's specifc data, care must be taken to ensure that doing so
1374 1.41 thorpej * would not cause internal data structure inconsistency (i.e. caller
1375 1.41 thorpej * can guarantee that the target LWP is not inside an lwp_getspecific()
1376 1.41 thorpej * or lwp_setspecific() call).
1377 1.41 thorpej */
1378 1.41 thorpej void *
1379 1.44 thorpej lwp_getspecific(specificdata_key_t key)
1380 1.41 thorpej {
1381 1.41 thorpej
1382 1.41 thorpej return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1383 1.44 thorpej &curlwp->l_specdataref, key));
1384 1.41 thorpej }
1385 1.41 thorpej
1386 1.47 hannken void *
1387 1.47 hannken _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1388 1.47 hannken {
1389 1.47 hannken
1390 1.47 hannken return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1391 1.47 hannken &l->l_specdataref, key));
1392 1.47 hannken }
1393 1.47 hannken
1394 1.41 thorpej /*
1395 1.41 thorpej * lwp_setspecific --
1396 1.41 thorpej * Set lwp-specific data corresponding to the specified key.
1397 1.41 thorpej */
1398 1.41 thorpej void
1399 1.45 thorpej lwp_setspecific(specificdata_key_t key, void *data)
1400 1.41 thorpej {
1401 1.41 thorpej
1402 1.41 thorpej specificdata_setspecific(lwp_specificdata_domain,
1403 1.44 thorpej &curlwp->l_specdataref, key, data);
1404 1.41 thorpej }
1405