Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.74.2.1
      1  1.74.2.1    bouyer /*	$NetBSD: kern_lwp.c,v 1.74.2.1 2007/11/13 16:02:05 bouyer Exp $	*/
      2       1.2   thorpej 
      3       1.2   thorpej /*-
      4      1.52        ad  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5       1.2   thorpej  * All rights reserved.
      6       1.2   thorpej  *
      7       1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.52        ad  * by Nathan J. Williams, and Andrew Doran.
      9       1.2   thorpej  *
     10       1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     11       1.2   thorpej  * modification, are permitted provided that the following conditions
     12       1.2   thorpej  * are met:
     13       1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     14       1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     15       1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17       1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     18       1.2   thorpej  * 3. All advertising materials mentioning features or use of this software
     19       1.2   thorpej  *    must display the following acknowledgement:
     20       1.2   thorpej  *        This product includes software developed by the NetBSD
     21       1.2   thorpej  *        Foundation, Inc. and its contributors.
     22       1.2   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.2   thorpej  *    contributors may be used to endorse or promote products derived
     24       1.2   thorpej  *    from this software without specific prior written permission.
     25       1.2   thorpej  *
     26       1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     37       1.2   thorpej  */
     38       1.9     lukem 
     39      1.52        ad /*
     40      1.52        ad  * Overview
     41      1.52        ad  *
     42      1.66        ad  *	Lightweight processes (LWPs) are the basic unit or thread of
     43      1.52        ad  *	execution within the kernel.  The core state of an LWP is described
     44      1.66        ad  *	by "struct lwp", also known as lwp_t.
     45      1.52        ad  *
     46      1.52        ad  *	Each LWP is contained within a process (described by "struct proc"),
     47      1.52        ad  *	Every process contains at least one LWP, but may contain more.  The
     48      1.52        ad  *	process describes attributes shared among all of its LWPs such as a
     49      1.52        ad  *	private address space, global execution state (stopped, active,
     50      1.52        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51      1.66        ad  *	machine, multiple LWPs be executing concurrently in the kernel.
     52      1.52        ad  *
     53      1.52        ad  * Execution states
     54      1.52        ad  *
     55      1.52        ad  *	At any given time, an LWP has overall state that is described by
     56      1.52        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     57      1.52        ad  *	set is guaranteed to represent the absolute, current state of the
     58      1.52        ad  *	LWP:
     59      1.52        ad  *
     60      1.52        ad  * 	LSONPROC
     61      1.52        ad  *
     62      1.52        ad  * 		On processor: the LWP is executing on a CPU, either in the
     63      1.52        ad  * 		kernel or in user space.
     64      1.52        ad  *
     65      1.52        ad  * 	LSRUN
     66      1.52        ad  *
     67      1.52        ad  * 		Runnable: the LWP is parked on a run queue, and may soon be
     68      1.52        ad  * 		chosen to run by a idle processor, or by a processor that
     69      1.52        ad  * 		has been asked to preempt a currently runnning but lower
     70      1.52        ad  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     71      1.52        ad  *		then the LWP is not on a run queue, but may be soon.
     72      1.52        ad  *
     73      1.52        ad  * 	LSIDL
     74      1.52        ad  *
     75      1.66        ad  * 		Idle: the LWP has been created but has not yet executed,
     76      1.66        ad  *		or it has ceased executing a unit of work and is waiting
     77      1.66        ad  *		to be started again.
     78      1.52        ad  *
     79      1.52        ad  * 	LSSUSPENDED:
     80      1.52        ad  *
     81      1.52        ad  * 		Suspended: the LWP has had its execution suspended by
     82      1.52        ad  *		another LWP in the same process using the _lwp_suspend()
     83      1.52        ad  *		system call.  User-level LWPs also enter the suspended
     84      1.52        ad  *		state when the system is shutting down.
     85      1.52        ad  *
     86      1.52        ad  *	The second set represent a "statement of intent" on behalf of the
     87      1.52        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     88      1.66        ad  *	sleeping or idle. It is expected to take the necessary action to
     89      1.66        ad  *	stop executing or become "running" again within	a short timeframe.
     90      1.66        ad  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
     91      1.66        ad  *	Importantly, in indicates that its state is tied to a CPU.
     92      1.52        ad  *
     93      1.52        ad  * 	LSZOMB:
     94      1.52        ad  *
     95      1.66        ad  * 		Dead or dying: the LWP has released most of its resources
     96      1.66        ad  *		and is a) about to switch away into oblivion b) has already
     97      1.66        ad  *		switched away.  When it switches away, its few remaining
     98      1.66        ad  *		resources can be collected.
     99      1.52        ad  *
    100      1.52        ad  * 	LSSLEEP:
    101      1.52        ad  *
    102      1.52        ad  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    103      1.66        ad  * 		has switched away or will switch away shortly to allow other
    104      1.66        ad  *		LWPs to run on the CPU.
    105      1.52        ad  *
    106      1.52        ad  * 	LSSTOP:
    107      1.52        ad  *
    108      1.52        ad  * 		Stopped: the LWP has been stopped as a result of a job
    109      1.52        ad  * 		control signal, or as a result of the ptrace() interface.
    110      1.66        ad  *
    111      1.52        ad  * 		Stopped LWPs may run briefly within the kernel to handle
    112      1.52        ad  * 		signals that they receive, but will not return to user space
    113      1.52        ad  * 		until their process' state is changed away from stopped.
    114      1.66        ad  *
    115      1.52        ad  * 		Single LWPs within a process can not be set stopped
    116      1.52        ad  * 		selectively: all actions that can stop or continue LWPs
    117      1.52        ad  * 		occur at the process level.
    118      1.52        ad  *
    119      1.52        ad  * State transitions
    120      1.52        ad  *
    121      1.66        ad  *	Note that the LSSTOP state may only be set when returning to
    122      1.66        ad  *	user space in userret(), or when sleeping interruptably.  The
    123      1.66        ad  *	LSSUSPENDED state may only be set in userret().  Before setting
    124      1.66        ad  *	those states, we try to ensure that the LWPs will release all
    125      1.66        ad  *	locks that they hold, and at a minimum try to ensure that the
    126      1.66        ad  *	LWP can be set runnable again by a signal.
    127      1.52        ad  *
    128      1.52        ad  *	LWPs may transition states in the following ways:
    129      1.52        ad  *
    130      1.52        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131      1.52        ad  *	            > STOPPED			    > SLEEP
    132      1.52        ad  *	            > SUSPENDED			    > STOPPED
    133      1.52        ad  *						    > SUSPENDED
    134      1.52        ad  *						    > ZOMB
    135      1.52        ad  *
    136      1.52        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137      1.52        ad  *	            > SLEEP			    > SLEEP
    138      1.52        ad  *
    139      1.52        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140      1.52        ad  *		    > RUN		            > SUSPENDED
    141      1.52        ad  *		    > STOPPED                       > STOPPED
    142      1.52        ad  *		    > SUSPENDED
    143      1.52        ad  *
    144      1.66        ad  *	Other state transitions are possible with kernel threads (eg
    145      1.66        ad  *	ONPROC -> IDL), but only happen under tightly controlled
    146      1.66        ad  *	circumstances the side effects are understood.
    147      1.66        ad  *
    148      1.52        ad  * Locking
    149      1.52        ad  *
    150      1.52        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    151      1.66        ad  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    152      1.52        ad  *	each field are documented in sys/lwp.h.
    153      1.52        ad  *
    154      1.66        ad  *	State transitions must be made with the LWP's general lock held,
    155      1.66        ad  * 	and may cause the LWP's lock pointer to change. Manipulation of
    156      1.66        ad  *	the general lock is not performed directly, but through calls to
    157      1.66        ad  *	lwp_lock(), lwp_relock() and similar.
    158      1.52        ad  *
    159      1.52        ad  *	States and their associated locks:
    160      1.52        ad  *
    161      1.74     rmind  *	LSONPROC, LSZOMB:
    162      1.52        ad  *
    163      1.64      yamt  *		Always covered by spc_lwplock, which protects running LWPs.
    164      1.64      yamt  *		This is a per-CPU lock.
    165      1.52        ad  *
    166      1.74     rmind  *	LSIDL, LSRUN:
    167      1.52        ad  *
    168      1.64      yamt  *		Always covered by spc_mutex, which protects the run queues.
    169      1.64      yamt  *		This may be a per-CPU lock, depending on the scheduler.
    170      1.52        ad  *
    171      1.52        ad  *	LSSLEEP:
    172      1.52        ad  *
    173      1.66        ad  *		Covered by a lock associated with the sleep queue that the
    174      1.52        ad  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    175      1.52        ad  *
    176      1.52        ad  *	LSSTOP, LSSUSPENDED:
    177      1.52        ad  *
    178      1.52        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    179      1.66        ad  *		l_mutex references the sleep queue lock.  If the LWP was
    180      1.52        ad  *		runnable or on the CPU when halted, or has been removed from
    181      1.66        ad  *		the sleep queue since halted, then the lock is spc_lwplock.
    182      1.52        ad  *
    183      1.52        ad  *	The lock order is as follows:
    184      1.52        ad  *
    185      1.64      yamt  *		spc::spc_lwplock ->
    186      1.64      yamt  *		    sleepq_t::sq_mutex ->
    187      1.64      yamt  *			tschain_t::tc_mutex ->
    188      1.64      yamt  *			    spc::spc_mutex
    189      1.52        ad  *
    190      1.66        ad  *	Each process has an scheduler state lock (proc::p_smutex), and a
    191      1.52        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    192      1.52        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    193      1.52        ad  *	following states, p_mutex must be held and the process wide counters
    194      1.52        ad  *	adjusted:
    195      1.52        ad  *
    196      1.52        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    197      1.52        ad  *
    198      1.52        ad  *	Note that an LWP is considered running or likely to run soon if in
    199      1.52        ad  *	one of the following states.  This affects the value of p_nrlwps:
    200      1.52        ad  *
    201      1.52        ad  *		LSRUN, LSONPROC, LSSLEEP
    202      1.52        ad  *
    203      1.52        ad  *	p_smutex does not need to be held when transitioning among these
    204      1.52        ad  *	three states.
    205      1.52        ad  */
    206      1.52        ad 
    207       1.9     lukem #include <sys/cdefs.h>
    208  1.74.2.1    bouyer __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.74.2.1 2007/11/13 16:02:05 bouyer Exp $");
    209       1.8    martin 
    210       1.8    martin #include "opt_multiprocessor.h"
    211      1.52        ad #include "opt_lockdebug.h"
    212       1.2   thorpej 
    213      1.47   hannken #define _LWP_API_PRIVATE
    214      1.47   hannken 
    215       1.2   thorpej #include <sys/param.h>
    216       1.2   thorpej #include <sys/systm.h>
    217      1.64      yamt #include <sys/cpu.h>
    218       1.2   thorpej #include <sys/pool.h>
    219       1.2   thorpej #include <sys/proc.h>
    220       1.2   thorpej #include <sys/syscallargs.h>
    221      1.57       dsl #include <sys/syscall_stats.h>
    222      1.37        ad #include <sys/kauth.h>
    223      1.52        ad #include <sys/sleepq.h>
    224      1.52        ad #include <sys/lockdebug.h>
    225      1.52        ad #include <sys/kmem.h>
    226  1.74.2.1    bouyer #include <sys/intr.h>
    227  1.74.2.1    bouyer #include <sys/lwpctl.h>
    228       1.2   thorpej 
    229       1.2   thorpej #include <uvm/uvm_extern.h>
    230  1.74.2.1    bouyer #include <uvm/uvm_object.h>
    231       1.2   thorpej 
    232  1.74.2.1    bouyer struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    233      1.52        ad 
    234      1.52        ad POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    235      1.62        ad     &pool_allocator_nointr, IPL_NONE);
    236      1.41   thorpej POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    237      1.62        ad     &pool_allocator_nointr, IPL_NONE);
    238      1.41   thorpej 
    239      1.41   thorpej static specificdata_domain_t lwp_specificdata_domain;
    240      1.41   thorpej 
    241      1.41   thorpej void
    242      1.41   thorpej lwpinit(void)
    243      1.41   thorpej {
    244      1.41   thorpej 
    245      1.41   thorpej 	lwp_specificdata_domain = specificdata_domain_create();
    246      1.41   thorpej 	KASSERT(lwp_specificdata_domain != NULL);
    247      1.52        ad 	lwp_sys_init();
    248      1.41   thorpej }
    249      1.41   thorpej 
    250      1.52        ad /*
    251      1.52        ad  * Set an suspended.
    252      1.52        ad  *
    253      1.52        ad  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    254      1.52        ad  * LWP before return.
    255      1.52        ad  */
    256       1.2   thorpej int
    257      1.52        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    258       1.2   thorpej {
    259      1.52        ad 	int error;
    260       1.2   thorpej 
    261      1.63        ad 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    262      1.63        ad 	KASSERT(lwp_locked(t, NULL));
    263      1.33       chs 
    264      1.52        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    265       1.2   thorpej 
    266      1.52        ad 	/*
    267      1.52        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    268      1.52        ad 	 * else or deadlock could occur.  We won't return to userspace.
    269       1.2   thorpej 	 */
    270      1.56     pavel 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    271      1.52        ad 		lwp_unlock(t);
    272      1.52        ad 		return (EDEADLK);
    273       1.2   thorpej 	}
    274       1.2   thorpej 
    275      1.52        ad 	error = 0;
    276       1.2   thorpej 
    277      1.52        ad 	switch (t->l_stat) {
    278      1.52        ad 	case LSRUN:
    279      1.52        ad 	case LSONPROC:
    280      1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    281      1.52        ad 		lwp_need_userret(t);
    282      1.52        ad 		lwp_unlock(t);
    283      1.52        ad 		break;
    284       1.2   thorpej 
    285      1.52        ad 	case LSSLEEP:
    286      1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    287       1.2   thorpej 
    288       1.2   thorpej 		/*
    289      1.52        ad 		 * Kick the LWP and try to get it to the kernel boundary
    290      1.52        ad 		 * so that it will release any locks that it holds.
    291      1.52        ad 		 * setrunnable() will release the lock.
    292       1.2   thorpej 		 */
    293      1.56     pavel 		if ((t->l_flag & LW_SINTR) != 0)
    294      1.52        ad 			setrunnable(t);
    295      1.52        ad 		else
    296      1.52        ad 			lwp_unlock(t);
    297      1.52        ad 		break;
    298       1.2   thorpej 
    299      1.52        ad 	case LSSUSPENDED:
    300      1.52        ad 		lwp_unlock(t);
    301      1.52        ad 		break;
    302      1.17      manu 
    303      1.52        ad 	case LSSTOP:
    304      1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    305      1.52        ad 		setrunnable(t);
    306      1.52        ad 		break;
    307       1.2   thorpej 
    308      1.52        ad 	case LSIDL:
    309      1.52        ad 	case LSZOMB:
    310      1.52        ad 		error = EINTR; /* It's what Solaris does..... */
    311      1.52        ad 		lwp_unlock(t);
    312      1.52        ad 		break;
    313       1.2   thorpej 	}
    314       1.2   thorpej 
    315      1.69     rmind 	return (error);
    316       1.2   thorpej }
    317       1.2   thorpej 
    318      1.52        ad /*
    319      1.52        ad  * Restart a suspended LWP.
    320      1.52        ad  *
    321      1.52        ad  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    322      1.52        ad  * LWP before return.
    323      1.52        ad  */
    324       1.2   thorpej void
    325       1.2   thorpej lwp_continue(struct lwp *l)
    326       1.2   thorpej {
    327       1.2   thorpej 
    328      1.63        ad 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    329      1.63        ad 	KASSERT(lwp_locked(l, NULL));
    330      1.52        ad 
    331      1.52        ad 	/* If rebooting or not suspended, then just bail out. */
    332      1.56     pavel 	if ((l->l_flag & LW_WREBOOT) != 0) {
    333      1.52        ad 		lwp_unlock(l);
    334       1.2   thorpej 		return;
    335      1.10      fvdl 	}
    336       1.2   thorpej 
    337      1.56     pavel 	l->l_flag &= ~LW_WSUSPEND;
    338       1.2   thorpej 
    339      1.52        ad 	if (l->l_stat != LSSUSPENDED) {
    340      1.52        ad 		lwp_unlock(l);
    341      1.52        ad 		return;
    342       1.2   thorpej 	}
    343       1.2   thorpej 
    344      1.52        ad 	/* setrunnable() will release the lock. */
    345      1.52        ad 	setrunnable(l);
    346       1.2   thorpej }
    347       1.2   thorpej 
    348      1.52        ad /*
    349      1.52        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    350      1.52        ad  * non-zero, we are waiting for a specific LWP.
    351      1.52        ad  *
    352      1.52        ad  * Must be called with p->p_smutex held.
    353      1.52        ad  */
    354       1.2   thorpej int
    355       1.2   thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    356       1.2   thorpej {
    357       1.2   thorpej 	struct proc *p = l->l_proc;
    358      1.52        ad 	struct lwp *l2;
    359      1.52        ad 	int nfound, error;
    360      1.63        ad 	lwpid_t curlid;
    361      1.63        ad 	bool exiting;
    362       1.2   thorpej 
    363      1.63        ad 	KASSERT(mutex_owned(&p->p_smutex));
    364      1.52        ad 
    365      1.52        ad 	p->p_nlwpwait++;
    366      1.63        ad 	l->l_waitingfor = lid;
    367      1.63        ad 	curlid = l->l_lid;
    368      1.63        ad 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    369      1.52        ad 
    370      1.52        ad 	for (;;) {
    371      1.52        ad 		/*
    372      1.52        ad 		 * Avoid a race between exit1() and sigexit(): if the
    373      1.52        ad 		 * process is dumping core, then we need to bail out: call
    374      1.52        ad 		 * into lwp_userret() where we will be suspended until the
    375      1.52        ad 		 * deed is done.
    376      1.52        ad 		 */
    377      1.52        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    378      1.52        ad 			mutex_exit(&p->p_smutex);
    379      1.52        ad 			lwp_userret(l);
    380      1.52        ad #ifdef DIAGNOSTIC
    381      1.52        ad 			panic("lwp_wait1");
    382      1.52        ad #endif
    383      1.52        ad 			/* NOTREACHED */
    384      1.52        ad 		}
    385      1.52        ad 
    386      1.52        ad 		/*
    387      1.52        ad 		 * First off, drain any detached LWP that is waiting to be
    388      1.52        ad 		 * reaped.
    389      1.52        ad 		 */
    390      1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    391      1.52        ad 			p->p_zomblwp = NULL;
    392      1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    393      1.52        ad 			mutex_enter(&p->p_smutex);
    394      1.52        ad 		}
    395      1.52        ad 
    396      1.52        ad 		/*
    397      1.52        ad 		 * Now look for an LWP to collect.  If the whole process is
    398      1.52        ad 		 * exiting, count detached LWPs as eligible to be collected,
    399      1.52        ad 		 * but don't drain them here.
    400      1.52        ad 		 */
    401      1.52        ad 		nfound = 0;
    402      1.63        ad 		error = 0;
    403      1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    404      1.63        ad 			/*
    405      1.63        ad 			 * If a specific wait and the target is waiting on
    406      1.63        ad 			 * us, then avoid deadlock.  This also traps LWPs
    407      1.63        ad 			 * that try to wait on themselves.
    408      1.63        ad 			 *
    409      1.63        ad 			 * Note that this does not handle more complicated
    410      1.63        ad 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    411      1.63        ad 			 * can still be killed so it is not a major problem.
    412      1.63        ad 			 */
    413      1.63        ad 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    414      1.63        ad 				error = EDEADLK;
    415      1.63        ad 				break;
    416      1.63        ad 			}
    417      1.63        ad 			if (l2 == l)
    418      1.52        ad 				continue;
    419      1.52        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    420      1.63        ad 				nfound += exiting;
    421      1.63        ad 				continue;
    422      1.63        ad 			}
    423      1.63        ad 			if (lid != 0) {
    424      1.63        ad 				if (l2->l_lid != lid)
    425      1.63        ad 					continue;
    426      1.63        ad 				/*
    427      1.63        ad 				 * Mark this LWP as the first waiter, if there
    428      1.63        ad 				 * is no other.
    429      1.63        ad 				 */
    430      1.63        ad 				if (l2->l_waiter == 0)
    431      1.63        ad 					l2->l_waiter = curlid;
    432      1.63        ad 			} else if (l2->l_waiter != 0) {
    433      1.63        ad 				/*
    434      1.63        ad 				 * It already has a waiter - so don't
    435      1.63        ad 				 * collect it.  If the waiter doesn't
    436      1.63        ad 				 * grab it we'll get another chance
    437      1.63        ad 				 * later.
    438      1.63        ad 				 */
    439      1.63        ad 				nfound++;
    440      1.52        ad 				continue;
    441      1.52        ad 			}
    442      1.52        ad 			nfound++;
    443       1.2   thorpej 
    444      1.52        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    445      1.52        ad 			if (l2->l_stat != LSZOMB)
    446      1.52        ad 				continue;
    447       1.2   thorpej 
    448      1.63        ad 			/*
    449      1.63        ad 			 * We're no longer waiting.  Reset the "first waiter"
    450      1.63        ad 			 * pointer on the target, in case it was us.
    451      1.63        ad 			 */
    452      1.63        ad 			l->l_waitingfor = 0;
    453      1.63        ad 			l2->l_waiter = 0;
    454      1.63        ad 			p->p_nlwpwait--;
    455       1.2   thorpej 			if (departed)
    456       1.2   thorpej 				*departed = l2->l_lid;
    457  1.74.2.1    bouyer 			sched_lwp_collect(l2);
    458      1.63        ad 
    459      1.63        ad 			/* lwp_free() releases the proc lock. */
    460      1.63        ad 			lwp_free(l2, false, false);
    461      1.52        ad 			mutex_enter(&p->p_smutex);
    462      1.52        ad 			return 0;
    463      1.52        ad 		}
    464       1.2   thorpej 
    465      1.63        ad 		if (error != 0)
    466      1.63        ad 			break;
    467      1.52        ad 		if (nfound == 0) {
    468      1.52        ad 			error = ESRCH;
    469      1.52        ad 			break;
    470      1.52        ad 		}
    471      1.63        ad 
    472      1.63        ad 		/*
    473      1.63        ad 		 * The kernel is careful to ensure that it can not deadlock
    474      1.63        ad 		 * when exiting - just keep waiting.
    475      1.63        ad 		 */
    476      1.63        ad 		if (exiting) {
    477      1.52        ad 			KASSERT(p->p_nlwps > 1);
    478      1.52        ad 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    479      1.52        ad 			continue;
    480      1.52        ad 		}
    481      1.63        ad 
    482      1.63        ad 		/*
    483      1.63        ad 		 * If all other LWPs are waiting for exits or suspends
    484      1.63        ad 		 * and the supply of zombies and potential zombies is
    485      1.63        ad 		 * exhausted, then we are about to deadlock.
    486      1.63        ad 		 *
    487      1.63        ad 		 * If the process is exiting (and this LWP is not the one
    488      1.63        ad 		 * that is coordinating the exit) then bail out now.
    489      1.63        ad 		 */
    490      1.52        ad 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    491      1.63        ad 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    492      1.52        ad 			error = EDEADLK;
    493      1.52        ad 			break;
    494       1.2   thorpej 		}
    495      1.63        ad 
    496      1.63        ad 		/*
    497      1.63        ad 		 * Sit around and wait for something to happen.  We'll be
    498      1.63        ad 		 * awoken if any of the conditions examined change: if an
    499      1.63        ad 		 * LWP exits, is collected, or is detached.
    500      1.63        ad 		 */
    501      1.52        ad 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    502      1.52        ad 			break;
    503       1.2   thorpej 	}
    504       1.2   thorpej 
    505      1.63        ad 	/*
    506      1.63        ad 	 * We didn't find any LWPs to collect, we may have received a
    507      1.63        ad 	 * signal, or some other condition has caused us to bail out.
    508      1.63        ad 	 *
    509      1.63        ad 	 * If waiting on a specific LWP, clear the waiters marker: some
    510      1.63        ad 	 * other LWP may want it.  Then, kick all the remaining waiters
    511      1.63        ad 	 * so that they can re-check for zombies and for deadlock.
    512      1.63        ad 	 */
    513      1.63        ad 	if (lid != 0) {
    514      1.63        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    515      1.63        ad 			if (l2->l_lid == lid) {
    516      1.63        ad 				if (l2->l_waiter == curlid)
    517      1.63        ad 					l2->l_waiter = 0;
    518      1.63        ad 				break;
    519      1.63        ad 			}
    520      1.63        ad 		}
    521      1.63        ad 	}
    522      1.52        ad 	p->p_nlwpwait--;
    523      1.63        ad 	l->l_waitingfor = 0;
    524      1.63        ad 	cv_broadcast(&p->p_lwpcv);
    525      1.63        ad 
    526      1.52        ad 	return error;
    527       1.2   thorpej }
    528       1.2   thorpej 
    529      1.52        ad /*
    530      1.52        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    531      1.52        ad  * The new LWP is created in state LSIDL and must be set running,
    532      1.52        ad  * suspended, or stopped by the caller.
    533      1.52        ad  */
    534       1.2   thorpej int
    535  1.74.2.1    bouyer lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
    536  1.74.2.1    bouyer 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    537  1.74.2.1    bouyer 	   lwp_t **rnewlwpp, int sclass)
    538       1.2   thorpej {
    539      1.52        ad 	struct lwp *l2, *isfree;
    540      1.52        ad 	turnstile_t *ts;
    541       1.2   thorpej 
    542      1.52        ad 	/*
    543      1.52        ad 	 * First off, reap any detached LWP waiting to be collected.
    544      1.52        ad 	 * We can re-use its LWP structure and turnstile.
    545      1.52        ad 	 */
    546      1.52        ad 	isfree = NULL;
    547      1.52        ad 	if (p2->p_zomblwp != NULL) {
    548      1.52        ad 		mutex_enter(&p2->p_smutex);
    549      1.52        ad 		if ((isfree = p2->p_zomblwp) != NULL) {
    550      1.52        ad 			p2->p_zomblwp = NULL;
    551      1.63        ad 			lwp_free(isfree, true, false);/* releases proc mutex */
    552      1.52        ad 		} else
    553      1.52        ad 			mutex_exit(&p2->p_smutex);
    554      1.52        ad 	}
    555      1.52        ad 	if (isfree == NULL) {
    556      1.52        ad 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    557      1.52        ad 		memset(l2, 0, sizeof(*l2));
    558  1.74.2.1    bouyer 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    559      1.60      yamt 		SLIST_INIT(&l2->l_pi_lenders);
    560      1.52        ad 	} else {
    561      1.52        ad 		l2 = isfree;
    562      1.52        ad 		ts = l2->l_ts;
    563  1.74.2.1    bouyer 		KASSERT(l2->l_inheritedprio == -1);
    564      1.60      yamt 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    565      1.52        ad 		memset(l2, 0, sizeof(*l2));
    566      1.52        ad 		l2->l_ts = ts;
    567      1.52        ad 	}
    568       1.2   thorpej 
    569       1.2   thorpej 	l2->l_stat = LSIDL;
    570       1.2   thorpej 	l2->l_proc = p2;
    571      1.52        ad 	l2->l_refcnt = 1;
    572  1.74.2.1    bouyer 	l2->l_class = sclass;
    573  1.74.2.1    bouyer 	l2->l_kpriority = l1->l_kpriority;
    574      1.52        ad 	l2->l_priority = l1->l_priority;
    575  1.74.2.1    bouyer 	l2->l_inheritedprio = -1;
    576      1.64      yamt 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    577      1.52        ad 	l2->l_cpu = l1->l_cpu;
    578      1.56     pavel 	l2->l_flag = inmem ? LW_INMEM : 0;
    579      1.41   thorpej 
    580      1.56     pavel 	if (p2->p_flag & PK_SYSTEM) {
    581      1.52        ad 		/*
    582      1.52        ad 		 * Mark it as a system process and not a candidate for
    583      1.52        ad 		 * swapping.
    584      1.52        ad 		 */
    585      1.56     pavel 		l2->l_flag |= LW_SYSTEM;
    586      1.73     rmind 	} else {
    587      1.73     rmind 		/* Look for a CPU to start */
    588      1.73     rmind 		l2->l_cpu = sched_takecpu(l2);
    589      1.73     rmind 		l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
    590      1.52        ad 	}
    591       1.2   thorpej 
    592      1.73     rmind 	lwp_initspecific(l2);
    593  1.74.2.1    bouyer 	sched_lwp_fork(l1, l2);
    594      1.37        ad 	lwp_update_creds(l2);
    595      1.70        ad 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    596      1.70        ad 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    597      1.65        ad 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    598      1.52        ad 	cv_init(&l2->l_sigcv, "sigwait");
    599      1.52        ad 	l2->l_syncobj = &sched_syncobj;
    600       1.2   thorpej 
    601       1.2   thorpej 	if (rnewlwpp != NULL)
    602       1.2   thorpej 		*rnewlwpp = l2;
    603       1.2   thorpej 
    604      1.36      yamt 	l2->l_addr = UAREA_TO_USER(uaddr);
    605       1.2   thorpej 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    606       1.2   thorpej 	    (arg != NULL) ? arg : l2);
    607       1.2   thorpej 
    608      1.52        ad 	mutex_enter(&p2->p_smutex);
    609      1.52        ad 
    610      1.52        ad 	if ((flags & LWP_DETACHED) != 0) {
    611      1.52        ad 		l2->l_prflag = LPR_DETACHED;
    612      1.52        ad 		p2->p_ndlwps++;
    613      1.52        ad 	} else
    614      1.52        ad 		l2->l_prflag = 0;
    615      1.52        ad 
    616      1.52        ad 	l2->l_sigmask = l1->l_sigmask;
    617      1.52        ad 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    618      1.52        ad 	sigemptyset(&l2->l_sigpend.sp_set);
    619      1.52        ad 
    620      1.53      yamt 	p2->p_nlwpid++;
    621      1.53      yamt 	if (p2->p_nlwpid == 0)
    622      1.53      yamt 		p2->p_nlwpid++;
    623      1.53      yamt 	l2->l_lid = p2->p_nlwpid;
    624       1.2   thorpej 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    625       1.2   thorpej 	p2->p_nlwps++;
    626       1.2   thorpej 
    627      1.52        ad 	mutex_exit(&p2->p_smutex);
    628      1.52        ad 
    629      1.65        ad 	mutex_enter(&proclist_lock);
    630      1.52        ad 	mutex_enter(&proclist_mutex);
    631       1.2   thorpej 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    632      1.52        ad 	mutex_exit(&proclist_mutex);
    633      1.65        ad 	mutex_exit(&proclist_lock);
    634       1.2   thorpej 
    635      1.57       dsl 	SYSCALL_TIME_LWP_INIT(l2);
    636      1.57       dsl 
    637      1.16      manu 	if (p2->p_emul->e_lwp_fork)
    638      1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    639      1.16      manu 
    640       1.2   thorpej 	return (0);
    641       1.2   thorpej }
    642       1.2   thorpej 
    643       1.2   thorpej /*
    644      1.64      yamt  * Called by MD code when a new LWP begins execution.  Must be called
    645      1.64      yamt  * with the previous LWP locked (so at splsched), or if there is no
    646      1.64      yamt  * previous LWP, at splsched.
    647      1.64      yamt  */
    648      1.64      yamt void
    649      1.64      yamt lwp_startup(struct lwp *prev, struct lwp *new)
    650      1.64      yamt {
    651      1.64      yamt 
    652      1.64      yamt 	if (prev != NULL) {
    653      1.64      yamt 		lwp_unlock(prev);
    654      1.64      yamt 	}
    655      1.64      yamt 	spl0();
    656      1.64      yamt 	pmap_activate(new);
    657      1.64      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
    658      1.65        ad 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    659      1.65        ad 		KERNEL_LOCK(1, new);
    660      1.65        ad 	}
    661      1.64      yamt }
    662      1.64      yamt 
    663      1.64      yamt /*
    664      1.65        ad  * Exit an LWP.
    665       1.2   thorpej  */
    666       1.2   thorpej void
    667       1.2   thorpej lwp_exit(struct lwp *l)
    668       1.2   thorpej {
    669       1.2   thorpej 	struct proc *p = l->l_proc;
    670      1.52        ad 	struct lwp *l2;
    671      1.65        ad 	bool current;
    672      1.65        ad 
    673      1.65        ad 	current = (l == curlwp);
    674       1.2   thorpej 
    675      1.65        ad 	KASSERT(current || l->l_stat == LSIDL);
    676       1.2   thorpej 
    677      1.52        ad 	/*
    678      1.52        ad 	 * Verify that we hold no locks other than the kernel lock.
    679      1.52        ad 	 */
    680      1.52        ad #ifdef MULTIPROCESSOR
    681      1.52        ad 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    682      1.52        ad #else
    683      1.52        ad 	LOCKDEBUG_BARRIER(NULL, 0);
    684      1.52        ad #endif
    685      1.16      manu 
    686       1.2   thorpej 	/*
    687      1.52        ad 	 * If we are the last live LWP in a process, we need to exit the
    688      1.52        ad 	 * entire process.  We do so with an exit status of zero, because
    689      1.52        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
    690      1.52        ad 	 *
    691      1.52        ad 	 * We are not quite a zombie yet, but for accounting purposes we
    692      1.52        ad 	 * must increment the count of zombies here.
    693      1.45   thorpej 	 *
    694      1.45   thorpej 	 * Note: the last LWP's specificdata will be deleted here.
    695       1.2   thorpej 	 */
    696      1.52        ad 	mutex_enter(&p->p_smutex);
    697      1.52        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
    698      1.65        ad 		KASSERT(current == true);
    699       1.2   thorpej 		exit1(l, 0);
    700      1.19  jdolecek 		/* NOTREACHED */
    701       1.2   thorpej 	}
    702      1.52        ad 	p->p_nzlwps++;
    703      1.52        ad 	mutex_exit(&p->p_smutex);
    704      1.52        ad 
    705      1.52        ad 	if (p->p_emul->e_lwp_exit)
    706      1.52        ad 		(*p->p_emul->e_lwp_exit)(l);
    707       1.2   thorpej 
    708      1.45   thorpej 	/* Delete the specificdata while it's still safe to sleep. */
    709      1.45   thorpej 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    710      1.45   thorpej 
    711      1.52        ad 	/*
    712      1.52        ad 	 * Release our cached credentials.
    713      1.52        ad 	 */
    714      1.37        ad 	kauth_cred_free(l->l_cred);
    715      1.70        ad 	callout_destroy(&l->l_timeout_ch);
    716      1.65        ad 
    717      1.65        ad 	/*
    718      1.65        ad 	 * While we can still block, mark the LWP as unswappable to
    719      1.65        ad 	 * prevent conflicts with the with the swapper.
    720      1.65        ad 	 */
    721      1.65        ad 	if (current)
    722      1.65        ad 		uvm_lwp_hold(l);
    723      1.37        ad 
    724      1.52        ad 	/*
    725      1.52        ad 	 * Remove the LWP from the global list.
    726      1.52        ad 	 */
    727      1.65        ad 	mutex_enter(&proclist_lock);
    728      1.52        ad 	mutex_enter(&proclist_mutex);
    729      1.52        ad 	LIST_REMOVE(l, l_list);
    730      1.52        ad 	mutex_exit(&proclist_mutex);
    731      1.65        ad 	mutex_exit(&proclist_lock);
    732      1.19  jdolecek 
    733      1.52        ad 	/*
    734      1.52        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
    735      1.52        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    736      1.52        ad 	 * mark it waiting for collection in the proc structure.  Note that
    737      1.52        ad 	 * before we can do that, we need to free any other dead, deatched
    738      1.52        ad 	 * LWP waiting to meet its maker.
    739      1.52        ad 	 *
    740      1.52        ad 	 * XXXSMP disable preemption.
    741      1.52        ad 	 */
    742      1.52        ad 	mutex_enter(&p->p_smutex);
    743      1.52        ad 	lwp_drainrefs(l);
    744      1.31      yamt 
    745      1.52        ad 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    746      1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    747      1.52        ad 			p->p_zomblwp = NULL;
    748      1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    749      1.52        ad 			mutex_enter(&p->p_smutex);
    750      1.72        ad 			l->l_refcnt++;
    751      1.72        ad 			lwp_drainrefs(l);
    752      1.52        ad 		}
    753      1.52        ad 		p->p_zomblwp = l;
    754      1.52        ad 	}
    755      1.31      yamt 
    756      1.52        ad 	/*
    757      1.52        ad 	 * If we find a pending signal for the process and we have been
    758      1.52        ad 	 * asked to check for signals, then we loose: arrange to have
    759      1.52        ad 	 * all other LWPs in the process check for signals.
    760      1.52        ad 	 */
    761      1.56     pavel 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    762      1.52        ad 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    763      1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    764      1.52        ad 			lwp_lock(l2);
    765      1.56     pavel 			l2->l_flag |= LW_PENDSIG;
    766      1.52        ad 			lwp_unlock(l2);
    767      1.52        ad 		}
    768      1.31      yamt 	}
    769      1.31      yamt 
    770      1.52        ad 	lwp_lock(l);
    771      1.52        ad 	l->l_stat = LSZOMB;
    772      1.52        ad 	lwp_unlock(l);
    773       1.2   thorpej 	p->p_nrlwps--;
    774      1.52        ad 	cv_broadcast(&p->p_lwpcv);
    775  1.74.2.1    bouyer 	if (l->l_lwpctl != NULL)
    776  1.74.2.1    bouyer 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    777      1.52        ad 	mutex_exit(&p->p_smutex);
    778      1.52        ad 
    779      1.52        ad 	/*
    780      1.52        ad 	 * We can no longer block.  At this point, lwp_free() may already
    781      1.52        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    782      1.52        ad 	 *
    783      1.52        ad 	 * Free MD LWP resources.
    784      1.52        ad 	 */
    785      1.52        ad #ifndef __NO_CPU_LWP_FREE
    786      1.52        ad 	cpu_lwp_free(l, 0);
    787      1.52        ad #endif
    788       1.2   thorpej 
    789      1.65        ad 	if (current) {
    790      1.65        ad 		pmap_deactivate(l);
    791      1.65        ad 
    792      1.65        ad 		/*
    793      1.65        ad 		 * Release the kernel lock, and switch away into
    794      1.65        ad 		 * oblivion.
    795      1.65        ad 		 */
    796      1.52        ad #ifdef notyet
    797      1.65        ad 		/* XXXSMP hold in lwp_userret() */
    798      1.65        ad 		KERNEL_UNLOCK_LAST(l);
    799      1.52        ad #else
    800      1.65        ad 		KERNEL_UNLOCK_ALL(l, NULL);
    801      1.52        ad #endif
    802      1.65        ad 		lwp_exit_switchaway(l);
    803      1.65        ad 	}
    804       1.2   thorpej }
    805       1.2   thorpej 
    806       1.2   thorpej void
    807      1.64      yamt lwp_exit_switchaway(struct lwp *l)
    808       1.2   thorpej {
    809      1.64      yamt 	struct cpu_info *ci;
    810      1.64      yamt 	struct lwp *idlelwp;
    811      1.64      yamt 
    812      1.64      yamt 	/* Unlocked, but is for statistics only. */
    813      1.64      yamt 	uvmexp.swtch++;
    814      1.64      yamt 
    815      1.64      yamt 	(void)splsched();
    816      1.64      yamt 	l->l_flag &= ~LW_RUNNING;
    817      1.64      yamt 	ci = curcpu();
    818      1.64      yamt 	idlelwp = ci->ci_data.cpu_idlelwp;
    819      1.64      yamt 	idlelwp->l_stat = LSONPROC;
    820  1.74.2.1    bouyer 
    821  1.74.2.1    bouyer 	/*
    822  1.74.2.1    bouyer 	 * cpu_onproc must be updated with the CPU locked, as
    823  1.74.2.1    bouyer 	 * aston() may try to set a AST pending on the LWP (and
    824  1.74.2.1    bouyer 	 * it does so with the CPU locked).  Otherwise, the LWP
    825  1.74.2.1    bouyer 	 * may be destroyed before the AST can be set, leading
    826  1.74.2.1    bouyer 	 * to a user-after-free.
    827  1.74.2.1    bouyer 	 */
    828  1.74.2.1    bouyer 	spc_lock(ci);
    829  1.74.2.1    bouyer 	ci->ci_data.cpu_onproc = idlelwp;
    830  1.74.2.1    bouyer 	spc_unlock(ci);
    831  1.74.2.1    bouyer 	cpu_switchto(NULL, idlelwp, false);
    832      1.52        ad }
    833      1.52        ad 
    834      1.52        ad /*
    835      1.52        ad  * Free a dead LWP's remaining resources.
    836      1.52        ad  *
    837      1.52        ad  * XXXLWP limits.
    838      1.52        ad  */
    839      1.52        ad void
    840      1.63        ad lwp_free(struct lwp *l, bool recycle, bool last)
    841      1.52        ad {
    842      1.52        ad 	struct proc *p = l->l_proc;
    843      1.52        ad 	ksiginfoq_t kq;
    844      1.52        ad 
    845      1.52        ad 	/*
    846      1.52        ad 	 * If this was not the last LWP in the process, then adjust
    847      1.52        ad 	 * counters and unlock.
    848      1.52        ad 	 */
    849      1.52        ad 	if (!last) {
    850      1.52        ad 		/*
    851      1.52        ad 		 * Add the LWP's run time to the process' base value.
    852      1.52        ad 		 * This needs to co-incide with coming off p_lwps.
    853      1.52        ad 		 */
    854      1.52        ad 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    855      1.64      yamt 		p->p_pctcpu += l->l_pctcpu;
    856      1.52        ad 		LIST_REMOVE(l, l_sibling);
    857      1.52        ad 		p->p_nlwps--;
    858      1.52        ad 		p->p_nzlwps--;
    859      1.52        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
    860      1.52        ad 			p->p_ndlwps--;
    861      1.63        ad 
    862      1.63        ad 		/*
    863      1.63        ad 		 * Have any LWPs sleeping in lwp_wait() recheck for
    864      1.63        ad 		 * deadlock.
    865      1.63        ad 		 */
    866      1.63        ad 		cv_broadcast(&p->p_lwpcv);
    867      1.52        ad 		mutex_exit(&p->p_smutex);
    868      1.63        ad 	}
    869      1.52        ad 
    870      1.52        ad #ifdef MULTIPROCESSOR
    871      1.63        ad 	/*
    872      1.63        ad 	 * In the unlikely event that the LWP is still on the CPU,
    873      1.63        ad 	 * then spin until it has switched away.  We need to release
    874      1.63        ad 	 * all locks to avoid deadlock against interrupt handlers on
    875      1.63        ad 	 * the target CPU.
    876      1.63        ad 	 */
    877      1.64      yamt 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    878      1.63        ad 		int count;
    879      1.64      yamt 		(void)count; /* XXXgcc */
    880      1.63        ad 		KERNEL_UNLOCK_ALL(curlwp, &count);
    881      1.64      yamt 		while ((l->l_flag & LW_RUNNING) != 0 ||
    882      1.64      yamt 		    l->l_cpu->ci_curlwp == l)
    883      1.63        ad 			SPINLOCK_BACKOFF_HOOK;
    884      1.63        ad 		KERNEL_LOCK(count, curlwp);
    885      1.63        ad 	}
    886      1.52        ad #endif
    887      1.52        ad 
    888      1.52        ad 	/*
    889      1.52        ad 	 * Destroy the LWP's remaining signal information.
    890      1.52        ad 	 */
    891      1.52        ad 	ksiginfo_queue_init(&kq);
    892      1.52        ad 	sigclear(&l->l_sigpend, NULL, &kq);
    893      1.52        ad 	ksiginfo_queue_drain(&kq);
    894      1.52        ad 	cv_destroy(&l->l_sigcv);
    895      1.65        ad 	mutex_destroy(&l->l_swaplock);
    896       1.2   thorpej 
    897      1.19  jdolecek 	/*
    898      1.52        ad 	 * Free the LWP's turnstile and the LWP structure itself unless the
    899      1.64      yamt 	 * caller wants to recycle them.  Also, free the scheduler specific data.
    900      1.52        ad 	 *
    901      1.52        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
    902      1.52        ad 	 * so if it comes up just drop it quietly and move on.
    903      1.52        ad 	 *
    904      1.52        ad 	 * We don't recycle the VM resources at this time.
    905      1.19  jdolecek 	 */
    906      1.55        ad 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    907      1.64      yamt 
    908  1.74.2.1    bouyer 	if (l->l_lwpctl != NULL)
    909  1.74.2.1    bouyer 		lwp_ctl_free(l);
    910      1.64      yamt 	sched_lwp_exit(l);
    911      1.64      yamt 
    912      1.52        ad 	if (!recycle && l->l_ts != &turnstile0)
    913  1.74.2.1    bouyer 		pool_cache_put(turnstile_cache, l->l_ts);
    914      1.52        ad #ifndef __NO_CPU_LWP_FREE
    915      1.52        ad 	cpu_lwp_free2(l);
    916      1.52        ad #endif
    917      1.19  jdolecek 	uvm_lwp_exit(l);
    918      1.60      yamt 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    919  1.74.2.1    bouyer 	KASSERT(l->l_inheritedprio == -1);
    920      1.52        ad 	if (!recycle)
    921      1.19  jdolecek 		pool_put(&lwp_pool, l);
    922      1.55        ad 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    923       1.2   thorpej }
    924       1.2   thorpej 
    925       1.2   thorpej /*
    926       1.2   thorpej  * Pick a LWP to represent the process for those operations which
    927       1.2   thorpej  * want information about a "process" that is actually associated
    928       1.2   thorpej  * with a LWP.
    929      1.52        ad  *
    930      1.52        ad  * If 'locking' is false, no locking or lock checks are performed.
    931      1.52        ad  * This is intended for use by DDB.
    932      1.52        ad  *
    933      1.52        ad  * We don't bother locking the LWP here, since code that uses this
    934      1.52        ad  * interface is broken by design and an exact match is not required.
    935       1.2   thorpej  */
    936       1.2   thorpej struct lwp *
    937      1.52        ad proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    938       1.2   thorpej {
    939       1.2   thorpej 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    940      1.27      matt 	struct lwp *signalled;
    941      1.52        ad 	int cnt;
    942      1.52        ad 
    943      1.52        ad 	if (locking) {
    944      1.63        ad 		KASSERT(mutex_owned(&p->p_smutex));
    945      1.52        ad 	}
    946       1.2   thorpej 
    947       1.2   thorpej 	/* Trivial case: only one LWP */
    948      1.52        ad 	if (p->p_nlwps == 1) {
    949      1.52        ad 		l = LIST_FIRST(&p->p_lwps);
    950      1.52        ad 		if (nrlwps)
    951      1.68       tnn 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
    952      1.52        ad 		return l;
    953      1.52        ad 	}
    954       1.2   thorpej 
    955      1.52        ad 	cnt = 0;
    956       1.2   thorpej 	switch (p->p_stat) {
    957       1.2   thorpej 	case SSTOP:
    958       1.2   thorpej 	case SACTIVE:
    959       1.2   thorpej 		/* Pick the most live LWP */
    960       1.2   thorpej 		onproc = running = sleeping = stopped = suspended = NULL;
    961      1.27      matt 		signalled = NULL;
    962       1.2   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    963      1.64      yamt 			if ((l->l_flag & LW_IDLE) != 0) {
    964      1.64      yamt 				continue;
    965      1.64      yamt 			}
    966      1.27      matt 			if (l->l_lid == p->p_sigctx.ps_lwp)
    967      1.27      matt 				signalled = l;
    968       1.2   thorpej 			switch (l->l_stat) {
    969       1.2   thorpej 			case LSONPROC:
    970       1.2   thorpej 				onproc = l;
    971      1.52        ad 				cnt++;
    972       1.2   thorpej 				break;
    973       1.2   thorpej 			case LSRUN:
    974       1.2   thorpej 				running = l;
    975      1.52        ad 				cnt++;
    976       1.2   thorpej 				break;
    977       1.2   thorpej 			case LSSLEEP:
    978       1.2   thorpej 				sleeping = l;
    979       1.2   thorpej 				break;
    980       1.2   thorpej 			case LSSTOP:
    981       1.2   thorpej 				stopped = l;
    982       1.2   thorpej 				break;
    983       1.2   thorpej 			case LSSUSPENDED:
    984       1.2   thorpej 				suspended = l;
    985       1.2   thorpej 				break;
    986       1.2   thorpej 			}
    987       1.2   thorpej 		}
    988      1.52        ad 		if (nrlwps)
    989      1.52        ad 			*nrlwps = cnt;
    990      1.27      matt 		if (signalled)
    991      1.52        ad 			l = signalled;
    992      1.52        ad 		else if (onproc)
    993      1.52        ad 			l = onproc;
    994      1.52        ad 		else if (running)
    995      1.52        ad 			l = running;
    996      1.52        ad 		else if (sleeping)
    997      1.52        ad 			l = sleeping;
    998      1.52        ad 		else if (stopped)
    999      1.52        ad 			l = stopped;
   1000      1.52        ad 		else if (suspended)
   1001      1.52        ad 			l = suspended;
   1002      1.52        ad 		else
   1003      1.52        ad 			break;
   1004      1.52        ad 		return l;
   1005       1.2   thorpej #ifdef DIAGNOSTIC
   1006       1.2   thorpej 	case SIDL:
   1007      1.52        ad 	case SZOMB:
   1008      1.52        ad 	case SDYING:
   1009      1.52        ad 	case SDEAD:
   1010      1.52        ad 		if (locking)
   1011      1.52        ad 			mutex_exit(&p->p_smutex);
   1012       1.2   thorpej 		/* We have more than one LWP and we're in SIDL?
   1013       1.2   thorpej 		 * How'd that happen?
   1014       1.2   thorpej 		 */
   1015      1.52        ad 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
   1016      1.52        ad 		    p->p_pid, p->p_comm, p->p_stat);
   1017      1.52        ad 		break;
   1018       1.2   thorpej 	default:
   1019      1.52        ad 		if (locking)
   1020      1.52        ad 			mutex_exit(&p->p_smutex);
   1021       1.2   thorpej 		panic("Process %d (%s) in unknown state %d",
   1022       1.2   thorpej 		    p->p_pid, p->p_comm, p->p_stat);
   1023       1.2   thorpej #endif
   1024       1.2   thorpej 	}
   1025       1.2   thorpej 
   1026      1.52        ad 	if (locking)
   1027      1.52        ad 		mutex_exit(&p->p_smutex);
   1028       1.2   thorpej 	panic("proc_representative_lwp: couldn't find a lwp for process"
   1029       1.2   thorpej 		" %d (%s)", p->p_pid, p->p_comm);
   1030       1.2   thorpej 	/* NOTREACHED */
   1031       1.2   thorpej 	return NULL;
   1032       1.2   thorpej }
   1033      1.37        ad 
   1034      1.37        ad /*
   1035      1.52        ad  * Look up a live LWP within the speicifed process, and return it locked.
   1036      1.52        ad  *
   1037      1.52        ad  * Must be called with p->p_smutex held.
   1038      1.52        ad  */
   1039      1.52        ad struct lwp *
   1040      1.52        ad lwp_find(struct proc *p, int id)
   1041      1.52        ad {
   1042      1.52        ad 	struct lwp *l;
   1043      1.52        ad 
   1044      1.63        ad 	KASSERT(mutex_owned(&p->p_smutex));
   1045      1.52        ad 
   1046      1.52        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1047      1.52        ad 		if (l->l_lid == id)
   1048      1.52        ad 			break;
   1049      1.52        ad 	}
   1050      1.52        ad 
   1051      1.52        ad 	/*
   1052      1.52        ad 	 * No need to lock - all of these conditions will
   1053      1.52        ad 	 * be visible with the process level mutex held.
   1054      1.52        ad 	 */
   1055      1.52        ad 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1056      1.52        ad 		l = NULL;
   1057      1.52        ad 
   1058      1.52        ad 	return l;
   1059      1.52        ad }
   1060      1.52        ad 
   1061      1.52        ad /*
   1062      1.37        ad  * Update an LWP's cached credentials to mirror the process' master copy.
   1063      1.37        ad  *
   1064      1.37        ad  * This happens early in the syscall path, on user trap, and on LWP
   1065      1.37        ad  * creation.  A long-running LWP can also voluntarily choose to update
   1066      1.37        ad  * it's credentials by calling this routine.  This may be called from
   1067      1.37        ad  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1068      1.37        ad  */
   1069      1.37        ad void
   1070      1.37        ad lwp_update_creds(struct lwp *l)
   1071      1.37        ad {
   1072      1.37        ad 	kauth_cred_t oc;
   1073      1.37        ad 	struct proc *p;
   1074      1.37        ad 
   1075      1.37        ad 	p = l->l_proc;
   1076      1.37        ad 	oc = l->l_cred;
   1077      1.37        ad 
   1078      1.52        ad 	mutex_enter(&p->p_mutex);
   1079      1.37        ad 	kauth_cred_hold(p->p_cred);
   1080      1.37        ad 	l->l_cred = p->p_cred;
   1081      1.52        ad 	mutex_exit(&p->p_mutex);
   1082      1.52        ad 	if (oc != NULL) {
   1083      1.52        ad 		KERNEL_LOCK(1, l);	/* XXXSMP */
   1084      1.37        ad 		kauth_cred_free(oc);
   1085      1.52        ad 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
   1086      1.52        ad 	}
   1087      1.52        ad }
   1088      1.52        ad 
   1089      1.52        ad /*
   1090      1.52        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
   1091      1.52        ad  * one we specify.
   1092      1.52        ad  */
   1093      1.52        ad int
   1094      1.52        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
   1095      1.52        ad {
   1096      1.52        ad 	kmutex_t *cur = l->l_mutex;
   1097      1.52        ad 
   1098      1.52        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1099      1.52        ad }
   1100      1.52        ad 
   1101      1.52        ad /*
   1102      1.52        ad  * Lock an LWP.
   1103      1.52        ad  */
   1104      1.52        ad void
   1105      1.52        ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1106      1.52        ad {
   1107      1.52        ad 
   1108      1.52        ad 	/*
   1109      1.52        ad 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1110      1.52        ad 	 *
   1111      1.52        ad 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1112      1.52        ad 	 */
   1113      1.52        ad #if 1
   1114      1.52        ad 	while (l->l_mutex != old) {
   1115      1.52        ad #else
   1116      1.52        ad 	for (;;) {
   1117      1.52        ad #endif
   1118      1.52        ad 		mutex_spin_exit(old);
   1119      1.52        ad 		old = l->l_mutex;
   1120      1.52        ad 		mutex_spin_enter(old);
   1121      1.52        ad 
   1122      1.52        ad 		/*
   1123      1.52        ad 		 * mutex_enter() will have posted a read barrier.  Re-test
   1124      1.52        ad 		 * l->l_mutex.  If it has changed, we need to try again.
   1125      1.52        ad 		 */
   1126      1.52        ad #if 1
   1127      1.52        ad 	}
   1128      1.52        ad #else
   1129      1.52        ad 	} while (__predict_false(l->l_mutex != old));
   1130      1.52        ad #endif
   1131      1.52        ad }
   1132      1.52        ad 
   1133      1.52        ad /*
   1134      1.52        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
   1135      1.52        ad  */
   1136      1.52        ad void
   1137      1.52        ad lwp_setlock(struct lwp *l, kmutex_t *new)
   1138      1.52        ad {
   1139      1.52        ad 
   1140      1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1141      1.52        ad 
   1142      1.52        ad 	mb_write();
   1143      1.52        ad 	l->l_mutex = new;
   1144      1.52        ad }
   1145      1.52        ad 
   1146      1.52        ad /*
   1147      1.52        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1148      1.52        ad  * must be held.
   1149      1.52        ad  */
   1150      1.52        ad void
   1151      1.52        ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1152      1.52        ad {
   1153      1.52        ad 	kmutex_t *old;
   1154      1.52        ad 
   1155      1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1156      1.52        ad 
   1157      1.52        ad 	old = l->l_mutex;
   1158      1.52        ad 	mb_write();
   1159      1.52        ad 	l->l_mutex = new;
   1160      1.52        ad 	mutex_spin_exit(old);
   1161      1.52        ad }
   1162      1.52        ad 
   1163      1.52        ad /*
   1164      1.52        ad  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1165      1.52        ad  * locked.
   1166      1.52        ad  */
   1167      1.52        ad void
   1168      1.52        ad lwp_relock(struct lwp *l, kmutex_t *new)
   1169      1.52        ad {
   1170      1.52        ad 	kmutex_t *old;
   1171      1.52        ad 
   1172      1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1173      1.52        ad 
   1174      1.52        ad 	old = l->l_mutex;
   1175      1.52        ad 	if (old != new) {
   1176      1.52        ad 		mutex_spin_enter(new);
   1177      1.52        ad 		l->l_mutex = new;
   1178      1.52        ad 		mutex_spin_exit(old);
   1179      1.52        ad 	}
   1180      1.52        ad }
   1181      1.52        ad 
   1182      1.60      yamt int
   1183      1.60      yamt lwp_trylock(struct lwp *l)
   1184      1.60      yamt {
   1185      1.60      yamt 	kmutex_t *old;
   1186      1.60      yamt 
   1187      1.60      yamt 	for (;;) {
   1188      1.60      yamt 		if (!mutex_tryenter(old = l->l_mutex))
   1189      1.60      yamt 			return 0;
   1190      1.60      yamt 		if (__predict_true(l->l_mutex == old))
   1191      1.60      yamt 			return 1;
   1192      1.60      yamt 		mutex_spin_exit(old);
   1193      1.60      yamt 	}
   1194      1.60      yamt }
   1195      1.60      yamt 
   1196      1.52        ad /*
   1197      1.56     pavel  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1198      1.52        ad  * set.
   1199      1.52        ad  */
   1200      1.52        ad void
   1201      1.52        ad lwp_userret(struct lwp *l)
   1202      1.52        ad {
   1203      1.52        ad 	struct proc *p;
   1204      1.54        ad 	void (*hook)(void);
   1205      1.52        ad 	int sig;
   1206      1.52        ad 
   1207      1.52        ad 	p = l->l_proc;
   1208      1.52        ad 
   1209  1.74.2.1    bouyer #ifndef __HAVE_FAST_SOFTINTS
   1210  1.74.2.1    bouyer 	/* Run pending soft interrupts. */
   1211  1.74.2.1    bouyer 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1212  1.74.2.1    bouyer 		softint_overlay();
   1213  1.74.2.1    bouyer #endif
   1214  1.74.2.1    bouyer 
   1215      1.52        ad 	/*
   1216      1.52        ad 	 * It should be safe to do this read unlocked on a multiprocessor
   1217      1.52        ad 	 * system..
   1218      1.52        ad 	 */
   1219      1.56     pavel 	while ((l->l_flag & LW_USERRET) != 0) {
   1220      1.52        ad 		/*
   1221      1.52        ad 		 * Process pending signals first, unless the process
   1222      1.61        ad 		 * is dumping core or exiting, where we will instead
   1223      1.61        ad 		 * enter the L_WSUSPEND case below.
   1224      1.52        ad 		 */
   1225      1.61        ad 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1226      1.61        ad 		    LW_PENDSIG) {
   1227      1.52        ad 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1228      1.52        ad 			mutex_enter(&p->p_smutex);
   1229      1.52        ad 			while ((sig = issignal(l)) != 0)
   1230      1.52        ad 				postsig(sig);
   1231      1.52        ad 			mutex_exit(&p->p_smutex);
   1232      1.52        ad 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1233      1.52        ad 		}
   1234      1.52        ad 
   1235      1.52        ad 		/*
   1236      1.52        ad 		 * Core-dump or suspend pending.
   1237      1.52        ad 		 *
   1238      1.52        ad 		 * In case of core dump, suspend ourselves, so that the
   1239      1.52        ad 		 * kernel stack and therefore the userland registers saved
   1240      1.52        ad 		 * in the trapframe are around for coredump() to write them
   1241      1.52        ad 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1242      1.52        ad 		 * will write the core file out once all other LWPs are
   1243      1.52        ad 		 * suspended.
   1244      1.52        ad 		 */
   1245      1.56     pavel 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1246      1.52        ad 			mutex_enter(&p->p_smutex);
   1247      1.52        ad 			p->p_nrlwps--;
   1248      1.52        ad 			cv_broadcast(&p->p_lwpcv);
   1249      1.52        ad 			lwp_lock(l);
   1250      1.52        ad 			l->l_stat = LSSUSPENDED;
   1251      1.52        ad 			mutex_exit(&p->p_smutex);
   1252      1.64      yamt 			mi_switch(l);
   1253      1.52        ad 		}
   1254      1.52        ad 
   1255      1.52        ad 		/* Process is exiting. */
   1256      1.56     pavel 		if ((l->l_flag & LW_WEXIT) != 0) {
   1257      1.52        ad 			KERNEL_LOCK(1, l);
   1258      1.52        ad 			lwp_exit(l);
   1259      1.52        ad 			KASSERT(0);
   1260      1.52        ad 			/* NOTREACHED */
   1261      1.52        ad 		}
   1262      1.54        ad 
   1263      1.54        ad 		/* Call userret hook; used by Linux emulation. */
   1264      1.56     pavel 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1265      1.54        ad 			lwp_lock(l);
   1266      1.56     pavel 			l->l_flag &= ~LW_WUSERRET;
   1267      1.54        ad 			lwp_unlock(l);
   1268      1.54        ad 			hook = p->p_userret;
   1269      1.54        ad 			p->p_userret = NULL;
   1270      1.54        ad 			(*hook)();
   1271      1.54        ad 		}
   1272      1.52        ad 	}
   1273      1.52        ad }
   1274      1.52        ad 
   1275      1.52        ad /*
   1276      1.52        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1277      1.52        ad  */
   1278      1.52        ad void
   1279      1.52        ad lwp_need_userret(struct lwp *l)
   1280      1.52        ad {
   1281      1.63        ad 	KASSERT(lwp_locked(l, NULL));
   1282      1.52        ad 
   1283      1.52        ad 	/*
   1284      1.52        ad 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1285      1.52        ad 	 * that the condition will be seen before forcing the LWP to enter
   1286      1.52        ad 	 * kernel mode.
   1287      1.52        ad 	 */
   1288      1.52        ad 	mb_write();
   1289      1.52        ad 	cpu_signotify(l);
   1290      1.52        ad }
   1291      1.52        ad 
   1292      1.52        ad /*
   1293      1.52        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1294      1.52        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1295      1.52        ad  */
   1296      1.52        ad void
   1297      1.52        ad lwp_addref(struct lwp *l)
   1298      1.52        ad {
   1299      1.52        ad 
   1300      1.63        ad 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1301      1.52        ad 	KASSERT(l->l_stat != LSZOMB);
   1302      1.52        ad 	KASSERT(l->l_refcnt != 0);
   1303      1.52        ad 
   1304      1.52        ad 	l->l_refcnt++;
   1305      1.52        ad }
   1306      1.52        ad 
   1307      1.52        ad /*
   1308      1.52        ad  * Remove one reference to an LWP.  If this is the last reference,
   1309      1.52        ad  * then we must finalize the LWP's death.
   1310      1.52        ad  */
   1311      1.52        ad void
   1312      1.52        ad lwp_delref(struct lwp *l)
   1313      1.52        ad {
   1314      1.52        ad 	struct proc *p = l->l_proc;
   1315      1.52        ad 
   1316      1.52        ad 	mutex_enter(&p->p_smutex);
   1317      1.72        ad 	KASSERT(l->l_stat != LSZOMB);
   1318      1.72        ad 	KASSERT(l->l_refcnt > 0);
   1319      1.52        ad 	if (--l->l_refcnt == 0)
   1320  1.74.2.1    bouyer 		cv_broadcast(&p->p_lwpcv);
   1321      1.52        ad 	mutex_exit(&p->p_smutex);
   1322      1.52        ad }
   1323      1.52        ad 
   1324      1.52        ad /*
   1325      1.52        ad  * Drain all references to the current LWP.
   1326      1.52        ad  */
   1327      1.52        ad void
   1328      1.52        ad lwp_drainrefs(struct lwp *l)
   1329      1.52        ad {
   1330      1.52        ad 	struct proc *p = l->l_proc;
   1331      1.52        ad 
   1332      1.63        ad 	KASSERT(mutex_owned(&p->p_smutex));
   1333      1.52        ad 	KASSERT(l->l_refcnt != 0);
   1334      1.52        ad 
   1335      1.52        ad 	l->l_refcnt--;
   1336      1.52        ad 	while (l->l_refcnt != 0)
   1337  1.74.2.1    bouyer 		cv_wait(&p->p_lwpcv, &p->p_smutex);
   1338      1.37        ad }
   1339      1.41   thorpej 
   1340      1.41   thorpej /*
   1341      1.41   thorpej  * lwp_specific_key_create --
   1342      1.41   thorpej  *	Create a key for subsystem lwp-specific data.
   1343      1.41   thorpej  */
   1344      1.41   thorpej int
   1345      1.41   thorpej lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1346      1.41   thorpej {
   1347      1.41   thorpej 
   1348      1.45   thorpej 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1349      1.41   thorpej }
   1350      1.41   thorpej 
   1351      1.41   thorpej /*
   1352      1.41   thorpej  * lwp_specific_key_delete --
   1353      1.41   thorpej  *	Delete a key for subsystem lwp-specific data.
   1354      1.41   thorpej  */
   1355      1.41   thorpej void
   1356      1.41   thorpej lwp_specific_key_delete(specificdata_key_t key)
   1357      1.41   thorpej {
   1358      1.41   thorpej 
   1359      1.41   thorpej 	specificdata_key_delete(lwp_specificdata_domain, key);
   1360      1.41   thorpej }
   1361      1.41   thorpej 
   1362      1.45   thorpej /*
   1363      1.45   thorpej  * lwp_initspecific --
   1364      1.45   thorpej  *	Initialize an LWP's specificdata container.
   1365      1.45   thorpej  */
   1366      1.42  christos void
   1367      1.42  christos lwp_initspecific(struct lwp *l)
   1368      1.42  christos {
   1369      1.42  christos 	int error;
   1370      1.45   thorpej 
   1371      1.42  christos 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1372      1.42  christos 	KASSERT(error == 0);
   1373      1.42  christos }
   1374      1.42  christos 
   1375      1.41   thorpej /*
   1376      1.45   thorpej  * lwp_finispecific --
   1377      1.45   thorpej  *	Finalize an LWP's specificdata container.
   1378      1.45   thorpej  */
   1379      1.45   thorpej void
   1380      1.45   thorpej lwp_finispecific(struct lwp *l)
   1381      1.45   thorpej {
   1382      1.45   thorpej 
   1383      1.45   thorpej 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1384      1.45   thorpej }
   1385      1.45   thorpej 
   1386      1.45   thorpej /*
   1387      1.41   thorpej  * lwp_getspecific --
   1388      1.41   thorpej  *	Return lwp-specific data corresponding to the specified key.
   1389      1.41   thorpej  *
   1390      1.41   thorpej  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1391      1.41   thorpej  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1392      1.41   thorpej  *	LWP's specifc data, care must be taken to ensure that doing so
   1393      1.41   thorpej  *	would not cause internal data structure inconsistency (i.e. caller
   1394      1.41   thorpej  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1395      1.41   thorpej  *	or lwp_setspecific() call).
   1396      1.41   thorpej  */
   1397      1.41   thorpej void *
   1398      1.44   thorpej lwp_getspecific(specificdata_key_t key)
   1399      1.41   thorpej {
   1400      1.41   thorpej 
   1401      1.41   thorpej 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1402      1.44   thorpej 						  &curlwp->l_specdataref, key));
   1403      1.41   thorpej }
   1404      1.41   thorpej 
   1405      1.47   hannken void *
   1406      1.47   hannken _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1407      1.47   hannken {
   1408      1.47   hannken 
   1409      1.47   hannken 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1410      1.47   hannken 						  &l->l_specdataref, key));
   1411      1.47   hannken }
   1412      1.47   hannken 
   1413      1.41   thorpej /*
   1414      1.41   thorpej  * lwp_setspecific --
   1415      1.41   thorpej  *	Set lwp-specific data corresponding to the specified key.
   1416      1.41   thorpej  */
   1417      1.41   thorpej void
   1418      1.45   thorpej lwp_setspecific(specificdata_key_t key, void *data)
   1419      1.41   thorpej {
   1420      1.41   thorpej 
   1421      1.41   thorpej 	specificdata_setspecific(lwp_specificdata_domain,
   1422      1.44   thorpej 				 &curlwp->l_specdataref, key, data);
   1423      1.41   thorpej }
   1424  1.74.2.1    bouyer 
   1425  1.74.2.1    bouyer /*
   1426  1.74.2.1    bouyer  * Allocate a new lwpctl structure for a user LWP.
   1427  1.74.2.1    bouyer  */
   1428  1.74.2.1    bouyer int
   1429  1.74.2.1    bouyer lwp_ctl_alloc(vaddr_t *uaddr)
   1430  1.74.2.1    bouyer {
   1431  1.74.2.1    bouyer 	lcproc_t *lp;
   1432  1.74.2.1    bouyer 	u_int bit, i, offset;
   1433  1.74.2.1    bouyer 	struct uvm_object *uao;
   1434  1.74.2.1    bouyer 	int error;
   1435  1.74.2.1    bouyer 	lcpage_t *lcp;
   1436  1.74.2.1    bouyer 	proc_t *p;
   1437  1.74.2.1    bouyer 	lwp_t *l;
   1438  1.74.2.1    bouyer 
   1439  1.74.2.1    bouyer 	l = curlwp;
   1440  1.74.2.1    bouyer 	p = l->l_proc;
   1441  1.74.2.1    bouyer 
   1442  1.74.2.1    bouyer 	if (l->l_lcpage != NULL)
   1443  1.74.2.1    bouyer 		return (EINVAL);
   1444  1.74.2.1    bouyer 
   1445  1.74.2.1    bouyer 	/* First time around, allocate header structure for the process. */
   1446  1.74.2.1    bouyer 	if ((lp = p->p_lwpctl) == NULL) {
   1447  1.74.2.1    bouyer 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1448  1.74.2.1    bouyer 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1449  1.74.2.1    bouyer 		lp->lp_uao = NULL;
   1450  1.74.2.1    bouyer 		TAILQ_INIT(&lp->lp_pages);
   1451  1.74.2.1    bouyer 		mutex_enter(&p->p_mutex);
   1452  1.74.2.1    bouyer 		if (p->p_lwpctl == NULL) {
   1453  1.74.2.1    bouyer 			p->p_lwpctl = lp;
   1454  1.74.2.1    bouyer 			mutex_exit(&p->p_mutex);
   1455  1.74.2.1    bouyer 		} else {
   1456  1.74.2.1    bouyer 			mutex_exit(&p->p_mutex);
   1457  1.74.2.1    bouyer 			mutex_destroy(&lp->lp_lock);
   1458  1.74.2.1    bouyer 			kmem_free(lp, sizeof(*lp));
   1459  1.74.2.1    bouyer 			lp = p->p_lwpctl;
   1460  1.74.2.1    bouyer 		}
   1461  1.74.2.1    bouyer 	}
   1462  1.74.2.1    bouyer 
   1463  1.74.2.1    bouyer  	/*
   1464  1.74.2.1    bouyer  	 * Set up an anonymous memory region to hold the shared pages.
   1465  1.74.2.1    bouyer  	 * Map them into the process' address space.  The user vmspace
   1466  1.74.2.1    bouyer  	 * gets the first reference on the UAO.
   1467  1.74.2.1    bouyer  	 */
   1468  1.74.2.1    bouyer 	mutex_enter(&lp->lp_lock);
   1469  1.74.2.1    bouyer 	if (lp->lp_uao == NULL) {
   1470  1.74.2.1    bouyer 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1471  1.74.2.1    bouyer 		lp->lp_cur = 0;
   1472  1.74.2.1    bouyer 		lp->lp_max = LWPCTL_UAREA_SZ;
   1473  1.74.2.1    bouyer 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1474  1.74.2.1    bouyer 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1475  1.74.2.1    bouyer 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1476  1.74.2.1    bouyer 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1477  1.74.2.1    bouyer 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1478  1.74.2.1    bouyer 		if (error != 0) {
   1479  1.74.2.1    bouyer 			uao_detach(lp->lp_uao);
   1480  1.74.2.1    bouyer 			lp->lp_uao = NULL;
   1481  1.74.2.1    bouyer 			mutex_exit(&lp->lp_lock);
   1482  1.74.2.1    bouyer 			return error;
   1483  1.74.2.1    bouyer 		}
   1484  1.74.2.1    bouyer 	}
   1485  1.74.2.1    bouyer 
   1486  1.74.2.1    bouyer 	/* Get a free block and allocate for this LWP. */
   1487  1.74.2.1    bouyer 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1488  1.74.2.1    bouyer 		if (lcp->lcp_nfree != 0)
   1489  1.74.2.1    bouyer 			break;
   1490  1.74.2.1    bouyer 	}
   1491  1.74.2.1    bouyer 	if (lcp == NULL) {
   1492  1.74.2.1    bouyer 		/* Nothing available - try to set up a free page. */
   1493  1.74.2.1    bouyer 		if (lp->lp_cur == lp->lp_max) {
   1494  1.74.2.1    bouyer 			mutex_exit(&lp->lp_lock);
   1495  1.74.2.1    bouyer 			return ENOMEM;
   1496  1.74.2.1    bouyer 		}
   1497  1.74.2.1    bouyer 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1498  1.74.2.1    bouyer 		if (lcp == NULL) {
   1499  1.74.2.1    bouyer 			mutex_exit(&lp->lp_lock);
   1500  1.74.2.1    bouyer 			return ENOMEM;
   1501  1.74.2.1    bouyer 		}
   1502  1.74.2.1    bouyer 		/*
   1503  1.74.2.1    bouyer 		 * Wire the next page down in kernel space.  Since this
   1504  1.74.2.1    bouyer 		 * is a new mapping, we must add a reference.
   1505  1.74.2.1    bouyer 		 */
   1506  1.74.2.1    bouyer 		uao = lp->lp_uao;
   1507  1.74.2.1    bouyer 		(*uao->pgops->pgo_reference)(uao);
   1508  1.74.2.1    bouyer 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1509  1.74.2.1    bouyer 		    uao, lp->lp_cur, PAGE_SIZE,
   1510  1.74.2.1    bouyer 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1511  1.74.2.1    bouyer 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1512  1.74.2.1    bouyer 		if (error == 0)
   1513  1.74.2.1    bouyer 			error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1514  1.74.2.1    bouyer 			    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1515  1.74.2.1    bouyer 		if (error != 0) {
   1516  1.74.2.1    bouyer 			mutex_exit(&lp->lp_lock);
   1517  1.74.2.1    bouyer 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1518  1.74.2.1    bouyer 			(*uao->pgops->pgo_detach)(uao);
   1519  1.74.2.1    bouyer 			return error;
   1520  1.74.2.1    bouyer 		}
   1521  1.74.2.1    bouyer 		/* Prepare the page descriptor and link into the list. */
   1522  1.74.2.1    bouyer 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1523  1.74.2.1    bouyer 		lp->lp_cur += PAGE_SIZE;
   1524  1.74.2.1    bouyer 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1525  1.74.2.1    bouyer 		lcp->lcp_rotor = 0;
   1526  1.74.2.1    bouyer 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1527  1.74.2.1    bouyer 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1528  1.74.2.1    bouyer 	}
   1529  1.74.2.1    bouyer 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1530  1.74.2.1    bouyer 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1531  1.74.2.1    bouyer 			i = 0;
   1532  1.74.2.1    bouyer 	}
   1533  1.74.2.1    bouyer 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1534  1.74.2.1    bouyer 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1535  1.74.2.1    bouyer 	lcp->lcp_rotor = i;
   1536  1.74.2.1    bouyer 	lcp->lcp_nfree--;
   1537  1.74.2.1    bouyer 	l->l_lcpage = lcp;
   1538  1.74.2.1    bouyer 	offset = (i << 5) + bit;
   1539  1.74.2.1    bouyer 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1540  1.74.2.1    bouyer 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1541  1.74.2.1    bouyer 	mutex_exit(&lp->lp_lock);
   1542  1.74.2.1    bouyer 
   1543  1.74.2.1    bouyer 	l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
   1544  1.74.2.1    bouyer 
   1545  1.74.2.1    bouyer 	return 0;
   1546  1.74.2.1    bouyer }
   1547  1.74.2.1    bouyer 
   1548  1.74.2.1    bouyer /*
   1549  1.74.2.1    bouyer  * Free an lwpctl structure back to the per-process list.
   1550  1.74.2.1    bouyer  */
   1551  1.74.2.1    bouyer void
   1552  1.74.2.1    bouyer lwp_ctl_free(lwp_t *l)
   1553  1.74.2.1    bouyer {
   1554  1.74.2.1    bouyer 	lcproc_t *lp;
   1555  1.74.2.1    bouyer 	lcpage_t *lcp;
   1556  1.74.2.1    bouyer 	u_int map, offset;
   1557  1.74.2.1    bouyer 
   1558  1.74.2.1    bouyer 	lp = l->l_proc->p_lwpctl;
   1559  1.74.2.1    bouyer 	KASSERT(lp != NULL);
   1560  1.74.2.1    bouyer 
   1561  1.74.2.1    bouyer 	lcp = l->l_lcpage;
   1562  1.74.2.1    bouyer 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1563  1.74.2.1    bouyer 	KASSERT(offset < LWPCTL_PER_PAGE);
   1564  1.74.2.1    bouyer 
   1565  1.74.2.1    bouyer 	mutex_enter(&lp->lp_lock);
   1566  1.74.2.1    bouyer 	lcp->lcp_nfree++;
   1567  1.74.2.1    bouyer 	map = offset >> 5;
   1568  1.74.2.1    bouyer 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1569  1.74.2.1    bouyer 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1570  1.74.2.1    bouyer 		lcp->lcp_rotor = map;
   1571  1.74.2.1    bouyer 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1572  1.74.2.1    bouyer 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1573  1.74.2.1    bouyer 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1574  1.74.2.1    bouyer 	}
   1575  1.74.2.1    bouyer 	mutex_exit(&lp->lp_lock);
   1576  1.74.2.1    bouyer }
   1577  1.74.2.1    bouyer 
   1578  1.74.2.1    bouyer /*
   1579  1.74.2.1    bouyer  * Process is exiting; tear down lwpctl state.  This can only be safely
   1580  1.74.2.1    bouyer  * called by the last LWP in the process.
   1581  1.74.2.1    bouyer  */
   1582  1.74.2.1    bouyer void
   1583  1.74.2.1    bouyer lwp_ctl_exit(void)
   1584  1.74.2.1    bouyer {
   1585  1.74.2.1    bouyer 	lcpage_t *lcp, *next;
   1586  1.74.2.1    bouyer 	lcproc_t *lp;
   1587  1.74.2.1    bouyer 	proc_t *p;
   1588  1.74.2.1    bouyer 	lwp_t *l;
   1589  1.74.2.1    bouyer 
   1590  1.74.2.1    bouyer 	l = curlwp;
   1591  1.74.2.1    bouyer 	l->l_lwpctl = NULL;
   1592  1.74.2.1    bouyer 	p = l->l_proc;
   1593  1.74.2.1    bouyer 	lp = p->p_lwpctl;
   1594  1.74.2.1    bouyer 
   1595  1.74.2.1    bouyer 	KASSERT(lp != NULL);
   1596  1.74.2.1    bouyer 	KASSERT(p->p_nlwps == 1);
   1597  1.74.2.1    bouyer 
   1598  1.74.2.1    bouyer 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1599  1.74.2.1    bouyer 		next = TAILQ_NEXT(lcp, lcp_chain);
   1600  1.74.2.1    bouyer 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1601  1.74.2.1    bouyer 		    lcp->lcp_kaddr + PAGE_SIZE);
   1602  1.74.2.1    bouyer 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1603  1.74.2.1    bouyer 	}
   1604  1.74.2.1    bouyer 
   1605  1.74.2.1    bouyer 	if (lp->lp_uao != NULL) {
   1606  1.74.2.1    bouyer 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1607  1.74.2.1    bouyer 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1608  1.74.2.1    bouyer 	}
   1609  1.74.2.1    bouyer 
   1610  1.74.2.1    bouyer 	mutex_destroy(&lp->lp_lock);
   1611  1.74.2.1    bouyer 	kmem_free(lp, sizeof(*lp));
   1612  1.74.2.1    bouyer 	p->p_lwpctl = NULL;
   1613  1.74.2.1    bouyer }
   1614