Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.93.6.6
      1  1.93.6.1       mjf /*	$NetBSD: kern_lwp.c,v 1.93.6.6 2009/01/17 13:29:18 mjf Exp $	*/
      2       1.2   thorpej 
      3       1.2   thorpej /*-
      4  1.93.6.1       mjf  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2   thorpej  * All rights reserved.
      6       1.2   thorpej  *
      7       1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.52        ad  * by Nathan J. Williams, and Andrew Doran.
      9       1.2   thorpej  *
     10       1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     11       1.2   thorpej  * modification, are permitted provided that the following conditions
     12       1.2   thorpej  * are met:
     13       1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     14       1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     15       1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17       1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     18       1.2   thorpej  *
     19       1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2   thorpej  */
     31       1.9     lukem 
     32      1.52        ad /*
     33      1.52        ad  * Overview
     34      1.52        ad  *
     35      1.66        ad  *	Lightweight processes (LWPs) are the basic unit or thread of
     36      1.52        ad  *	execution within the kernel.  The core state of an LWP is described
     37      1.66        ad  *	by "struct lwp", also known as lwp_t.
     38      1.52        ad  *
     39      1.52        ad  *	Each LWP is contained within a process (described by "struct proc"),
     40      1.52        ad  *	Every process contains at least one LWP, but may contain more.  The
     41      1.52        ad  *	process describes attributes shared among all of its LWPs such as a
     42      1.52        ad  *	private address space, global execution state (stopped, active,
     43      1.52        ad  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44      1.66        ad  *	machine, multiple LWPs be executing concurrently in the kernel.
     45      1.52        ad  *
     46      1.52        ad  * Execution states
     47      1.52        ad  *
     48      1.52        ad  *	At any given time, an LWP has overall state that is described by
     49      1.52        ad  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50      1.52        ad  *	set is guaranteed to represent the absolute, current state of the
     51      1.52        ad  *	LWP:
     52  1.93.6.2       mjf  *
     53  1.93.6.2       mjf  *	LSONPROC
     54  1.93.6.2       mjf  *
     55  1.93.6.2       mjf  *		On processor: the LWP is executing on a CPU, either in the
     56  1.93.6.2       mjf  *		kernel or in user space.
     57  1.93.6.2       mjf  *
     58  1.93.6.2       mjf  *	LSRUN
     59  1.93.6.2       mjf  *
     60  1.93.6.2       mjf  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  1.93.6.2       mjf  *		chosen to run by an idle processor, or by a processor that
     62  1.93.6.2       mjf  *		has been asked to preempt a currently runnning but lower
     63  1.93.6.2       mjf  *		priority LWP.  If the LWP is not swapped in (LW_INMEM == 0)
     64      1.52        ad  *		then the LWP is not on a run queue, but may be soon.
     65  1.93.6.2       mjf  *
     66  1.93.6.2       mjf  *	LSIDL
     67  1.93.6.2       mjf  *
     68  1.93.6.2       mjf  *		Idle: the LWP has been created but has not yet executed,
     69      1.66        ad  *		or it has ceased executing a unit of work and is waiting
     70      1.66        ad  *		to be started again.
     71  1.93.6.2       mjf  *
     72  1.93.6.2       mjf  *	LSSUSPENDED:
     73  1.93.6.2       mjf  *
     74  1.93.6.2       mjf  *		Suspended: the LWP has had its execution suspended by
     75      1.52        ad  *		another LWP in the same process using the _lwp_suspend()
     76      1.52        ad  *		system call.  User-level LWPs also enter the suspended
     77      1.52        ad  *		state when the system is shutting down.
     78      1.52        ad  *
     79      1.52        ad  *	The second set represent a "statement of intent" on behalf of the
     80      1.52        ad  *	LWP.  The LWP may in fact be executing on a processor, may be
     81      1.66        ad  *	sleeping or idle. It is expected to take the necessary action to
     82  1.93.6.2       mjf  *	stop executing or become "running" again within a short timeframe.
     83  1.93.6.2       mjf  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     84  1.93.6.2       mjf  *	Importantly, it indicates that its state is tied to a CPU.
     85  1.93.6.2       mjf  *
     86  1.93.6.2       mjf  *	LSZOMB:
     87  1.93.6.2       mjf  *
     88  1.93.6.2       mjf  *		Dead or dying: the LWP has released most of its resources
     89  1.93.6.2       mjf  *		and is: a) about to switch away into oblivion b) has already
     90      1.66        ad  *		switched away.  When it switches away, its few remaining
     91      1.66        ad  *		resources can be collected.
     92  1.93.6.2       mjf  *
     93  1.93.6.2       mjf  *	LSSLEEP:
     94  1.93.6.2       mjf  *
     95  1.93.6.2       mjf  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     96  1.93.6.2       mjf  *		has switched away or will switch away shortly to allow other
     97      1.66        ad  *		LWPs to run on the CPU.
     98  1.93.6.2       mjf  *
     99  1.93.6.2       mjf  *	LSSTOP:
    100  1.93.6.2       mjf  *
    101  1.93.6.2       mjf  *		Stopped: the LWP has been stopped as a result of a job
    102  1.93.6.2       mjf  *		control signal, or as a result of the ptrace() interface.
    103  1.93.6.2       mjf  *
    104  1.93.6.2       mjf  *		Stopped LWPs may run briefly within the kernel to handle
    105  1.93.6.2       mjf  *		signals that they receive, but will not return to user space
    106  1.93.6.2       mjf  *		until their process' state is changed away from stopped.
    107  1.93.6.2       mjf  *
    108  1.93.6.2       mjf  *		Single LWPs within a process can not be set stopped
    109  1.93.6.2       mjf  *		selectively: all actions that can stop or continue LWPs
    110  1.93.6.2       mjf  *		occur at the process level.
    111  1.93.6.2       mjf  *
    112      1.52        ad  * State transitions
    113      1.52        ad  *
    114      1.66        ad  *	Note that the LSSTOP state may only be set when returning to
    115      1.66        ad  *	user space in userret(), or when sleeping interruptably.  The
    116      1.66        ad  *	LSSUSPENDED state may only be set in userret().  Before setting
    117      1.66        ad  *	those states, we try to ensure that the LWPs will release all
    118      1.66        ad  *	locks that they hold, and at a minimum try to ensure that the
    119      1.66        ad  *	LWP can be set runnable again by a signal.
    120      1.52        ad  *
    121      1.52        ad  *	LWPs may transition states in the following ways:
    122      1.52        ad  *
    123      1.52        ad  *	 RUN -------> ONPROC		ONPROC -----> RUN
    124  1.93.6.2       mjf  *		    > STOPPED			    > SLEEP
    125  1.93.6.2       mjf  *		    > SUSPENDED			    > STOPPED
    126      1.52        ad  *						    > SUSPENDED
    127      1.52        ad  *						    > ZOMB
    128      1.52        ad  *
    129      1.52        ad  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130      1.52        ad  *	            > SLEEP			    > SLEEP
    131      1.52        ad  *
    132      1.52        ad  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  1.93.6.2       mjf  *		    > RUN			    > SUSPENDED
    134  1.93.6.2       mjf  *		    > STOPPED			    > STOPPED
    135      1.52        ad  *		    > SUSPENDED
    136      1.52        ad  *
    137      1.66        ad  *	Other state transitions are possible with kernel threads (eg
    138      1.66        ad  *	ONPROC -> IDL), but only happen under tightly controlled
    139      1.66        ad  *	circumstances the side effects are understood.
    140      1.66        ad  *
    141  1.93.6.2       mjf  * Migration
    142  1.93.6.2       mjf  *
    143  1.93.6.2       mjf  *	Migration of threads from one CPU to another could be performed
    144  1.93.6.2       mjf  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  1.93.6.2       mjf  *	functions.  The universal lwp_migrate() function should be used for
    146  1.93.6.2       mjf  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  1.93.6.2       mjf  *	of LWP may change, while it is not locked.
    148  1.93.6.2       mjf  *
    149      1.52        ad  * Locking
    150      1.52        ad  *
    151      1.52        ad  *	The majority of fields in 'struct lwp' are covered by a single,
    152      1.66        ad  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153      1.52        ad  *	each field are documented in sys/lwp.h.
    154      1.52        ad  *
    155      1.66        ad  *	State transitions must be made with the LWP's general lock held,
    156  1.93.6.2       mjf  *	and may cause the LWP's lock pointer to change. Manipulation of
    157      1.66        ad  *	the general lock is not performed directly, but through calls to
    158      1.66        ad  *	lwp_lock(), lwp_relock() and similar.
    159      1.52        ad  *
    160      1.52        ad  *	States and their associated locks:
    161      1.52        ad  *
    162      1.74     rmind  *	LSONPROC, LSZOMB:
    163      1.52        ad  *
    164      1.64      yamt  *		Always covered by spc_lwplock, which protects running LWPs.
    165      1.64      yamt  *		This is a per-CPU lock.
    166      1.52        ad  *
    167      1.74     rmind  *	LSIDL, LSRUN:
    168      1.52        ad  *
    169      1.64      yamt  *		Always covered by spc_mutex, which protects the run queues.
    170  1.93.6.2       mjf  *		This is a per-CPU lock.
    171      1.52        ad  *
    172      1.52        ad  *	LSSLEEP:
    173      1.52        ad  *
    174      1.66        ad  *		Covered by a lock associated with the sleep queue that the
    175  1.93.6.2       mjf  *		LWP resides on.
    176      1.52        ad  *
    177      1.52        ad  *	LSSTOP, LSSUSPENDED:
    178  1.93.6.2       mjf  *
    179      1.52        ad  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180      1.66        ad  *		l_mutex references the sleep queue lock.  If the LWP was
    181      1.52        ad  *		runnable or on the CPU when halted, or has been removed from
    182      1.66        ad  *		the sleep queue since halted, then the lock is spc_lwplock.
    183      1.52        ad  *
    184      1.52        ad  *	The lock order is as follows:
    185      1.52        ad  *
    186      1.64      yamt  *		spc::spc_lwplock ->
    187  1.93.6.2       mjf  *		    sleeptab::st_mutex ->
    188      1.64      yamt  *			tschain_t::tc_mutex ->
    189      1.64      yamt  *			    spc::spc_mutex
    190      1.52        ad  *
    191  1.93.6.2       mjf  *	Each process has an scheduler state lock (proc::p_lock), and a
    192      1.52        ad  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    193      1.52        ad  *	so on.  When an LWP is to be entered into or removed from one of the
    194  1.93.6.2       mjf  *	following states, p_lock must be held and the process wide counters
    195      1.52        ad  *	adjusted:
    196      1.52        ad  *
    197      1.52        ad  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    198      1.52        ad  *
    199      1.52        ad  *	Note that an LWP is considered running or likely to run soon if in
    200      1.52        ad  *	one of the following states.  This affects the value of p_nrlwps:
    201      1.52        ad  *
    202      1.52        ad  *		LSRUN, LSONPROC, LSSLEEP
    203      1.52        ad  *
    204  1.93.6.2       mjf  *	p_lock does not need to be held when transitioning among these
    205      1.52        ad  *	three states.
    206      1.52        ad  */
    207      1.52        ad 
    208       1.9     lukem #include <sys/cdefs.h>
    209  1.93.6.1       mjf __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.93.6.6 2009/01/17 13:29:18 mjf Exp $");
    210       1.8    martin 
    211      1.84      yamt #include "opt_ddb.h"
    212      1.52        ad #include "opt_lockdebug.h"
    213  1.93.6.6       mjf #include "opt_sa.h"
    214       1.2   thorpej 
    215      1.47   hannken #define _LWP_API_PRIVATE
    216      1.47   hannken 
    217       1.2   thorpej #include <sys/param.h>
    218       1.2   thorpej #include <sys/systm.h>
    219      1.64      yamt #include <sys/cpu.h>
    220       1.2   thorpej #include <sys/pool.h>
    221       1.2   thorpej #include <sys/proc.h>
    222  1.93.6.6       mjf #include <sys/sa.h>
    223  1.93.6.6       mjf #include <sys/savar.h>
    224       1.2   thorpej #include <sys/syscallargs.h>
    225      1.57       dsl #include <sys/syscall_stats.h>
    226      1.37        ad #include <sys/kauth.h>
    227      1.52        ad #include <sys/sleepq.h>
    228      1.85      yamt #include <sys/user.h>
    229      1.52        ad #include <sys/lockdebug.h>
    230      1.52        ad #include <sys/kmem.h>
    231      1.91     rmind #include <sys/pset.h>
    232      1.75        ad #include <sys/intr.h>
    233      1.78        ad #include <sys/lwpctl.h>
    234      1.81        ad #include <sys/atomic.h>
    235       1.2   thorpej 
    236       1.2   thorpej #include <uvm/uvm_extern.h>
    237      1.80     skrll #include <uvm/uvm_object.h>
    238       1.2   thorpej 
    239      1.77      matt struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    240      1.52        ad 
    241      1.41   thorpej POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    242      1.62        ad     &pool_allocator_nointr, IPL_NONE);
    243      1.41   thorpej 
    244      1.87        ad static pool_cache_t lwp_cache;
    245      1.41   thorpej static specificdata_domain_t lwp_specificdata_domain;
    246      1.41   thorpej 
    247      1.41   thorpej void
    248      1.41   thorpej lwpinit(void)
    249      1.41   thorpej {
    250      1.41   thorpej 
    251      1.41   thorpej 	lwp_specificdata_domain = specificdata_domain_create();
    252      1.41   thorpej 	KASSERT(lwp_specificdata_domain != NULL);
    253      1.52        ad 	lwp_sys_init();
    254      1.87        ad 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    255      1.87        ad 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    256      1.41   thorpej }
    257      1.41   thorpej 
    258      1.52        ad /*
    259      1.52        ad  * Set an suspended.
    260      1.52        ad  *
    261  1.93.6.2       mjf  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    262      1.52        ad  * LWP before return.
    263      1.52        ad  */
    264       1.2   thorpej int
    265      1.52        ad lwp_suspend(struct lwp *curl, struct lwp *t)
    266       1.2   thorpej {
    267      1.52        ad 	int error;
    268       1.2   thorpej 
    269  1.93.6.2       mjf 	KASSERT(mutex_owned(t->l_proc->p_lock));
    270      1.63        ad 	KASSERT(lwp_locked(t, NULL));
    271      1.33       chs 
    272      1.52        ad 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    273       1.2   thorpej 
    274      1.52        ad 	/*
    275      1.52        ad 	 * If the current LWP has been told to exit, we must not suspend anyone
    276      1.52        ad 	 * else or deadlock could occur.  We won't return to userspace.
    277       1.2   thorpej 	 */
    278  1.93.6.2       mjf 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    279      1.52        ad 		lwp_unlock(t);
    280      1.52        ad 		return (EDEADLK);
    281       1.2   thorpej 	}
    282       1.2   thorpej 
    283      1.52        ad 	error = 0;
    284       1.2   thorpej 
    285      1.52        ad 	switch (t->l_stat) {
    286      1.52        ad 	case LSRUN:
    287      1.52        ad 	case LSONPROC:
    288      1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    289      1.52        ad 		lwp_need_userret(t);
    290      1.52        ad 		lwp_unlock(t);
    291      1.52        ad 		break;
    292       1.2   thorpej 
    293      1.52        ad 	case LSSLEEP:
    294      1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    295       1.2   thorpej 
    296       1.2   thorpej 		/*
    297      1.52        ad 		 * Kick the LWP and try to get it to the kernel boundary
    298      1.52        ad 		 * so that it will release any locks that it holds.
    299      1.52        ad 		 * setrunnable() will release the lock.
    300       1.2   thorpej 		 */
    301      1.56     pavel 		if ((t->l_flag & LW_SINTR) != 0)
    302      1.52        ad 			setrunnable(t);
    303      1.52        ad 		else
    304      1.52        ad 			lwp_unlock(t);
    305      1.52        ad 		break;
    306       1.2   thorpej 
    307      1.52        ad 	case LSSUSPENDED:
    308      1.52        ad 		lwp_unlock(t);
    309      1.52        ad 		break;
    310      1.17      manu 
    311      1.52        ad 	case LSSTOP:
    312      1.56     pavel 		t->l_flag |= LW_WSUSPEND;
    313      1.52        ad 		setrunnable(t);
    314      1.52        ad 		break;
    315       1.2   thorpej 
    316      1.52        ad 	case LSIDL:
    317      1.52        ad 	case LSZOMB:
    318      1.52        ad 		error = EINTR; /* It's what Solaris does..... */
    319      1.52        ad 		lwp_unlock(t);
    320      1.52        ad 		break;
    321       1.2   thorpej 	}
    322       1.2   thorpej 
    323      1.69     rmind 	return (error);
    324       1.2   thorpej }
    325       1.2   thorpej 
    326      1.52        ad /*
    327      1.52        ad  * Restart a suspended LWP.
    328      1.52        ad  *
    329  1.93.6.2       mjf  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    330      1.52        ad  * LWP before return.
    331      1.52        ad  */
    332       1.2   thorpej void
    333       1.2   thorpej lwp_continue(struct lwp *l)
    334       1.2   thorpej {
    335       1.2   thorpej 
    336  1.93.6.2       mjf 	KASSERT(mutex_owned(l->l_proc->p_lock));
    337      1.63        ad 	KASSERT(lwp_locked(l, NULL));
    338      1.52        ad 
    339      1.52        ad 	/* If rebooting or not suspended, then just bail out. */
    340      1.56     pavel 	if ((l->l_flag & LW_WREBOOT) != 0) {
    341      1.52        ad 		lwp_unlock(l);
    342       1.2   thorpej 		return;
    343      1.10      fvdl 	}
    344       1.2   thorpej 
    345      1.56     pavel 	l->l_flag &= ~LW_WSUSPEND;
    346       1.2   thorpej 
    347      1.52        ad 	if (l->l_stat != LSSUSPENDED) {
    348      1.52        ad 		lwp_unlock(l);
    349      1.52        ad 		return;
    350       1.2   thorpej 	}
    351       1.2   thorpej 
    352      1.52        ad 	/* setrunnable() will release the lock. */
    353      1.52        ad 	setrunnable(l);
    354       1.2   thorpej }
    355       1.2   thorpej 
    356      1.52        ad /*
    357      1.52        ad  * Wait for an LWP within the current process to exit.  If 'lid' is
    358      1.52        ad  * non-zero, we are waiting for a specific LWP.
    359      1.52        ad  *
    360  1.93.6.2       mjf  * Must be called with p->p_lock held.
    361      1.52        ad  */
    362       1.2   thorpej int
    363       1.2   thorpej lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    364       1.2   thorpej {
    365       1.2   thorpej 	struct proc *p = l->l_proc;
    366      1.52        ad 	struct lwp *l2;
    367      1.52        ad 	int nfound, error;
    368      1.63        ad 	lwpid_t curlid;
    369      1.63        ad 	bool exiting;
    370       1.2   thorpej 
    371  1.93.6.2       mjf 	KASSERT(mutex_owned(p->p_lock));
    372      1.52        ad 
    373      1.52        ad 	p->p_nlwpwait++;
    374      1.63        ad 	l->l_waitingfor = lid;
    375      1.63        ad 	curlid = l->l_lid;
    376      1.63        ad 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    377      1.52        ad 
    378      1.52        ad 	for (;;) {
    379      1.52        ad 		/*
    380      1.52        ad 		 * Avoid a race between exit1() and sigexit(): if the
    381      1.52        ad 		 * process is dumping core, then we need to bail out: call
    382      1.52        ad 		 * into lwp_userret() where we will be suspended until the
    383      1.52        ad 		 * deed is done.
    384      1.52        ad 		 */
    385      1.52        ad 		if ((p->p_sflag & PS_WCORE) != 0) {
    386  1.93.6.2       mjf 			mutex_exit(p->p_lock);
    387      1.52        ad 			lwp_userret(l);
    388      1.52        ad #ifdef DIAGNOSTIC
    389      1.52        ad 			panic("lwp_wait1");
    390      1.52        ad #endif
    391      1.52        ad 			/* NOTREACHED */
    392      1.52        ad 		}
    393      1.52        ad 
    394      1.52        ad 		/*
    395      1.52        ad 		 * First off, drain any detached LWP that is waiting to be
    396      1.52        ad 		 * reaped.
    397      1.52        ad 		 */
    398      1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    399      1.52        ad 			p->p_zomblwp = NULL;
    400      1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    401  1.93.6.2       mjf 			mutex_enter(p->p_lock);
    402      1.52        ad 		}
    403      1.52        ad 
    404      1.52        ad 		/*
    405      1.52        ad 		 * Now look for an LWP to collect.  If the whole process is
    406      1.52        ad 		 * exiting, count detached LWPs as eligible to be collected,
    407      1.52        ad 		 * but don't drain them here.
    408      1.52        ad 		 */
    409      1.52        ad 		nfound = 0;
    410      1.63        ad 		error = 0;
    411      1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    412      1.63        ad 			/*
    413      1.63        ad 			 * If a specific wait and the target is waiting on
    414      1.63        ad 			 * us, then avoid deadlock.  This also traps LWPs
    415      1.63        ad 			 * that try to wait on themselves.
    416      1.63        ad 			 *
    417      1.63        ad 			 * Note that this does not handle more complicated
    418      1.63        ad 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    419      1.63        ad 			 * can still be killed so it is not a major problem.
    420      1.63        ad 			 */
    421      1.63        ad 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    422      1.63        ad 				error = EDEADLK;
    423      1.63        ad 				break;
    424      1.63        ad 			}
    425      1.63        ad 			if (l2 == l)
    426      1.52        ad 				continue;
    427      1.52        ad 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    428      1.63        ad 				nfound += exiting;
    429      1.63        ad 				continue;
    430      1.63        ad 			}
    431      1.63        ad 			if (lid != 0) {
    432      1.63        ad 				if (l2->l_lid != lid)
    433      1.63        ad 					continue;
    434      1.63        ad 				/*
    435      1.63        ad 				 * Mark this LWP as the first waiter, if there
    436      1.63        ad 				 * is no other.
    437      1.63        ad 				 */
    438      1.63        ad 				if (l2->l_waiter == 0)
    439      1.63        ad 					l2->l_waiter = curlid;
    440      1.63        ad 			} else if (l2->l_waiter != 0) {
    441      1.63        ad 				/*
    442      1.63        ad 				 * It already has a waiter - so don't
    443      1.63        ad 				 * collect it.  If the waiter doesn't
    444      1.63        ad 				 * grab it we'll get another chance
    445      1.63        ad 				 * later.
    446      1.63        ad 				 */
    447      1.63        ad 				nfound++;
    448      1.52        ad 				continue;
    449      1.52        ad 			}
    450      1.52        ad 			nfound++;
    451       1.2   thorpej 
    452      1.52        ad 			/* No need to lock the LWP in order to see LSZOMB. */
    453      1.52        ad 			if (l2->l_stat != LSZOMB)
    454      1.52        ad 				continue;
    455       1.2   thorpej 
    456      1.63        ad 			/*
    457      1.63        ad 			 * We're no longer waiting.  Reset the "first waiter"
    458      1.63        ad 			 * pointer on the target, in case it was us.
    459      1.63        ad 			 */
    460      1.63        ad 			l->l_waitingfor = 0;
    461      1.63        ad 			l2->l_waiter = 0;
    462      1.63        ad 			p->p_nlwpwait--;
    463       1.2   thorpej 			if (departed)
    464       1.2   thorpej 				*departed = l2->l_lid;
    465      1.75        ad 			sched_lwp_collect(l2);
    466      1.63        ad 
    467      1.63        ad 			/* lwp_free() releases the proc lock. */
    468      1.63        ad 			lwp_free(l2, false, false);
    469  1.93.6.2       mjf 			mutex_enter(p->p_lock);
    470      1.52        ad 			return 0;
    471      1.52        ad 		}
    472       1.2   thorpej 
    473      1.63        ad 		if (error != 0)
    474      1.63        ad 			break;
    475      1.52        ad 		if (nfound == 0) {
    476      1.52        ad 			error = ESRCH;
    477      1.52        ad 			break;
    478      1.52        ad 		}
    479      1.63        ad 
    480      1.63        ad 		/*
    481      1.63        ad 		 * The kernel is careful to ensure that it can not deadlock
    482      1.63        ad 		 * when exiting - just keep waiting.
    483      1.63        ad 		 */
    484      1.63        ad 		if (exiting) {
    485      1.52        ad 			KASSERT(p->p_nlwps > 1);
    486  1.93.6.2       mjf 			cv_wait(&p->p_lwpcv, p->p_lock);
    487      1.52        ad 			continue;
    488      1.52        ad 		}
    489      1.63        ad 
    490      1.63        ad 		/*
    491      1.63        ad 		 * If all other LWPs are waiting for exits or suspends
    492      1.63        ad 		 * and the supply of zombies and potential zombies is
    493      1.63        ad 		 * exhausted, then we are about to deadlock.
    494      1.63        ad 		 *
    495      1.63        ad 		 * If the process is exiting (and this LWP is not the one
    496      1.63        ad 		 * that is coordinating the exit) then bail out now.
    497      1.63        ad 		 */
    498      1.52        ad 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    499      1.63        ad 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    500      1.52        ad 			error = EDEADLK;
    501      1.52        ad 			break;
    502       1.2   thorpej 		}
    503      1.63        ad 
    504      1.63        ad 		/*
    505      1.63        ad 		 * Sit around and wait for something to happen.  We'll be
    506      1.63        ad 		 * awoken if any of the conditions examined change: if an
    507      1.63        ad 		 * LWP exits, is collected, or is detached.
    508      1.63        ad 		 */
    509  1.93.6.2       mjf 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    510      1.52        ad 			break;
    511       1.2   thorpej 	}
    512       1.2   thorpej 
    513      1.63        ad 	/*
    514      1.63        ad 	 * We didn't find any LWPs to collect, we may have received a
    515      1.63        ad 	 * signal, or some other condition has caused us to bail out.
    516      1.63        ad 	 *
    517      1.63        ad 	 * If waiting on a specific LWP, clear the waiters marker: some
    518      1.63        ad 	 * other LWP may want it.  Then, kick all the remaining waiters
    519      1.63        ad 	 * so that they can re-check for zombies and for deadlock.
    520      1.63        ad 	 */
    521      1.63        ad 	if (lid != 0) {
    522      1.63        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    523      1.63        ad 			if (l2->l_lid == lid) {
    524      1.63        ad 				if (l2->l_waiter == curlid)
    525      1.63        ad 					l2->l_waiter = 0;
    526      1.63        ad 				break;
    527      1.63        ad 			}
    528      1.63        ad 		}
    529      1.63        ad 	}
    530      1.52        ad 	p->p_nlwpwait--;
    531      1.63        ad 	l->l_waitingfor = 0;
    532      1.63        ad 	cv_broadcast(&p->p_lwpcv);
    533      1.63        ad 
    534      1.52        ad 	return error;
    535       1.2   thorpej }
    536       1.2   thorpej 
    537      1.52        ad /*
    538      1.52        ad  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    539      1.52        ad  * The new LWP is created in state LSIDL and must be set running,
    540      1.52        ad  * suspended, or stopped by the caller.
    541      1.52        ad  */
    542       1.2   thorpej int
    543      1.75        ad lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
    544      1.75        ad 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    545      1.75        ad 	   lwp_t **rnewlwpp, int sclass)
    546       1.2   thorpej {
    547      1.52        ad 	struct lwp *l2, *isfree;
    548      1.52        ad 	turnstile_t *ts;
    549       1.2   thorpej 
    550  1.93.6.2       mjf 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    551  1.93.6.2       mjf 
    552      1.52        ad 	/*
    553      1.52        ad 	 * First off, reap any detached LWP waiting to be collected.
    554      1.52        ad 	 * We can re-use its LWP structure and turnstile.
    555      1.52        ad 	 */
    556      1.52        ad 	isfree = NULL;
    557      1.52        ad 	if (p2->p_zomblwp != NULL) {
    558  1.93.6.2       mjf 		mutex_enter(p2->p_lock);
    559      1.52        ad 		if ((isfree = p2->p_zomblwp) != NULL) {
    560      1.52        ad 			p2->p_zomblwp = NULL;
    561      1.63        ad 			lwp_free(isfree, true, false);/* releases proc mutex */
    562      1.52        ad 		} else
    563  1.93.6.2       mjf 			mutex_exit(p2->p_lock);
    564      1.52        ad 	}
    565      1.52        ad 	if (isfree == NULL) {
    566      1.87        ad 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    567      1.52        ad 		memset(l2, 0, sizeof(*l2));
    568      1.76        ad 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    569      1.60      yamt 		SLIST_INIT(&l2->l_pi_lenders);
    570      1.52        ad 	} else {
    571      1.52        ad 		l2 = isfree;
    572      1.52        ad 		ts = l2->l_ts;
    573      1.75        ad 		KASSERT(l2->l_inheritedprio == -1);
    574      1.60      yamt 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    575      1.52        ad 		memset(l2, 0, sizeof(*l2));
    576      1.52        ad 		l2->l_ts = ts;
    577      1.52        ad 	}
    578       1.2   thorpej 
    579       1.2   thorpej 	l2->l_stat = LSIDL;
    580       1.2   thorpej 	l2->l_proc = p2;
    581      1.52        ad 	l2->l_refcnt = 1;
    582      1.75        ad 	l2->l_class = sclass;
    583  1.93.6.3       mjf 
    584  1.93.6.3       mjf 	/*
    585  1.93.6.3       mjf 	 * If vfork(), we want the LWP to run fast and on the same CPU
    586  1.93.6.3       mjf 	 * as its parent, so that it can reuse the VM context and cache
    587  1.93.6.3       mjf 	 * footprint on the local CPU.
    588  1.93.6.3       mjf 	 */
    589  1.93.6.3       mjf 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    590      1.82        ad 	l2->l_kpribase = PRI_KERNEL;
    591      1.52        ad 	l2->l_priority = l1->l_priority;
    592      1.75        ad 	l2->l_inheritedprio = -1;
    593      1.56     pavel 	l2->l_flag = inmem ? LW_INMEM : 0;
    594      1.88        ad 	l2->l_pflag = LP_MPSAFE;
    595  1.93.6.1       mjf 	l2->l_fd = p2->p_fd;
    596  1.93.6.2       mjf 	TAILQ_INIT(&l2->l_ld_locks);
    597      1.41   thorpej 
    598      1.56     pavel 	if (p2->p_flag & PK_SYSTEM) {
    599      1.91     rmind 		/* Mark it as a system LWP and not a candidate for swapping */
    600      1.56     pavel 		l2->l_flag |= LW_SYSTEM;
    601      1.52        ad 	}
    602       1.2   thorpej 
    603  1.93.6.2       mjf 	kpreempt_disable();
    604  1.93.6.2       mjf 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    605  1.93.6.2       mjf 	l2->l_cpu = l1->l_cpu;
    606  1.93.6.2       mjf 	kpreempt_enable();
    607  1.93.6.2       mjf 
    608      1.73     rmind 	lwp_initspecific(l2);
    609      1.75        ad 	sched_lwp_fork(l1, l2);
    610      1.37        ad 	lwp_update_creds(l2);
    611      1.70        ad 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    612      1.70        ad 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    613      1.65        ad 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    614      1.52        ad 	cv_init(&l2->l_sigcv, "sigwait");
    615      1.52        ad 	l2->l_syncobj = &sched_syncobj;
    616       1.2   thorpej 
    617       1.2   thorpej 	if (rnewlwpp != NULL)
    618       1.2   thorpej 		*rnewlwpp = l2;
    619       1.2   thorpej 
    620      1.36      yamt 	l2->l_addr = UAREA_TO_USER(uaddr);
    621       1.2   thorpej 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    622       1.2   thorpej 	    (arg != NULL) ? arg : l2);
    623       1.2   thorpej 
    624  1.93.6.2       mjf 	mutex_enter(p2->p_lock);
    625      1.52        ad 
    626      1.52        ad 	if ((flags & LWP_DETACHED) != 0) {
    627      1.52        ad 		l2->l_prflag = LPR_DETACHED;
    628      1.52        ad 		p2->p_ndlwps++;
    629      1.52        ad 	} else
    630      1.52        ad 		l2->l_prflag = 0;
    631      1.52        ad 
    632      1.52        ad 	l2->l_sigmask = l1->l_sigmask;
    633      1.52        ad 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    634      1.52        ad 	sigemptyset(&l2->l_sigpend.sp_set);
    635      1.52        ad 
    636      1.53      yamt 	p2->p_nlwpid++;
    637      1.53      yamt 	if (p2->p_nlwpid == 0)
    638      1.53      yamt 		p2->p_nlwpid++;
    639      1.53      yamt 	l2->l_lid = p2->p_nlwpid;
    640       1.2   thorpej 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    641       1.2   thorpej 	p2->p_nlwps++;
    642       1.2   thorpej 
    643  1.93.6.2       mjf 	mutex_exit(p2->p_lock);
    644      1.52        ad 
    645  1.93.6.2       mjf 	mutex_enter(proc_lock);
    646       1.2   thorpej 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    647  1.93.6.2       mjf 	mutex_exit(proc_lock);
    648       1.2   thorpej 
    649      1.91     rmind 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    650      1.91     rmind 		/* Locking is needed, since LWP is in the list of all LWPs */
    651      1.91     rmind 		lwp_lock(l2);
    652      1.91     rmind 		/* Inherit a processor-set */
    653      1.91     rmind 		l2->l_psid = l1->l_psid;
    654      1.91     rmind 		/* Inherit an affinity */
    655  1.93.6.5       mjf 		if (l1->l_flag & LW_AFFINITY) {
    656  1.93.6.5       mjf 			proc_t *p = l1->l_proc;
    657  1.93.6.5       mjf 
    658  1.93.6.5       mjf 			mutex_enter(p->p_lock);
    659  1.93.6.5       mjf 			if (l1->l_flag & LW_AFFINITY) {
    660  1.93.6.5       mjf 				kcpuset_use(l1->l_affinity);
    661  1.93.6.5       mjf 				l2->l_affinity = l1->l_affinity;
    662  1.93.6.5       mjf 				l2->l_flag |= LW_AFFINITY;
    663  1.93.6.5       mjf 			}
    664  1.93.6.5       mjf 			mutex_exit(p->p_lock);
    665  1.93.6.4       mjf 		}
    666      1.91     rmind 		/* Look for a CPU to start */
    667      1.91     rmind 		l2->l_cpu = sched_takecpu(l2);
    668      1.91     rmind 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    669      1.91     rmind 	}
    670      1.91     rmind 
    671      1.57       dsl 	SYSCALL_TIME_LWP_INIT(l2);
    672      1.57       dsl 
    673      1.16      manu 	if (p2->p_emul->e_lwp_fork)
    674      1.16      manu 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    675      1.16      manu 
    676       1.2   thorpej 	return (0);
    677       1.2   thorpej }
    678       1.2   thorpej 
    679       1.2   thorpej /*
    680      1.64      yamt  * Called by MD code when a new LWP begins execution.  Must be called
    681      1.64      yamt  * with the previous LWP locked (so at splsched), or if there is no
    682      1.64      yamt  * previous LWP, at splsched.
    683      1.64      yamt  */
    684      1.64      yamt void
    685      1.64      yamt lwp_startup(struct lwp *prev, struct lwp *new)
    686      1.64      yamt {
    687      1.64      yamt 
    688  1.93.6.2       mjf 	KASSERT(kpreempt_disabled());
    689      1.64      yamt 	if (prev != NULL) {
    690      1.81        ad 		/*
    691      1.81        ad 		 * Normalize the count of the spin-mutexes, it was
    692      1.81        ad 		 * increased in mi_switch().  Unmark the state of
    693      1.81        ad 		 * context switch - it is finished for previous LWP.
    694      1.81        ad 		 */
    695      1.81        ad 		curcpu()->ci_mtx_count++;
    696      1.81        ad 		membar_exit();
    697      1.81        ad 		prev->l_ctxswtch = 0;
    698      1.64      yamt 	}
    699  1.93.6.2       mjf 	KPREEMPT_DISABLE(new);
    700      1.64      yamt 	spl0();
    701      1.64      yamt 	pmap_activate(new);
    702      1.64      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
    703  1.93.6.2       mjf 	KPREEMPT_ENABLE(new);
    704      1.65        ad 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    705      1.65        ad 		KERNEL_LOCK(1, new);
    706      1.65        ad 	}
    707      1.64      yamt }
    708      1.64      yamt 
    709      1.64      yamt /*
    710      1.65        ad  * Exit an LWP.
    711       1.2   thorpej  */
    712       1.2   thorpej void
    713       1.2   thorpej lwp_exit(struct lwp *l)
    714       1.2   thorpej {
    715       1.2   thorpej 	struct proc *p = l->l_proc;
    716      1.52        ad 	struct lwp *l2;
    717      1.65        ad 	bool current;
    718      1.65        ad 
    719      1.65        ad 	current = (l == curlwp);
    720       1.2   thorpej 
    721  1.93.6.2       mjf 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    722       1.2   thorpej 
    723      1.52        ad 	/*
    724      1.52        ad 	 * Verify that we hold no locks other than the kernel lock.
    725      1.52        ad 	 */
    726      1.52        ad 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    727      1.16      manu 
    728       1.2   thorpej 	/*
    729      1.52        ad 	 * If we are the last live LWP in a process, we need to exit the
    730      1.52        ad 	 * entire process.  We do so with an exit status of zero, because
    731      1.52        ad 	 * it's a "controlled" exit, and because that's what Solaris does.
    732      1.52        ad 	 *
    733      1.52        ad 	 * We are not quite a zombie yet, but for accounting purposes we
    734      1.52        ad 	 * must increment the count of zombies here.
    735      1.45   thorpej 	 *
    736      1.45   thorpej 	 * Note: the last LWP's specificdata will be deleted here.
    737       1.2   thorpej 	 */
    738  1.93.6.2       mjf 	mutex_enter(p->p_lock);
    739      1.52        ad 	if (p->p_nlwps - p->p_nzlwps == 1) {
    740      1.65        ad 		KASSERT(current == true);
    741      1.88        ad 		/* XXXSMP kernel_lock not held */
    742       1.2   thorpej 		exit1(l, 0);
    743      1.19  jdolecek 		/* NOTREACHED */
    744       1.2   thorpej 	}
    745      1.52        ad 	p->p_nzlwps++;
    746  1.93.6.2       mjf 	mutex_exit(p->p_lock);
    747      1.52        ad 
    748      1.52        ad 	if (p->p_emul->e_lwp_exit)
    749      1.52        ad 		(*p->p_emul->e_lwp_exit)(l);
    750       1.2   thorpej 
    751      1.45   thorpej 	/* Delete the specificdata while it's still safe to sleep. */
    752      1.45   thorpej 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    753      1.45   thorpej 
    754      1.52        ad 	/*
    755      1.52        ad 	 * Release our cached credentials.
    756      1.52        ad 	 */
    757      1.37        ad 	kauth_cred_free(l->l_cred);
    758      1.70        ad 	callout_destroy(&l->l_timeout_ch);
    759      1.65        ad 
    760      1.65        ad 	/*
    761      1.65        ad 	 * While we can still block, mark the LWP as unswappable to
    762      1.65        ad 	 * prevent conflicts with the with the swapper.
    763      1.65        ad 	 */
    764      1.65        ad 	if (current)
    765      1.65        ad 		uvm_lwp_hold(l);
    766      1.37        ad 
    767      1.52        ad 	/*
    768      1.52        ad 	 * Remove the LWP from the global list.
    769      1.52        ad 	 */
    770  1.93.6.2       mjf 	mutex_enter(proc_lock);
    771      1.52        ad 	LIST_REMOVE(l, l_list);
    772  1.93.6.2       mjf 	mutex_exit(proc_lock);
    773      1.19  jdolecek 
    774      1.52        ad 	/*
    775      1.52        ad 	 * Get rid of all references to the LWP that others (e.g. procfs)
    776      1.52        ad 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    777      1.52        ad 	 * mark it waiting for collection in the proc structure.  Note that
    778      1.52        ad 	 * before we can do that, we need to free any other dead, deatched
    779      1.52        ad 	 * LWP waiting to meet its maker.
    780      1.52        ad 	 */
    781  1.93.6.2       mjf 	mutex_enter(p->p_lock);
    782      1.52        ad 	lwp_drainrefs(l);
    783      1.31      yamt 
    784      1.52        ad 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    785      1.52        ad 		while ((l2 = p->p_zomblwp) != NULL) {
    786      1.52        ad 			p->p_zomblwp = NULL;
    787      1.63        ad 			lwp_free(l2, false, false);/* releases proc mutex */
    788  1.93.6.2       mjf 			mutex_enter(p->p_lock);
    789      1.72        ad 			l->l_refcnt++;
    790      1.72        ad 			lwp_drainrefs(l);
    791      1.52        ad 		}
    792      1.52        ad 		p->p_zomblwp = l;
    793      1.52        ad 	}
    794      1.31      yamt 
    795      1.52        ad 	/*
    796      1.52        ad 	 * If we find a pending signal for the process and we have been
    797      1.52        ad 	 * asked to check for signals, then we loose: arrange to have
    798      1.52        ad 	 * all other LWPs in the process check for signals.
    799      1.52        ad 	 */
    800      1.56     pavel 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    801      1.52        ad 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    802      1.52        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    803      1.52        ad 			lwp_lock(l2);
    804      1.56     pavel 			l2->l_flag |= LW_PENDSIG;
    805      1.52        ad 			lwp_unlock(l2);
    806      1.52        ad 		}
    807      1.31      yamt 	}
    808      1.31      yamt 
    809      1.52        ad 	lwp_lock(l);
    810      1.52        ad 	l->l_stat = LSZOMB;
    811      1.90        ad 	if (l->l_name != NULL)
    812      1.90        ad 		strcpy(l->l_name, "(zombie)");
    813  1.93.6.5       mjf 	if (l->l_flag & LW_AFFINITY)
    814  1.93.6.5       mjf 		l->l_flag &= ~LW_AFFINITY;
    815      1.52        ad 	lwp_unlock(l);
    816       1.2   thorpej 	p->p_nrlwps--;
    817      1.52        ad 	cv_broadcast(&p->p_lwpcv);
    818      1.78        ad 	if (l->l_lwpctl != NULL)
    819      1.78        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    820  1.93.6.2       mjf 	mutex_exit(p->p_lock);
    821      1.52        ad 
    822  1.93.6.5       mjf 	/* Safe without lock since LWP is in zombie state */
    823  1.93.6.5       mjf 	if (l->l_affinity) {
    824  1.93.6.5       mjf 		kcpuset_unuse(l->l_affinity, NULL);
    825  1.93.6.5       mjf 		l->l_affinity = NULL;
    826  1.93.6.5       mjf 	}
    827  1.93.6.5       mjf 
    828      1.52        ad 	/*
    829      1.52        ad 	 * We can no longer block.  At this point, lwp_free() may already
    830      1.52        ad 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    831      1.52        ad 	 *
    832      1.52        ad 	 * Free MD LWP resources.
    833      1.52        ad 	 */
    834      1.52        ad #ifndef __NO_CPU_LWP_FREE
    835      1.52        ad 	cpu_lwp_free(l, 0);
    836      1.52        ad #endif
    837       1.2   thorpej 
    838      1.65        ad 	if (current) {
    839      1.65        ad 		pmap_deactivate(l);
    840      1.65        ad 
    841      1.65        ad 		/*
    842      1.65        ad 		 * Release the kernel lock, and switch away into
    843      1.65        ad 		 * oblivion.
    844      1.65        ad 		 */
    845      1.52        ad #ifdef notyet
    846      1.65        ad 		/* XXXSMP hold in lwp_userret() */
    847      1.65        ad 		KERNEL_UNLOCK_LAST(l);
    848      1.52        ad #else
    849      1.65        ad 		KERNEL_UNLOCK_ALL(l, NULL);
    850      1.52        ad #endif
    851      1.65        ad 		lwp_exit_switchaway(l);
    852      1.65        ad 	}
    853       1.2   thorpej }
    854       1.2   thorpej 
    855      1.52        ad /*
    856      1.52        ad  * Free a dead LWP's remaining resources.
    857      1.52        ad  *
    858      1.52        ad  * XXXLWP limits.
    859      1.52        ad  */
    860      1.52        ad void
    861      1.63        ad lwp_free(struct lwp *l, bool recycle, bool last)
    862      1.52        ad {
    863      1.52        ad 	struct proc *p = l->l_proc;
    864  1.93.6.1       mjf 	struct rusage *ru;
    865      1.52        ad 	ksiginfoq_t kq;
    866      1.52        ad 
    867      1.92      yamt 	KASSERT(l != curlwp);
    868      1.92      yamt 
    869      1.52        ad 	/*
    870      1.52        ad 	 * If this was not the last LWP in the process, then adjust
    871      1.52        ad 	 * counters and unlock.
    872      1.52        ad 	 */
    873      1.52        ad 	if (!last) {
    874      1.52        ad 		/*
    875      1.52        ad 		 * Add the LWP's run time to the process' base value.
    876      1.52        ad 		 * This needs to co-incide with coming off p_lwps.
    877      1.52        ad 		 */
    878      1.86      yamt 		bintime_add(&p->p_rtime, &l->l_rtime);
    879      1.64      yamt 		p->p_pctcpu += l->l_pctcpu;
    880  1.93.6.1       mjf 		ru = &p->p_stats->p_ru;
    881  1.93.6.1       mjf 		ruadd(ru, &l->l_ru);
    882  1.93.6.1       mjf 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    883  1.93.6.1       mjf 		ru->ru_nivcsw += l->l_nivcsw;
    884      1.52        ad 		LIST_REMOVE(l, l_sibling);
    885      1.52        ad 		p->p_nlwps--;
    886      1.52        ad 		p->p_nzlwps--;
    887      1.52        ad 		if ((l->l_prflag & LPR_DETACHED) != 0)
    888      1.52        ad 			p->p_ndlwps--;
    889      1.63        ad 
    890      1.63        ad 		/*
    891      1.63        ad 		 * Have any LWPs sleeping in lwp_wait() recheck for
    892      1.63        ad 		 * deadlock.
    893      1.63        ad 		 */
    894      1.63        ad 		cv_broadcast(&p->p_lwpcv);
    895  1.93.6.2       mjf 		mutex_exit(p->p_lock);
    896      1.63        ad 	}
    897      1.52        ad 
    898      1.52        ad #ifdef MULTIPROCESSOR
    899      1.63        ad 	/*
    900      1.63        ad 	 * In the unlikely event that the LWP is still on the CPU,
    901      1.63        ad 	 * then spin until it has switched away.  We need to release
    902      1.63        ad 	 * all locks to avoid deadlock against interrupt handlers on
    903      1.63        ad 	 * the target CPU.
    904      1.63        ad 	 */
    905  1.93.6.2       mjf 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    906      1.63        ad 		int count;
    907      1.64      yamt 		(void)count; /* XXXgcc */
    908      1.63        ad 		KERNEL_UNLOCK_ALL(curlwp, &count);
    909  1.93.6.2       mjf 		while ((l->l_pflag & LP_RUNNING) != 0 ||
    910      1.64      yamt 		    l->l_cpu->ci_curlwp == l)
    911      1.63        ad 			SPINLOCK_BACKOFF_HOOK;
    912      1.63        ad 		KERNEL_LOCK(count, curlwp);
    913      1.63        ad 	}
    914      1.52        ad #endif
    915      1.52        ad 
    916      1.52        ad 	/*
    917      1.52        ad 	 * Destroy the LWP's remaining signal information.
    918      1.52        ad 	 */
    919      1.52        ad 	ksiginfo_queue_init(&kq);
    920      1.52        ad 	sigclear(&l->l_sigpend, NULL, &kq);
    921      1.52        ad 	ksiginfo_queue_drain(&kq);
    922      1.52        ad 	cv_destroy(&l->l_sigcv);
    923      1.65        ad 	mutex_destroy(&l->l_swaplock);
    924       1.2   thorpej 
    925      1.19  jdolecek 	/*
    926      1.52        ad 	 * Free the LWP's turnstile and the LWP structure itself unless the
    927      1.93      yamt 	 * caller wants to recycle them.  Also, free the scheduler specific
    928      1.93      yamt 	 * data.
    929      1.52        ad 	 *
    930      1.52        ad 	 * We can't return turnstile0 to the pool (it didn't come from it),
    931      1.52        ad 	 * so if it comes up just drop it quietly and move on.
    932      1.52        ad 	 *
    933      1.52        ad 	 * We don't recycle the VM resources at this time.
    934      1.19  jdolecek 	 */
    935      1.78        ad 	if (l->l_lwpctl != NULL)
    936      1.78        ad 		lwp_ctl_free(l);
    937      1.64      yamt 
    938      1.52        ad 	if (!recycle && l->l_ts != &turnstile0)
    939      1.76        ad 		pool_cache_put(turnstile_cache, l->l_ts);
    940      1.90        ad 	if (l->l_name != NULL)
    941      1.90        ad 		kmem_free(l->l_name, MAXCOMLEN);
    942      1.52        ad #ifndef __NO_CPU_LWP_FREE
    943      1.52        ad 	cpu_lwp_free2(l);
    944      1.52        ad #endif
    945      1.92      yamt 	KASSERT((l->l_flag & LW_INMEM) != 0);
    946      1.19  jdolecek 	uvm_lwp_exit(l);
    947      1.60      yamt 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    948      1.75        ad 	KASSERT(l->l_inheritedprio == -1);
    949      1.52        ad 	if (!recycle)
    950      1.87        ad 		pool_cache_put(lwp_cache, l);
    951       1.2   thorpej }
    952       1.2   thorpej 
    953       1.2   thorpej /*
    954      1.91     rmind  * Migrate the LWP to the another CPU.  Unlocks the LWP.
    955      1.91     rmind  */
    956      1.91     rmind void
    957  1.93.6.2       mjf lwp_migrate(lwp_t *l, struct cpu_info *tci)
    958      1.91     rmind {
    959  1.93.6.2       mjf 	struct schedstate_percpu *tspc;
    960  1.93.6.5       mjf 	int lstat = l->l_stat;
    961  1.93.6.5       mjf 
    962      1.91     rmind 	KASSERT(lwp_locked(l, NULL));
    963  1.93.6.2       mjf 	KASSERT(tci != NULL);
    964      1.91     rmind 
    965  1.93.6.5       mjf 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
    966  1.93.6.5       mjf 	if ((l->l_pflag & LP_RUNNING) != 0) {
    967  1.93.6.5       mjf 		lstat = LSONPROC;
    968  1.93.6.5       mjf 	}
    969  1.93.6.5       mjf 
    970  1.93.6.2       mjf 	/*
    971  1.93.6.2       mjf 	 * The destination CPU could be changed while previous migration
    972  1.93.6.2       mjf 	 * was not finished.
    973  1.93.6.2       mjf 	 */
    974  1.93.6.5       mjf 	if (l->l_target_cpu != NULL) {
    975  1.93.6.2       mjf 		l->l_target_cpu = tci;
    976      1.91     rmind 		lwp_unlock(l);
    977      1.91     rmind 		return;
    978      1.91     rmind 	}
    979      1.91     rmind 
    980  1.93.6.2       mjf 	/* Nothing to do if trying to migrate to the same CPU */
    981  1.93.6.2       mjf 	if (l->l_cpu == tci) {
    982  1.93.6.2       mjf 		lwp_unlock(l);
    983  1.93.6.2       mjf 		return;
    984  1.93.6.2       mjf 	}
    985  1.93.6.2       mjf 
    986  1.93.6.2       mjf 	KASSERT(l->l_target_cpu == NULL);
    987  1.93.6.2       mjf 	tspc = &tci->ci_schedstate;
    988  1.93.6.5       mjf 	switch (lstat) {
    989      1.91     rmind 	case LSRUN:
    990      1.91     rmind 		if (l->l_flag & LW_INMEM) {
    991  1.93.6.2       mjf 			l->l_target_cpu = tci;
    992  1.93.6.2       mjf 			lwp_unlock(l);
    993  1.93.6.2       mjf 			return;
    994      1.91     rmind 		}
    995      1.91     rmind 	case LSIDL:
    996  1.93.6.2       mjf 		l->l_cpu = tci;
    997  1.93.6.2       mjf 		lwp_unlock_to(l, tspc->spc_mutex);
    998      1.91     rmind 		return;
    999      1.91     rmind 	case LSSLEEP:
   1000  1.93.6.2       mjf 		l->l_cpu = tci;
   1001      1.91     rmind 		break;
   1002      1.91     rmind 	case LSSTOP:
   1003      1.91     rmind 	case LSSUSPENDED:
   1004  1.93.6.2       mjf 		l->l_cpu = tci;
   1005  1.93.6.2       mjf 		if (l->l_wchan == NULL) {
   1006  1.93.6.2       mjf 			lwp_unlock_to(l, tspc->spc_lwplock);
   1007  1.93.6.2       mjf 			return;
   1008      1.91     rmind 		}
   1009  1.93.6.2       mjf 		break;
   1010      1.91     rmind 	case LSONPROC:
   1011  1.93.6.2       mjf 		l->l_target_cpu = tci;
   1012  1.93.6.2       mjf 		spc_lock(l->l_cpu);
   1013  1.93.6.2       mjf 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1014  1.93.6.2       mjf 		spc_unlock(l->l_cpu);
   1015      1.91     rmind 		break;
   1016      1.91     rmind 	}
   1017      1.91     rmind 	lwp_unlock(l);
   1018      1.91     rmind }
   1019      1.91     rmind 
   1020      1.91     rmind /*
   1021  1.93.6.1       mjf  * Find the LWP in the process.  Arguments may be zero, in such case,
   1022  1.93.6.1       mjf  * the calling process and first LWP in the list will be used.
   1023  1.93.6.2       mjf  * On success - returns proc locked.
   1024      1.91     rmind  */
   1025      1.91     rmind struct lwp *
   1026      1.91     rmind lwp_find2(pid_t pid, lwpid_t lid)
   1027      1.91     rmind {
   1028      1.91     rmind 	proc_t *p;
   1029      1.91     rmind 	lwp_t *l;
   1030      1.91     rmind 
   1031      1.91     rmind 	/* Find the process */
   1032  1.93.6.1       mjf 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
   1033      1.91     rmind 	if (p == NULL)
   1034      1.91     rmind 		return NULL;
   1035  1.93.6.2       mjf 	mutex_enter(p->p_lock);
   1036  1.93.6.1       mjf 	if (pid != 0) {
   1037  1.93.6.1       mjf 		/* Case of p_find */
   1038  1.93.6.2       mjf 		mutex_exit(proc_lock);
   1039  1.93.6.1       mjf 	}
   1040      1.91     rmind 
   1041      1.91     rmind 	/* Find the thread */
   1042  1.93.6.1       mjf 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
   1043  1.93.6.2       mjf 	if (l == NULL) {
   1044  1.93.6.2       mjf 		mutex_exit(p->p_lock);
   1045  1.93.6.2       mjf 	}
   1046      1.91     rmind 
   1047      1.91     rmind 	return l;
   1048      1.91     rmind }
   1049      1.91     rmind 
   1050      1.91     rmind /*
   1051      1.52        ad  * Look up a live LWP within the speicifed process, and return it locked.
   1052      1.52        ad  *
   1053  1.93.6.2       mjf  * Must be called with p->p_lock held.
   1054      1.52        ad  */
   1055      1.52        ad struct lwp *
   1056      1.52        ad lwp_find(struct proc *p, int id)
   1057      1.52        ad {
   1058      1.52        ad 	struct lwp *l;
   1059      1.52        ad 
   1060  1.93.6.2       mjf 	KASSERT(mutex_owned(p->p_lock));
   1061      1.52        ad 
   1062      1.52        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1063      1.52        ad 		if (l->l_lid == id)
   1064      1.52        ad 			break;
   1065      1.52        ad 	}
   1066      1.52        ad 
   1067      1.52        ad 	/*
   1068      1.52        ad 	 * No need to lock - all of these conditions will
   1069      1.52        ad 	 * be visible with the process level mutex held.
   1070      1.52        ad 	 */
   1071      1.52        ad 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1072      1.52        ad 		l = NULL;
   1073      1.52        ad 
   1074      1.52        ad 	return l;
   1075      1.52        ad }
   1076      1.52        ad 
   1077      1.52        ad /*
   1078      1.37        ad  * Update an LWP's cached credentials to mirror the process' master copy.
   1079      1.37        ad  *
   1080      1.37        ad  * This happens early in the syscall path, on user trap, and on LWP
   1081      1.37        ad  * creation.  A long-running LWP can also voluntarily choose to update
   1082      1.37        ad  * it's credentials by calling this routine.  This may be called from
   1083      1.37        ad  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1084      1.37        ad  */
   1085      1.37        ad void
   1086      1.37        ad lwp_update_creds(struct lwp *l)
   1087      1.37        ad {
   1088      1.37        ad 	kauth_cred_t oc;
   1089      1.37        ad 	struct proc *p;
   1090      1.37        ad 
   1091      1.37        ad 	p = l->l_proc;
   1092      1.37        ad 	oc = l->l_cred;
   1093      1.37        ad 
   1094  1.93.6.2       mjf 	mutex_enter(p->p_lock);
   1095      1.37        ad 	kauth_cred_hold(p->p_cred);
   1096      1.37        ad 	l->l_cred = p->p_cred;
   1097  1.93.6.1       mjf 	l->l_prflag &= ~LPR_CRMOD;
   1098  1.93.6.2       mjf 	mutex_exit(p->p_lock);
   1099      1.88        ad 	if (oc != NULL)
   1100      1.37        ad 		kauth_cred_free(oc);
   1101      1.52        ad }
   1102      1.52        ad 
   1103      1.52        ad /*
   1104      1.52        ad  * Verify that an LWP is locked, and optionally verify that the lock matches
   1105      1.52        ad  * one we specify.
   1106      1.52        ad  */
   1107      1.52        ad int
   1108      1.52        ad lwp_locked(struct lwp *l, kmutex_t *mtx)
   1109      1.52        ad {
   1110      1.52        ad 	kmutex_t *cur = l->l_mutex;
   1111      1.52        ad 
   1112      1.52        ad 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1113      1.52        ad }
   1114      1.52        ad 
   1115      1.52        ad /*
   1116      1.52        ad  * Lock an LWP.
   1117      1.52        ad  */
   1118  1.93.6.4       mjf kmutex_t *
   1119      1.52        ad lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1120      1.52        ad {
   1121      1.52        ad 
   1122      1.52        ad 	/*
   1123      1.52        ad 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1124      1.52        ad 	 *
   1125      1.52        ad 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1126      1.52        ad 	 */
   1127      1.52        ad #if 1
   1128      1.52        ad 	while (l->l_mutex != old) {
   1129      1.52        ad #else
   1130      1.52        ad 	for (;;) {
   1131      1.52        ad #endif
   1132      1.52        ad 		mutex_spin_exit(old);
   1133      1.52        ad 		old = l->l_mutex;
   1134      1.52        ad 		mutex_spin_enter(old);
   1135      1.52        ad 
   1136      1.52        ad 		/*
   1137      1.52        ad 		 * mutex_enter() will have posted a read barrier.  Re-test
   1138      1.52        ad 		 * l->l_mutex.  If it has changed, we need to try again.
   1139      1.52        ad 		 */
   1140      1.52        ad #if 1
   1141      1.52        ad 	}
   1142      1.52        ad #else
   1143      1.52        ad 	} while (__predict_false(l->l_mutex != old));
   1144      1.52        ad #endif
   1145  1.93.6.4       mjf 
   1146  1.93.6.4       mjf 	return old;
   1147      1.52        ad }
   1148      1.52        ad 
   1149      1.52        ad /*
   1150      1.52        ad  * Lend a new mutex to an LWP.  The old mutex must be held.
   1151      1.52        ad  */
   1152      1.52        ad void
   1153      1.52        ad lwp_setlock(struct lwp *l, kmutex_t *new)
   1154      1.52        ad {
   1155      1.52        ad 
   1156      1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1157      1.52        ad 
   1158  1.93.6.2       mjf 	membar_exit();
   1159      1.52        ad 	l->l_mutex = new;
   1160      1.52        ad }
   1161      1.52        ad 
   1162      1.52        ad /*
   1163      1.52        ad  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1164      1.52        ad  * must be held.
   1165      1.52        ad  */
   1166      1.52        ad void
   1167      1.52        ad lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1168      1.52        ad {
   1169      1.52        ad 	kmutex_t *old;
   1170      1.52        ad 
   1171      1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1172      1.52        ad 
   1173      1.52        ad 	old = l->l_mutex;
   1174  1.93.6.2       mjf 	membar_exit();
   1175      1.52        ad 	l->l_mutex = new;
   1176      1.52        ad 	mutex_spin_exit(old);
   1177      1.52        ad }
   1178      1.52        ad 
   1179      1.52        ad /*
   1180      1.52        ad  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1181      1.52        ad  * locked.
   1182      1.52        ad  */
   1183      1.52        ad void
   1184      1.52        ad lwp_relock(struct lwp *l, kmutex_t *new)
   1185      1.52        ad {
   1186      1.52        ad 	kmutex_t *old;
   1187      1.52        ad 
   1188      1.63        ad 	KASSERT(mutex_owned(l->l_mutex));
   1189      1.52        ad 
   1190      1.52        ad 	old = l->l_mutex;
   1191      1.52        ad 	if (old != new) {
   1192      1.52        ad 		mutex_spin_enter(new);
   1193      1.52        ad 		l->l_mutex = new;
   1194      1.52        ad 		mutex_spin_exit(old);
   1195      1.52        ad 	}
   1196      1.52        ad }
   1197      1.52        ad 
   1198      1.60      yamt int
   1199      1.60      yamt lwp_trylock(struct lwp *l)
   1200      1.60      yamt {
   1201      1.60      yamt 	kmutex_t *old;
   1202      1.60      yamt 
   1203      1.60      yamt 	for (;;) {
   1204      1.60      yamt 		if (!mutex_tryenter(old = l->l_mutex))
   1205      1.60      yamt 			return 0;
   1206      1.60      yamt 		if (__predict_true(l->l_mutex == old))
   1207      1.60      yamt 			return 1;
   1208      1.60      yamt 		mutex_spin_exit(old);
   1209      1.60      yamt 	}
   1210      1.60      yamt }
   1211      1.60      yamt 
   1212  1.93.6.1       mjf u_int
   1213  1.93.6.1       mjf lwp_unsleep(lwp_t *l, bool cleanup)
   1214  1.93.6.1       mjf {
   1215  1.93.6.1       mjf 
   1216  1.93.6.1       mjf 	KASSERT(mutex_owned(l->l_mutex));
   1217  1.93.6.1       mjf 
   1218  1.93.6.1       mjf 	return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1219  1.93.6.1       mjf }
   1220  1.93.6.1       mjf 
   1221  1.93.6.1       mjf 
   1222      1.52        ad /*
   1223      1.56     pavel  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1224      1.52        ad  * set.
   1225      1.52        ad  */
   1226      1.52        ad void
   1227      1.52        ad lwp_userret(struct lwp *l)
   1228      1.52        ad {
   1229      1.52        ad 	struct proc *p;
   1230      1.54        ad 	void (*hook)(void);
   1231      1.52        ad 	int sig;
   1232      1.52        ad 
   1233  1.93.6.2       mjf 	KASSERT(l == curlwp);
   1234  1.93.6.2       mjf 	KASSERT(l->l_stat == LSONPROC);
   1235      1.52        ad 	p = l->l_proc;
   1236      1.52        ad 
   1237      1.75        ad #ifndef __HAVE_FAST_SOFTINTS
   1238      1.75        ad 	/* Run pending soft interrupts. */
   1239      1.75        ad 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1240      1.75        ad 		softint_overlay();
   1241      1.75        ad #endif
   1242      1.75        ad 
   1243  1.93.6.6       mjf #ifdef KERN_SA
   1244  1.93.6.6       mjf 	/* Generate UNBLOCKED upcall if needed */
   1245  1.93.6.6       mjf 	if (l->l_flag & LW_SA_BLOCKING) {
   1246  1.93.6.6       mjf 		sa_unblock_userret(l);
   1247  1.93.6.6       mjf 		/* NOTREACHED */
   1248  1.93.6.6       mjf 	}
   1249  1.93.6.6       mjf #endif
   1250  1.93.6.6       mjf 
   1251      1.52        ad 	/*
   1252      1.52        ad 	 * It should be safe to do this read unlocked on a multiprocessor
   1253      1.52        ad 	 * system..
   1254  1.93.6.6       mjf 	 *
   1255  1.93.6.6       mjf 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
   1256  1.93.6.6       mjf 	 * consider it now.
   1257      1.52        ad 	 */
   1258  1.93.6.6       mjf 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
   1259      1.52        ad 		/*
   1260      1.52        ad 		 * Process pending signals first, unless the process
   1261      1.61        ad 		 * is dumping core or exiting, where we will instead
   1262  1.93.6.2       mjf 		 * enter the LW_WSUSPEND case below.
   1263      1.52        ad 		 */
   1264      1.61        ad 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1265      1.61        ad 		    LW_PENDSIG) {
   1266  1.93.6.2       mjf 			mutex_enter(p->p_lock);
   1267      1.52        ad 			while ((sig = issignal(l)) != 0)
   1268      1.52        ad 				postsig(sig);
   1269  1.93.6.2       mjf 			mutex_exit(p->p_lock);
   1270      1.52        ad 		}
   1271      1.52        ad 
   1272      1.52        ad 		/*
   1273      1.52        ad 		 * Core-dump or suspend pending.
   1274      1.52        ad 		 *
   1275      1.52        ad 		 * In case of core dump, suspend ourselves, so that the
   1276      1.52        ad 		 * kernel stack and therefore the userland registers saved
   1277      1.52        ad 		 * in the trapframe are around for coredump() to write them
   1278      1.52        ad 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1279      1.52        ad 		 * will write the core file out once all other LWPs are
   1280      1.52        ad 		 * suspended.
   1281      1.52        ad 		 */
   1282      1.56     pavel 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1283  1.93.6.2       mjf 			mutex_enter(p->p_lock);
   1284      1.52        ad 			p->p_nrlwps--;
   1285      1.52        ad 			cv_broadcast(&p->p_lwpcv);
   1286      1.52        ad 			lwp_lock(l);
   1287      1.52        ad 			l->l_stat = LSSUSPENDED;
   1288  1.93.6.2       mjf 			lwp_unlock(l);
   1289  1.93.6.2       mjf 			mutex_exit(p->p_lock);
   1290  1.93.6.2       mjf 			lwp_lock(l);
   1291      1.64      yamt 			mi_switch(l);
   1292      1.52        ad 		}
   1293      1.52        ad 
   1294      1.52        ad 		/* Process is exiting. */
   1295      1.56     pavel 		if ((l->l_flag & LW_WEXIT) != 0) {
   1296      1.52        ad 			lwp_exit(l);
   1297      1.52        ad 			KASSERT(0);
   1298      1.52        ad 			/* NOTREACHED */
   1299      1.52        ad 		}
   1300      1.54        ad 
   1301      1.54        ad 		/* Call userret hook; used by Linux emulation. */
   1302      1.56     pavel 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1303      1.54        ad 			lwp_lock(l);
   1304      1.56     pavel 			l->l_flag &= ~LW_WUSERRET;
   1305      1.54        ad 			lwp_unlock(l);
   1306      1.54        ad 			hook = p->p_userret;
   1307      1.54        ad 			p->p_userret = NULL;
   1308      1.54        ad 			(*hook)();
   1309      1.54        ad 		}
   1310      1.52        ad 	}
   1311  1.93.6.6       mjf 
   1312  1.93.6.6       mjf #ifdef KERN_SA
   1313  1.93.6.6       mjf 	/*
   1314  1.93.6.6       mjf 	 * Timer events are handled specially.  We only try once to deliver
   1315  1.93.6.6       mjf 	 * pending timer upcalls; if if fails, we can try again on the next
   1316  1.93.6.6       mjf 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1317  1.93.6.6       mjf 	 * bounce us back here through the trap path after we return.
   1318  1.93.6.6       mjf 	 */
   1319  1.93.6.6       mjf 	if (p->p_timerpend)
   1320  1.93.6.6       mjf 		timerupcall(l);
   1321  1.93.6.6       mjf 	if (l->l_flag & LW_SA_UPCALL)
   1322  1.93.6.6       mjf 		sa_upcall_userret(l);
   1323  1.93.6.6       mjf #endif /* KERN_SA */
   1324      1.52        ad }
   1325      1.52        ad 
   1326      1.52        ad /*
   1327      1.52        ad  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1328      1.52        ad  */
   1329      1.52        ad void
   1330      1.52        ad lwp_need_userret(struct lwp *l)
   1331      1.52        ad {
   1332      1.63        ad 	KASSERT(lwp_locked(l, NULL));
   1333      1.52        ad 
   1334      1.52        ad 	/*
   1335      1.52        ad 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1336      1.52        ad 	 * that the condition will be seen before forcing the LWP to enter
   1337      1.52        ad 	 * kernel mode.
   1338      1.52        ad 	 */
   1339      1.81        ad 	membar_producer();
   1340      1.52        ad 	cpu_signotify(l);
   1341      1.52        ad }
   1342      1.52        ad 
   1343      1.52        ad /*
   1344      1.52        ad  * Add one reference to an LWP.  This will prevent the LWP from
   1345      1.52        ad  * exiting, thus keep the lwp structure and PCB around to inspect.
   1346      1.52        ad  */
   1347      1.52        ad void
   1348      1.52        ad lwp_addref(struct lwp *l)
   1349      1.52        ad {
   1350      1.52        ad 
   1351  1.93.6.2       mjf 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1352      1.52        ad 	KASSERT(l->l_stat != LSZOMB);
   1353      1.52        ad 	KASSERT(l->l_refcnt != 0);
   1354      1.52        ad 
   1355      1.52        ad 	l->l_refcnt++;
   1356      1.52        ad }
   1357      1.52        ad 
   1358      1.52        ad /*
   1359      1.52        ad  * Remove one reference to an LWP.  If this is the last reference,
   1360      1.52        ad  * then we must finalize the LWP's death.
   1361      1.52        ad  */
   1362      1.52        ad void
   1363      1.52        ad lwp_delref(struct lwp *l)
   1364      1.52        ad {
   1365      1.52        ad 	struct proc *p = l->l_proc;
   1366      1.52        ad 
   1367  1.93.6.2       mjf 	mutex_enter(p->p_lock);
   1368      1.72        ad 	KASSERT(l->l_stat != LSZOMB);
   1369      1.72        ad 	KASSERT(l->l_refcnt > 0);
   1370      1.52        ad 	if (--l->l_refcnt == 0)
   1371      1.76        ad 		cv_broadcast(&p->p_lwpcv);
   1372  1.93.6.2       mjf 	mutex_exit(p->p_lock);
   1373      1.52        ad }
   1374      1.52        ad 
   1375      1.52        ad /*
   1376      1.52        ad  * Drain all references to the current LWP.
   1377      1.52        ad  */
   1378      1.52        ad void
   1379      1.52        ad lwp_drainrefs(struct lwp *l)
   1380      1.52        ad {
   1381      1.52        ad 	struct proc *p = l->l_proc;
   1382      1.52        ad 
   1383  1.93.6.2       mjf 	KASSERT(mutex_owned(p->p_lock));
   1384      1.52        ad 	KASSERT(l->l_refcnt != 0);
   1385      1.52        ad 
   1386      1.52        ad 	l->l_refcnt--;
   1387      1.52        ad 	while (l->l_refcnt != 0)
   1388  1.93.6.2       mjf 		cv_wait(&p->p_lwpcv, p->p_lock);
   1389      1.37        ad }
   1390      1.41   thorpej 
   1391      1.41   thorpej /*
   1392      1.41   thorpej  * lwp_specific_key_create --
   1393      1.41   thorpej  *	Create a key for subsystem lwp-specific data.
   1394      1.41   thorpej  */
   1395      1.41   thorpej int
   1396      1.41   thorpej lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1397      1.41   thorpej {
   1398      1.41   thorpej 
   1399      1.45   thorpej 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1400      1.41   thorpej }
   1401      1.41   thorpej 
   1402      1.41   thorpej /*
   1403      1.41   thorpej  * lwp_specific_key_delete --
   1404      1.41   thorpej  *	Delete a key for subsystem lwp-specific data.
   1405      1.41   thorpej  */
   1406      1.41   thorpej void
   1407      1.41   thorpej lwp_specific_key_delete(specificdata_key_t key)
   1408      1.41   thorpej {
   1409      1.41   thorpej 
   1410      1.41   thorpej 	specificdata_key_delete(lwp_specificdata_domain, key);
   1411      1.41   thorpej }
   1412      1.41   thorpej 
   1413      1.45   thorpej /*
   1414      1.45   thorpej  * lwp_initspecific --
   1415      1.45   thorpej  *	Initialize an LWP's specificdata container.
   1416      1.45   thorpej  */
   1417      1.42  christos void
   1418      1.42  christos lwp_initspecific(struct lwp *l)
   1419      1.42  christos {
   1420      1.42  christos 	int error;
   1421      1.45   thorpej 
   1422      1.42  christos 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1423      1.42  christos 	KASSERT(error == 0);
   1424      1.42  christos }
   1425      1.42  christos 
   1426      1.41   thorpej /*
   1427      1.45   thorpej  * lwp_finispecific --
   1428      1.45   thorpej  *	Finalize an LWP's specificdata container.
   1429      1.45   thorpej  */
   1430      1.45   thorpej void
   1431      1.45   thorpej lwp_finispecific(struct lwp *l)
   1432      1.45   thorpej {
   1433      1.45   thorpej 
   1434      1.45   thorpej 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1435      1.45   thorpej }
   1436      1.45   thorpej 
   1437      1.45   thorpej /*
   1438      1.41   thorpej  * lwp_getspecific --
   1439      1.41   thorpej  *	Return lwp-specific data corresponding to the specified key.
   1440      1.41   thorpej  *
   1441      1.41   thorpej  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1442      1.41   thorpej  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1443      1.41   thorpej  *	LWP's specifc data, care must be taken to ensure that doing so
   1444      1.41   thorpej  *	would not cause internal data structure inconsistency (i.e. caller
   1445      1.41   thorpej  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1446      1.41   thorpej  *	or lwp_setspecific() call).
   1447      1.41   thorpej  */
   1448      1.41   thorpej void *
   1449      1.44   thorpej lwp_getspecific(specificdata_key_t key)
   1450      1.41   thorpej {
   1451      1.41   thorpej 
   1452      1.41   thorpej 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1453      1.44   thorpej 						  &curlwp->l_specdataref, key));
   1454      1.41   thorpej }
   1455      1.41   thorpej 
   1456      1.47   hannken void *
   1457      1.47   hannken _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1458      1.47   hannken {
   1459      1.47   hannken 
   1460      1.47   hannken 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1461      1.47   hannken 						  &l->l_specdataref, key));
   1462      1.47   hannken }
   1463      1.47   hannken 
   1464      1.41   thorpej /*
   1465      1.41   thorpej  * lwp_setspecific --
   1466      1.41   thorpej  *	Set lwp-specific data corresponding to the specified key.
   1467      1.41   thorpej  */
   1468      1.41   thorpej void
   1469      1.45   thorpej lwp_setspecific(specificdata_key_t key, void *data)
   1470      1.41   thorpej {
   1471      1.41   thorpej 
   1472      1.41   thorpej 	specificdata_setspecific(lwp_specificdata_domain,
   1473      1.44   thorpej 				 &curlwp->l_specdataref, key, data);
   1474      1.41   thorpej }
   1475      1.78        ad 
   1476      1.78        ad /*
   1477      1.78        ad  * Allocate a new lwpctl structure for a user LWP.
   1478      1.78        ad  */
   1479      1.78        ad int
   1480      1.78        ad lwp_ctl_alloc(vaddr_t *uaddr)
   1481      1.78        ad {
   1482      1.78        ad 	lcproc_t *lp;
   1483      1.78        ad 	u_int bit, i, offset;
   1484      1.78        ad 	struct uvm_object *uao;
   1485      1.78        ad 	int error;
   1486      1.78        ad 	lcpage_t *lcp;
   1487      1.78        ad 	proc_t *p;
   1488      1.78        ad 	lwp_t *l;
   1489      1.78        ad 
   1490      1.78        ad 	l = curlwp;
   1491      1.78        ad 	p = l->l_proc;
   1492      1.78        ad 
   1493      1.81        ad 	if (l->l_lcpage != NULL) {
   1494      1.81        ad 		lcp = l->l_lcpage;
   1495      1.81        ad 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1496      1.78        ad 		return (EINVAL);
   1497      1.81        ad 	}
   1498      1.78        ad 
   1499      1.78        ad 	/* First time around, allocate header structure for the process. */
   1500      1.78        ad 	if ((lp = p->p_lwpctl) == NULL) {
   1501      1.78        ad 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1502      1.78        ad 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1503      1.78        ad 		lp->lp_uao = NULL;
   1504      1.78        ad 		TAILQ_INIT(&lp->lp_pages);
   1505  1.93.6.2       mjf 		mutex_enter(p->p_lock);
   1506      1.78        ad 		if (p->p_lwpctl == NULL) {
   1507      1.78        ad 			p->p_lwpctl = lp;
   1508  1.93.6.2       mjf 			mutex_exit(p->p_lock);
   1509      1.78        ad 		} else {
   1510  1.93.6.2       mjf 			mutex_exit(p->p_lock);
   1511      1.78        ad 			mutex_destroy(&lp->lp_lock);
   1512      1.78        ad 			kmem_free(lp, sizeof(*lp));
   1513      1.78        ad 			lp = p->p_lwpctl;
   1514      1.78        ad 		}
   1515      1.78        ad 	}
   1516      1.78        ad 
   1517      1.78        ad  	/*
   1518      1.78        ad  	 * Set up an anonymous memory region to hold the shared pages.
   1519      1.78        ad  	 * Map them into the process' address space.  The user vmspace
   1520      1.78        ad  	 * gets the first reference on the UAO.
   1521      1.78        ad  	 */
   1522      1.78        ad 	mutex_enter(&lp->lp_lock);
   1523      1.78        ad 	if (lp->lp_uao == NULL) {
   1524      1.78        ad 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1525      1.78        ad 		lp->lp_cur = 0;
   1526      1.78        ad 		lp->lp_max = LWPCTL_UAREA_SZ;
   1527      1.78        ad 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1528      1.78        ad 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1529      1.78        ad 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1530      1.78        ad 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1531      1.78        ad 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1532      1.78        ad 		if (error != 0) {
   1533      1.78        ad 			uao_detach(lp->lp_uao);
   1534      1.78        ad 			lp->lp_uao = NULL;
   1535      1.78        ad 			mutex_exit(&lp->lp_lock);
   1536      1.78        ad 			return error;
   1537      1.78        ad 		}
   1538      1.78        ad 	}
   1539      1.78        ad 
   1540      1.78        ad 	/* Get a free block and allocate for this LWP. */
   1541      1.78        ad 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1542      1.78        ad 		if (lcp->lcp_nfree != 0)
   1543      1.78        ad 			break;
   1544      1.78        ad 	}
   1545      1.78        ad 	if (lcp == NULL) {
   1546      1.78        ad 		/* Nothing available - try to set up a free page. */
   1547      1.78        ad 		if (lp->lp_cur == lp->lp_max) {
   1548      1.78        ad 			mutex_exit(&lp->lp_lock);
   1549      1.78        ad 			return ENOMEM;
   1550      1.78        ad 		}
   1551      1.78        ad 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1552      1.79      yamt 		if (lcp == NULL) {
   1553      1.79      yamt 			mutex_exit(&lp->lp_lock);
   1554      1.78        ad 			return ENOMEM;
   1555      1.79      yamt 		}
   1556      1.78        ad 		/*
   1557      1.78        ad 		 * Wire the next page down in kernel space.  Since this
   1558      1.78        ad 		 * is a new mapping, we must add a reference.
   1559      1.78        ad 		 */
   1560      1.78        ad 		uao = lp->lp_uao;
   1561      1.78        ad 		(*uao->pgops->pgo_reference)(uao);
   1562  1.93.6.1       mjf 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1563      1.78        ad 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1564      1.78        ad 		    uao, lp->lp_cur, PAGE_SIZE,
   1565      1.78        ad 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1566      1.78        ad 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1567      1.78        ad 		if (error != 0) {
   1568      1.78        ad 			mutex_exit(&lp->lp_lock);
   1569      1.78        ad 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1570      1.78        ad 			(*uao->pgops->pgo_detach)(uao);
   1571      1.78        ad 			return error;
   1572      1.78        ad 		}
   1573      1.89      yamt 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1574      1.89      yamt 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1575      1.89      yamt 		if (error != 0) {
   1576      1.89      yamt 			mutex_exit(&lp->lp_lock);
   1577      1.89      yamt 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1578      1.89      yamt 			    lcp->lcp_kaddr + PAGE_SIZE);
   1579      1.89      yamt 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1580      1.89      yamt 			return error;
   1581      1.89      yamt 		}
   1582      1.78        ad 		/* Prepare the page descriptor and link into the list. */
   1583      1.78        ad 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1584      1.78        ad 		lp->lp_cur += PAGE_SIZE;
   1585      1.78        ad 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1586      1.78        ad 		lcp->lcp_rotor = 0;
   1587      1.78        ad 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1588      1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1589      1.78        ad 	}
   1590      1.78        ad 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1591      1.78        ad 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1592      1.78        ad 			i = 0;
   1593      1.78        ad 	}
   1594      1.78        ad 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1595      1.78        ad 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1596      1.78        ad 	lcp->lcp_rotor = i;
   1597      1.78        ad 	lcp->lcp_nfree--;
   1598      1.78        ad 	l->l_lcpage = lcp;
   1599      1.78        ad 	offset = (i << 5) + bit;
   1600      1.78        ad 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1601      1.78        ad 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1602      1.78        ad 	mutex_exit(&lp->lp_lock);
   1603      1.78        ad 
   1604  1.93.6.2       mjf 	KPREEMPT_DISABLE(l);
   1605  1.93.6.2       mjf 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1606  1.93.6.2       mjf 	KPREEMPT_ENABLE(l);
   1607      1.78        ad 
   1608      1.78        ad 	return 0;
   1609      1.78        ad }
   1610      1.78        ad 
   1611      1.78        ad /*
   1612      1.78        ad  * Free an lwpctl structure back to the per-process list.
   1613      1.78        ad  */
   1614      1.78        ad void
   1615      1.78        ad lwp_ctl_free(lwp_t *l)
   1616      1.78        ad {
   1617      1.78        ad 	lcproc_t *lp;
   1618      1.78        ad 	lcpage_t *lcp;
   1619      1.78        ad 	u_int map, offset;
   1620      1.78        ad 
   1621      1.78        ad 	lp = l->l_proc->p_lwpctl;
   1622      1.78        ad 	KASSERT(lp != NULL);
   1623      1.78        ad 
   1624      1.78        ad 	lcp = l->l_lcpage;
   1625      1.78        ad 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1626      1.78        ad 	KASSERT(offset < LWPCTL_PER_PAGE);
   1627      1.78        ad 
   1628      1.78        ad 	mutex_enter(&lp->lp_lock);
   1629      1.78        ad 	lcp->lcp_nfree++;
   1630      1.78        ad 	map = offset >> 5;
   1631      1.78        ad 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1632      1.78        ad 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1633      1.78        ad 		lcp->lcp_rotor = map;
   1634      1.78        ad 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1635      1.78        ad 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1636      1.78        ad 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1637      1.78        ad 	}
   1638      1.78        ad 	mutex_exit(&lp->lp_lock);
   1639      1.78        ad }
   1640      1.78        ad 
   1641      1.78        ad /*
   1642      1.78        ad  * Process is exiting; tear down lwpctl state.  This can only be safely
   1643      1.78        ad  * called by the last LWP in the process.
   1644      1.78        ad  */
   1645      1.78        ad void
   1646      1.78        ad lwp_ctl_exit(void)
   1647      1.78        ad {
   1648      1.78        ad 	lcpage_t *lcp, *next;
   1649      1.78        ad 	lcproc_t *lp;
   1650      1.78        ad 	proc_t *p;
   1651      1.78        ad 	lwp_t *l;
   1652      1.78        ad 
   1653      1.78        ad 	l = curlwp;
   1654      1.78        ad 	l->l_lwpctl = NULL;
   1655  1.93.6.1       mjf 	l->l_lcpage = NULL;
   1656      1.78        ad 	p = l->l_proc;
   1657      1.78        ad 	lp = p->p_lwpctl;
   1658      1.78        ad 
   1659      1.78        ad 	KASSERT(lp != NULL);
   1660      1.78        ad 	KASSERT(p->p_nlwps == 1);
   1661      1.78        ad 
   1662      1.78        ad 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1663      1.78        ad 		next = TAILQ_NEXT(lcp, lcp_chain);
   1664      1.78        ad 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1665      1.78        ad 		    lcp->lcp_kaddr + PAGE_SIZE);
   1666      1.78        ad 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1667      1.78        ad 	}
   1668      1.78        ad 
   1669      1.78        ad 	if (lp->lp_uao != NULL) {
   1670      1.78        ad 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1671      1.78        ad 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1672      1.78        ad 	}
   1673      1.78        ad 
   1674      1.78        ad 	mutex_destroy(&lp->lp_lock);
   1675      1.78        ad 	kmem_free(lp, sizeof(*lp));
   1676      1.78        ad 	p->p_lwpctl = NULL;
   1677      1.78        ad }
   1678      1.84      yamt 
   1679      1.84      yamt #if defined(DDB)
   1680      1.84      yamt void
   1681      1.84      yamt lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1682      1.84      yamt {
   1683      1.84      yamt 	lwp_t *l;
   1684      1.84      yamt 
   1685      1.84      yamt 	LIST_FOREACH(l, &alllwp, l_list) {
   1686      1.84      yamt 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1687      1.84      yamt 
   1688      1.84      yamt 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1689      1.84      yamt 			continue;
   1690      1.84      yamt 		}
   1691      1.84      yamt 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1692      1.84      yamt 		    (void *)addr, (void *)stack,
   1693      1.84      yamt 		    (size_t)(addr - stack), l);
   1694      1.84      yamt 	}
   1695      1.84      yamt }
   1696      1.84      yamt #endif /* defined(DDB) */
   1697